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ABSTRACT 

 
Several series of polyurethanes were synthesized with linear or crosslinked 

structures by using different synthesis routes. Two studies are mentioned: (1) the 

synthesis of degradable polyurethanes with linear structure and the investigation of the 

elasticity and cytophilicity of the materials as function of the chain extender, and (2) the 

synthesis and the investigation of the biocompatibility, degradation, hydrophilicity and 

mechanical properties of the polyurethane-based hydrogels with crosslinked structure. 

In the first study, two types of biodegradable polyurethanes (PUs) were 

synthesized from methylene di-p-phenyl-diisocyanate (MDI), polycaprolactone diol 

(PCL-diol), and chain extenders of either butanediol (BD) or 2,2 -(methylimino)diethanol 

(MIDE). The effects of two types of chain extenders on the degradation, mechanical 

properties, hydrophilicity, and cytophilicity of PUs were evaluated. In this study, we 

concluded that by changing the type of chain extender used during the synthesis of 

degradable PUs, the degradation rate, mechanical properties, hydrophilicity, and 

cytophilicity could be tailored for biomedical applications in different tissues. 

In the second study, a series of degradable polyurethane based light-curable 

elastic hydrogels were synthesized from polycaprolactone diol (PCL-diol), polyethylene 

glycol (PEG), lysine diisocyanate (LDI), and 2-hydroxyethyl methacrylate (HEMA) 

through UV light initiated polymerization reaction. The use of PCL/PEG at different 

ratios, as well as the introduction of HEMA into polyurethane, allows the synthesis of a 

series of biocompatible elastic hydrogels with tunable physical and cytophilic properties. 
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This series of materials also allows for controlling cell attachment and growth by 

incorporating bioactive molecules during the light-curing process. 
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CHAPTER 1 

THESIS ROADMAP 

Abstract 

This thesis constitutes studies of the materials research of several novel 

polyurethanes with potential for biomedical use. Several series of polyurethanes were 

synthesized with linear or crosslinked structures by using different synthesis routes. This 

thesis includes two studies: (1) the synthesis of degradable polyurethanes with linear 

structure and the investigation of the elasticity and cytophilicity of the materials by 

changing chain extender, and (2) the synthesis of the polyurethane-based hydrogels with 

crosslinked structure and the investigation of the biocompatibility, degradation, 

hydrophilicity and mechanical properties. 

In the first part of this thesis, two types of biodegradable polyurethanes (PUs) 

were synthesized from methylene di-p-phenyl-diisocyanate (MDI), polycaprolactone diol 

(PCL-diol), and chain extenders of either butanediol (BD) or 2,2 -(methylimino)diethanol 

(MIDE). The effects of two types of chain extenders on the degradation, mechanical 

properties, hydrophilicity, and cytophilicity of PUs were evaluated. In this study, we 

concluded that by changing the type of chain extender used during the synthesis of 

degradable PUs, the degradation rate, mechanical properties, hydrophilicity, and 

cytophilicity could be adjusted for biomedical applications in different tissues. 

In the second part of this thesis, a series of degradable polyurethane based 

light-curable elastic hydrogels were synthesized from polycaprolactone diol (PCL-diol), 

polyethylene glycol (PEG), lysine diisocyanate (LDI), and 2-hydroxyethyl methacrylate 
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(HEMA) through UV light initiated polymerization reaction. In this study, the use of 

PCL/PEG at different ratios, as well as the introduction of HEMA into polyurethane, 

allows the synthesis of a series of biocompatible elastic hydrogels with tunable physical 

and cytophilic properties through light initiated polymerization. This series of materials 

also allows for controlling cell attachment and growth by incorporating bioactive 

molecules during the light-curing process. 
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CHAPTER 2 

BACKGROUND 

Introduction of Biomaterials and Scaffolds 

The destruction or malformation of tissues and organs can be caused by trauma, 

primary disease or by medical intervention and treatment modalities. [1] A large part of 

modern medical practice targets the restoration of function by replacement of damaged or 

diseased tissues and organs, the replacement is by either artificial implants or 

transplantation of tissues. [2] Such interventions are hindered by factors such as immune 

rejection, limited supply and donor site morbidity.  

In recent decades, tissue engineering has emerged as an alternative method for the 

regeneration of tissues and restoration of function of organs through implantation of 

cells/tissues grown outside the body or stimulating cell to grow into an implanted 

matrix.[3] While initial biomaterials were commonly inert, biomaterial research then 

focused on the bioactive materials that elicit action and reaction in the biological 

environment. Today, there is a move to new generation of materials to repair or replace 

diseased or damaged tissue, using controlled three-dimensional scaffolds in which cells 

can be seeded usually before implantation. The materials and scaffold can stimulate 

specific cellular response at the molecular level; they are also biodegradable and can be 

tailored to suit specific tissues. Ideally, the living tissue construct is functionally, 

structurally and mechanically equal to the tissue it has been designed to replace.[4]  

There are a number of materials used for tissue engineering application; the 

materials can be subdivided into natural materials and synthetic materials. Examples of 
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natural materials include collagen, glycosaminoglycans (GAGs), chitosan and alginates. 

[5-8] The advantages of natural materials are that they have low toxicity and a low 

chronic inflammatory response. They can be combined into a composite with other 

natural materials or synthetic materials (thus possessing the mechanical strength of the 

synthetic material as well as the biocompatibility of the natural material) and can be 

degraded by naturally occurring enzymes. However, disadvantages include poor 

mechanical strength as well as a complex structure and, hence, manipulation becomes 

more difficult. They can easily be denatured and often require chemical modification, 

which can lead to toxicity. Examples of synthetic materials include the biodegradable 

polymers such as polyglycolide (PGA), polylactide (PLA) and polylactide-co-glycolide 

(PLG); non-degradable polymers such as polytetrafluoroethylene (PTFE), nylon and 

polyethylene terephthalate (PET); ceramics such as single crystal Al2O3 and 

polycrystalline Al2O3; bioactive glasses such as Bioglass (US Biomaterials).[9-13]  

Techniques used to manufacture biomaterials into scaffolds are dependent on the 

properties of the material and its intended application. Scaffolds may be composed of 

polymers, metals, ceramics or composites. It is important to select a material that closely 

matches the properties of the tissue that it is to replace. For example, biomaterials 

intended to replace soft tissues such as skin, breast, eye, blood vessels and heart valves 

tend to be composed of natural and synthetic polymers. Replacement of hard tissues such 

as bone and dentine tends to use metals, ceramics, composites and polymers.[3, 14-18] 

For the three-dimensional scaffold with cells seeded before implantation, the clinical 

success of the scaffold is also largely dependent on the suitable supply of cells in the 

scaffold. There are a number of different sources of cells that could be used for tissue 
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repair and regeneration, including mature cells from the patient, ‘adult’ stem cells from 

the patient such as bone marrow stromal stem cells, and embryonic stem (ES) 

cells/embryonic germ (EG) cells.[19-21] 

Introduction of Polyurethanes 

Polyurethanes form a large family of polymeric materials with an enormous 

diversity of chemical composition and properties. These properties have contributed to 

their widespread application in many areas and use in a range of commodity products, 

such as polymers for clothing, automotive parts, furnishings, construction and paints for 

appliances. Compared to most polymers manufactured in industry, polyurethanes possess 

more complex chemical structures, typically comprising three monomers: a diisocyanate, 

a macroglycol, and a chain extender. These three parts in the polyurethane structure, 

enable one to create a virtually infinite number of materials with various physicochemical 

and mechanical characteristics. This unique composition makes the structure of 

polyurethanes quite different from that of other polymers. In fact, polyurethane polymers 

usually show a two-phase structure in which hard segment-enriched domains are 

dispersed in a matrix of soft segments. The hard segment-enriched domains are 

composed mainly of the diisocyanate and the chain extender, while the soft segment 

matrix is composed of a sequence of macroglycol moieties. For this reason, 

polyurethanes are often referred to as segmented block copolymers. This particular 

molecular architecture, as well as the intrinsic properties of each ingredient used for the 

synthesis of polyurethanes, contributes to the unique characteristics of this class of 

materials when compared to other polymers. [22] 
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Generally, there are three methods for the preparation of polyurethanes: the 

one-shot method, the prepolymer method, and the quasi-prepolymer method. [23-27] The 

prepolymer method and the quasi-prepolymer method are regrouped as ‘two-step 

methods’ or ‘two-step polymerization’. In the one-shot method, all the ingredients are 

mixed simultaneously and the resulting mixture is directly allowed to polymerize. In the 

prepolymer method, the macroglycol is pre-reacted with an excess of poly-isocyanate. 

This prepolymer is then mixed with the rest of the ingredients during processing. In the 

quasi-prepolymer method, a part of the macroglycol is mixed with the poly-isocyanate 

and the rest of the polymer and the other constituents are mixed as a second phase. The 

streams thus obtained are finally mixed together at the end. Those final polyurethanes can 

be further categorized into two broad groups: thermoplastics and thermosets. 

Thermoplastics are defined as materials capable of being repeatedly softened by heat and 

hardened by cooling. Thermosets, on the contrary, are set into permanent shape by 

chemical crosslinking that occurs during or after forming. Once a thermoset has been 

hardened into the desired shape, the process is generally irreversible. In the case of 

polyurethanes synthesized in our laboratory, both thermoplastic and thermoset 

polyurethanes were obtained. 

Polyurethanes exhibit many excellent properties for biomedical applications. For 

instance, one of the characteristic properties of polyurethanes is their mechanical 

flexibility combined with high tear strength, which can be achieved because of 

polyurethane’s chemical versatility. These desirable properties attract the attention of 

developers of biomedical devices. In 1958, polyurethane materials were first introduced 

in biomedical applications; Pangman described a composite breast prosthesis covered 
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with a polyester-urethane foam. [28, 29] In the same year, Mandrino and Salvatore also 

used a rigid polyester-urethane foam called OstamerTM for in situ bone fixation. [30-33] 

Three years later, the application of polyester-urethane Polyurethane Estane® VC was 

proposed by Dreyer et al to be used as components for heart valves and chambers, and 

aortic grafts.[34, 35] In the mid-1960s, Cordis Corp. started to commercialize 

polyester-urethane diagnostic catheters.[36] In 1954, textile chemists at DuPont 

developed Lycra® spandex as a high-performance alternative to natural rubber in elastic 

thread. It was first introduced as a biomaterial in 1967 by Boretos and Pierce who 

obtained the polymer in solution directly from the DuPont spinning line that produced 

Lycra spandex yarn. This material was first used as the elastomeric components of a 

cardiac assist pump and its arterial cannulae.[37-39] The year 1971 marked the arrival of 

the earliest polyurethane specifically designed for medical use; Avcothane-51TM, a 

polyurethane/slicone hybrid, was invented by AVCO-Everett Research Laboratory. In 

1972, BiomerTM, a version of Lycra® T-126 produced by Ethicon Corp. under a license 

from Dupont, was made available. Avcothane and Biomer were regarded as the first 

‘real’ biomedical polyurethanes and have been studied intensively. Avcothane was used 

clinically in the first intra-aortic balloon pump (IAB), starting in about 1971, and is still 

in clinical use today in IABs. BiomerTM components were used in the ‘Jarvik Heart’ in 

1982, the first artificial heart used for implantation. From that time, the research of 

polyurethanes in biomedical applications has been intensive, and currently polyurethanes 

have been applied in a number of biomedical tissue engineering areas such as pacemaker 

lead insulators, heart valves, vascular protheses, breast implants, gastric bubbles, drug 

release carriers, etc.[40-49] 
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While traditionally investigators have used polyurethanes as long-term implant 

materials [50] and have attempted to shield them from the biodegradation processes, 

recent work by investigators has utilized the flexible chemistry and diverse mechanical 

properties of polyurethane materials to design degradable polymers for applications as 

varied as neural conduits [51] to bone replacements.[52-55] These materials have for the 

most part taken advantage of hydrolytic mechanisms and have varied molecular 

structures to control rates of hydrolysis.[56]  

The move to degradable polyurethane-based materials has required a change in 

the diisocyanates historically used for their synthesis. Generally, an aromatic diisocyanate 

was used for applications where degradation was not desired, such as pacemaker lead 

coverings, catheters, and wound dressings.[50] Partially because of the putative 

carcinogenic nature of aromatic diisocyanates,[57, 58] degradable polyurethanes are 

more frequently made from diisocyanates such as lysine-diisocyanate (LDI, 2,6 

diisocyanato methyl caproate),[54, 59, 60] hexamethylene diisocyanate,[55, 61] and 1,4 

diisocyanatobutane  whose ultimate degradation products are more likely to be 

non-toxic and biocompatible. [61] 

Modification of the degradation rate is typically achieved through changes to he 

soft segment, and biodegradable PUs have been made using a variety of soft segments 

including polylactide or polyglycolic acid,[62-64] polycaprolactone (PCL), [51-55, 61] 

and polyethylene glycol (PEG). [53-55] 
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CHAPTER 3 

RESEARCH OBJECTIVES 

Polyurethanes have great promise for biomedical applications due to their 

excellent mechanical properties and great chemical versability. The majority of research 

on biomedical polyurethanes in the past was focused on the development of 

nondegradable polyurethanes. In recent years, the study of degradable polyurethanes has 

examined its application in both hard tissue and soft tissue regeneration. Among the 

degradable polyurethanes, only few thermoplastic polyurethanes have been intensively 

investigated. To broaden the biomedical application of polyurethanes, our objective is not 

only to develop a series of thermoplastic (linear) but also thermoset (crosslinked 

structure) polyurethanes with adjustable degradation, cytophilicity and hydrophilicity. 

The research here is to study the properties of linear polyurethane as function of different 

chain extender during synthesis; furthermore, the properties of crosslinked polyurethanes 

as function of the soft segment will be highlighted. Our preliminary research on 

biomedical polyurethanes is addressed in this thesis. 
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PART I: CHAPTER 4 

IMPROVING THE ELASTICITY AND CYTOPHILICITY OF BIODEGRADABLE 

POLYURETHANE BY CHANGING CHAIN EXTENDER 

Abstract 

Two types of biodegradable polyurethanes (PUs) were synthesized from 

methylene di-p-phenyl-diisocyanate (MDI), polycaprolactone diol (PCL-diol), and chain 

extenders of either butanediol (BD) or 2,2-(methylimino)diethanol (MIDE). The effects 

of two types of chain extenders on the degradation, mechanical properties, hydrophilicity, 

and cytophilicity of PUs were evaluated. In vitro degradation studies showed that PU 

containing MIDE has a higher degradation rate than PU synthesized using BD as a chain 

extender. Mechanical testing on dry and wet samples demonstrated that PU containing 

MIDE has a much higher elongation in the elastic region than PU containing BD. PU 

containing MIDE is more hydrophilic and retains more liquid during in vitro culture. 

Furthermore, preliminary cytocompatibility studies showed that both types of degradable 

PU are nontoxic, and fibroblasts adhere better and proliferate faster on MIDE containing 

PU than BD containing PU. To compare the cytocompatibility and degradation behaviors 

of the synthesized PU with existing FDA approved biocompatible material, polylactide 

(PLA), with a similar degradation rate, was used as negative control. Two types of PU 

were shown to have similar cytocompatibility and degradation behaviors as those of the 

PLA material. To verify the effectiveness of the cytotoxicity assay, latex was used as a 

positive control. Latex samples showed toxicity to cultured cells as expected. In 

conclusion, by changing the type of chain extender used during the synthesis of 
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degradable PUs, the degradation rate, mechanical properties, hydrophilicity, and 

cytophilicity can be adjusted for different tissue engineering applications. 

Introduction 

Biocompatible polymers are extensively investigated for applications in tissue and 

organ repair. More and more studies are focused on using biodegradable polymers for 

tissue engineering purposes, because nondegradable polymers may become detrimental 

due to their impediment of graft-host integration, mechanical impingement, and 

long-term foreign body reactions.[1-4] Many different categories of biodegradable 

polymers, including both natural and synthetic, have been used for tissue repair purposes, 

including collagen, chitosan, hyaluronic acid (HA), polyester, polyanhydride, 

polycarbonate, polyimide, polyamide, poly(amino acid), polyphosphazene, and so 

forth.[5-14] Although most of the currently investigated degradable polymers are well 

tolerated by cells in culture and in tissues, the mechanical properties of these polymers 

are not compatible with natural tissues. For example, most natural tissues, such as heart, 

blood vessels, skeletal muscle, tendon, and so forth, are very elastic and strong. The 

majority of degradable polymers are either too stiff/brittle with low elongation, or very 

soft with relatively low strength. With the increasing interest in engineering various 

tissues for the treatment of many types of injuries and diseases, a wide variety of 

degradable polymers with desirable mechanical, degradation, and cytophilic properties 

are needed. Because of its excellent mechanical properties and great chemical 

versatility,[15-22] elastic degradable PU shows promise as being a good candidate for 

most soft tissue regeneration, such as cardiac muscle,[23] blood vessel,[19, 24] skeletal 

muscle, tendon, ligament, and skin repair. In addition, elastic degradable PU is also 
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investigated for hard tissue regeneration, such as cartilage [22] and bone tissue repair.[21, 

25] However, the majority of investigations in the past were focused on the development 

of nondegradable PUs for long-term implantation, such as pacemaker lead insulators, 

catheters, cardiovascular grafts, and so forth.[26] Relatively few investigations had been 

directed toward developing degradable PUs.[15-25, 27-31] Moreover, control of the 

degradation rate and cytophilicity of PUs has not been well studied. Different degradation 

profiles are required to promote the regeneration of specific tissues.[32-34] For example, 

if the degradation rate is too fast, the regenerated tissue may be exposed to physiological 

load too early as in bone, muscle, tendon, and ligament tissue repair, resulting in failure 

of the implants. If the degradation rate is too slow, stress shielding may occur on 

regenerating tissues and chronic inflammation may also be exaggerated.[32, 35, 36] To 

this end, this study is aimed at developing degradable PU with adjustable mechanical 

properties, degradation behaviors, and biocompatibility. Based on the fact that 

crystallinity, hydrophilicity, and so forth, may affect the mechanical properties, 

cytocompatibility, and degradation profile of the degradable polymers, the hypothesis of 

this study is that the mechanical properties, degradation profile, and cytophilicity of the 

degradable PU can be adjusted using a chain extender with more polarized, hydrophilic, 

and flexible characteristics. To this end, the effect of chain extenders on the properties of 

biodegradable PU was investigated. Methylene di-p-phenyl-diisocyanate (MDI) and 

polycaprolactone (PCL) based PU was used as a model degradable PU system; and 

butanediol (BD) and 2,2 -(methylimino)diethanol (MIDE) were utilized as two model 

chain extenders in this study. The effects of two types of chain extenders on the 
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degradation, mechanical property, hydrophilicity, and cytophilicity of degradable PUs 

were evaluated. 

Materials and Methods 

Materials 

Methylene di-p-phenyl-diisocyanate (MDI), butanediol (BD), 2,2-(methylimino) 

diethanol (MIDE), and N,N-dimethylformamide (DMF) were obtained from Acros 

Organics Fine Chemicals (Geel, Belgium). Stannous octoate (Sn(oct)2, 

Sn[CH3(CH2)3CH(C2H5)COO]2) and polycaprolactone diol (PCL-diol) with Mn = 530 

were purchased from Sigma-Aldrich (St. Louis, MO). MDI was purified through vacuum 

distillation, while BD was distilled with calcium hydrogen in a vacuum to eliminate 

moisture. DMF was distilled over calcium hydrogen at atmospheric pressure under 

nitrogen protection. PCL530 was dehydrated in a vacuum oven at 60°C for 48 h. Sn(oct)2 

was purified by 4 Å molecular sieve with stirring overnight to get rid of the trace water 

prior to use. 

Synthesis of Degradable PUs 

Degradable PUs were synthesized using a two-step method.[35] Briefly, the 

stoichiometry of the PU synthesis reaction was approximately 2:1:1 of hard segment 

(diisocyanate)/soft segment (PCL-diol)/chain extender. The MDI was dissolved in 50 mL 

DMF and PCL-diol was added dropwise into the MDI solution. This mixture was allowed 

to react at 60°C for a period of 3 h. The solution was cooled to 25°C, 100 mL DMF was 

added, and then 5% (w/v) chain extender in DMF was added dropwise to the reaction 
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mixture and stirred for 18 h. After the reaction was finished, the polymer solution was 

precipitated in distilled water, and dried in a vacuum oven at 60 oC for at least 48 h 

before further use and characterization. 

Chemical Structure of Two Types of Biodegradable PUs 

The chemical structures of the two types of biodegradable PUs are shown in 

Figure 1. Samples are designated with the first letter indicating the hard-segment type (M 

= MDI), second letter indicating the soft-segment (P = PCL), the number indicating the 

soft-segment molecular weight, and the final letter indicating the chain-extender (B = BD 

and M = MIDE). Thus, MP530B indicates the 1:1 copolymer of MDI, PCL with 

molecular weight 530, and BD as the chain extender, and MP530M symbolizes MIDE as 

the chain extender as shown in Figure 1.  

Figure 1. Chemical structure of two types of degradable PUs. A: PU with BD as chain 
extender. B: PU with MIDE as chain extender. 
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Preparation of PU Thick Films 

Polymer films were prepared by solvent casting. The synthesized PUs were 

dissolved in tetrahydrofuran (THF) at a concentration of 4% (w/v). Polymer solution (12 

mL) was then poured into leveled 5 cm PTFE casting plates and cast into thick films at 

room temperature. Casting plates were covered to prevent dust from contaminating the 

films and excessive fast casting, which may induce bubbles and result in surface defects. 

The cast films were removed from the casting plates and dried in a vacuum oven at 60°C 

for 4 h to remove residual solvent. The average thickness of the film was about 0.08-0.12 

mm. Each film was then cut into 5 *12 mm2 rectangular strips for mechanical and 

degradation tests. Each strip was about 10 mg. For all the experiments PLA (Mw = 139 

kDa, Birmingham Polymers, Pelham, AL) was used as the control. 

Thermal Behavior Characterization 

PU samples were dried under vacuum at room temperature prior to being sealed 

in an aluminum pan. Thermal analysis was performed in Mettler Differential Scanning 

Calorimetry (DSC) analyzer (DSC 822e), with a heating rate of 20°C /min under constant 

nitrogen flow. Polymer samples were heated to 70°C for 10 min, cooled to -100°C, 

maintained at this temperature for 10 min, and then tested over the range from -100 to 

150°C. 

Hydrophilicity Test 

Hydrophilicity of the materials was examined by measuring the contact angle, the 

thickness change, and the weight change/swelling rate of the polymer films (n = 6 for 
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each type of measurement of each material). Water contact angles were measured using a 

home-made microscopy based contact angle analyzer. The wettability was examined by 

immersing the polymer films in aqueous solution. The thicknesses of the films were 

measured before and after being immersed in 0.1M phosphate buffered saline (PBS) for 

24 h at 37°C. The film weight was measured before and after immersion in deionized 

water for 24 h at room temperature, and the film-swelling rate was calculated. 

Mechanical Property Testing 

Tensile tests were performed at a crosshead speed of 10 mm/min using an MTS 

858 Mini Bionix tensile tester. The materials will be used in water-rich environments, 

such as culture media and live tissue. Therefore, the mechanical properties of the samples 

were tested in both dry and wet conditions. Wet samples were prepared by saturating 

them in 0.1M PBS for 12 h before testing. Six samples of each condition were measured 

to get an average tensile strength and elongation. 

Cytocompatibility Testing 

Polymer samples were spin-coated on 18 mm diameter coverglasses (n = 6 for 

each time point and each material). After being dried at room temperature in a vacuum 

oven for 48 h, samples were sterilized in 75% ethanol for 15 min, washed with sterile 

0.1M PBS five times, then put into 12-well tissue culture plates. Two types of assay were 

carried out. A proliferation assay was used to examine the effect of the materials on cell 

adhesion and proliferation, and a cytotoxicity assay was used to examine the dead/live 

cell ratio after exposure to the materials. NIH 3T3 Fibroblasts (CRL-1658, ATCC, 
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Manassas, VA) were used as a model cell type. Cells (1.6*104) were seeded on each 

sample. Five hours later, when cells were attached on the polymer surfaces, samples were 

rinsed once and transferred into new 12-well tissue culture plates to continue culture in 

DMEM/F-12 with 10% FBS. Cell proliferation and viability on the samples were 

examined at 1, 3, 5, and 7 days using proliferation and cytotoxicity assays. Briefly, a 

stable cytosolic lactate dehydrogenase (LDH) released from dead cells (cytotoxicity 

assay) or lysed cells (proliferation assay) was coupled to a tetrazolium salt 

(2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride, INT) and resulted in the 

conversion of INT into a red formazan product. The concentration of red formazan 

product was obtained by measuring the absorbance at 490 nm. The amount of color 

present was proportional to the number of dead or lysed cells. PLA coated slides were 

used as negative controls and latex was used as a positive control to verify the 

effectiveness of the assay. Cell morphology for each sample was imaged at all the time 

points before performing the two assays. 

In Vitro Degradation 

In vitro degradation of the polymer was evaluated by recording weight loss, 

molecular weight changes, thermal behavior changes, and mechanical property changes 

over time under static culture conditions in 0.1M PBS at 37°C. Each polymer strip was 

placed in a small vial filled with 650 L 0.1M PBS (pH = 7.4) to perform the degradation 

test. Strips of PLA were used as controls. The sealed vials were placed in the water bath 

at 77°C. A higher temperature was used to accelerate the degradation rate. A 

well-established relationship with different temperatures is available to convert the 
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degradation profile to 37°C.[34] At each time point, six vials of each type of material 

were sampled, rinsed five times with distilled water, and vacuum-dried for 24 h before 

weight loss, thermal behavior, and molecular weight loss were analyzed. Changes in the 

weight average molecular weight and its distribution over time were determined by gel 

permeation chromatography (GPC; Thermal Electron, San Jose, CA). The GPC data were 

calibrated with polystyrene standards (EasiCal PS-1, PolymerLabs, Amherst, MA) with 

molecular weights in a range of 580-7,500,000 Da. DMF was used as an eluting solvent. 

The polymers were dissolved at 0.25% (w/v) in the GPC carrier solvent (pure DMF) and 

20 L samples were injected. Changes in the thermal properties upon degradation were 

monitored using a Mettler DSC analyzer (DSC 822e). DSC traces of PU before and after 

degradation were plotted and the glass transition temperatures (Tg) were determined and 

compared. 

Results and Discussion 

Thermal Analysis 

In the development of polymers for biomedical applications, it is important to 

know their thermal behaviors, which determine the physical properties of the materials. 

For example, if the value of the glass transition temperature (Tg) of the polymer is above 

that of body temperature, the polymer is rigid. In contrast, if the Tg values are below 

body temperature, as in the PUs used in this study, this indicates the elastomeric nature of 

the materials. 
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Figure 2 shows the DSC thermograms of the two types of PU samples. For PU 

samples with 530 g/mol PCL-diol, Tgs of 17 and 20°C for MP530B and MP530M, 

respectively, were observed. These were substantially higher than that of pure PCL (a Tg 

of -58°C was detected). The Tg values of PCL-based PU indicated a certain degree of 

hard and soft segment mixing. [37, 38] The slightly higher Tg of MP530M (20°C) than 

that of MP530B (17°C) indicates that MP530M had less phase separation between hard 

and soft segments than MP530B. [37, 38] The thermal behavior differences between 

MP530M and MP530B may have been caused by some of the extra tertiary nitrogen 

groups in chain extender MIDE. These extra nitrogen groups are able to form hydrogen 

bonds with the oxygen atoms of the ester linkage and therefore decrease the phase 

separation between hard and soft segments, which is consistent with the assumption that 

some hard segments are dissolved in the soft segment matrix phase of PU. [39, 40] 

 

Figure 2. DSC thermograms of MP530B and MP530M. The curve on the top shows the 
thermal behavior of MP530B with Tg at 17°C and Tm at 112°C. The curve on the bottom 
shows the thermal behavior of MP530M with Tg at 20°C and no obvious Tm is observed. 
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Heat capacity (Cp), the amount of heat required to change the temperature of a 

material by one degree, is obtained by dividing the heat supplied by the temperature 

increase during the DSC measurement. In particular, the changes in the heat capacity of 

the two PU samples at the glass transition are 0.505 J/(kg K) for MP530B and 0.553 J/(kg 

K) for MP530M. The changes in the heat capacity at the glass transition are related to the 

mobility of the polymers in the rubbery state. The increase in Cp for MP530M over 

MP530B is attributed to the weakened hard-segment domain cohesion induced by the 

flexibility of the bonds connected to the tertiary nitrogen atom of the chain extender 

MIDE. Weakened hard-segment cohesion decreases the effectiveness of the 

hard-segment domain as a physical crosslinkage, thereby, increasing the mobility of the 

soft-segment phase and the Cp. Therefore, MP530M has stronger chain mobility than 

MP530B. 

An endothermal peak, demonstrating the melting point (Tm), was observed for 

MP530B at around 110°C as shown in Figure 2. The melting peak is associated with 

long-range order in the hard segments. However, no endothermal peak at high 

temperature was observed for MP530M. The lack of the endothermal peak in MP530M 

indicates that hard segment ordering in MP530M is much less than that in MP530B.[41] 

The lack of the melting endothermal peak of MP530M may have been caused by the 

tertiary nitrogen atom and the pendant side methyl group in the chain extender MIDE 

backbone. Bonds connected to the nitrogen atom are more easily rotated than those 

connected to the carbon atom, a property attributed to the increased mixing of the side 

methyl groups with the soft segments, thus decreasing microphase separation of hard and 

soft segments. 
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Based on the thermal behaviors of these two degradable PU materials, both 

materials possess elastomer characteristics at body temperature. Because of the decreased 

microphase separation in MP530M, one can expect improved hydrophilicity and, 

therefore, faster degradation rate. In addition, the elasticity of the material may be 

improved as well, due to the homogenous mixture of soft and hard segments for PU 

synthesized using MIDE as the chain extender. These hypotheses were further 

demonstrated using hydrophilicity, degradation, and mechanical tests. 

Hydrophilicity Analysis 

Both MP530B and MP530M swell in water. The amount of water absorbed into 

the materials was examined by measuring the contact angle, the thickness change of the 

samples, and the weight change/swelling rate of the polymer films. The amount of water 

absorption is highly dependent on the material's composition and surface properties. 

Contact angle is dependent on polymer surface hydrophilicity, while swelling behavior 

reflects the bulk hydrophilicity of the polymer. Lower contact angle or higher swelling 

ratio indicates higher hydrophilicity. 

As shown in Table I, compared with MP530B, MP530M has a lower contact 

angle (p > 0.05), greater thickness change (p < 0.05) in PBS, and greater weight change 

(p < 0.05) in distilled water. These differences can be explained by the structure of 

different chain extenders and the conformation of the polymer chains. Compared to BD, 

MIDE has an extra tertiary nitrogen, which increases the relative amount of polar 

segment, thus the hydrogen bonds between water molecules are easily formed. Moreover, 

the side methyl group on MIDE increases the distance between the polymer chains, thus 
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resulting in higher chain extensibility and lower phase-separation in MIDE-based PUs. 

The opportunities and spaces for the penetration of water molecules increased 

accordingly. Therefore, MP530M has higher hydrophilicity than MP530B. 

Table I. Properties of Two Types of Biodegradable Polyurethanes Synthesized From 
MDI, PCL530, and Chain Extenders of Either BD Or MIDE 

 

Several nondegradable PUs are commercially used as wound dressing materials 

because of their ideal mechanical and hydrophilic properties.[26] It is anticipated that the 

MIDE chain extender-based degradable PUs could be used for wound dressing purposes 

as well. One of the major requirements of a wound dressing scaffold is that it have a 

certain hydrophilicity to maintain an intermediate level of fluid retention, preventing 

massive liquid loss from the wound site. Thus, MP530M may have great potential to be 

produced into wound dressing scaffolds; work is in progress to test the material in animal 

skin wound models. 

Mechanical Testing 

The tensile testing results for the BD-based and MIDE-based PUs are shown in 

Table I and Figure 3. Because of the low microphase separation of hard and soft 

segments in MIDE-based PU, MP530M possesses a much wider elastic region (with 

500% of elongation) compared to that of MP530B (less than 60% in elongation). This 
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high elasticity of MP530M is important for engineering tissues with high elasticity, such 

as muscle, tendon, ligament, heart, and blood vessels. In addition, because these two 

types of polymers have a similar structure and chain extender content, similar elongation 

at the break point was found for both types of PUs [Figure 3(B)]. However, lower 

microphase separation resulted in a lower ultimate tensile strength (UTS) (p < 0.05) for 

MP530M than for MP530B because the amount of semicrystallized hard segment 

governs the UTS value. Although the tensile strength of MP530M is lower than that of 

MP530B, the strength is sufficient for tissue engineering applications. [42] The 

elongation ratio at break of two different materials were shown no significant difference 

(p > 0.05). 
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Figure 3. Mechanical properties of two types of PU. A: Typical stress-strain curves of 
MP530B and MP530M. * symbols show the yield points of two PUs. MP530M has much 
wider elastic region than that of MP530B, which may result from the homogenous 
mixture of hard and soft segments in MP530M as discussed in Thermal Analysis section. 
B: Elongation at break of MP530B and MP530M in dry or PBS saturated conditions are 
shown. In dry condition, there is no significant difference between two materials. 
However, in PBS saturated wet condition, MP530M has significantly higher elongation at 
break than MP530B (p < 0.05). The elongation at break for both materials is higher in 
wet condition than in dry condition (p < 0.05). C: UTS of MP530B and MP530M in dry 
and PBS saturated wet conditions. There is no significant UTS change between dry and 
wet conditions for MP530B. However, the UTS decrease significantly for MP530M in 
wet condition, which indicates the difference in hydrophilicity for two materials. 
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As also shown in Figure 3 (B, C), the type of chain extender affects the strength 

of PUs in both dry and wet states. There is no significant difference in tensile strength (p 

> 0.05, Table I) for MP530B in either dry or wet state. However, MP530B elongates 

more when wet (p < 0.05, Table I). In contrast, MP530M is very sensitive to water, and 

the tensile strength decreases significantly when exposed to water (p < 0.05, Table I). 

Two factors would be responsible for this effect on MP530M. One is the higher 

hydrophilicity of MIDE-based PU, which appears to have greater influence on the 

mechanical properties of MIDE-based PUs than those of BD-based PUs in the wet state. 

The other factor is the extra tertiary nitrogen groups in MIDE-based PUs, which have the 

ability to form extra hydrogen bonds with environmental water molecules. Moreover, the 

side methyl groups on MIDE increase the distance between polymer chains, thus 

increasing the flexibility of the polymer chain. Both factors may facilitate the penetration 

of water molecules into the polymer matrix, resulting in a decrease in the stress strength 

of the MIDE-based PU through the interruption of physical crosslinkages among polymer 

chains. Likewise, the elongation ratio of MIDE-based PU in the wet state is higher than 

that of BD-based PUs. 

Cytocompatibility Testing 

Both qualitative and quantitative evaluations were carried out to compare the 

cytocompatibility and cytophilicity of two PUs. The morphology of the NIH 3T3 

fibroblasts grown on two PU materials and PLA and latex controls were monitored using 

an inverted light microscope equipped with a CCD camera. As shown in Figure 4, 

fibroblasts adhere and proliferate well on PLA, MP530B, and MP530M. Cells spread on 

the surface with a normal flattened appearance, indicating that MP530B and MP530M 
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have good cytocompatibility. Fibroblasts on MP530M reached confluence faster than 

MP530B and PLA, indicating improved cytophilicity with MP530M. To further confirm 

the qualitative observations, two quantitative assays were carried out: a proliferation 

assay to examine the effect of materials on the cell adhesion and proliferation, and a 

cytotoxicity assay to examine the dead/live cell ratio after exposure to the materials. As 

shown in Figure 5 (A), the total number of cells on the MP530M, MP530B, and PLA 

increased with the time in culture. However, the total number of cells on latex did not 

increase significantly, indicating that latex caused problems with DNA synthesis and 

therefore slowed proliferation. Figure 5(B) shows the percentage of dead cells in the 

culture at different time points. The lack of significant differences in the percentage of 

dead cells among MP530M, MP530B, and PLA groups indicates good cytocompatibility 

of MP530B and MP530M materials. In contrast, an increase in cell death was apparent 

after day 1 time point in the well with latex. The density of the cell nuclei was greatly 

decreased as shown in Figure 4, which indicated DNA damage of the cells. Cell 

proliferation was also greatly decreased after day 1. The data obtained from the latex 

group demonstrated that both the qualitative assay and quantitative assays work well in 

this study. 
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Figure 4. Light microscope images of NIH 3T3 fibroblasts grown on four types of 
materials for four different time points. Fibroblasts grew and spread well in monolayer on 
PLA, MP530B, and MP530M at all the time points, demonstrating good 
cytocompatibility of these materials. However, fibroblasts growing on positive latex 
control showed abnormal morphology, which indicates the cytotoxicity of latex. Scale 
bar = 100 um. 
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Figure 5. Quantitative assays on the proliferation and cytotoxicity of NIH 3T3 fibroblasts 
on MP530B, MP530M, PLA control, and latex control. A: Proliferation assay. B: 
Cytotoxicity assay. 

The proliferation of fibroblasts on different materials was affected by 

cell-material interactions. There was no significant difference in proliferation of 

fibroblasts cultured on PLA controls and the two types of PUs from day 1 to day 3. 
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However, at day 5 cells divided faster on MP530M than on those on MP530B and PLA 

control. This may be explained by the higher surface hydrophilicity of MP530M. This 

observation is in agreement with the observations of other groups of cell-polymer 

interactions where cell attachment increased with increasing material hydrophilicity.[43] 

In addition, it has been found that cells prefer to proliferate on the surface of polymers 

with slightly positively charged surfaces.[43] In MP530M, tertiary nitrogen atoms in 

MIDE give a relatively higher polarity than BD, which helps cell proliferation. Higher 

hydrophilicity and polarity of MP530M are responsible for faster cell proliferation. 

Although very high hydrophilicity may not promote cell growth, in a certain range 

(moderate hydrophilicity), with the increase of hydrophilicity, the cells attach and 

proliferate better.[43] 

In Vitro Degradation 

Degradation of a material means that the molecular weight, mass, and mechanical 

properties decay over time. Therefore, the degradation behaviors of MP530B and 

MP530M were examined by changes in molecular weight, thermal behavior, pH, weight, 

and mechanical behavior. For both MP530B and MP530M, molecular weight varied only 

a small amount during the first 2 days in culture at 77°C [Figure 6 (A)]. Molecular weight 

of MP530M dropped significantly on day 3. However, MP530B degraded significantly 

slower with the molecular weight remaining constant till day 7. After 7 days in 0.1M PBS 

culture at 77°C, MP530M lost about 20% of initial molar mass, while MP530B lost only 

2%; 20 days later, MP530M lost about 58% of initial molar mass while MP530B lost 

16%. Thus, MP530M has a 4-10 times faster degradation rate than MP530B. GPC data 

clearly demonstrated that MIDE-based PU has a faster degradation rate than BD-based 
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PU. PCL and most PCL-based polymers, such as PCL-based PU, degrade slowly, 

because of the high hydrophobicity of PCL, and therefore, are resistant to hydrolysis. 

This study has demonstrated that the introduction of MIDE increases the hydrophilicity 

and degradation rate when compared with BD-based PU. Comparing the chemical 

structure of the two chain extenders, MIDE contains extra tertiary nitrogen atoms 

whereas BD has no extra nitrogen. As described above, the side methyl groups in the 

MIDE backbone not only easily form hydrogen bonds with water, but also increase the 

distance between each polymer chain producing more amorphous regions. Both factors 

may result in the much faster degradation rate of MIDE based PU. 
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Figure 6. Degradation behavior of MP530B and MP530M in 0.1M PBS at 77°C. A: The 
average retained molecular weights of MP530B and MP530M change as a function of 
culture time. B: The glass transition temperatures change as a function of culture time. C: 
pH values of 0.1M PBS media where polymer degrade in change as a function of time. 
PLA samples were used as control. D: Mechanical properties of MP530B and MP530M 
change as a function of time. 
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For biomedical use, it is important to obtain the correlation between the 

degradation profile at 37 and 77°C. It was reported [34] that the degradation rate of 

MP530B at 37°C is about 1/20 of the degradation rate at 77°C. Thus, the degradation of 

MP530M at 37°C can be postulated from the degradation profile at 77°C. MP530M may 

lose 50% of its initial molecular weight after about 9-10 months at 37°C, while MP530B 

may degrade 3-4 times slower than MP530M. To further increase the degradation rate of 

elastic PU, hard segments or soft segments with more hydrophilic nature can be 

employed. Our lab has synthesized elastic degradable PU with half-life degradation 

ranging from 2 months to several years. Therefore, degradable PUs, some of the most 

promising materials for tissue engineering applications, with different degradation 

profiles can be developed and applied for engineering different types of tissues. 

Figure 6(B) shows Tg changes during MP530B and MP530M degradation 

processes. There was an increase in Tg during the first 2 days, which may have been 

caused by the annealing effect when samples were initially put into 77°C. As the 

hydrolysis procedure was initiated, Tg decreased with the degradation time because 

molecular weight decreased during the degradation process. During degradation, the 

physical crosslinkages were destroyed, the percentage of short chains increased, and the 

phase separation increased, which resulted in the enhanced mobility of polymer chains. 

Thus the Tg decreased correspondingly. 

As previously reported, polylactide- and polyglycolide-based degradable 

polymers may produce an acidic environment during degradation.[44-46] Degradation 

products of MP530M and MP530B are carboxylate and hydroxyl groups, which may 

produce an acidic environment. To examine whether MP530B and MP530M influence 
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the pH of culture media, pH values were recorded during polymer degradation at 77°C. 

The changes in pH of PBS culture media with culture time are illustrated in Figure 6(C). 

PLA was used as a control. Both MP530B and MP530M have little effect on pH of the 

culture media. For example, MP530M, with a faster degradation rate than MP530B, 

caused the pH to decrease no more than 0.25 points after 32 days of degradation at 77°C, 

which is equal to 9-10 months of degradation at 37°C. In contrast, the pH values of PLA 

cultured media markedly decreased in the first 10 days [Figure 6(C)]. Therefore, the 

degradation products of MP530B and MP530M do not significantly cause the pH value 

change in the culture media in vitro. 

The changes in UTS of MP530B and MP530M as a function of in vitro 

degradation time are shown in Figure 6(D). Although MP530M has a lower tensile 

strength than MP530B, they both have a similar slope of tensile strength loss during the 

degradation. The tensile strengths of MP530B and MP530M were examined at both dry 

and PBS saturated wet conditions as shown in Figure 7. As shown in Figure 3(C), the 

influence of water on the tensile strength of MP530M is far stronger than on MP530B 

before degradation process. The wet MP530M sample had only 30% of the tensile 

strength of the dry sample. The influence of water on the tensile strength of MP530B is 

much lower, which is caused by the higher hydrophilicity of MP530M than MP530B. 

Therefore, it is easier for water molecules to attack the bonds of the MP530M, which 

undermines the physical interaction among polymer chains. This results in lower tensile 

strength of the wet samples when compared to the wet MP530B samples. However, 

during the degradation, hydrophilic groups in MP530M were released, and therefore the 

influence of the water on MP530M became weaker. As shown in Figure 7(A), the 
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differences between the dry and wet MP530M samples in UTS value became less and 

less during the degradation process. 

 

Figure 7. UTS of MP530M (A) and MP530B (B) as a function of hydrolysis time in 0.1M 
PBS at 77°C. Curves with solid symbols were tested under dry condition, and curves with 
hollow symbols were tested under PBS-saturated condition. 

Conclusions 

This study aimed at developing degradable PU with adjustable mechanical 

properties, degradation behaviors, and biocompatibility. The hypothesis is that the 

mechanical properties, degradation profile, and cytophilicity of the degradable PU can be 
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adjusted using a chain extender with more polarized, hydrophilic, and flexible 

characteristics. MDI and PCL based PUs were investigated as a model degradable PU 

system. BD and MIDE were studied as two model chain extenders. In vitro degradation 

studies showed that PU containing MIDE possesses a higher degradation rate than PU 

synthesized using BD as a chain extender. Mechanical testing of dry and wet samples 

demonstrated that PU containing MIDE has a much higher elongation in the elastic 

region than PU containing BD. PU containing MIDE is more hydrophilic and retains 

more liquid during the in vitro culture. Furthermore, preliminary cytocompatibility 

studies showed that both types of degradable PU are nontoxic, and fibroblasts adhere 

better and proliferate faster on MIDE containing PU than BD containing PU. In 

conclusion, by changing the types of chain extender used during degradable PU 

synthesis, the degradation rate, mechanical properties, hydrophilicity and cytophilicity 

can be adjusted for different tissue engineering applications. 
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PART II: CHAPTER 5 

SYNTHESIS AND CHARACTERIZATION OF BIOCOMPATIBLE, DEGRADABLE, 

LIGHT-CURABLE, POLYURETHANE-BASED ELASTIC HYDROGELS 

Abstract 

A series of degradable polyurethane based light-curable elastic hydrogels were 

synthesized from polycaprolactone diol (PCL-diol), polyethylene glycol (PEG), lysine 

diisocyanate (LDI), and 2-hydroxyethyl methacrylate (HEMA) through UV light initiated 

polymerization reaction. LDI was used as hard segment and PCL and/or PEG were used 

as soft segments. By changing the PCL to PEG ratio during the pre-polymer synthesis, 

polyurethanes with different soft segmental structures, hydrophilicity, and cytophilicity 

were obtained after light-initiated polymerization. The chemical structures of the 

synthesized polymers were characterized using differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). 

Physical properties such as swelling, mechanical properties, and in vitro degradation 

were evaluated. Materials containing a higher ratio of PEG exhibit higher water 

absorbance, higher degradation rate in vitro, and lower mechanical strength in the 

hydrated state. Mouse embryonal carcinoma-derived clonal chondrocytes were used as a 

model cell type to study the cytocompatibility of the synthesized polymers. Chondrocyte 

attachment, proliferation rates, and morphologies all varied with changes in the PCL/PEG 

ratio. With a higher PEG ratio, lower cell attachment and proliferation were observed. To 

improve the cell attachment and proliferation on high PEG content hydrogels, bioactive 

molecules, such as peptides and proteins, were conjugated or immobilized in the gel 
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matrix during the light-curing process. In this study, a short peptide, Arg-Gly-Asp-Ser 

(RGDS), was used as a model biomolecule and incorporated into the gels during the 

light-curing process and improved cell growth was observed. In summary, the use of 

PCL/PEG at different ratios, as well as the introduction of HEMA into polyurethane, 

allows the synthesis of a series of biocompatible elastic hydrogels with tunable physical 

and cytophilic properties through light initiated polymerization. This series of materials 

also allows for controlling cell attachment and growth by incorporating bioactive 

molecules during the light-curing process. 

Introduction 

A material that is to be used for tissue repair requires a wide range of physical and 

biological properties including biocompatibility, biodegradability, strength, and elasticity. 

[1] Due to their excellent biocompatibility, chemical versatility and superior mechanical 

properties, polyurethanes have been extensively investigated for biomedical applications, 

including cardiovascular devices such as vascular prostheses, intra-aortic balloons, 

cardiac valves and insulating sheaths for pacemakers, membranes for dialysis, 

craniofacial reconstruction, breast implants, etc. [2-8] Most polyurethane materials 

utilized for these applications are nondegradable.  

In recent years, interest in using resorbable or degradable polyurethanes for tissue 

regeneration has been continuously increasing. Several series of degradable 

polyurethanes have been developed for applications including cardiovascular repair, 

ligament reconstruction, cancellous bone regeneration, and controlled drug delivery, 

among others. [9-11] Most degradable polyurethanes were developed by the introduction 

of labile moieties, such as caprolactone, [12] lactides, [13] hydroxybutyric acid, [14], 
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saccharide [15], or amino acids [16], as either soft segments or chain extenders. The 

labile bonds can be broken in vivo either enzymatically or chemically, in most cases by 

hydrolysis. In some studies, polyethylene glycol (PEG) was introduced into the soft 

segment to adjust the susceptibility of the polymer chains to hydrolysis [17].  

Since polycaprolactone (PCL) and its degradation products are nontoxic and it has 

been approved by the Food and Drug Administration (FDA) and evaluated for many 

tissue repair and drug delivery applications, polycaprolactone diol (PCL-diol) is one of 

the most frequently used building blocks for soft segments of degradable polyurethanes. 

[9,17-20] However, its hydrophobicity and semi-crystalline structure determine its very 

slow degradation profile. [9] In those studies, [9, 17-20] polyurethanes with a PCL 

segment exhibited improved elasticity, tensile strength and yield strength when compared 

to PLC due to the formation of hydrogen bonds among polyurethane chains.  

Due to its chemical functionality, super flexible hydrophilic chain motion, 

non-toxicity and non-immunogenicity, [21-22], PEG is another candidate for the soft 

segment of polyurethanes. PEG is widely used for tissue engineering, drug delivery, 

surface modification of implants, etc. [21, 23-27]. For instance, because its hydrophilic 

surface has a low interfacial free energy in contact with body fluids, PEG has been used 

for surface modification of a blood contacting construct to decrease protein adsorption 

and platelet adhesion for cardiovascular application. [28] PEG has been functionalized 

with dimethacrylate groups and crosslinked to form hydrogels via light-initiated 

polymerization and tested for cartilage tissue repair. [21] PEG can be incorporated into 

the polyurethane structure to form hydrogel materials that inhibit protein adsorption and 

cell adhesion by dramatically increasing the hydrophilicity of the materials. Reduced 
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protein or cell adhesion allow to limit unwanted protein and cell adhesion and therefore 

provide great opportunities for functionalizing these materials with specific biomolecules 

to promote the attachment of desirable cell types, and the same time, wards-off unwanted 

cell types.  

Hydrogels, an insoluble network of polymer chains that swell in aqueous solution, 

are a class of materials that have shown great promise for tissue repair due to their 

tissue-like water content, permeability, adjustable functionality, and low coefficient of 

friction. [29]. Many types of tissues in the body are in the form of hydrogels. Native 

cartilage, for instance, is a durable elastic tissue, with an extracellular matrix consisting 

mostly of proteoglycans and type II collagen. The extracellular matrix of cartilage is 

hydrogel in nature [30] and cartilage is able to withstand large loads by virtue of the 

matrix’s strength and the exudable water held within the tissue. Thus, hydrogels are 

especially attractive for cartilage tissue regeneration due to their excellent diffusive 

permeability, minimal irritation to surrounding tissues, low surface friction and wear that 

related to the strong water retention of the hydrophilic network. [31]. However, most 

biocompatible degradable hydrogels developed to date are not strong enough or elastic 

enough for immediate physiological loading in cartilage repair.  

To overcome the disadvantages associated with currently available soft hydrogels, 

we are endeavoring to develop a highly elastic biocompatible and degradable hydrogel 

for cartilage repair. Since most cartilage defects are irregular in shape and size, instant 

polymerization causing the gel to assume the shape of the defect offers a great advantage 

for customizing the scaffolds or even for computer-aided scaffold fabrication with precise 
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temporal and spatial control. [32, 33]. To this end, a series of photopolymerizing elastic 

hydrogels were developed and characterized in this study. 

Materials and Methods 

Materials 

Lysine diisocyanate (LDI) was obtained from Kyowa Hakko Koygo Co., Ltd, 

Tokyo, Japan. Stannous octoate (Sn(oct)2, Sn[CH3(CH2)3CH(C2H5)COO]2) and 

polycaprolactone diol (PCL-diol) with Mn =530 (PCL530) were purchased from 

Sigma-Aldrich Inc. (St. Louis, MO, USA). 2-hydroxyethyl methacrylate (HEMA), 

dimethyl sulfoxide (DMSO), and polyethylene glycol (PEG600) with average molecular 

weight 600 (Mw=600) were purchased from Fisher Scientific International. UV 

light-initiator Irgacure 2959 was kindly provided by Ciba Specialty Chemicals, Inc. LDI 

was purified by vacuum distillation, while DMSO was distilled with calcium hydrogen 

(CaH2) at atmospheric pressure under nitrogen protection. PCL530 and PEG600 were 

dehydrated in a vacuum oven at 60 °C for 48 hours, then 4 Å molecular sieve was added 

to maintain dryness at room temperature. Sn(oct) 2 and HEMA were dried by 4 Å 

molecular sieve with stirring at room temperature overnight to eliminate the trace water. 

Irgacure 2959 was used without further purification. 

UV light generator (American Ultraviolet Company, Santa Ana, CA, USA) was 

used to generate the UV light used to initiate polymerization. The light intensity used was 

800mW/cm2 at a wavelength of 365 nm. Irradiation from the generator was transmitted 

through a quartz optical guide fiber (diameter: 5mm; length: 1m) to the pre-polymers. 
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Synthesis of LDI based biodegradable hydrogel 

Pre-polymers of UV light curable polyurethanes with different PCL-PEG molar 

ratios were synthesized using a traditional two-step method 2. Briefly, the stoichiometry 

of the synthesis reaction was approximately 2:1:1 of hard segment (LDI):soft segment 

(PCL530, PEG600, or their mixture):chain terminator (HEMA). Three different PCL530 

to PEG600 ratios were studied as model materials, i.e., 100% PCL530, a mixture of equal 

parts PCL530 and PEG600, and 100% PEG600. LDI was dissolved in DMSO at room 

temperature. A calculated amount of PCL530-PEG600 mixture was added dropwise into 

the LDI solution with vigorous stirring, then 0.1% wt Sn(oct)2 was added as catalyst. The 

mixture was allowed to react at 80 °C for 3 hours under nitrogen protection. The resulting 

mixture was cooled to room temperature, and a calculated amount of HEMA with 0.1 

wt% 4-methoxyphenol (MEHQ, inhibitor) was added to the reaction mixture and stirred 

for another 24 hours in the dark under dry oxygen atmosphere protection to prevent the 

self-crosslinking reaction. The final pre-polymers were viscous liquids and can be 

preserved in the dark at 4 °C. The pre-polymer was degassed using nitrogen to remove 

the oxygen before final UV light polymerization, then 0.04 wt% UV light initiator 

Irgacure 2959 was added and mixed homogeneously. This viscous mixture was poured 

into Teflon molds and exposed to UV light for 20 seconds to obtain either elastic rod or 

film samples. Samples were then rinsed in 75% ethanol solution for 24 hours and vacuum 

dried for use in future experiments. The resulting specimens were clear elastomers. The 

polymerization reaction procedure and chemical structures of the final product are 

illustrated in Figure 1. 
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Figure 1: Schematic diagram shows the preparation of LDI, PEG600, PCL530 and 
HEMA based light curable degradable hydrogels. The PCL530:PEG600 ratio was 
adjusted for synthesizing materials with different hydrophilicity. 

For the model hydrogels with bioactive peptides, RGDS (American Peptide 

Company Inc., Sunnyvale, CA, USA) at a final concentration of 2 µmol/ml was 

crosslinked into the hydrogel during the UV light-initiated polymerization. 

Chemical structures of two types of biodegradable polyurethanes 

Samples were designated with the first letter indicating the hard-segment type (L= 

LDI), the second to the fourth letters indicating the polycaprolactone with 530 molecular 
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weight (PCL530) in the soft segment (PCL=PCL530), the number following the fourth 

letter indicating the molar percentage of PCL530 in the soft segment, and the final letter 

indicating the chain terminator (E= HEMA). For instance, LPCL50E indicates the 

polymer with LDI as hard segment, mixture of 50:50 molar ratio of PCL530 and PEG600 

as soft segment, and HEMA as chain terminator. LPCL0E symbolizes that soft segment 

of polyurethane is 100% PEG600 and LPCL100E symbolizes that the soft segment of 

polyurethane contains 100% PCL530. 

Sample Preparation 

The solid cylindrical samples for mechanical testing were UV light polymerized 

in a Teflon cylindrical mold with inner diameter   and height 10 mm; film samples for 

other characterizations and evaluations were UV light polymerized in a Teflon Petri dish 

with thickness between 0.6 mm before hydration. 

Thermal Behavior Characterization 

Characterization of the thermal behavior of the polymers was performed with a 

Mettler Differential Scanning Calorimetry (DSC) analyzer (DSC 822e), with a heating 

rate of 20 °C/min under constant nitrogen flow. Samples were heated to 70 °C for 10 

minutes, cooled to -100 °C, maintained at this temperature for 10 minutes, and then tested 

over a range from -100 °C to 150 °C. Prior to being sealed into an aluminum pan, samples 

were dried under vacuum at room temperature for 24 hours.  

Thermogravimetrical analysis (TGA) under nitrogen atmosphere was carried out 

on a Mettler TGA analyzer (SDTA851e), with a heating rate of 10 °C/min. Samples were 

heated from room temperature to 800 °C. The mass of sample used was approximately 10 
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mg to avoid significant temperature gradients. Prior to being tested, samples were dried 

under vacuum at room temperature for more than 24 hours. 

Examination of Chemical Composition 

Attenuated total internal reflective-Fourier transform infrared spectroscopy 

(ATR-FTIR, Research series 100, Madison Instrument, Inc., Madison, WI, USA) was 

used to characterize the chemical composition of synthesized polymers. Polymer films 

were dehydrated in a vacuum oven at 60 °C for 36 hours and then placed on the sample 

holder in the nitrogen protected chamber for FTIR characterization at room temperature. 

Swelling Test 

Swelling property of the materials was measured by weight change of the sample 

in the film form (4 mm × 4 mm × 0.6 mm) before and after soaking in double deionized 

water for 12 hours at room temperature. Filter paper was used to remove the water on the 

surface of samples before weight measurements. Six samples of each material were 

measured. The weight swelling ratio is determined by the weight of the swollen sample 

divided by the weight of the dry sample.  

Mechanical Property Testing 

Samples used for mechanical testing were in solid cylinder form (10 mm height, 8 

mm diameter before being hydrated) and were hydrated in 0.1 M PBS for 12 hours before 

mechanical testing. Compressive mechanical tests were performed on an MTS Synergie 

100 materials tester (MTS System Co., Eden Prairie, MN, USA) with a maximum load of 

50 N and a 1 mm/second crosshead speed. The elastic modulus was calculated from the 

initial slope of the linear stress-strain curve, and the yield strength was calculated at the 

point of 10% compression rate. Five samples were analyzed for each material. 



 59

Cytocompatibility Testing 

Hydrated polyurethane films were cut into round pieces (16 mm in diameter) and 

placed in 12-well plates (n=6 for each time point and each material). Samples were 

sterilized with 75% ethanol solution for 30 min and then left in excess sterilized PBS 

solution overnight and washed five times to replace the ethanol before cell seeding.  

Mouse embryonal carcinoma-derived clonal chondrogenic ATDC5 cells were 

used as a model cell line to study the compatibility of materials to cartilage cells.  Cells 

were cultured in Dulbecco's modified Eagle's medium (DMEM)/Ham's F-12 medium 

(Sigma) containing 5% fetal bovine serum (FBS, Invitrogen, Gaithersburg, MD), 10 

ug/ml human transferrin (Sigma), 3×10-8 M sodium selenite (Sigma), and 50 units/ml 

penicillin and 50 ug/ml streptomycin. For induction of chondrogenesis, human insulin 

(Sigma) at 10 ug/ml was added to the culture. The cells were cultured at 37 °C in a 

water-jacketed incubator with 5% CO2. At the time of the experiments, cells were 

trypsinized and re-suspended at a concentration of 1.0 × 106 cells/ml; 1 µl cell suspension 

(103 cells) was seeded on each polyurethane film and 1 ml culture media added. At each 

time point, alamarBlue assay (Invitrogen, Gaithersburg, MD) was used to measure the 

cell proliferation following the manufacturer recommended protocols. Briefly, cell 

metabolic activity results in the chemical consumption of alamarBlue. The reduction of 

the alamarBlue in culture media can be measured by the change of the indicator 

combined with alamarBlue. At each time point, culture media was aspirated and 1 ml 

culture media with 10% (v/v) alamarBlue was added to each well. After 3 hours in 

culture, 100 µl media was transferred to 96-well UV transparent microplates (Costar) for 

UV absorption measurement (n=6 for each material at each time point). The change in 
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UV absorption reflected the metabolic activity of the living cells in a 3-hour period, thus 

indirectly reflecting the amount of living cells in each well. Empty wells were used as 

negative control. Cell morphology for each sample was imaged at 2 weeks of culture.  

In-vitro Degradation 

In vitro degradation of the polyurethane materials was evaluated by recording the 

weight loss of samples over time in 0.1 M PBS at 37 °C.  Samples in membrane form 

(8-10 mg) were placed in a small vial filled with 500 µL 0.1 M PBS (pH=7.4) to perform 

the degradation test (n=6 for each material). Those vials were placed in a 37 °C water 

bath with gentle shaking at 30 cycle/min to simulate dynamic in vivo tissue environment. 

At each time point, six vials of each type of material were sampled, rinsed for two hours 

with double deionized water, and vacuum-dried for 24 hours before weight loss was 

analyzed. The PBS in each vial was also collected for measurement of pH. 

Results 

Thermal Analysis 

In the development of polymers for biomedical applications, it is important to 

know their thermal behaviors, which determine the physical properties of the materials. 

For example, if the value of the glass transition temperature (Tg) of the polymer is above 

that of body temperature, the polymer is rigid. In contrast, if the Tg values are below body 

temperature, this indicates the elastomeric nature of the materials. Figure 2A shows the 

DSC thermograms of the three model materials studied. All three materials displayed 

glass transition temperatures below body temperature, suggesting that these 

polyurethanes exhibited elastomeric natures at body temperature. Possesssing an 
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elastomeric nature at body temperature is an important quality for polymers in soft tissue 

engineering.  
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Figure 2: Thermal behaviors of LPCL100E, LPCL50E and LPCL0E. (A). DSC 
thermograms of three materials. The top curve shows the DSC curve of LPCL100E with 
Tg at 15 °C and no Tc is observed. The middle curve shows the DSC curve of LPCL50E 
with Tg at 3 °C and Tc at 178 °C. The bottom curve shows the DSC curve of LPCL0E 
with Tg at -6 °C and Tc at 189 °C. (B). Thermogravimetric analysis (TGA) curves of 
LPCL100E, LPCL50E, and LPCL0E with onset temperature at 246 °C, 259 °C, and 276 
°C, respectively. Small insert shows the TGA curves at 240 °C to 300 °C. 
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All three types of polyurethane have the same soft segment percentage (60 wt%) 

and hard segment percentage (40 wt%); however, as the PCL530 content decreased in the 

soft segment, lower Tg values were observed. For instance, Tg of LPCL100E is 15 °C, 

while Tg of LPCL50E is 3 °C, and Tg of LPCL0E is –6 °C.  Because Tg values indicate 

the degree of hard and soft segment phase mixing, [34,35] the highest Tg (LPCL100E 

=15 °C) among the three materials indicates that the polymer with 100% PCL530 in the 

soft segment had the highest phase mixing. The Tg of LPCL0E (–6 °C) is 9 °C lower than 

that of LPCL50E (3 °C), indicating that increasing the content of PEG600 in the soft 

segment causes less phase separation among soft and hard segments in the polymer 

matrix.  

The Tg change caused by the change of PCL:PEG ratio in the soft segment can be 

explained by the different chemical structure  of PCL530 and PEG600. PCL530 with 

extra ester groups containing pendant carbonyl groups (-C=O) exhibits higher 

extra-molecular distance and molecular mobility when compared to PEG600. Moreover, 

these carbonyl groups in the soft segment can form strong hydrogen bonds with urethane 

groups in the hard segments. Therefore, the increased molecular mobility and the 

hydrogen bonds caused higher phase mixing and higher Tg in PCL530 based 

polyurethanes. On the other hand, in the materials containing PEG600, the linear main 

chain in PEG containing the repetitive ether structure (–C-O-C-) has high rotation 

flexibility, but low mobility of the whole polymer chain, and can be easily rotated and 

arranged into an orderly structure. Therefore, the PEG600 region in the soft segment 

exhibits the tendency to form orderly arrangement with lower chain mobility, which 

causes the phase separation. The formation of the ordered region in soft segments can be 
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indirectly observed in DSC thermogram, which shows the exothermic peaks (Tc) for 

LPCL0E (189 °C) and LPCL50E (178 °C) (Figure 2A). Compared to LPCL0E, the 

strength of the Tc peak of LPCL50E became weaker due to the decreased amount of 

ordered area in the soft segment; and the disappearance of exothermic peak of 

LPCL100E can be attributed to the highly disordered soft segment region and the higher 

degree of phase mixing. 

TGA curves of three materials are shown in Figure 2B. The onset temperatures of 

thermal decomposition for LPCL100E, LPCL50E and LPCL0E are 246 °C, 259 °C and 

276 °C, respectively. The onset temperatures decrease with the decrease of the PEG600 

content in the soft segment, which reflects the increase of the thermal stability of the 

materials. The increased thermal stability can be attributed to the orderly arranged soft 

segment area and higher phase separation in polymers containing PEG600, which is 

consistent with the DSC results showing that LPCL100E and LPCL50E possess 

exothermic processes at higher temperatures.  
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FTIR analysis 
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Figure 3: FTIR spectra of three types of polyurethane with different ratios of PCL530 and 
PEG600 in the soft segment. The region from 1780 to 1600 cm-1 indicates to the C=O 
stretching absorption, the region from 1580 to 1300 cm-1 indicates to the –NH- with 
hydrogen bonds and the region from 1310-1000 cm-1 indicates to –C-O-C- stretching 
absorption. 

Figure 3 shows the FTIR spectra of three types of polymers with different ratios 

of PCL530 and PEG600 in the soft segment. All three polymers display the peaks of free 

amide group (NH) stretching absorption at 3280–3252 cm-1, carbonyl group (C=O) 

stretching absorption at 1780-1600 cm-1, hydrogen bonded NH stretch absorption at 

1580-1330 cm-1, and ether group (–C-O-C-) stretching absorption at 1310-1000 cm-1 36. 

Due to the overlap of the carbonyl group of LDI, HEMA and PCL, the carbonyl group 

displays a broad stretching absorption at 1780 -1600 cm-1. In LPCL100E spectra, the 

carbonyl stretch absorption exhibits weaker and broader peaks when compared to the 

other two polymers because of the higher phase mixing of soft segment and hard 
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segment. The molecular interaction (hydrogen bonds) of carbonyl groups and amide 

groups causes the decreased strength of the carbonyl group’s absorption. This increase in 

hard and soft segment mixing also results in the broad hydrogen bonded amide group’s 

stretch absorption at 1580-1330 cm-1 in LPCL100E, which is consistent with the thermal 

analysis results indicating that the material with higher content of PCL530 in the soft 

segment exhibited higher phase mixing. The ether group stretch absorption at 1310-1000 

cm-1 exhibits a different shape due to the different ratio of PCL and PEG in the soft 

segment. Ether group absorptions from LDI, HEMA, PEG and PCL are overlapped in 

this region. In LPCL0E spectra, ether group absorptions display sharp peaks with a small 

shift to high wavelength. This may be due to the higher content of ether groups in soft 

segments and the formation of the ordered phase separated structure, in which the soft 

segment containing 100% PEG600 caused the formation of a linear structure that 

enhanced absorption of the ether groups and shifted the peaks to higher wavelengths. 

However, compared to the ether group absorptions in LPCL0E, the ether groups in 

LPCL50E showed wider and weaker peaks. This can be explained by the decreased ether 

group content in the soft segment due to the decreased PEG content in LPCL50E; 

moreover, the enhanced molecular interaction between PCL and PEG segments 

undermines the orderly structure and increases the hard-soft segment phase mixing, 

which caused the wider ether group absorption peaks. However, compared to LPCL50E, 

ether groups in LPCL100E showed relatively sharper absorption peaks and the shifts to 

lower wavelength. This sharper absorption in LPCL100E may contribute to the 100% 

percent of PCL in soft segments and there is no interaction with PEG600. The shifts to 

lower wavelengths may be due to the higher phase mixing of hard and soft segments in 
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LPCL100E. Compared to LPCL0E, due to the lower content of ether groups in 

LPCL100E, the ether group absorption peaks in LPCL100E are relatively lower. 

Therefore, FTIR curves of the three materials reflect the differences in the chemical 

structure, such as soft segment content, phase separation, and the molecular interaction 

inside the polymers. 

Swelling Behavior 

Swelling behaviors of three materials were measured by water retention at room 

temperature. All three polymers absorb water; however, the water retention ratio differs 

dramatically among the three materials. With the increase of the PEG content in the soft 

segment from 0% to 100%, the water retention ratio increases from 3.2±1.4% to 

66.0±2.5%. The reason PEG-free material possesses water retention property is that 

carbonyl groups (C=O) exist in this hard segment. LDI and HEMA can form weak 

hydrogen bonds with environmental water molecules, which causes hydrophilicity of the 

material. However, hydrophilicity resulting from the hard segment is insignificant when 

compared with the water retention ability from PEG600, which possesses repetitive ether 

(–C-O-C-) groups on the linear chains and can form strong hydrogen bonds with water 

molecules. In contrast, PCL exhibits very low hydrophilicity due to the existence of a 

high percentage of water repellent carbonic bonds (-C-C). Therefore, changing the ratio 

of PEG and PCL can adjust the ratio of water repellent and water absorbent groups in soft 

segments, and based on this principle, the hydrophilicity of the elastic biodegradable 

polyurethanes can be finely tuned accordingly for different biomedical applications. For 

example, polymers used for gene delivery system are generally required to be highly 

hydrophilic, [11, 37] polymers used for wound dressing material need moderate 
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hydrophilicity, [38] while polymers applied as the scaffold for the anterior cruciate 

ligament (ACL) reconstruction require low hydrophilicity. [9] Therefore, synthesis of 

elastic polyurethanes with adjustable hydrophilicity would expand their utility as 

candidate materials for a wide range of biomedical applications.  

Mechanical Testing 
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Figure 4: Mechanical properties of the hydrated samples. Solid samples were made 10 
mm in height and 8 mm in diameter. Fifty Newton compression force was applied at 1 
mm/second crosshead speed. 

As shown in Figure 4, three polymers with different PCL: PEG600 ratios show 

significant differences in mechanical properties under hydrated condition (P<0.05). 

Figure 4 shows typical stress-strain curves of three polymers under compression. The 

yield strengths (at 10% compression rate) of LPCL0E, LPCL50E, and LPCL100E are 

0.24±0.03 MPa, 0.43±0.07 MPa, and 0.88±0.12 MPa, respectively. The elastic moduli of 

LPCL0E, LPCL50E, and LPCL100E are 16.8±3.3 MPa, 26.6±3.9 MPa, and 34.2±2.6 

MPa, respectively. Although two hydrogels (LPCL0E and LPCL50E) are significantly 
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weaker than non-hydrogels in this series of materials, two hydrogels are significantly 

stronger than most biodegradable hydrogels developed so far. Since LP100E, LP50E and 

LP0E have similar hard segment contents, the PCL:PEG ratios in soft segments were 

responsible for the differences in mechanical properties. LPCL100E, with the lowest 

water retention (3.2±1.4%), exhibited the highest mechanical properties, while LPCL0E, 

with the highest water retention (66.0±2.5%), exhibited the lowest mechanical properties. 

Water molecules combined with PEG segments through strong hydrogen bonds 

decreased the molecular force among polymer chains, thus the polymer chains mobility 

were increased accordingly. As a result, the mechanical properties were decreased with 

the increase of PEG content in soft segments.  

Cytocompatibility Testing 

To examine the cytocompatibility and cell-biomaterial interaction, chondrogenic 

ATDC5 cells were cultured on the surfaces of LPCL0E, LPCL50E and LPCL100E 

membranes. Cell attachment and proliferation were tested by alamarBlue assay after 7 

days in culture. To obtain the maximum sensitivity of the alamarBlue assay, only a small 

number of chondrocytes (1000 cells/sample; each sample was 16 mm in diameter) were 

initially seeded on each material. Empty polystyrene wells were used as control.  



 69

 
Figure 5:  (A) alamarBlue assays on the chondrogenic cell attachment and proliferation 
on LPCL0E, LPCL50E, LPCL100E and polystyrene (negative control). Chondrocytes on 
hydrophilic LPCL0E and LPCL50E exhibited lower attachment and proliferation rates. 
(B) alamarBlue assays of the chondrogenic cell attachment on LPCL0E and LPCL0E 
with immobilized RGD in the hydrogel network (LPCL0E-RGDS hydrogel) show 
significantly higher cell attachment and proliferation. 

Cell attachment was examined at twenty-four hours after cell seeding. After 

gently washing culture wells and changing the media, alamarBlue was added to the 

culture for three hours and the number of the cells on each sample was calculated through 

the conversion of the intensity of absorbance into cell numbers based on a calibration 

curve obtained with a known number of ATDC5 cells. There were significant differences 
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between the numbers of cells attached on the three samples (P<0.05) (Figure. 5A). As the 

PEG600 content increased, the number of attached cells on the material decreases. Cells 

showed the highest attachment on LPCL100E and lowest on LPCL0E, as expected. It is 

well-documented that PEG can prevent protein adsorption and as well as inhibit cell 

attachment, [21, 25] which allows development of biomaterials that promote desirable 

cell attachment but ward off unwanted cell attachment by immobilizing a specific ligand 

on the surface or into the scaffolds. [21, 25] We used Arg-Gly-Asp-Ser (RGDS) as a 

model ligand to be immobilized into this series of hydrogels during the light-curing 

process. We found a significant increase in cell attachment as shown in Figure 5B when 

compared with the material without ligand immobilization.  

There were significant differences on the cell proliferation on the three materials 

as well. The proliferation rates after 7 days in culture for cells on LPCL100E, LPCL50E 

and LPCL0E are 316±37%, 165±32% and 145±22% respectively, while cell numbers in 

the polystyrene well increased by 452±33% (Figure 5A). The differences in cell 

proliferation rate can also be observed from cell morphology images as shown in Figure 

6, in which cell density on LPCL100E was much higher than on either LPCL50E or 

LPCL0E. The differences in cell attachment and proliferation rate can be attributed to the 

effects of PEG600 in soft segments. PEG segments tend to orient their chains to the 

hydrated environment due to their high mobility in water and PEG chains readily 

accumulate on the surface of materials, which then provide high excluding volume and 

flexible hydrophilic chain motion to repel proteins/cells that approached the surface. It is 

not surprising that cell attachment and proliferation are lower on materials with higher 



 71

PEG content. [22, 39] However, this can be easily overcome by immobilizing specific 

ligands into the polymers (Figure 5B). 

A B C

D E

100 µm
 

Figure 6: Phase contrast microscopic image of chondrocytes grown on (A) polystyrene, 
(B) LPCL100E, (C) LPCL50E, (D) LPCL0E, and (E) LPCL0E-RGDS after 7 days in 
culture. 

As shown in Figure 6, a much higher number of chondrogenic cells on the two 

hydrogels, LPCL50E and LPCL0E, exhibit a rounded shape than on either LPCL100E or 

polystyrene. This can probably be explained by the polymer-cell-media interactions on 

the cell growth. On the surfaces of those hydrogels with the similar environment to what 

chondrocytes normal reside in living tissue, mobile polymer chains can effectively 

interact with large volume of water, and form a dynamic environment that limits 
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chondrocytes spreading out and therefore cells showing rounded shape in tissue or on 

these hydrogels.  

In-vitro Degradation 

 

Figure 7: Schematic representation of polyurethane degradation into lysine, PCL, PEG, 
HEMA, CO2 and caproic acid or lactic acid. 
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Figure 8: In vitro degradation behavior of three materials at 37 °C with gentle shaking. 
(A) Weight loss and (B) change in pH value of culture media . 

Since this series of polymers are comprised of LDI, HEMA, PCL, and/or PEG, 

the degradation process is considered to be hydrolysis of the ester groups and the 

urethane groups among those polyurethanes hard and soft segments. Ester groups exist in 

LDI, PCL and the urethane groups formed during the polymer synthesis, in which LDI 

were polymerized with PCL, PEG and HEMA. As illustrated in Figure 7, the degradation 

products of the polymerized hydrogels during hydrolysis are lysine, PEG, poly 

2-hydroxyethyl methacrylate (PHEMA), carbon dioxide (CO2), and caproic acid or lactic 
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acid. All of these have been demonstrated non-toxic in humans. Attack of the water 

molecules to the ester groups and urethane groups results in the weight loss of the 

polymers and the environmental pH value changes due to the formation of CO2 and 

organic acid. In vitro degradation rates were measured by the weight loss of the sample 

films in 0.1 M PBS solution at multiple time points at 37 °C with gentle shaking to mimic 

in vivo environment. pH values of the PBS solution were measured at each time point to 

examine the influence of the degraded products on the culture environment. As shown in 

Figure 8A, the three types of polyurethanes exhibit different degradation rates: 

LPCL100E displays the slowest degradation rate while LPCL50E and LPCL0E display 

faster degradation rates, which is consistent with the pH value change shown in Figure 

8B. The fastest degrading polyurethane, LPCL0E, exhibits the highest pH value change 

(0.41) at 4 weeks while the slowest degrading polyurethane, LPCL100E, exhibits only a 

slight change (0.02) at 4 weeks. The decrease in pH is attributed to the release of small 

molecules such as caproic acid or lactic acid and the dissolution of the CO2 in the PBS 

solution. Since LPCL100E contains the highest ester group content in the soft segment, it 

shows a lower degradation rate than LPCL50E and LPCL0E. This can be explained by 

the hydrolysis mechanism of this series of polymers. Since their degradation is a 

hydrolysis procedure, water penetration and diffusion will cause the hydrolysis of ester 

groups and urethane groups in the polymers. Compared to LPCL50E and LPCL0E, 

LP100E has lowest hydrophilicity, thus the water molecules exhibited the lowest 

penetration and diffusion ability to enter the polymer chains, which results in the lowest 

degradation rate during the hydrolysis process. Therefore, with the increase of the PEG 

content in soft segment, the degradation rate increased significantly.  
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Discussion 

Cartilage is very important in load bearing and in maintaining the appropriate 

shapes of many organs. Three types of cartilages can be found in the body: hyaline 

cartilage lining joints, elastic cartilage found in the nasal septum, the pinna of the ear, and 

the walls of the auditory and eustachian canals and larynx, and fibrocartilage found in 

intervertebral disks. Many diseases lead to damage of cartilage tissue characterizing 

chondrodystrophies, such as arthritis, achondroplasia, costochondritis, herniated disk, and 

so on. Sports and accidents are also major causes of cartilage injuries, including meniscus 

injuries, and articular cartilage damage. Due to the avascular nature of cartilage, it has 

very limited capacity for self-repair, and currently, there is no treatment available to 

completely regenerate damaged cartilage. For example, the mainstay treatment for 

articular cartilage reconstruction is still arthrodesis (joint fusion) and arthroplasty (joint 

replacement). Other approaches, such as transplantation of osteochondral allografts or 

chondrocytes to replace the damaged cartilage arthroscopically and have shown improved 

outcome. Approximately 95,000 total knee replacements and 41,000 other surgical 

procedures to repair cartilaginous defects of the knee are performed annually in the 

United States. [40] However, the repairs are far from satisfactory. Tissue engineering 

cartilage by combining biomaterials and cells may present a cure for cartilage damage.  

A large variety of materials, including natural and synthetic polymers, have been 

investigated both in vitro and in vivo for cartilage engineering. Natural materials, 

including agarose, alginate, hyaluronic acid, gelatin, fibrin glue, collagen, etc., have been 

employed as porous scaffolds, fibers, microbeads, hydrogel, glue, and other forms for 

cartilage repair. However, their weak mechanical properties, such as fragility, and low 
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reproducibility severely limit their clinical usefulness. Synthetic materials, with the 

advantages of reproducible mechanical property, tunable biochemical behavior, and 

controllable degradation, were extensively investigated as well. Polymers, such as 

polyester, poly(anhydrides), poly(phosphazenes), and poly(ethylene glycol) based 

polymers, have been explored for cartilage engineering. Due to the hydrogel nature of 

cartilage, polymers in hydrogel are form good candidates for cartilage repair, and they 

have been extensively investigated in recent years. [41-49] 

Due to their unique properties, hydrogels have been explored for a wide range of 

biomedical applications, including drug delivery, [50], protein delivery, [51], gene 

delivery, [52] wound dressing, [53] water elimination for edema, [54], cosmetic 

reconstruction, [55] contact lenses, [56] and tissue engineering. [49, 57-59] One major 

challenge in employing hydrogels for load-bearing connective tissue repair in cartilage, 

tendon, intervertebral disk, ligament, and so on, is insufficient mechanical strength. For 

instance, articular cartilage contains ~70% water and bears loads up to 100 MPa, [60] but 

most hydrogels, either synthetic or derived from natural sources, can be easily broken by 

pressing with a finger or pulling with the hand, indicating that they are much weaker than 

native cartilage tissue. Although Stammen et al reported a poly(vinyl alcohol) (PVA) 

based hydrogel with compressive modulus up to 18 MPa 61, and Gong et al developed a 

double network hydrogel with a similar range of compressive modulus, [31] these 

hydrogels are nondegradable and can only be used as a permanent non-physiological 

replacement for damaged cartilage or a temporary solution to improve joint function and 

delay total joint replacement. Gong and associates then developed a double-network 

degradable hydrogel, but this had a compression modulus less than 4 MPa. [62] The 
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degradable elastic hydrogels developed in this study have elastic moduli ranging from 

16.8±3.3 MPa to 26.6±3.9 MPa, which are very close to the properties of native cartilage. 

We expect to improve the mechanical properties when chondrocytes are cultured in these 

materials and exposed to physiological dynamic forces.  

The series of elastic hydrogels we described in this work are based on a backbone 

of degradable polyurethane. A series of degradable polyurethanes was recently developed 

for biomedical applications which had excellent mechanical properties and great 

chemical versatility. [9, 12, 16, 17, 63] Elastic degradable polyurethane shows promise as 

being a good candidate for most soft tissue regeneration, including cardiac muscle, [64] 

blood vessel, [65, 66] skeletal muscle, tendon, ligament, and skin repair. In addition, 

elastic degradable polyurethane has also been investigated for hard tissue regeneration, 

such as cartilage [67] and bone tissue repair [67]. However, most currently applicable 

degradable polyurethanes were based on toluene diisocyanate (TDI), methylenediphenyl 

diisocyanate (MDI) or hexamethylene diisocyanate (HDI) as the hard segment and 

ethylene glycol (EG) or ethylene diamine (ED) as the chain extender. These 

polyurethanes were found to release toxic byproducts during degradation. For example, 

MDI based polyurethanes release in vivo 4,4’-methylenedianiline which causes hepatitis 

in humans. HDI, TDI and ED based polyurethanes liberate diamine during degradation 

which has been proved to be toxic to the human liver and kidney. [1, 68] In recent years, 

a type of diisocyanate based on lysine (LDI) has been developed for biodegradable 

polyurethane synthesis. [63, 69] In these polyurethanes LDI was used as hard segment, its 

degradation products in vivo were considered to be lysine and no significant toxicity or 

carcinogenicity to tissue upon implantation was found. [10, 70]  
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The hydrophilic nature of the PEG motifs in this series of polyurethane based 

hydrogels allows protein adsorption and cell attachment to be controlled. The 

immunogenicity and antigenicity are also very minimal. [40] This unique characteristic 

allows fine tuning of the bioactivity of the hydrogel by selectively immobilizing specific 

functional biomolecules on the surface of the hydrogel or throughout the bulk of the gel 

through instant polymerization, such as UV light-induced, or through temperature 

induced polymerization. [71, 72] In this study, we used RGDS as a model biomolecule 

immobilized into the hydrogels, and we demonstrated increased cell attachment. 

Therefore, this elastic polymer system allows for development of a bioactive hydrogel 

system to selectively allow certain cell adhesion, but ward off unwanted cell attachment 

by immobilizing specific bioactive molecules. In summary, our work described here can 

be used as a base for developing hydrogels with precisely tunable properties for different 

tissue repair. 

Conclusion 

In conclusion, a series of degradable polyurethane based light-curable elastic 

hydrogels were synthesized from polycaprolactone diol (PCL-diol), polyethylene glycol 

(PEG), lysine diisocyanate (LDI), and 2-hydroxyethyl methacrylate (HEMA) through UV 

light initiated polymerization reaction. By changing the ratio of PCL to PEG during the 

pre-polymer synthesis, polyurethanes with different soft segmental structures, 

hydrophilicity, and cytophilicity were obtained after light-initiated polymerization. The 

chemical structures of the synthesized polymers were characterized using differential 

scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform 

infrared spectroscopy (FTIR). Physical properties such as swelling, mechanical 
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properties, and in vitro degradation were evaluated. Materials containing a higher 

proportion of PEG exhibit higher water absorbance, higher degradation rate in vitro, and 

lower mechanical strength in the hydrated state. Chondrocytes exhibit different 

attachment and proliferation rates and different morphologies on the materials with 

different PCL:PEG ratios. With a higher PEG ratio, lower cell attachment and 

proliferation were observed. To improve the cell attachment and proliferation on high 

PEG content hydrogels, bioactive molecules, such as peptides and proteins, could be 

readily conjugated or immobilized in the gel matrix during the light-curing process. To 

demonstrate that, a short peptide, Arg-Gly-Asp-Ser (RGDS), was used as a model 

biomolecule and incorporated into the gels during the light-curing process, and improved 

cell growth was observed. In summary, the use of PCL:PEG at different ratios, as well as 

the introduction of HEMA into polyurethane, allows the synthesis of a series of 

biocompatible elastic hydrogels with tunable physical and cytophilic properties through 

light initiated polymerization. This series of materials also allows for controlling the cell 

attachment and growth by incorporating bioactive molecules during the light-curing 

process. 
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CHAPTER 6 

FUTURE DIRECTIONS 

1. Synthesis of inter-penetrated network (IPN) of polyurethane with natural 

materials such as gelatin for the improvement of the biomaterial’s cytophilicity 

and mechanical properties. 

2. Research on the potential of the degradable polyurethane-based highly elastic 

hydrogel and a computer-controlled dynamic mini-compression bioreactor for use 

in cartilage tissue engineering applications. 

3. Development of polyurethane hydrogels to enable the encapsulation and sustained 

release of the DNA. This DNA-polyurethane complex is expected to offer an 

increased resistance to nuclease degradation and have the potential to enhance the 

gene therapeutic effects in clinical application. 

4. Application of polyurethane hydrogels to reduce post-surgical adhesion 

formation.  
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