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Abstract. We present the detailed construction of a man-
ufactured analytical solution to time-dependent and steady-
state isothermal full-Stokes ice sheet problems. The solu-
tions are constructed for two-dimensional flowline and three-
dimensional full-Stokes ice sheet models with variable vis-
cosity. The construction is done by choosing for the speci-
fied ice surface and bed a velocity distribution that satisfies
both mass conservation and the kinematic boundary condi-
tions. Then a compensatory stress term in the conservation
of momentum equations and their boundary conditions is cal-
culated to make the chosen velocity distributions as well as
the chosen pressure field into exact solutions. By substitut-
ing different ice surface and bed geometry formulas into the
derived solution formulas, analytical solutions for different
geometries can be constructed.

The boundary conditions can be specified as essential
Dirichlet conditions or as periodic boundary conditions. By
changing a parameter value, the analytical solutions allow
investigation of algorithms for a different range of aspect ra-
tios as well as for different, frozen or sliding, basal condi-
tions. The analytical solutions can also be used to estimate
the numerical error of the method in the case when the ef-
fects of the boundary conditions are eliminated, that is, when
the exact solution values are specified as inflow and outflow
boundary conditions.

Correspondence to:A. Sargent
(asarge21maine.edu)

1 Introduction

Model verification is crucial in developing a numerical
model. The ice-sheet modeling community has been using
two tools to verify models, comparison of numerically com-
puted solutions to analytical solutions when possible, andin-
tercomparison, that is, measuring differences between vari-
ous models’ results on the sets of simplified geometry bench-
mark tests.

For shallow-ice approximation (SIA) models, the simpli-
fied geometry tests as well as the results of intercompari-
son of different SIA models can be found in (Huybrechts
et al., 1995). As for the exact solutions for SIA equations,
two techniques have been used to generate analytical solu-
tions, the similarity reduction technique (an approach that
identifies equations for which the solution depends on certain
groupings of the independent variables rather than depending
on each of the independent variables separately (Nye, 2000;
Halfar, 1981, 1983; Bueler et al., 2005) and the manufac-
tured solutions technique (an approach that chooses a rea-
sonable “solution” function, for example, a velocity-field and
pressure, substitutes them into the Stokes equations, and de-
termines the body force necessary to make the chosen func-
tions into actual solutions (Bueler et al., 2005, 2007; Bueler
and Brown, 2006).

For higher-order models and full-Stokes models, the sim-
plified geometry tests and the results of intercomparison of
different models can be found in (Pattyn et al., 2008) and
an analysis on the CPU performance of the tests can be
found in (Gagliardini and Zwinger, 2008). As for the ex-
act solutions, mathematical work has mainly focused on the
flow of linear media, and quasi-analytical solutions have
been found for the first-order approximation equations for
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computing the three-dimensional stress and velocity field
in grounded glaciers in (Blatter, 1995). Analytical so-
lutions have been found describing transient two dimen-
sional flow (Hutter, 1980, 1983; Johannesson, 1992; Bahr,
1996), three-dimensional steady-state flow (Reeh, 1987; Jo-
hannesson, 1992) and transient evolution flow (Gudmunds-
son, 2003).

All the above solutions give physical insight into the flow
processes; however, they cannot be easily used to bench-
mark the numerical solutions. For example, Gudmundsson
in (Gudmundsson, 2003) obtained the three-dimensional so-
lution of the linearized zeroth-order problem for a linear vis-
cous medium. To use this solution for benchmarking nu-
merical ice sheet models, the exact error estimate must be
known (Raymond and Gudmundsson, 2005).

In this paper, we present the detailed construction of a
manufactured exact solution to time-dependent and steady-
state isothermal full-Stokes ice sheet problems. The solu-
tions are constructed for three-dimensional (3-D) full-Stokes
and two-dimensional (2-D) flowline ice sheet models with
variable viscosity. The construction is done by choosing for
the specified ice surface and bed the velocity distributions
that satisfy the mass conservation equation and the kinematic
boundary conditions, and by then calculating the required
force distribution that makes the chosen velocities and pres-
sure into exact solutions of the conservation of momentum
equation and its boundary conditions. In the appendices we
give the formulas that can be used to calculate the compen-
satory stress terms for the momentum equation in the 2-D and
3-D full-Stokes models and supplement to the manuscript
contains a fortran 77 code to calculate stress terms for the
2-D model.

The steady-state solutions constructed in this paper are
variations of the benchmark experiments A and B in (Pattyn
et al., 2008). However, by substituting different ice surface
and bed geometry into the derived formulas, analytical solu-
tions for different geometries can also be constructed.

The boundary conditions can be specified as essential
Dirichlet conditions or as periodic boundary conditions. By
changing a parameter value, the analytical solutions allow
modelers to investigate their solutions for a range of aspect
ratios as well as for different, frozen or sliding, basal condi-
tions. Finally, the analytical solutions may help the model-
ers to estimate the numerical error in the case when the ef-
fect of the boundary conditions are eliminated, that is, when
the exact solutions values are specified as inflow and outflow
boundary conditions.

2 Model physics

2.1 Model equations

We consider an ice sheet model in the Cartesian coordinates
x̃ = (x̃,ỹ,z̃) with the domain 0≤ x̃ ≤L, 0≤ ỹ ≤L, b̃(x̃,ỹ)≤
z̃≤ s̃(x̃,ỹ,t̃ ), where t̃ is time, s̃(x̃,ỹ,t̃ ) defines the surface
andb̃(x̃,ỹ) defines the base of the glacier.

Bed elevatioñb(x̃,ỹ) and accumulation ratė̃a are time in-
dependent, while surface elevations̃(x̃,ỹ,t̃ ) can change with
time. The solution is the velocity vectorṽ = (ũ,ṽ,w̃) and ice
pressurep̃. Dimensional variables in this work are denoted
with a tilde and non-dimensional variables without.

The field equations for the isothermal ice sheet model con-
sist of the conservation of mass and the conservation of mo-
mentum:

∂ũ

∂x̃
+
∂ṽ

∂ỹ
+
∂w̃

∂z̃
= 0, (1)

∂
(
2µ̃ ∂ũ

∂x̃
+ p̃

)
∂x̃

+

∂
(
µ̃
(
∂ũ
∂ỹ

+
∂ṽ
∂x̃

))
∂ỹ

+

∂
(
µ̃
(
∂ũ
∂z̃

+
∂w̃
∂x̃

))
∂z̃

= 0, (2)

∂
(
µ̃
(
∂ũ
∂ỹ

+
∂ṽ
∂x̃

))
∂x̃

+

∂
(
2µ̃ ∂ṽ

∂ỹ
+ p̃

)
∂ỹ

+

∂
(
µ̃
(
∂ṽ
∂z̃

+
∂w̃
∂ỹ

))
∂z̃

= 0, (3)

∂
(
µ̃
(
∂w̃
∂x̃

+
∂ũ
∂z̃

))
∂x̃

+

∂
(
µ̃
(
∂w̃
∂ỹ

+
∂ṽ
∂z̃

))
∂ỹ

+

∂
(
2µ̃ ∂w̃

∂z̃
+ p̃

)
∂z̃

= ρ̃g̃, (4)

whereρ̃ is the ice density,̃g is the gravitational acceleration,
µ̃ is the effective viscosity

µ̃=
B

2

[
1
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(
∂ũ
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∂x̃
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+
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(
∂ũ

∂z̃
+
∂w̃

∂x̃

)2

+
1

4

(
∂ṽ

∂z̃
+
∂w̃

∂ỹ
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(5)

−
∂ũ

∂x̃

∂ṽ

∂ỹ
−
∂ũ

∂x̃

∂w̃

∂z̃
−
∂ṽ

∂ỹ

∂w̃

∂z̃

] 1−n
2n

,

B is a temperature-independent rate factor, andn is the stress
exponent.

2.2 Boundary conditions

The model is time-dependent in the usual sense that the
ice sheet geometry evolves according to a mass continuity
equation. We assume that the ice has a hard bed,∂b

∂t
= 0.

The kinematic boundary conditions applied at the upper and
lower surfaces of the ice mass are as follows:

∂s̃

∂ t̃
+ ũ(x̃,ỹ,s̃,t̃ )

∂s̃

∂x̃
+ ṽ(x̃,ỹ,s̃,t̃ )

∂s̃

∂ỹ
− w̃(x̃,ỹ,s̃,t̃ )= ˙̃a,

ũ(x̃,ỹ,b̃,t̃ )
∂b̃

∂x̃
+ ṽ(x̃,ỹ,b̃,t̃ )

∂b̃

∂ỹ
− w̃(x̃,ỹ,b̃,t̃ )= 0.
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The stress-free boundary conditions at the upper surface
s̃(x̃,ỹ,t̃ ) are defined as:

1

r̃s

[
−
∂s̃

∂x̃

(
2µ̃
∂ũ

∂x̃
+ p̃

)
−
∂s̃

∂ỹ
µ̃

(
∂ũ

∂ỹ
+
∂ṽ

∂x̃

)
+ µ̃

(
∂ũ

∂z̃
+
∂w̃

∂x̃

)]
= 0,

1

r̃s
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−
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∂ũ
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+
∂ṽ
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)
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(
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∂ỹ
+ p̃

)
+ µ̃

(
∂ṽ

∂z̃
+
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∂ỹ
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1
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(
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∂ũ
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∂ỹ
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wherer̃s =

√
1+

(
∂s̃
∂x̃

)2
+

(
∂s̃
∂ỹ

)2
.

For the frozen-based grounded ice, the boundary condi-
tions at the bed̃b(x̃,ỹ) can be specified as Dirichlet condi-
tions:

ũ(x̃,ỹ,b̃,t̃ )= 0,

ṽ(x̃,ỹ,b̃,t̃ )= 0,

w̃(x̃,ỹ,b̃,t̃ )= 0,

p̃(x̃,ỹ,b̃,t̃ )= ρ̃g̃(s̃− b̃).

For the ice with sliding bed, the shear stresses may be speci-
fied at the bed̃b(x̃,ỹ) as Robin conditions:

1

r̃b

[
∂b̃

∂x̃

(
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∂ũ
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∂b̃
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∂ỹ
+
∂ṽ
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∂ỹ
+
∂ṽ
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∂ỹ
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∂ỹ
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1
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[
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+
∂ũ
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∂b̃

∂ỹ

(
µ̃

(
∂w̃

∂ỹ
+
∂ṽ
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(
2µ̃
∂w̃

∂z̃
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wherer̃b =

√
1+

(
∂b̃
∂x̃

)2
+

(
∂b̃
∂ỹ

)2
andβ̃2 is the friction coef-

ficient.
Along the glacier’s upstream and downstream boundaries,

either periodic

f̃ (0,ỹ,z̃)= f̃ (L,ỹ,z̃),
∂f̃

∂x̃
(0,ỹ,z̃)=

∂f̃

∂x̃
(L,ỹ,z̃);

f̃ (x̃,0,z̃)= f̃ (x̃,L,z̃),
∂f̃

∂x̃
(x̃,0,z̃)=

∂f̃

∂x̃
(x̃,L,z̃);

wheref̃ = ũ,ṽ,w̃,p̃,

or Dirichlet boundary conditions may be specified.

Dirichlet boundary conditions for velocities are specified
along both upstream and downstream boundaries

f̃ (i,ỹ,z̃)= f̃exact(i,ỹ,z̃), i= 0,L;

f̃ (x̃,j,z̃)= f̃exact(x̃,j,z̃), j = 0,L;

wheref̃ = ũ,ṽ,w̃.

Here we assume that functions̃fexactare known.
Dirichlet boundary conditions for pressure may be speci-

fied along either upstream or downstream boundaries:

p̃(0,ỹ,z̃)= p̃exact(0,ỹ,z̃), or p̃(L,ỹ,z̃)= p̃exact(L,ỹ,z̃);

p̃(x̃,0,z̃)= p̃exact(x̃,0,z̃), or p̃(x̃,L,z̃)= p̃exact(x̃,L,z̃).

2.3 Dimensionless equations

To non-dimensionalize variables, we choose the following
typical values:Z – the mean thickness of the ice-sheet,L –
the length of ice-sheet,U – a typical velocity in the horizon-
tal direction,W – a typical velocity in the vertical direction,
P – the mean pressure,A – the mean accumulation/ablation
rate, and introduce the following non-dimensional variables
(variables without tilde):

z̃=Zz, s̃=Zs, b̃=Zb,

x̃=Lx, ỹ=Ly,

ũ=Uu, ṽ=Uv, (6)

w̃=Ww,

p̃=Pp,

t̃ = T t,

˙̃a=Aȧ,

µ̃=
B

2

(
U

L

) 1−n
n

µ.

To further simplify the equations, we introduce the aspect
ratio parameterδ:

δ=
Z

L
(7)

and require that scale factorsL, U , W , andP satisfy the
following relationships:

B

2

(
U

L

) 1
n

= ρ̃g̃Z=P,
WL

UZ
= 1, (8)

T =
Z

W
, A=W, β2

=
β̃2U

P
.

The nondimensional steady-state conservation of mass and
momentum equations are then as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (9)
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δ
∂
(
2µ ∂u

∂x
+p

)
∂x

+δ
∂
(
µ
(
∂u
∂y

+
∂v
∂x

))
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+

∂
(
µ
(

1
δ
∂u
∂z

+δ ∂w
∂x

))
∂z

= 0, (10)

δ
∂
(
µ
(
∂u
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∂x

))
∂y
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∂
(
2µ ∂v

∂y
+p

)
∂x

+

∂
(
µ
(

1
δ
∂v
∂z

+δ ∂w
∂y
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∂z

= 0, (11)

δ
∂
(
µ
(
δ ∂w
∂x

+
1
δ
∂u
∂z

))
∂x

+δ
∂
(
µ
(
δ ∂w
∂y

+
1
δ
∂v
∂z

))
∂y

+

∂
(
2µ ∂w

∂z
+p

)
∂z

−1= 0, (12)

where

µ=

[
1

4

(
∂u

∂y
+
∂v

∂x

)2

+
1

4

(
1

δ

∂u

∂z
+δ

∂w

∂x

)2

+
1

4

(
1

δ

∂v

∂z
+δ

∂w

∂y

)2

−
∂u

∂x

∂v

∂y
−
∂u

∂x

∂w

∂z
−
∂v

∂y

∂w

∂z

] 1−n
2n

.

The kinematic boundary conditions are invariant under the chosen set of scalings:

∂s

∂t
+ u(x,y,s(x,y,t),t)

∂s

∂x
+v(x,y,s(x,y,t),t)

∂s

∂y
−w(x,y,s(x,y,t),t)= ȧ, (13)

u(x,y,b(x,y),t)
∂b

∂x
+v(x,y,b(x,y),t)

∂b

∂y
−w(x,y,b(x,y),t)= 0. (14)

The stress-free boundary conditions at the upper surfaces(x,y,t) become as follows:

1

rs

[
−δ

∂s

∂x

(
2µ
∂u

∂x
+p

)
−δ

∂s

∂y
µ

(
∂u

∂y
+
∂v

∂x

)
+µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= 0, (15)

1
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[
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∂s

∂x
µ

(
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∂y
+
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∂x

)
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∂s

∂y

(
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∂v

∂y
+p

)
+µ

(
1

δ

∂v

∂z
+δ

∂w

∂y

)]
= 0, (16)

1
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[
−δ

∂s

∂x

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
−δ

∂s

∂y

(
µ

(
δ
∂w

∂y
+

1

δ

∂v

∂z

))
+

(
2µ
∂w

∂z
+p

)]
= 0, (17)

wherers =

√
1+δ2

(
∂s
∂x

)2
+δ2

(
∂s
∂y

)2
.

The Robin boundary conditions at the lower surfaceb(x,y) become as follows:

1

rb

[
δ
∂b

∂x

(
2µ
∂u

∂x
+p

)
+δ

∂b

∂y
µ

(
∂u

∂y
+
∂v

∂x

)
−µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= −β2u, (18)

1

rb

[
δ
∂b

∂x
µ

(
∂u

∂y
+
∂v

∂x

)
+δ

∂b

∂y

(
2µ
∂v

∂y
+p

)
−µ

(
1

δ

∂v

∂z
+δ

∂w

∂y
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= −β2v, (19)

1

rb

[
δ
∂b

∂x

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
+δ

∂b

∂y

(
µ

(
δ
∂w

∂y
+

1

δ

∂v

∂z

))
−

(
2µ
∂w

∂z
+p
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= 1, (20)

whererb =

√
1+δ2

(
∂b
∂x

)2
+δ2

(
∂b
∂y

)2
.

In scaled units, the glacier thickness and length are equal to unity.
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3 Manufactured analytical solutions of the 2-D full-
Stokes isothermal flowline ice sheet model

3.1 Deriving an exact solution

Two-dimensional full-Stokes flowline models have only one
horizontal dimension,x. So all terms in the Eqs. (10–20) that
have variablesy or v, as well as all partialy− derivatives of
velocities and pressure can be removed.

To satisfy the 2-D version of the kinematic boundary con-
ditions (13–14), we assume that in the interior of the domain,
wheres(x,t)> b(x), the vertical velocityw is

w(x,z,t)= u(x,z,t)

(
db

dx

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(21)

+

(
∂s

∂t
− ȧ

)
z−b

s−b
.

From (21), it follows that

∂w

∂z
=
∂u

∂z

(
db

dx

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(22)

+u

∂s
∂x

−
db
dx

s−b
+

∂s
∂t

− ȧ

s−b
.

If we substitute (22) into the incompressibility Eq. (9), we
obtain the following equation containing only variableu and
its derivatives:

∂u

∂x
+
∂u

∂z

(
db

dx

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(23)

+u

∂s
∂x

−
db
dx

s−b
+

∂s
∂t

− ȧ

s−b
= 0.

Equation (23) is a first-order quasi-linear partial differen-
tial equation with two independent variables (x andz) and
one dependent variable (u). The system of ordinary differen-
tial equations

dx

1
=

dz

db
dx

s−z
s−b

+
∂s
∂x

z−b
s−b

= −
du

u
∂s
∂x

−
db
dx

s−b
+

∂s
∂t

−ȧ

s−b

(24)

is called the characteristic system of Eq. (23). If we can find
two particular independent solutions of this system, which
are called the integrals of system (24), in the form

φ(x,z,u)= c1, ψ(x,z,u)= c2, (25)

wherec1 andc2 are arbitrary constants, then the general so-
lution of Eq. (23) can be written as

θ(φ,ψ)= 0, (26)

where θ is an arbitrary function of two variables. With
Eq. (26) solved forφ, the general solution can be written
in the form

φ=ϑ(ψ), (27)

whereϑ is an arbitrary function of one variable.
Thus, to solve Eq. (23), we have to find integralsφ andψ

of the system (24). The first integral of the system (24) can
be found by solving equation

dx

1
= −

du

u
∂s
∂x

−
db
dx

s−b
+

∂s
∂t

−ȧ

s−b

. (28)

Equation (28) can be re-written as follows:

du

dx
+

∂s
∂x

−
db
dx

s−b
u= −

∂s
∂t

− ȧ

s−b
. (29)

We multiply both sides of Eq. (29) by s−b and recognize
that the left side of the equation is now the following product
rule, (s−b) ∂u

∂x
+
(
∂s
∂x

−
db
dx

)
u=

∂[u(s−b)]
∂x

. After replacing the
left side of the equation with this product rule, we obtain:

∂[u(s−b)]

∂x
= −

∂s

∂t
+ ȧ. (30)

Equation (30) has a solution

u ·(s−b)= −

∫ (
∂s

∂t
− ȧ

)
dx+c1,

orc1 = u ·(s−b)+

∫ (
∂s

∂t
− ȧ

)
dx,

wherec1 is a constant.
The second integral of the system (24) can be found by

solving equation

dx

1
=

dz

db
dx

s−z
s−b

+
∂s
∂x

z−b
s−b

(31)

Equation (31) can be re-written as:

dz

dx
−

∂s
∂x

−
db
dx

s−b
z= −

∂s
∂x
b−

db
dx
s

s−b
, (32)

After multiplying both sides of Eq. (32) by 1
s−b

, the equation
can be transformed into:

d

dx

(
z

s−b

)
=
d

dx

(
b

s−b

)
. (33)

Equation (33) has a solution

z

s−b
=

b

s−b
+c2, orc2 =

z−b

s−b
, (34)

Thus, the general solution of Eq. (23) can be written as

θ

(
u ·(s(x,t)−b(x))+

∫ (
∂s

∂t
− ȧ

)
dx,

z−b(x)

s(x,t)−b(x)

)
= 0, (35)

where θ is an arbitrary function of two variables. With
Eq. (35) solved foru, the general solution can be written in
the form

u(x,z,t)=
1

s(x,t)−b(x)
ϑ

(
z−b(x)

s(x,t)−b(x)

)
(36)

−
1

s(x,t)−b(x)

∫ (
∂s

∂t
− ȧ

)
dx,
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Fig. 1. 2-D flowline steady-state manufactured solution (coefficientλ= 4): horizontal component of velocity scaled to the surface velocity
as a function of dimensionless thickness. Horizontal velocity increases with the fourth power of ice thickness. Most shearing ice concentrated
near the glacier base which is similar to lamellar flow.

whereϑ is an arbitrary function of one variable.
The formula (36) shows that the functions satisfying the

kinematic boundary conditions (13–14) and the conservation
of mass Eq. (9), derived under assumption (21), depend on
the form of the functionϑ and ice surface and bed curves.

To generate a solution similar to the benchmark experi-
ment B in (Pattyn et al., 2008) and to keep the mathematics
simple, choose functionϑ as follows:

ϑ(x)= cx
[
1−(1−x)λ

]
+cb, (37)

whereλ, cx , andcb are constants. The first term on the right-
hand side of (37) may be considered as component of veloc-
ity associated with internal deformation, andcb as the basal
sliding velocity coefficient.

Then the velocity field satisfying the 2-D versions of the
kinematic boundary conditions (13–14) and the conservation
of mass Eq. (9) is:

u(x,z,t)=
cx

s−b

[
1−

(
s−z

s−b

)λ]
+

cb

s−b
−

1

s−b

∫ (
∂s

∂t
− ȧ

)
dx, (38)

w(x,z,t)= u(x,z,t)

(
db

dx

s−z

s−b
+
∂s

∂x

z−b

s−b

)
+

(
∂s

∂t
− ȧ

)
z−b

s−b
, (39)

For a zero-accumulation(ȧ = 0) steady-state( ∂s
∂t

= 0) flow
with frozen bed(cb = 0), the horizontal velocity scaled to
the surface velocity can be written as a function of ice scaled
depthd =

s−z
s−b

:

u(x,z,t)= u(x,s,t)

[
1−

(
s−z

s−b

)λ]
= u(x,s,t)

[
1−dλ

]
. (40)

This expression shows that the horizontal velocity from in-
ternal deformation increases with powerλ of ice depth. For
λ= 4 this is consistent with lamellar flow (der Veen, 1999)
as shown in Fig.1.

As can be seen from (38) for a zero-accumulation(ȧ= 0)
steady-state( ∂s

∂t
= 0) flow, if λ>0, then

cb = u(x,b)(s−b)= u(x,b)h and

cx = [u(x,s)−u(x,b)](s−b)= [u(x,s)−u(x,b)]h.

These expressions show thatcb can be interpreted as the ice-
flux due to sliding flow andcx can be interpreted as the ice-
flux due to deformation flow.

In addition to velocities, the ice pressure function should
also be constructed.

The manufactured solution for the ice pressure can be cho-
sen, for example, as in Pattyn’s higher-order model (Pattyn,
2003):

p̃= σ ′

x̃x̃− ρ̃g̃(s̃− z̃)= 2µ̃
∂ũ

∂x̃
− ρ̃g̃(s̃− z̃),

or in nondimensional form:

p(x,z,t)= 2µ
∂u

∂x
−(s−z). (41)

The constructed velocity and pressure functions do not
necessarily satisfy the conservation of momentum Eqs. (10–
12) or the surface and basal boundary conditions (15–17)
and (18–20). To make the constructed velocity and pressure
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Table 1. Constants for the benchmark experiments.

Constant Value Units

A Ice-flow parameter 10−16 Pa−na−1

ρ Ice density 910 kg m−1

g Gravitational constant 9.81 m s−2

n Exponent in Glen’s flow law 3
Seconds per year 31556926 s a−1

functions into exact solutions of these equations, we substi-
tute them into the equations and calculate the right-hand side
functions that match these solutions. This can be done when
a specific surfaces(x,t) and bedb(x) are chosen.

Equations (38–39) also satisfy prognostic equation de-
scribing the change of local ice thicknessh(x,t)= s(x,t)−
b(x) in space:

∂h

∂t
= ȧ−

∂

∂x

∫ s

b

udz. (42)

Equations (38–39) and (41) are solutions of flow with a gen-
eral surfaces(x,t) and bedb(x). Below are specific solu-
tions for a particular case of an ice surface and a sinusoidal
bed, similar to the benchmark experiment B in (Pattyn et al.,
2008).

3.2 A manufactured solution for a time-dependent flow
with a sinusoidal bed

To generate a particular solution, assume a flow with zero
accumulation/ablation rate,̇a = 0, a sinusoidal bed defined
as in (Pattyn et al., 2008), and an ice surface that changes
from a linear sloping surface to the one that is draped over
the topography of the bed:

s(x,t)= s0(x)+η(x)γ (t), s0(x)= −x · tan(α), (43)

b(x)= s0(x)−1+η(x), (44)

where

η(x)=
1

2
sin(2πx), γ (t)= 1−e−ct t , ct is a constant. (45)

Constantct shows how fast the ice surface changes (rela-
tive to the value of the ice bed) at the beginning of the test:
ct =

1
η(x)

∂s
∂t

|t=0.

For a flow down an infinite plane with a mean inclination
tan(α), periodic boundary conditions for a functionf are de-
fined as follows:f (0,z+tan(α))= f (1,z) and the analytical
solutions (38), (39), (41) satisfy these conditions for geome-
try (43–44).

AppendixA contains the formulas and supplement to this
manuscript contains a simple fortran 77 code that can be
used to calculate the exact solutions and compensatory stress
terms for the momentum equation in the 2-D flowline model.
The code dumps the generated solutions to specified files.
All input data are specified in file parameter2d.h in
the supplement.

Values of flow parameters and constants are chosen
from (Pattyn et al., 2008) and are given in Table (1), the start-
ing linear slope of the ice surfaceα= 0.5◦. The length scale
of the domain is chosen 80 km, which results in aspect ratio
δ= 1/80.

Constants of the test are chosen as follows: coefficient
in (45) ct = 10−6 and coefficients in (38) cx = 10−6, cb =

10−6, andλ= 4. This experiment can be considered as an
ice-stream flow over a bumpy bed. The values of constants
cx , cb, andct chosen to generate a reasonable dimensional
values of the flow functions which calculated from nondi-
mensional values using formulas (6) and (8). For the flow
parameters from (Pattyn et al., 2008), the value of the non-
dimensional ice flux will be around 10−6:
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cx = cb = uh=
ũ

U

h̃

Z
=

ũ

(2ρ̃g̃Z)nAL

h̃

Z
=

45000 ma−1(
2×910 kg m−19.81 ms−21000 m

)3
10−16Pa−3a−180000 m

1000 m

1000 m
≈ 10−6.

The choice of parameterct was dictated by the typical scale value of the time parameter:

ct ≈ T =
Z

W
=
L

U
=

L

(2ρ̃g̃Z)nAL
=

1

(2ρ̃g̃Z)nA
=

1(
2×910 kg m−19.81 m s−21000 m

)3
10−16Pa−3a−1

≈ 1.7×10−6a

Velocity is shown in km/yr and pressure in MPa.

Figure (2) shows the bed (44) and the time-evolution of
the ice surface (43) (left graph) and the time-evolution of
the norm of the surface velocity (right graph) over 14-year
period. The ice surface changes from a linear sloping sur-
face to the surface draped over the topography of the bed.
Ice thickness is spatially uniform when the steady-state so-
lution is reached. The surface velocity at the beginning is
anti-correlated with the ice thickness – it is larger over the
bump than over the trough. At the steady-state, the surface
velocity is spatially uniform and does not depend on the bed
topography.

Figure (3) shows the horizontal velocity, vertical velocity,
and pressure at the beginning (left graphs) and at the time
when the steady-state solution is reached (right graphs).

Figure (4) shows the compensatory horizontal and verti-
cal stress terms in the conservation of momentum equation
at the beginning (left) and at the time when the steady-state
solution is reached (right). At the beginning both stress terms
have largest values over the bump. At the steady-state solu-
tion, the stress terms are zeroes almost everywhere except a
small surface layer over the bump.

3.3 A steady-state manufactured solution for a flow
with a linear sloping surface and a sinusoidal bed

To generate a steady-state solution, assume that in (43) the
functionγ (t)= 0, that is, a linear sloping surface and a sinu-
soidal bed are defined similar to the ones of the benchmark
experiment B in (Pattyn et al., 2008):

s(x) = −x · tan(α), (46)

b(x) = s(x)−1+
1

2
sin(2πx). (47)

If we substitute the above functions for bed and surface into
(38–39), then the corresponding steady-state flow’s veloci-
ties are as follows:

u(x,z)=
cx

1−
1
2 sin(2πx)

1−

(
−z−x tan(α)

1−
1
2 sin(2πx)

)λ (48)

+
cb

1−
1
2 sin(2πx)

,

w(x,z) = u(x,z)

(
db

dx

s−z

s−b
+
ds

dx

z−b

s−b

)
. (49)

Choice of coefficientcb = 0 generates frozen bed flow with
zero basal velocities, whilecb 6= 0 generates flow with a slid-
ing bed.

As can be seen from (48–49), if λ>0 then

at z= b, u(x,b)= 0, w(x,b)= 0;

at z= s,u(x,s)=
cx

s−b
=
cx

h
, w(x,s)=

ds
dx

h
.

The last expression shows the conservation of mass flux,
q =hu= cx = constant. This anti-correlated relationship be-
tween surface horizontal velocity and ice thickness is consis-
tent with the simulation of the smallest length scaleL= 5km
Experiment B in (Pattyn et al., 2008), by all full-Stokes mod-
els.

Figure (5) shows the horizontal and vertical velocity, ice
pressure, and the norm of the surface velocity correspond-
ing to the flow with a linear sloping surface with a slope
α= 0.5◦ and afrozensinusoidal bed (cb = 0). The constants
in (48) are chosen ascx = 10−6 andλ= 4.0 and the aspect
ratio δ= 1/80.

4 Analytical manufactured solutions of the 3-D
isothermal full-Stokes ice-flow model

Assume as in the 2-D case that in the interior of the domain,
s(x,y,t)> b(x,y), the vertical velocityw is:

w(x,y,z,t)= u(x,y,z,t)

(
∂b

∂x

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(50)

+v(x,y,z)

(
∂b

∂y

s−z

s−b
+
∂s

∂y

z−b

s−b

)
+

(
∂s

∂t
− ȧ

)
z−b

s−b
,

then the kinematic boundary conditions (13–14) are satisfied.
From (50), it follows that

∂w

∂z
=
∂u

∂z

(
∂b

∂x

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(51)

+u

∂s
∂x

−
∂b
∂x

s−b
+
∂v

∂z

(
∂b

∂y

s−z

s−b
+
∂s

∂y

z−b

s−b

)
+v

∂s
∂y

−
∂b
∂y

s−b
+

1

s−b

(
∂s

∂t
− ȧ

)
.
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Fig. 2. 2-D flowline time dependent experiment – ice stream flow over bumpy bed; the steady bed and transformation over time of the ice
surface (left) and transformation over time of the norm of the surface velocity (right). Ice surface and the norm of the surface velocity are
shown every 1.5 years over the 14-year period, green curves are the initial values and red curves are the final values.

If we substitute (51) into the incompressibility Eq. (9), we
obtain the following equation containing only variablesu, v
and their derivatives:

∂u

∂x
+
∂u

∂z

(
∂b

∂x

s−z

s−b
+
∂s

∂x

z−b

s−b

)
+u

∂s
∂x

−
∂b
∂x

s−b
(52)

+
∂v

∂y
+
∂v

∂z

(
∂b

∂y

s−z

s−b
+
∂s

∂y

z−b

s−b

)
+v

∂s
∂y

−
∂b
∂y

s−b

+
1

s−b

(
∂s

∂t
− ȧ

)
= 0.

Equation (52) is a first-order quasi-linear partial differen-
tial equation with three independent variables (x, y, andz)
and two dependent variables (u andv) of type:

F

(
x,y,z,u(x,y,z,t),v(x,y,z,t),

∂u

∂x
,
∂u

∂z
,
∂v

∂y
,
∂v

∂z

)
= 0. (53)

Similar to the 2-D flowline manufactured solutions, we
choose velocityu(x,y,z,t) as the following function:

u(x,y,z,t)= cx(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+cbx
1

s−b
, (54)

or

u(x,y,z,t)= cxh
γ1
(
1−dλ1

)
+cbx

1

h
,

where γ1, λ1, cx , cbx are constants,d(x,y,z,t) =
s−z
s−b

is
scaled ice depth, andh(x,y,t)= s−b is ice thickness.

Then the derivatives of functionu(x,y,z,t) are

∂u

∂x
= cxγ1h

γ1−1∂h

∂x

(
1−dλ1

)
−cxλ1h

γ1dλ1−1∂d

∂x
−
cbx

h2

∂h

∂x
, (55)

∂u

∂z
= cxλ1h

γ1−1dλ1−1.

www.the-cryosphere.net/4/285/2010/ The Cryosphere, 4, 285–311, 2010



294 A. Sargent, J. L. Fastook: Analytical solutions for isothermal full-Stokes ice sheet models

-2.0

-1.5

-1.0

-0.5

0.0

-2.0

-1.5

-1.0

-0.5

0.0
z-

di
st

an
ce

 [k
m

]

0 20 40 60 80
x-distance [km]

30

60

90

120

150

180u [km/yr]

t=0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

z-
di

st
an

ce
 [k

m
]

0 20 40 60 80
x-distance [km]

45

60

75

90u [km/yr]

t=14 yrs

-2.0

-1.5

-1.0

-0.5

0.0

-2.0

-1.5

-1.0

-0.5

0.0

z-
di

st
an

ce
 [k

m
]

0 20 40 60 80
x-distance [km]

-3

-2

-1

0

1

2
w [km/yr]

t=0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

z-
di

st
an

ce
 [k

m
]

0 20 40 60 80
x-distance [km]

-4

-3

-2

-1

0

1

2

3
w [km/yr]

t=14 yrs

-2.0

-1.5

-1.0

-0.5

0.0

-2.0

-1.5

-1.0

-0.5

0.0

z-
di

st
an

ce
 [k

m
]

0 20 40 60 80
x-distance [km]

-12

-9

-6

-3

0p [MPa]

t=0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

z-
di

st
an

ce
 [k

m
]

0 20 40 60 80
x-distance [km]

-9

-6

-3

0
p [MPa]

t=14 yrs

Fig. 3. 2-D flowline time dependent experiment – ice stream flow over bumpy bed. The graphs show the horizontal velocityu, the vertical
velocityw (both in km/yr), and the ice pressurep (in kPa) at the beginning (left) and at the time when the steady-state solution is reached
(right). At the beginning, the horizontal velocity is anti-correlated with ice thickness: it is larger over the bump than over the trough. At the
steady-state, the horizontal velocity is spatially uniform and increases from the bed to the surface with power ofλ= 4 of the ice thickness.
At the beginning, the vertical velocity is largest at the bed where ice shearing is the largest. At the steady-state, the vertical velocity is
almost uniform in every vertical slide. This is consistent with ice-stream flow. The ice pressure is proportional to the ice thickness. At the
steady-state, it is equal zero at the ice surface.
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Fig. 4. 2-D flowline time dependent experiment – ice stream flow over bumpy bed. The graphs show the compensatory horizontal6x and
vertical6z stress terms (in kJ) at the beginning (left) and at the time when the steady-state solution is reached (right). At the beginning the
stress terms have the largest values over the bump. At the steady-state solution, they are zeroes almost everywhere except a small surface
layer over the bump.
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Fig. 5. 2-D flowline steady-state experiment - version of experiment B from (Pattyn et al., 2008) (flow with a linear sloping surface and
a sinusoidalfrozenbed); the graphs show horizontalu and verticalw velocity in [km/yr], the ice pressure in [MPa] and the norm of the

surface velocity
(
u2

+w2
)1/2

in [km/yr]. The horizontal velocity is anti-correlated with the ice thickness. Pressure is proportional to the

ice thickness. The norm of the surface velocity is larger over the bump and smaller over the trough. This is consistent with the observation
that in 2-D flowline experiments the ice cannot flow around the bumps.
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Fig. 6. 3-D time dependent experiment – ice flow over a bumpy bed. The graphs show the bed and ice surface at the beginning (left) and at
the steady state (right). All distances are scaled. Ice flow is from left to right. The ice surface changes from a linear sloping surface to the
surface draped over the topography of the bed. Ice thickness is spatially uniform when the steady-state solution is reached.
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Fig. 7. 3-D time-dependent experiment. The left and right graphs show the ice surfacex- andy- horizontal velocity respectively at the
beginning. At the time when the steady-state solution is reached, both velocities at the surface are uniform and have values of 46 km/yr.

Substituting (54) and (55) into (52) and using relations∂b
∂y
s−z
s−b

+
∂s
∂y
z−b
s−b

= h ∂d
∂x

generates a first-order quasi-linear partial
differential equation with four independent variables (x,y, z, andt) and only one dependent variable (v):

∂v

∂y
+
∂v

∂z

(
b′
y

s−z

s−b
+s′y

z−b

s−b

)
+v

s′y−b′
y

s−b
(56)

+cx(1+γ1)(s
′
x−b′

x)(s−b)
γ1−1

[
1−

(
s−z

s−b

)λ1
]

+
1

s−b

(
∂s

∂t
− ȧ

)
= 0,

wheres′x =
∂s
∂x
,s′y =

∂s
∂y
,b′
x =

∂b
∂x
,b′
y =

∂b
∂y
.
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Fig. 8. 3-D time dependent experiment; the graphs show the ice surface vertical velocityw (in km/yr) and the ice surface pressurep (in kPa)
at the beginning (left) and at the time when the steady-state solution is reached (right).

The characteristic system of Eq. (56) is as follows:

dy

1
=

dz

b′
y
s−z
s−b

+s′y
z−b
s−b

(57)

= −
dv

v
s′y−b

′
y

s−b
+cx(γ1+1)(s′x−b′

x)(s−b)
γ1−1

[
1−

(
s−z
s−b

)λ1
]
+

1
s−b

(
∂s
∂t

− ȧ
) .

Two independent particular solutions of this system can be found by solving the equations:

dy

1
=

dz

b′
y
s−z
s−b

+s′y
z−b
s−b

, (58)

dy

1
= −

dv

v
s′y−b

′
y

s−b
+cx(γ1+1)(s′x−b′

x)(s−b)
γ1−1

[
1−

(
s−z
s−b

)λ1
]
+

1
s−b

(
∂s
∂t

− ȧ
) . (59)
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Equation (58) has a solution

z

s−b
=

b

s−b
+c1, orc1 =

z−b

s−b
, (60)

wherec1 is a constant.

Equation (59) can be re-written as follows:

dv

dy
+
s′y−b′

y

s−b
v= −cx(γ1+1)(s′x−b′

x)(s−b)
γ1−1

[
1−

(
s−z

s−b

)λ1
]

−
1

s−b

(
∂s

∂t
− ȧ

)
. (61)
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This is a first-order ordinary differential equation. The solution of the homogeneous equation is

v=
a(y)

s−b
. (62)

wherea(y) is an unknown function.

Substituting Eq. (62) into Eq. (61), we obtain an equation fora:

a′(y)= −cx(γ1+1)(s′x−b′
x)(s−b)

γ1

[
1−

(
s−z

s−b

)λ1
]

−

(
∂s

∂t
− ȧ

)
,

which has a solution:

a(y)= −

∫ {
cx(γ1+1)(s′x−b′

x)(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+

(
∂s

∂t
− ȧ

)}
dy+c2. (63)

Substituting (63) into Eq. (62), we obtain

v=

−
∫ {
cx(γ1+1)(s′x−b′

x)(s−b)
γ1

[
1−

(
s−z
s−b

)λ1
]
+
(
∂s
∂t

− ȧ
)}
dy+c2

s−b

or

c2 = v(s−b)+

∫ {
cx(γ1+1)(s′x−b′

x)(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+

(
∂s

∂t
− ȧ

)}
dy (64)

Then, the general solution of Eq. (56) can be written as

θ

(
v(s−b)+

∫ {
cx(γ1+1)(s′x−b

′
x)(s−b)

γ1

[
1−

(
s−z

s−b

)λ1
]

+

(
∂s

∂t
−ȧ

)}
dy,

z−b

s−b

)
= 0, (65)

whereθ is an arbitrary function of two variables. With Eq. (65) solved forv, the general solution can be written in the form

v(x,y,z,t)=
1

s−b
ϑ

(
z−b

s−b

)
−

1

s−b

∫ {
cx(γ1+1)(s′x−b′

x)(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+

(
∂s

∂t
− ȧ

)}
dy, (66)

whereϑ is an arbitrary function of one variable.

If we assume again that functionϑ in (66) is of the form

ϑ(x)= cy
[
1−(1−x)λ2

]
+cby, (67)

whereλ2, cy , andcby are constants, then functions (54), (50), and (66) satisfying the mass balance equation and the kinematic
boundary conditions are as follows:

u(x,y,z,t) = cx(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+cbx
1

s−b
, (68)

v(x,y,z,t)=
cy

s−b

[
1−

(
s−z

s−b

)λ2
]

+cby
1

s−b
−

1

s−b

∫ {
cx(γ1+1)(s′x−b′

x)(s−b)
γ1

[
1−

(
s−z

s−b

)λ1
]

+

(
∂s

∂t
− ȧ

)}
dy, (69)

w(x,y,z,t)= u(x,y,z)

(
∂b

∂x

s−z

s−b
+
∂s

∂x

z−b

s−b

)
+v(x,y,z)

(
∂b

∂y

s−z

s−b
+
∂s

∂y

z−b

s−b

)
+

(
∂s

∂t
− ȧ

)
z−b

s−b
, (70)
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The manufactured solution for the ice pressure can be chosen again as in Pattyn’s higher-order model (Pattyn, 2003):

p̃= σ ′

x̃x̃+σ ′

ỹỹ− ρ̃g̃(s̃− z̃)= 2µ̃
∂ũ

∂x̃
+2µ̃

∂ṽ

∂ỹ
− ρ̃g̃(s̃− z̃),

or in nondimensional form:

p= 2µ
∂u

∂x
+2µ

∂v

∂y
−(s−z), (71)

where non-dimensional ice viscosity

µ=

[
1

4

(
∂u

∂y
+
∂v

∂x

)2

+
1

4

(
1

δ

∂u

∂z
+δ

∂w

∂x

)2

+
1

4

(
1

δ

∂v

∂z
+δ

∂w

∂y

)2

−
∂u

∂x

∂v

∂y
−
∂u

∂x

∂w

∂z
−
∂v

∂y

∂w

∂z

] 1−n
2n

. (72)

The constructed velocities satisfy the surface and bed kinematic boundary conditions (13–14) and the mass conservation
Eq. (9). However, the constructed velocities and pressure do not necessarily satisfy the conservation of momentum equations
and the basal and surface boundary conditions. To make the constructed functions into exact solutions of these equations, we
substitute them into those equations and calculate the right-hand side functions which accommodate the solutions. This can be
done when specific surfaces(x,y,t) and bedb(x,y) are chosen.

The constructed solutions do not satisfy ice-sheet evolu-
tion equation describing the change of local ice thickness
h(x,y,t)= s(x,y,t)−b(x,y) in space:

∂h

∂t
= ȧ−

∂

∂x

∫ s

b

udz−
∂

∂y

∫ s

b

vdz. (73)

To make the constructed functions into exact solutions of
Eq. (73), the equation can be modified by adding to the right-
hand side of the equation a compensatory term.

4.1 A time-dependent analytical solution for a flow with
a sinusoidal bed

To generate a particular solution, assume a flow with a sinu-
soidal bed defined similar to the bed in the benchmark experi-
ment A in (Pattyn et al., 2008) and an ice surface that changes

from a linear sloping surface to the one that is draped over the
bed:

s(x,y,t)= s0(x)+η(x,y)γ (t), s0(x)= −x · tan(α), (74)

b(x,y)= s0(x)+η(x,y)−1, (75)

where

η(x,y)=
1

2
sin(2πx)sin(2πy),γ (t)= 1−e−ct t , ct is a constant.

To calculate integral in (69), substitute functions (74–75)
for bed and surface into the integral in (69). Since it is diffi-
cult to calculate the integral analytically for general constants
γ1 andλ1, particular values, for example,γ1 = 1 andλ1 = 1,
can be chosen.
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4.1.1 Parametersγ1 = 1,λ1 = 1

I =

∫ [
2cx(z−b)(s

′
x−b′

x)+

(
∂s

∂t
− ȧ

)]
dy

=

∫ {
[z−s0(x)+1−η(x,y)]2cxη

′
x(γ (t)−1)+γ ′(t)η− ȧ

}
dy

= 2πcx(γ (t)−1)cos(2πx)
∫ [

z−s0(x)+1−
1

2
sin(2πx)sin(2πy)

]
sin(2πy)dy

+
γ ′(t)

2
sin(2πx)

∫
sin(2πy)dy−

∫
ȧdy

= 2πcx(γ (t)−1)cos(2πx)

{
−
z−s0(x)+1

2π
−

1

4
sin(2πx)

∫
[1−cos(4πy)]dy

}
−
γ ′(t)

4π
sin(2πx)cos(2πy)− ȧy

= cx(1−γ (t))cos(2πx)cos(2πy)(z−s0(x)+1)−
γ ′(t)

4π
sin(2πx)cos(2πy) (76)

+

[π
4
cx(1−γ (t))sin(4πx)− ȧ

]
y−

cx

16
(1−γ (t))sin(4πx)sin(4πy).

If we substitute the calculated integral and functions (74–
75) for bed and surface into (68–70), we obtain the following
formulas for velocities:

u(x,y,z,t) = cx(z−b)+cbx
1

s−b
, (77)

v(x,y,z,t)=
cy

s−b

[
1−

(
s−z

s−b

)λ2
]

−
I

s−b
+cby

1

s−b
, (78)

w(x,y,z,t)= u(x,y,z,t)

(
∂b

∂x

s−z

s−b
+
∂s

∂x

z−b

s−b

)
(79)

+v(x,y,z,t)

(
∂b

∂y

s−z

s−b
+
∂s

∂y

z−b

s−b

)
+

(
∂s

∂t
− ȧ

)
z−b

s−b
.

For a flow down an infinite plane with a mean incli-
nation tan(α), periodic boundary conditions for a function
f are defined as follows:f (0,y,z+ tan(α)) = f (1,y,z),
f (x,0,z+ tan(α))= f (x,1,z).

The constructed solutions (77–79), (71) satisfy periodic
boundary conditions only in the horizontalx- direction and
do not satisfy periodic boundary conditions in the horizon-
tal y- direction for all values of the input parameters. To
satisfy periodic boundary conditions in all lateral directions,
the accumulation-ablation rate may be chosen as follows:
ȧ= ȧ(x,t)= (π/4)cx(1−γ (t))sin(4πx).

Appendix4.1.1contains the formulas that can be used to
calculate the compensatory stress terms for the momentum
equation. For the 3-D ice-stream flow over a bumpy bed ex-
periment, the parameters of the flow are chosen as follows:

the horizontal domain is chosen 80 km×80km which results
in aspect ratioδ = 1/80, the starting linear slope of the ice
surfaceα = 0.5◦, sliding bed parameterscbx = cby = 10−8,
and the remaining constants in (77) and (78) cx = cy = 10−6,
λ2 = 4, andct = 10−6. As in 2-D case, all graphs are given
for the dimensional values of variables which are calculated
from non-dimensional values using formulas (6).

Figure (6) shows the bed (75) and the ice surface (74) at
the time zero and at the time when the steady-state solution
is reached. Ice flow is from left to right. The ice surface
changes from a linear sloping surface to the surface draped
over the topography of the bed. Ice thickness is spatially uni-
form when the steady-state solution is reached.

Figure (7) shows the horizontal and vertical velocity at the
beginning. At the steady-state, the horizontal velocity field is
smoothed out, bothx- andy- horizontal velocities are almost
spatially uniform (≈ 46 km/yr).

Figure (8) shows the vertical velocity and pressure at the
beginning and at the time when the steady-state solution is
reached.

Figure (9) shows the norm of the velocity along they =

1/4 slide at the beginning and at the time when the steady-
state is reached. Figure (10) shows change over time of the
ice surface elevation and the norm of the surface velocity
along they = 1/4 slide. At the beginning, velocity has two
local maximums, over the bump and over the bed where the
bed changes the most. At the steady-state position, the norm
of the velocity is spatially uniform and at each vertical slide
is increasing with ice thickness.

The Cryosphere, 4, 285–311, 2010 www.the-cryosphere.net/4/285/2010/



A. Sargent, J. L. Fastook: Analytical solutions for isothermal full-Stokes ice sheet models 303

4.2 A steady-state analytical solution for a flow with a
linear sloping surface and a sinusoidal bed

To generate a steady-state solution, assume that in (74) the
functionγ (t)= 0, that is, a linear sloping surface and a slop-
ing sinusoidal bed are defined as in the benchmark experi-
ment A in (Pattyn et al., 2008).

s(x,y) = −x · tan(α), (80)

b(x,y) = s(x,y)−1+
1

2
sin(2πx)sin(2πy). (81)

The coefficients areα = 0.5◦, λ2 = 2.25, cx = cy =

1, cbx = cby = 0, δ = 1/80, and accumulation ratėa =

π sin(4πx)
4 .

All functions, the surface horizontalx- andy- velocities,
the verticalz- velocities as well as the surface ice pressure,
for this steady-state experiment are very similar to the cor-
responding graphs in Figs. (7) and (8) of the time-dependent
experiment at the beginning time.

5 Conclusions

The detailed constructions of manufactured exact solutions
to 3-D and 2-D flowline time-dependent and steady-state
isothermal full-Stokes ice sheet problems are presented. The
solutions are valid for non-linear Glen-type flow. The con-
struction of exact solutions done by using manufactured so-
lution technique (Bueler et al., 2007) while the suggested
experiments follow directly from ice sheet intercompari-
son (Pattyn et al., 2008).

The steady-state solutions, constructed in this paper, are
variations of the benchmark experiments A and B in (Pat-
tyn et al., 2008). However, by substituting different ice sur-
face and bed geometry formulas into the derived formulas,
analytical solutions for different geometries can also be con-
structed.

Although artificially constructed, the solutions may be
useful for testing numerical methods. They offer several ben-

efits to potential ice sheet modelers. By changing a param-
eter value, the analytical solutions will allow the modelers
to investigate their algorithms for a different range of as-
pect ratios as well as for different, frozen or sliding, basal
boundaries. The lateral boundary conditions can be speci-
fied as periodic boundary conditions or as essential Dirichlet
conditions. Specifying Dirichlet conditions, when the exact
solutions are specified as inflow and outflow boundary con-
ditions, allows the modelers to check the model accuracy in
the inside of the problem domain.

Appendix A

Calculation of compensatory stress functions in the
2-D flowline full-Stokes diagnostic equations

A1 Compensatory terms in diagnostic equations and in
the boundary conditions

The constructed velocities (38–39) satisfy the 2-D versions
of the surface and bed kinematic boundary conditions (13–
14) and the mass conservation Eq. (9) but do not necessarily
satisfy the conservation of momentum Eqs. (10–12) and its
basal and surface boundary conditions (15–17) and (18–20).
Following (Bueler et al., 2007), we introduce compensatory
stresses6x and6z in the conservation of momentum equa-
tions to make the chosen velocity and pressure functions into
exact solutions of the equations.

δ
∂
(
2µ ∂u

∂x
+p

)
∂x

+

∂
(
µ
(

1
δ
∂u
∂z

+δ ∂w
∂x

))
∂z

=6x, (A1)

δ
∂
(
µ
(
δ ∂w
∂x

+
1
δ
∂u
∂z

))
∂x

+

∂
(
2µ ∂w

∂z
+p

)
∂z

−1=6z, (A2)

To make the chosen velocities satisfy the boundary condi-
tions, we introduce compensatory termsυx,υz,τb, andτz in
the boundary conditions.
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At the upper surfaces(x,t), the boundary conditions are as follows:

1√
1+δ2

(
ds
dx

)2
[
−δ

ds

dx

(
2µ
∂u

∂x
+p

)
+µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= υx, (A3)

1√
1+δ2

(
ds
dx

)2
[
−δ

ds

dx

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
+

(
2µ
∂w

∂z
+p

)]
= υz. (A4)

At the lower surfaceb(x), they are as follows:

1√
1+δ2

(
db
dx

)2
[
δ
db

dx

(
2µ
∂u

∂x
+p

)
−µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= τx, (A5)

1√
1+δ2

(
db
dx

)2
[
δ
db

dx

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
−

(
2µ
∂w

∂z
+p

)]
+1= τz. (A6)

A2 Calculation of derivatives

Calculation of the compensatory stress terms requires calculation of derivatives of the exact solutions (38), (39), and (41). To
simplify calculation of the derivatives, we re-write these functions as follows:

u(x,z,t) =
1

h

[
cx
(
1−dλ

)
+cb−

∫ (
∂s

∂t
− ȧ

)
dx

]
, (A7)

w(x,z,t) = uh
∂d

∂x
+

(
∂s

∂t
− ȧ

)
(1−d), (A8)

whereh= h(x,t) is ice thickness andd = d(x,z,t)= s−z
s−b

is scaled ice depth. Then, the first derivatives of functions (A7–A8)
are
∂u

∂z
=
cxλ

h2
dλ−1,

∂u

∂x
= −

1

h

[
∂h

∂x
u+cxλd

λ−1∂d

∂x
+
∂s

∂t
− ȧ

]
= −

1

h

[
∂h

∂x
u+h2∂u

∂z

∂d

∂x
+
∂s

∂t
− ȧ

]
,

∂w

∂z
= −

∂u

∂x
, (A9)

∂w

∂x
=
∂u

∂x
h
∂d

∂x
+u

∂h

∂x

∂d

∂x
+uh

∂2d

∂x2
+

(
∂2s

∂x∂t
−
∂ȧ

∂x

)
(1−d)−

(
∂s

∂t
− ȧ

)
∂d

∂x
,

and the second derivatives are

∂2u

∂z2
= −

cxλ(λ−1)

h3
dλ−2, (A10)

∂2u

∂x2
= −

1

h

[
∂2h

∂x2
u+2

∂h

∂x

∂u

∂x
−h3∂

2u

∂z2

(
∂d

∂x

)2

+h2∂u

∂z

∂2d

∂x2
+
∂2s

∂x∂t
−
∂ȧ

∂x

]
,

∂2u

∂x∂z
= −

2cxλ

h3
dλ−1∂h

∂x
+
cxλ(λ−1)

h2
dλ−2∂d

∂x
= −

1

h

(
2
∂u

∂x

∂u

∂z
+
∂d

∂x

∂2u

∂z2

)
,

∂2w

∂x2
=
∂2u

∂x2
h
∂d

∂x
+2

∂u

∂x

∂h

∂x

∂d

∂x
+2

∂u

∂x
h
∂2d

∂x2
+u

∂2h

∂x2

∂d

∂x
+2u

∂h

∂x

∂2d

∂x2
+uh

∂3d

∂x3

+

(
∂3s

∂x2∂t
−
∂2ȧ

∂x2

)
(1−d)−2

(
∂2s

∂x∂t
−
∂ȧ

∂x

)
∂d

∂x
−

(
∂s

∂t
− ȧ

)
∂2d

∂x2
,

∂2w

∂x∂z
= −

∂2u

∂x2
,

∂2w

∂z2
= −

∂2u

∂x∂z
.
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where, for a surface (43) and a sinusoidal bed (44),

∂h

∂x
= η′(x)(γ (t)−1),

∂s

∂x
= s′0(x)+η

′(x)γ (t), (A11)

∂s

∂t
= η(x)γ ′(t),

∫
∂s

∂t
dx= γ ′(t)

∫
η(x)dx,

∂2s

∂x∂t
= η′(x)γ ′(t),

∂3s

∂x2∂t
= η′′(x)γ ′(t),

∂2h

∂x2
= η′′(x)(γ (t)−1),

∂3h

∂x3
= η′′′(x)(γ (t)−1),

∂2s

∂x2
= η′′(x)γ (t),

∂3s

∂x3
= η′′′(x)γ (t),

∂d

∂x
=

1

h

(
∂s

∂x
−
∂h

∂x
d

)
,
∂d

∂z
= −

1

h
,

∂2d

∂x2
=

1

h

[
∂2s

∂x2
−2

∂h

∂x

∂d

∂x
−
∂2h

∂x2
d

]
,

∂3d

∂x3
=

1

h

[
∂3s

∂x3
−3

∂2h

∂x2

∂d

∂x
−3

∂h

∂x

∂2d

∂x2
−d

∂3h

∂x3

]
If we name the expression

ν=
1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)2

−
∂u

∂x

∂w

∂z
, (A12)

thenµ= ν
1−n
2n .

For further calculations we need the following derivatives:

∂µ

∂x
=

1−n

2n

µ

ν

[
1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)(
1

δ

∂2u

∂x∂z
+δ

∂2w

∂x2

)
−
∂2u

∂x2

∂w

∂z
−
∂u

∂x

∂2w

∂x∂z

]
, (A13)

∂µ

∂z
=

1−n

2n

µ

ν

[
1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)(
1

δ

∂2u

∂z2
+δ

∂2w

∂x∂z

)
−
∂2u

∂x∂z

∂w

∂z
−
∂u

∂x

∂2w

∂z2

]
, (A14)

Substituting (A9–A10) and (A13–A14) into (A1–A2), (A3–A4), and (A5–A6) generate formulas for compensatory terms
6x,6z,υx,υz,τx , andτz.

If constantλ in (37) is chosen so thatλ>2, then the calculation of the second derivatives is well defined.

Appendix B

Calculation of compensatory stress functions in 3-D full-Stokes diagnostic equations

B1 Compensatory terms in diagnostic equations and in the boundary conditions

The constructed velocities (68–70) satisfy the surface and bed kinematic boundary conditions (13–14) and the mass conser-
vation Eq. (9). They do not necessarily satisfy the conservation of momentum equations and its basal and surface boundary
conditions. Following (Bueler et al., 2007), we introduce compensatory stresses6x , 6y , and6z in the conservation of mo-
mentum equations to make the chosen velocity functions into exact solutions of the equations.

δ
∂
(
2µ ∂u

∂x
+p

)
∂x

+δ
∂
(
µ
(
∂u
∂y

+
∂v
∂x

))
∂y

+

∂
(
µ
(

1
δ
∂u
∂z

+δ ∂w
∂x

))
∂z

=6x, (B1)

δ
∂
(
µ
(
∂u
∂y

+
∂v
∂x

))
∂x

+δ
∂
(
2µ ∂v

∂y
+p

)
∂y

+

∂
(
µ
(

1
δ
∂v
∂z

+δ ∂w
∂y

))
∂z

=6y, (B2)
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δ
∂
(
µ
(
δ ∂w
∂x

+
1
δ
∂u
∂z

))
∂x

+δ
∂
(
µ
(
δ ∂w
∂y

+
1
δ
∂v
∂z

))
∂y

+

∂
(
2µ ∂w

∂z
+p

)
∂z

−1=6z. (B3)

To make the chosen velocities satisfy the boundary conditions, we introduce compensatory termsυx,υy,υz,τx,τy , andτz in
the boundary conditions.

At the upper surfaces(x,y,t), the boundary conditions are as follows:

1

rs

[
−δ

∂s

∂x

(
2µ
∂u

∂x
+p

)
−δ

∂s

∂y
µ

(
∂u

∂y
+
∂v

∂x

)
+µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= υx, (B4)

1

rs

[
−δ

∂s

∂x
µ

(
∂u

∂y
+
∂v

∂x

)
−δ

∂s

∂y

(
2µ
∂v

∂y
+p

)
+µ

(
1

δ

∂v

∂z
+δ

∂w

∂y

)]
= υy, (B5)

1

rs

[
−δ

∂s

∂x

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
−δ

∂s

∂y

(
µ

(
δ
∂w

∂y
+

1

δ

∂v

∂z

))
+

(
2µ
∂w

∂z
+p

)]
= υz, (B6)

wherers =

√
1+δ2

(
∂s
∂x

)2
+δ2

(
∂s
∂y

)2
.

At the lower surfaceb(x,y), the boundary conditions are as follows:

1

rb

[
δ
∂b

∂x

(
2µ
∂u

∂x
+p

)
+δ

∂b

∂y
µ

(
∂u

∂y
+
∂v

∂x

)
−µ

(
1

δ

∂u

∂z
+δ

∂w

∂x

)]
= τx, (B7)

1

rb

[
δ
∂b

∂x
µ

(
∂u

∂y
+
∂v

∂x

)
+δ

∂b

∂y

(
2µ
∂v

∂y
+p

)
−µ

(
1

δ

∂v

∂z
+δ

∂w

∂y

)]
= τy, (B8)

1

rb

[
δ
∂b

∂x

(
µ

(
δ
∂w

∂x
+

1

δ

∂u

∂z

))
+δ

∂b

∂y

(
µ

(
δ
∂w

∂y
+

1

δ

∂v

∂z

))
−

(
2µ
∂w

∂z
+p

)]
+1= τz, (B9)

whererb =

√
1+δ2

(
∂b
∂x

)2
+δ2

(
∂b
∂y

)2
.

B2 Calculation of derivatives

Calculation of the compensatory stress terms requires calculation of derivatives of the exact solutions (68–70, 71). To simplify
calculation of the derivatives, we re-write these functions as follows:

u(x,y,z,t) = cx(z−b)+cbx
1

h
= cx(1−d)h+cbx

1

h
(B10)

v(x,y,z,t) =
cy

h

(
1−dλ2

)
+
cby−I

h
, (B11)

w(x,y,z,t) = uh
∂d

∂x
+vh

∂d

∂y
+

(
∂h

∂t
− ȧ

)
(1−d), (B12)

p = 2µ
∂u

∂x
+2µ

∂v

∂y
−(s−z), (B13)

whereh=h(x,y,t)= s(x,y,t)−b(x,y) is ice thickness andd = d(x,y,z,t)= s−z
h

is ice scaled ice depth.
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The first derivatives of functions (B10–B12) are as follows:

∂u

∂x
= −cx

∂b

∂x
−
cbx

h2

∂h

∂x
,
∂u

∂y
= −cx

∂b

∂y
−
cbx

h2

∂h

∂y
,
∂u

∂z
= cx, (B14)

∂v

∂x
= −

1

h

(
v
∂h

∂x
+cyλ2d

λ2−1∂d

∂x
+
∂I

∂x

)
,

∂v

∂y
= −

1

h

(
v
∂h

∂y
+cyλ2d

λ2−1∂d

∂y
+
∂I

∂y

)
,

∂v

∂z
=
cyλ2

h2
dλ2−1

−
1

h

∂I

∂z
,

∂w

∂x
=
∂u

∂x
h
∂d

∂x
+u

∂h

∂x

∂d

∂x
+uh

∂2d

∂x2
+
∂v

∂x
h
∂d

∂y
+v

∂h

∂x

∂d

∂y
+vh

∂2d

∂x∂y

+

(
∂2s

∂x∂t
−
∂ȧ

∂x

)
(1−d)−

(
∂s

∂t
− ȧ

)
∂d

∂x
,

∂w

∂y
=
∂u

∂y
h
∂d

∂x
+u

∂h

∂y

∂d
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+uh

∂2d

∂x∂y
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∂v

∂y
h
∂d

∂y
+v

∂h

∂y

∂d

∂y
+vh

∂2d

∂y2

+

(
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∂y∂t
−
∂ȧ
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)
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− ȧ
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∂d

∂y
,

∂w

∂z
=
∂u

∂z
h
∂d

∂x
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∂2d

∂x∂z
+
∂v

∂z
h
∂d

∂y
+vh

∂2d

∂y∂z
+

1

h

(
∂s
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− ȧ

)
,

∂p

∂x
= 2
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)
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and the second derivatives are:

∂2u

∂x2
= −cx

∂2b

∂x2
+2

cbx

h3

(
∂h

∂x

)2
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cbx
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∂x∂y
+2

cbx

h3

∂h

∂x
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∂x∂y
,
∂2u
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∂2u
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∂2u
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= 0, (B15)
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,
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1
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(
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∂h
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∂v

∂y

∂h

∂x
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∂d
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,
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∂y2
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1

h
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2
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∂h

∂y
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∂d
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∂y

∂2v

∂y∂z
+
∂h

∂y

∂2d

∂y∂z
v+h

∂3d

∂2y∂z
v+h

∂2d

∂y∂z

∂v

∂y

+
1

h

(
∂2s

∂y∂t
−
∂ȧ

∂y

)
−

1

h2

∂h

∂y

(
∂s

∂t
− ȧ

)
,

where

∂s

∂x
=
∂s0

∂x
+
∂η

∂x
γ (t),

∂s

∂y
=
∂η

∂y
γ (t), (B16)

∂2s

∂x2
=
∂2η

∂x2
γ (t),

∂2s

∂y2
=
∂2η

∂y2
γ (t),

∂2s

∂x∂y
=
∂2η

∂x∂y
γ (t),

∂2s

∂x∂t
=
∂η

∂x

∂γ (t)

∂t
,
∂2s

∂y∂t
=
∂η

∂y

∂γ (t)

∂t
,

∂3s

∂x2∂t
=
∂2η

∂x2

∂γ (t)

∂t
,
∂3s

∂y2∂t
=
∂2η

∂y2

∂γ (t)

∂t
,

h= 1+η(x,y)(γ (t)−1),
∂h

∂x
=
∂η

∂x
(γ (t)−1),

∂h

∂y
=
∂η

∂y
(γ (t)−1),

∂2h

∂x2
=
∂2η

∂x2
(γ (t)−1),

∂2h

∂y2
=
∂2η

∂y2
(γ (t)−1),

∂2h

∂x∂y
=
∂2η

∂x∂y
(γ (t)−1),

∂h

∂t
= η(x,y)

∂γ (t)

∂t
,
∂2h

∂x∂t
=
∂η

∂x

∂γ (t)

∂t
,
∂2h

∂y∂t
=
∂η

∂y

∂γ (t)

∂t
,

∂d

∂x
=

1

h

(
∂s

∂x
−d

∂h

∂x

)
,
∂d

∂y
=

1

h

(
∂s

∂y
−d

∂h

∂y

)
,
∂d

∂z
= −

1

h
,
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∂2d

∂x2
=

1

h

(
∂2s

∂x2
−d

∂2h

∂x2
−2

∂h

∂x

∂d

∂x

)
,
∂2d

∂y2
=

1

h

(
∂2s

∂y2
−d

∂2h

∂y2
−2

∂h

∂y

∂d

∂y

)
,

∂2d

∂x∂y
=

1

h

(
∂2s

∂x∂y
−
∂h

∂x

∂d

∂y
−
∂h

∂y

∂d

∂x
−d

∂2h

∂x∂y

)
,
∂2d

∂x∂z
=

1

h2

∂h

∂x
,
∂2d

∂y∂z
=

1

h2

∂h

∂y
,

∂3d

∂x3
= −

1

h

(
3
∂h

∂x

∂2d

∂x2
+3

∂2h

∂x2

∂d

∂x
+d

∂3h

∂x3
−
∂3s

∂x3

)
,

∂3d

∂y3
= −

1

h

(
3
∂h

∂y

∂2d

∂y2
+3

∂2h

∂y2

∂d

∂y
+d

∂3h

∂y3
−
∂3s

∂y3

)
,

∂3d

∂x2∂y
= −

1

h

(
∂h

∂y

∂2d

∂x2
+2

∂h

∂x

∂2d

∂x∂y
+2

∂2h

∂x∂y

∂d

∂x
+
∂2h

∂x2

∂d

∂y
+d

∂3h

∂x2∂y
−

∂3s

∂x2∂y

)
,

∂3d

∂x∂y2
= −

1

h

(
∂h

∂x

∂2d

∂y2
+2

∂h

∂y

∂2d

∂x∂y
+2

∂2h

∂x∂y

∂d

∂y
+
∂2h

∂y2

∂d

∂x
+d

∂3h

∂y2∂x
−

∂3s

∂y2∂x

)
,

∂3d

∂x2∂z
=

1

h2

[
∂2h

∂x2
−

2

h

(
∂h

∂x

)2
]
,
∂3d

∂y2∂z
=

1

h2

[
∂2h

∂y2
−

2

h

(
∂h

∂y

)2
]
,

∂3d

∂x∂y∂z
=

1

h2

[
∂2h

∂x∂y
−

2

h

∂h

∂x

∂h

∂y

]
,
∂3d

∂x∂z2
= 0,

∂3d

∂y∂z2
= 0,

and

∂I

∂x
=−cx(1−γ (t))cos(2πy)

[
2π(z−s0(x)+1)sin(2πx)+s′0(x)cos(2πx)

]
−
γ ′(t)

2
cos(2πx)cos(2πy)

+

[
π2cx(1−γ (t))cos(4πx)−

∂ȧ

∂x

]
y−

πcx

4
(1−γ (t))cos(4πx)sin(4πy),

∂I

∂y
= −2πcx(1−γ (t))cos(2πx)sin(2πy)(z−s0(x)+1)+

γ ′(t)

2
sin(2πx)sin(2πy)

+

[π
4
cx(1−γ (t))sin(4πx)− ȧ

]
−
πcx

4
(1−γ (t))sin(4πx)cos(4πy),

∂I

∂z
= cx(1−γ (t))cos(2πx)cos(2πy),

∂2I

∂x2
= −cx(1−γ (t))cos(2πy)

[
4π2(z−s0(x)+1)cos(2πx)−4πs′0(x)sin(2πx)

]
+πγ ′(t)sin(2πx)cos(2πy)

−

[
4π3cx(1−γ (t))sin(4πx)+

∂2ȧ

∂x2

]
y+π2cx(1−γ (t))sin(4πx)sin(4πy),

∂2I

∂x∂y
= 2πcx(1−γ (t))sin(2πy)

[
2π(z−s0(x)+1)sin(2πx)+s′0(x)cos(2πx)

]
+πγ ′(t)cos(2πx)sin(2πy)

+

[
π2cx(1−γ (t))cos(4πx)−

∂ȧ

∂x

]
−π2cx(1−γ (t))cos(4πx)cos(4πy),

∂2I

∂x∂z
= −2πcx(1−γ (t))cos(2πy)sin(2πx),

∂2I

∂y2
= −4π2cx(1−γ (t))cos(2πx)cos(2πy)(z−s0(x)+1)+πγ ′(t)sin(2πx)cos(2πy)

+π2cx(1−γ (t))sin(4πx)sin(4πy),

∂2I

∂y∂z
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If we name the expression

ν=
1

4

(
∂u

∂y
+
∂v

∂x

)2

+
1

4

(
1

δ

∂u

∂z
+δ

∂w

∂x

)2

+
1

4

(
1

δ

∂v

∂z
+δ

∂w

∂y

)2

−
∂u

∂x

∂v

∂y
−
∂u

∂x

∂w

∂z
−
∂v

∂y

∂w

∂z
,thenµ= ν

1−n
2n .

For further calculations we need the following derivatives:

∂µ

∂x
=

1−n

2n

µ

ν

[
1

2

(
∂u

∂y
+
∂v

∂x

)(
∂2u

∂x∂y
+
∂2v

∂x2

)
+

1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)(
1

δ

∂2u

∂x∂z
+δ

∂2w

∂x2

)
(B17)

+
1

2

(
1

δ

∂v

∂z
+δ

∂w

∂y

)(
1

δ

∂2v

∂x∂z
+δ

∂2w

∂x∂y

)

−
∂2u

∂x2

∂v

∂y
−
∂u

∂x

∂2v

∂x∂y
−
∂2u

∂x2

∂w

∂z
−
∂u

∂x

∂2w

∂x∂z
−
∂2v

∂x∂y

∂w

∂z
−
∂v

∂y

∂2w

∂x∂z

]
,

∂µ

∂y
=

1−n

2n

µ

ν

[
1

2

(
∂u

∂y
+
∂v

∂x

)(
∂2u

∂y2
+
∂2v

∂x∂y

)
+

1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)(
1

δ

∂2u

∂y∂z
+δ

∂2w

∂x∂y

)

+
1

2

(
1

δ

∂v

∂z
+δ

∂w

∂y

)(
1

δ

∂2v

∂y∂z
+δ

∂2w

∂y2

)

−
∂2u

∂x∂y

∂v

∂y
−
∂u

∂x

∂2v

∂y2
−
∂2u

∂x∂y

∂w

∂z
−
∂u

∂x

∂2w

∂y∂z
−
∂2v

∂y2

∂w

∂z
−
∂v

∂y

∂2w

∂y∂z

]
,

∂µ

∂z
=

1−n

2n

µ

ν

[
1

2

(
∂u

∂y
+
∂v

∂x

)(
∂2u

∂y∂z
+
∂2v

∂x∂z

)
+

1

2

(
1

δ

∂u

∂z
+δ

∂w

∂x

)(
1

δ

∂2u

∂z2
+δ

∂2w

∂x∂z

)

+
1

2

(
1

δ

∂v

∂z
+δ

∂w

∂y

)(
1

δ

∂2v

∂z2
+δ

∂2w

∂y∂z

)

−
∂2u

∂x∂z

∂v

∂y
−
∂u

∂x

∂2v

∂y∂z
−
∂2u

∂x∂z

∂w

∂z
−
∂u

∂x

∂2w

∂z2
−
∂2v

∂y∂z

∂w

∂z
−
∂v

∂y

∂2w

∂z2

]
.

Substituting (B10–B14) and (B17) into (B1–B3), (B4–
B6), and (B7–B9) generate formulas for compensatory terms
6x,6y,6z,υx,υy,υz,τx,τy , andτz.

If constantλ2 in (B11) is chosen so thatλ2> 2, then cal-
culation of the velocities’ first and second derivatives is well
defined.
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