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Abstract. A fast two-dimensional gas chromatography (GC-
MS) method that uses heart-cutting and thermal extraction
(TE) and requires no chemical derivatization was developed
for the determination of anhydro-sugars in fine aerosols.
Evaluation of the TE-GC-GC-MS method shows high av-
erage relative accuracy (≥90%), reproducibility (≤10%
relative standard deviation), detection limits of less than
3 ng/µL, and negligible carryover for levoglucosan, man-
nosan, and galactosan markers. TE-GC-GC-MS- and solvent
extraction (SE)-GC-MS-measured levoglucosan concentra-
tions correlate across several diverse types of biomass burn-
ing aerosols. Because the SE-GC-MS measurements were
taken 8 years prior to the TE-GC-GC-MS ones, the stabil-
ity of levoglucosan is established for quartz filter-collected
biomass burning aerosol samples stored at ultra-low tem-
perature (−50◦C). Levoglucosan concentrations (w/w) in
aerosols collected following atmospheric dilution near open
fires of varying intensity are similar to those in biomass burn-
ing aerosols produced in a laboratory enclosure. An aver-
age levoglucosan-mannosan-galactosan ratio of 15:2:1 is ob-
served for these two aerosol sets. TE-GC-GC-MS analysis of
atmospheric aerosols from the US and Africa produced lev-
oglucosan concentrations (0.01–1.6 µg/m3) well within those
reported for aerosols collected globally and examined using
different analytical techniques (0.004–7.6 µg/m3). Further
comparisons among techniques suggest that fast TE-GC-GC-
MS is among the most sensitive, accurate, and precise meth-
ods for compound-specific quantification of anhydro-sugars.
In addition, an approximately twofold increase in anhydro-
sugar determination may be realized when combining TE
with fast chromatography.

Correspondence to:M. D. Hays
(hays.michael@epa.gov)

1 Introduction

Levoglucosan (LG, 1,6-anhydro-β-D-glucopyranose) is an
important organic marker for biomass burning. Characteri-
zaion of LG has contributed much to our understanding of
the global atmosphere. Biomass fires produce relatively high
quantities of LG with minor amounts of other anhydro-sugars
or monosaccharide anhydrides (e.g., mannosan – MAN, and
galactosan – GAL). These compounds form at fire tempera-
tures greater than 300◦C as plant cellulose and hemicellulose
decomposes and molecular bonds cleave via transglycosy-
lation, fission, and disproportionation reactions (Shafidazeh
et al., 1984). LG partitions exclusively to a submicrometer
liquid or solid aerosol phase (Kleeman et al., 2008), and is
stable in the atmosphere during long-range transport (Fraser
et al., 2000). Thus, once formed as a pyrolysis product of
biomass combustion, it is used as an organic marker in atmo-
spheric modeling studies (Fraser et al., 2000; Simoneit et al.,
1999a, b, 2001; Elias et al., 2001), in sediment and Antarctic
ice cores for understanding the paleorecord (Gambaro et al.,
2008), in liquid biofuel synthesis (Branca et al., 2003; Gravi-
tis et al., 2004), and as a urinary biomarker for approximating
animal and human exposures to biomass smoke (Migliaccio
et al., 2009). For these reasons, there is high demand for
quantitative analytical data for LG.

The excellent review by Schkolnik and Rudich (2006)
summarizes the quantitative analytical methods for LG in
atmospheric aerosols. It separates techniques for LG mea-
surement into two general categories: gas chromatography
(GC) methods (Simoneit et al., 2001; Zdrahal et al., 2002;
Pashynska et al., 2002; Otto et al., 2006) and aqueous-
phase methods. Aqueous-phase methods are applied less
frequently to study LG in aerosols but are emerging due to
their speed and lack of a chemical derivatization requirement.
For example, Gao et al. (2003) paired IC with electrospray
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ionization (ESI)-ion-trap MS to directly examine LG and
carbohydrates in African biomass fire plumes. Others sub-
sequently investigated the anhydro-sugars with LC-MS, de-
veloping methods for time-of-flight (TOF) (Dye et al., 2005),
quadrupole (q) (Wan et al., 2007) and triple quadrupole (qqq)
MS systems (Gambaro et al., 2008). For these studies, LC-
MS sensitivity for LG was shown to be 0.014 ng/µL or less
(Wan et al., 2007). Additional water-based techniques that
have successfully measured LG in aerosols include capillary
electrophoresis (CE)-pulsed amperometric detection (PAD)
– which measures LG in as little as 2 min (Garcia et al.,
2005) – and high-performance anion-exchange chromatog-
raphy with PAD (HPACE-PAD) which detects LG at con-
centrations above 0.002 ng/µL (Engling et al., 2006).

Despite the emergence of LC-MS and other aqueous phase
techniques, GC-MS techniques are more routinely applied
to quantify LG in aerosols (Schkolnik et al., 2006). These
GC-MS methods can detect LG as a tri-methyl silyl analogue
with nanogram or better sensitivity. However, aerosol sam-
ple preparation for GC-MS analysis can require multiple sol-
vent extraction (SE), concentration, and chemical derivati-
zation (i.e., silyation) steps, which are labor-intensive, time-
demanding, reagent-consuming and usually environmentally
unfriendly (Schkolnik et al., 2006). Moreover, silylated LG
is susceptible to hydrolysis, expiring within 24 h (Wan et al.,
2007). Attempts to detect LG on certain GC column station-
ary phases without chemical derivatization using GC-MS can
result in a lower response due to peak spreading (Fraser et
al., 2000; Williams et al., 2006; Fine et al., 2001). And while
faster, the increased detection limits resulting from this prac-
tice may preclude the use of LG as a biomass burning marker
in the highly time-resolved atmospheric samples needed for
coupling source-receptor models and epidemiological stud-
ies (Williams et al., 2006).

Thermal extraction (TE) methods have quantitatively de-
termined organic aerosol composition and are simpler than
and as accurate as traditional SE methods for many analy-
ses (Hays et al., 2003; Falkovich et al., 2001; Chow et al.,
2007; Lin et al., 2007). They require less sample prepa-
ration than SE, minimize parasite peaks caused by solvent
and laboratory contamination, and are more sensitive (Chow
et al., 2007; Lin et al., 2007). However, the quantifica-
tion of polar organic compounds has challenged single di-
mension TE-GC-MS techniques; whereas, two-dimensional
GC systems (GC×GC (comprehensive) or GC-GC (heart-
cutting)) have improved the separation of complex aerosol
mixtures (Welthagen et al., 2003; Kallio et al., 2003; Hamil-
ton et al., 2004; Ma et al., 2008). Further, GC×GC TOF-
MS has tentatively identified highly polar sugar substituents
in biomass samples (Hope et al., 2005). In fact, we re-
cently produced qualitative evidence showing how TE com-
bined with GC-GC-MS sharply resolved polar organic ana-
lytes in biomass smoke without chemical derivatization (Ma
et al., 2008). For the present study, the focus is on the accu-
rate and reproducible quantification of underivatized LG and

other anhydro-sugar molecules in biomass burning and atmo-
spheric aerosols using TE-GC-GC-MS. Application of this
method to aerosols is verified through proficiency testing and
by comparing results for samples also analyzed by SE-GC-
MS following silyation. In the interest of reducing the long
analysis times typically associated with GC-MS, the TE-GC-
GC-MS method is modified to include fast chromatography
via modular accelerated column heating (MACH). The com-
bination of MACH with TE requires less total sample prepa-
ration and analysis time than most chromatographic meth-
ods available currently. Following method development,
anhydro-sugar concentrations for a variety of biomass burn-
ing aerosols and atmospheric environments impacted by fires
of varying intensity are reported. Finally, we offer evidence
that LG in biomass burning aerosol stored at ultra-low tem-
peratures (−50◦C) is stable for nearly a decade.

2 Experimental

2.1 Chemicals

Authentic anhydro-sugar standards were used without further
purification. LG (1,6-anhydro-β-D-glucopyranose), MAN
(1,6-anhydro-β-D-mannopyranose), GAL (1,6-anhydro-β-
D-galactopyranose) were obtained from Sigma-Aldrich Co.
(St. Louis, MO), Advance Scientific & Chemical Inc. (Fort
Lauderdale, FL), and from a source at Colorado State Univer-
sity. Deuterated LG (Cambridge Isotope Laboratories) was
used as the internal standard. Methanol (Sigma-Aldrich) was
used to dissolve target and internal standard compounds.

2.2 Aerosol samples

A total of eight particulate matter (PM) samples collected on
pre-fired (550◦C, 12 h) quartz fiber filters (47 mm, 67 mm,
and hi-vol filters with 432 µm thickness Pallflex, Pall Cor-
poration) were selected for examination. Of these, three
were collected from biomass burning simulations conducted
in an enclosure. Extensive details about the enclosure, sam-
ple collection, and fire regimes can be found in Hays et
al. (2002, 2005). Briefly, mixed forest floor debris dominated
by loblolly pine (Pinus taeda) needles (collected from Duke
University Forest, Durham, NC) and post-harvest agricul-
tural crop residue from rice and wheat fields (Sutter County,
CA, USA; and Lind, WA, USA respectively) were gathered
and burned in the enclosure. The fine aerosol (<2.5µm mean
aerodynamic diameter) emissions were cooled (∼25◦C), di-
luted (∼1:50), and collected using a custom-fabricated stain-
less steel dilution sampler outfitted with sampling arrays that
housed the quartz filters being examined here.

Additionally, fine aerosol emissions from two biomass
burning events were collected using the PM2.5 cuts from a
high-volume dichotomous sampler (MSP Corporation, MN).
The first event was a 2006 prescribed fire at Croatan Na-
tional Forest (CNF, 35.92◦ N, 77.07◦ W), New Bern, NC,
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USA. Here, the fuel was primarily indigenous shrubs and
mixed forest litter dominated by loblolly pine with less than
20% hardwood in the overstory. The 2.5 km2 fire consumed
roughly 200–500 g of fuel per m2 and took place 2 days af-
ter a 20 mm rainfall. Ignition was under low ventilation, high
humidity conditions shortly after fog had lifted. Although the
fire was not highly energetic, the flaming stage was well sam-
pled over two 37 min and 70 min periods. The second sam-
pling event occurred in September 2007 immediately follow-
ing a North Carolina-Piedmont region (35.98◦ N, 79.09◦ W)
wildfire that had earlier consumed approximately 0.01 km2

(1 ha) of pine litter and mixed hardwood forest biomass. A
14 h PM2.5 sample (PMT) was collected at night during the
low intensity residual smoldering of heavy fuels. (The smol-
dering was mostly organic soils, stump, and large diameter
fuels.) For the most part, sampling took place under low- or
intermittent-smoke or smoke-free conditions. A beta gauge
indicated a 15–200 µg m−3 PM2.5 mass range.

Two PM samples were collected from an urban atmo-
sphere in Nairobi, Kenya influenced by biomass burning. In
Kenya, biomass is used for cooking and heating (Kituyi et al.,
2001). Industrial and domestic wastes that contain cellulose-
based products are also burned for warmth. Two ambient
samples (KNY01 and KNY02) were taken in August and
October 2006 at an urban field site near the city center of
Nairobi, Kenya (University of Nairobi, 1.3◦ S, 36.8◦ E). Par-
ticles with aerodynamic diameters of approximately 35 µm
or less were collected using a high volume sampler (MSP)
positioned 20 m above ground. These samples were ex-
pected to contain more dust due to the supercoarse diame-
ter cut-off. A third atmospheric aerosol sample (KSV) was
collected (270 L/min) over roughly 24 h in November, 2006
at Kenansville, NC, USA. The rural Kenansville site was in
close proximity to a number of animal production facilities
but was not significantly impacted by biomass fire. Filter
samples were stored in pre-fired aluminum foil and stored at
−50◦C in a low-temperature freezer prior to analysis.

2.3 TE-GC-GC-MS analysis

A schematic diagram (Supporting Information,
Fig. S1, http://www.atmos-chem-phys.net/10/4331/2010/
acp-10-4331-2010-supplement.pdf) and detailed description
of the TE-GC-GC-MS system and extraction procedure used
for the present study can be found elsewhere (Ma et al.,
2008). Briefly, a small 0.02–0.1 cm2 section of each quartz
filter sample was inserted into a concentric glass liner, spiked
with deuterated levoglucosan internal standard (6.1 ng), and
loaded into the TE unit [TDU, Gerstel Inc., Baltimore, MD].
The sample was heated [over He (50 mL/min)] from 25◦C
to 300◦C at 20◦C/min and held for 10 min. The TE unit
was interfaced directly to the GC-MS (Model 6890-5973;
Agilent Technologies) without a transfer line. So, thermally
extracted sample was directed to and trapped in a cryo-
cooled (−30◦C) programmable temperature vaporization

(PTV) inlet (Model CIS4; Gerstel Inc., Baltimore, MD).
Following extraction, the inlet was flash heated (720◦C/min)
to 300◦C transferring sample to the first dimension column
(HP5-MS; 30 m length; 0.25 µm film thickness; 0.25 mm
i.d.; Agilent Technologies, Santa Clara, CA), which sep-
arated compounds by their volatility. In 2.4 min, this
column was heated to 300◦C (100◦C/min) and held for
7.5 min. The He carrier gas flow rate was 1.5 mL/min.
A 5% v/v fraction of this chromatographed sample was
continuously routed to a flame ionization detector (FID).
The FID chromatogram was used to plan the sample heart-
cutting events. A multi-column switching system (MCS;
Gerstel Inc.) comprising a 5-way proportional valve and
a cryogenic cooling and heating system (CTS) afforded
computer-controlled, selective heart-cutting and trapping of
the first dimension eluate. In this case, all GC-GC conditions
were optimized for the rapid separation of the anhydro-sugar
peaks of interest. The anhydro-sugars were thus sent to the
second dimension column within 4 min of the beginning of
the chromatographic run. Heart-cut eluate was trapped in a
pre-column retention gap (deactivated fused silica capillary),
which was connected to the proportional valve and passed
through the cryo-cooled (−50◦C) CTS. Subsequent ballistic
heating (300◦C at 20◦C/s) of the CTS directed the cut eluate
to the shorter second dimension column (SolGel-Wax; 10 m
length; 0.25 µm film thickness; 0.25 mm i.d.; SGE Co.,
Austin, TX), which separated compounds by polarity. The
temperature of the second column was fixed at 65◦C for 4
min, raised to 225◦C at 160◦C/min, and then to 275◦C at
40◦C/min and held for 3.75 min. The He carrier gas flow
rate through the second dimension column was 1.0 mL/min.
Two modular accelerated column heaters (MACH, Gerstel
Inc.) attached to the GC oven door provided the independent
temperature control for each column with a maximum
heating rate of 1800◦C/min. The columns were wrapped
in insulated heating tape with a temperature sensor wire.
Integrated cooling fans ensured efficient air circulation and
quick cooling. Compounds eluting from the second column
were subject to electron ionization and measured with a
qMS operating in scan mode. Several experiments were also
performed in single ion monitoring mode (SIM) to examine
the possibility of enhancing method sensitivity.

Standard mixtures containing the LG, MAN, GAL, and
isotopically-labeled LG were prepared, subsequently diluted
five times over a concentration range of 1 ng/µL–200 ng/µL,
and used for TE-GC-GC-MS instrument calibration. These
diluted mixtures were also used to determine method detec-
tion and quantification limits (LOD and LOQ), reproducibil-
ity, recovery, linear dynamic range and carryover. Instrument
calibration was performed in an empty glass extraction tube.
A group of control tests indicated no significant difference
between experiments conducted in the empty tube and those
conducted in the presence of blank, pre-fired quartz fiber fil-
ters.
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Table 1. Summary of the validation parameters for the TE-GC-GC-MS method. Shown are the mean and standard deviation forn = 5.

LG MAN GAL

recovery (%) 92.3±2.8 92.8±3.7 91.7±6.4
carryover (%) 0.3±0.4 0 0
precision (%) 3 4 7
overall method uncertainty (%) 9 8 11
limit of detection (LOD) (ng/µL) 0.6 2.7 2.2
limit of quantification (LOQ) (ng/µL) 2.8 13.5 11.0
linear dynamic range (ng/µL) 2.8–200 20–500 20–250

3 Results and discussion

3.1 Evaluation of TE-GC-GC-MS for fast, direct
determination of anhydro-sugars

Results of the TE-GC-GC-MS proficiency testing for the fast
and direct quantification of anhydro-sugars are summarized
in Table 1. Method recoveries of the anhydrous sugar com-
pounds from the pre-conditioned quartz fiber filters spiked
with 100 ng of each authentic standard are consistently 90%
or greater. In other words, there is less than 10% dif-
ference between the known target and method-determined
concentrations, indicating high accuracy. Examination of
chromatograms acquired immediately following the recovery
analysis indicates negligible carryover. Over a 9-hr period,
replicate 1µL injections (n = 5) of the 100 ng/µL MA stan-
dards onto quartz filters resulted in a TE-GC-GC-MS method
precision of 3.0–7.0% RSD. An error propagation analysis
that included the recovery, carryover, and reproducibility un-
certainties shows an overall method precision of 8%-11% for
anhydro-sugar concentrations measured above the limits of
quantification (LOQ).

The LOQ is defined here as five times the limit of detection
(LOD). The LOD is being defined as the minimum concen-
tration of analyte that is measured and reported with 99%
confidence at a concentration greater than zero. The LODs
were determined using multiple 1 µL injections of solutions
containing 25 ng/µL MAN and GAL and 1 ng/µL LG. TE-
GC-GC-MS produces a lower LOD for LG (0.56 ng/µL) than
for either MAN (2.7 ng/µL) or GAL (2.2 ng/µL). With sin-
gle ion monitoring, a roughly twofold increase in anhydro-
sugar response is observed. The calibration data given in
Fig. 1 confirm the method’s heightened response for LG and
illustrate the linear working ranges adequate for measuring
the anhydro-sugars in the biomass burning and atmospheric
aerosols examined in the present study. The absolute linear
dynamic range (r2

≥0.99) for LG spans approximately two
orders of magnitude. Despite a relatively lower TE-GC-GC-
MS response for MAN and GAL, higher maxima in the cal-
ibration interval are possible for these compounds, Table 1.
Finally, we note that the anhydro-sugars were below detec-
tion limits on multiple analytical laboratory blanks. Further 19
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Fig. 1. Multi-level LG (+), MAN (©), and GAL (X) calibration
data with linear fit. All responses are normalized to deuterated LG
internal standard (6.1 ng/µL).

discussion about how the method accuracy, precision, and
sensitivity compare to established methods will be provided
later.

3.2 TE-GC-GC-MS application to PM samples

Following validation, the TE-GC-GC-MS method was ap-
plied to biomass burning and atmospheric aerosol samples.
As indicated, the biomass burning aerosol samples were col-
lected from both live and simulated fires of differing inten-
sity, using various field sampling techniques. The atmo-
spheric aerosols were taken from independent geographic lo-
cations, expected to be impacted variously by biomass burn-
ing, and represented different PM size fractions. The samples
were selected for the purpose of evaluating the TE-GC-GC-
MS method capability over a wide range of representative
anhydro-sugar concentrations in aerosol matrixes important
to air pollution studies.
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Table 2. Comparison of LG concentrations in biomass burning aerosols analyzed with SE-GC-MS and TE-GC-GC-MS methods (see Fig. 3).
Shown are the mean and standard deviation based on triplicate analyses.

PM sample SE-GC-MS TE-GC-GC-MS TE/SE ratio

(% of PM2.5 mass)
loblolly pine needles
(Pinus taeda)

3.84±1.60 4.19±0.12 1.09

rice straw
(Oryza sativa)

8.87±0.46 8.53±0.66 0.96

wheat straw
(Triticum aestivum)

2.63±0.15 2.36±0.05 0.90

forest litter mixture – CNF
(Pinus and Quercus sp.)

8.98±0.90 7.94±0.62 0.88
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Fig. 2. TE-GC-GC-MS analysis of PM2.5 filter sample collected in
NC piedmont region (PMT).(a) FID response and selected 1 min
(2.8–3.8 min) heart-cut region in grey.(b) Extracted ion chro-
matogram atm/z = 60 following the second dimension separation.
Retention times of each anhydro-sugar are labeled. Inset shows the
mannosan and galactosan at a resolution (Rs)>3; Rs values>1.5
indicate full resolution.(c) Mass spectrum of LG obtained at a re-
tention time of 7.4 min.

3.2.1 Representative TE-GC-GC-MS heart-cutting

Figure 2 exhibits a typical TE-GC-GC-MS analysis using the
PMT sample. Panel A in the figure shows the flame ion-
ization detector (FID) response following the first dimension
separation; the grey reference area indicates the 1 min heart-

cut region (2.8–3.8 min) over which the anhydro-sugars are
targeted for transfer to the second dimension column. Nar-
rower heart-cut transfers are not possible due to observed
loss of target compound mass. Panel B shows the second
dimension ion chromatogram atm/z = 60, the target ion for
the anhydro-sugars. Underivatized LG appears as a nar-
row Gaussian peak at retention time (RT) 7.4 min in the
2-D chromatogram, fully separated from the minor MAN
(RT = 6.6 min) and GAL (RT = 6.9 min) isomers (C6H10O5)
in the complex fire sample in a chromatographic run time
of less than 10 min. The LG mass spectrum obtained from
PMT (Fig. 2, panel C) was positively confirmed against the
National Institute of Standards and Technology spectral li-
brary.

3.2.2 Comparison of SE-GC-MS and TE-GC-GC-MS
results for LG in biomass burning aerosols

Of the eight aerosol samples examined in the present
study, four (Pinus taeda, Oryza sativa, Triticum aestivium,
and CNF) also underwent GC-MS analysis following the
trimethylsilyl derivatization of solvent-extract (Hays et al.,
2002; Hays et al., 2005). Archived filter samples from these
earlier tests presented a unique opportunity to contrast the
current TE-GC-GC-MS method with a more conventional
SE-GC-MS analysis being widely used for organic marker
speciation. Authentic GAL and MAN standards were un-
available at the time the SE-GC-MS method was applied
to the biomass burning samples (Pinus taeda, Oryza sativa,
andTriticum aestivium) collected from the enclosure (2000-
2001); thus, only LG results are presented.

Figure 3 shows TE-GC-GC-MS and SE-GC-MS LG con-
centrations normalized to fine PM mass; for the four biomass
burning samples, the LG levels range from 3–9% of the PM
(Table 2). The error bars reflect one standard deviation based
on triplicate analyses. We can only speculate on why the
error for loblolly pine is greater. We have no knowledge
of an interfering matrix compound per se. However, sily-
ated LG at high concentrations can cause interference atm/z

www.atmos-chem-phys.net/10/4331/2010/ Atmos. Chem. Phys., 10, 4331–4341, 2010
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Fig. 3. Comparison of SE-GC-MS and TE-GC-GC-MS-determined
LG concentrations [LG/PM2.5 mass (w/w)] in four unique biomass
burning aerosols. The reduced major axis linear fit (solid line), 95%
confidence band (dotted lines), and 1:1 line (long dashed line forced
through (0,0) are shown. The error bars reflect one standard devia-
tion based on triplicate analyses.

206, which is the base peak target assigned to the silyated
13C-LG internal standard for this test. Checks with standards
indicated that this was a nearly negligible issue for our instru-
ment within our calibration range at the time the loblolly pine
analysis was conducted. Perhaps the biomass burning ma-
trix was inadequately modeled by checking only standards.
We also note that the solvent extraction-GC-MS analysis of
the loblolly pine and CNF fire emissions, which show higher
error, did occur in a different analytical laboratory than the
wheat and the rice straw burns. The TE error is lower due
to the automated nature of the procedure, and for TE, MS
peak integration and quantification is confirmed with both
primary base peak and secondary qualifier ions, which re-
moves this interference from LG. Finally, TE replicates use
small filter pieces from the same filter while trials for SE in-
clude different filters collected in parallel; thus, filter sample
inhomogeneities and differences in how the filters are used
are other variables that can contribute to differences in error
among these samples and methods. In the figure, the data are
fit using a reduced major axis linear regression to account for
the fact that both theX andY variables contain error. The re-
sult is a TE/SE LG concentration ratio near unity,m = 0.89±
0.09 andr2 = 0.98. Implicit from the slightly negative TE
bias is the adsorption of the more polar untreated LG onto
the TE hardware, GC inlet or column surfaces. Moreover,
minor thermal alteration of LG to further dehydrated levoglu-
cosenone may be possible. However, the TE/SE LG concen-
tration ratio among the samples is 0.96±0.09 on average, Ta-
ble 2, and the emissions data are well within the demarcated
linear confidence interval atα = 0.05. This agreement is re-
markable considering the TE-GC-GC-MS and SE-GC-MS

analyses took place nearly one decade apart with different in-
struments, chromatographic techniques, chemical standards,
and analysts. The agreement also further verifies the relative
accuracy of the TE-GC-GC-MS method in the presence of
the biomass burning matrix. Finally, these data strongly sug-
gest that LG in filter-collected biomass burning aerosols is
stable for up to 8 yr in ultra-low temperature (−40 to−50◦C)
storage.

3.2.3 Anhydro-sugar concentrations in simulated and
near-source biomass burning samples

Table 3 presents the TE-GC-GC-MS-determined anhydrous
sugar concentrations in three simulated (Pinus taeda, Oryza
sativa, andTriticum aestivium) and two near-source (CNF
and PMT) biomass burning samples. The LG:MAN:GAL
ratio in the PM mixture is roughly 15:2:1 on average. This
ratio should directly reflect the proportion of D-glucose and
mannose and galactose precursor residues in the plant cel-
lulose and hemicellulose, respectively, although plant hemi-
cellulose does contain some glucose. Schmidl et al. (2009)
recently alluded to the use of the relative proportion of the
anhydro-sugars for differentiating hard- and soft-wood emis-
sions using commonly burned tree species native to mid-
European alpine regions. The results forPinus taeda(3.7),
CNF (4.6), and PMT (4.6) samples support their conclusion
that Gymnosperm species produce relatively lower LG to
MAN ratios between 3.6–3.9. Angiosperm trees interspersed
throughout pine forests likely partly explain the slightly
higher ratios observed for the CNF and PMT samples. More-
over, the hemicellulose polysaccharides generally degrade at
a faster rate, and decaying plant matter on the forest sur-
face burned during the CNF and PMT tests (McLaren et al.,
1967). The substantially higher values of 20.8 and 15.6 cor-
responding to the combustion ofOryza sativa, andTriticum
aestiviummay also indicate the degradation of hemicellu-
lose matter as these biomass samples were dry stored prior
to burning (Hays et al., 2005). The proportion of cellulose
to hemicellulose also changes with plant species as does the
galactose to mannose ratio contained in hemicellulose; thus,
care must be taken when interpreting anhydro-sugar marker
ratios in atmospheres impacted by forest fires that consume
a mixture of fresh and aged vegetational species.

As expected, the near-source CNF and PMT samples
that underwent atmospheric dilution show lower PM and
anhydro-sugar mass per unit volume of air sampled than
those from the enclosure fires. However, these different sam-
pling and burn modes return a comparable fraction of LG
in PM (6-8% versus 2-9%). Although not the focus here,
this result suggests that dilution sampling from a combus-
tion experiment within an enclosure can adequately mimic
near-source sampling with atmospheric dilution for LG mea-
surement. In addition, the 5.8% w/w LG in the PMT aerosol
shows that despite its low intensity, the fire was the major
PM2.5 contributor to this sample. Overall, the anhydro-sugar
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Table 3. Anhydro-sugar concentrations in a variety of biomass burning and atmospheric aerosol samples (n = 3).

Sample PM mass LG MAN GAL total AS LG/AS LG/PM

(µg/m3) (%)

Enclosure-simulated biomass burninga

loblolly pine 9242 387.2±11.0 104.8±9.1 36.0±1.2 528.0±51.1 73.3±7.4 4.2±0.1
rice straw 3810 324.8±25.0 15.6±0.6 11.0±0.3 351.4±31.1 92.4±10.9 8.5±0.7
wheat straw 990.0 23.4±0.5 1.5±0.02 NA 24.9±0.6 93.9±3.2 2.4±0.1

Near-source sampling of prescribed burning and wildfireb

CNF 682.5 54.2±4.3 11.7±1.3 7.4±2.5 73.3±26.7 74.0±27.6 7.9±0.6
PMT 39.6 2.3±0.1 0.5±0.02 0.2±0.003 3.0±0.2 76.7±5.7 5.8±0.3

US and African atmospheric aerosolsc

KNY01 162 1.4±0.1 0.2±0.03 0.1±0.03 1.7±0.6 82.4±28.8 0.8±0.06
KNY02 225 0.3±0.1 0.04±0.04 0.04±0.04 0.4±0.6 78.9±117.7 0.1±0.04
KSV 131 0.01±0.01 – – 0.01±0.01 – 0.004±0.004

a Open burning simulations were performed from February 2000 to August 2001 in an enclosure as described in Hays et al. (2002, 2005). For these tests, accumulation mode fine
aerosol emissions were collected using the dilution sampler described in Hildemann et al. (1989).b Near source prescribed burning and wildfire samples were collected at Croatan
National Forest (CNF) and Piedmont area (PMT) of NC, USA using a hi-volume dichotomous sampler; the PM2.5 fraction was examined for this study.c Aerosol was collected for
24 h in Nairobi, Kenya (KNY) on August 2006 and October 2006 with a high-volume sampler using a cut-off diameter of 35 µm. Additional notes: A dash indicates either that the
compound is below detection limits or the ratio is not applicable. Mean and one standard deviation are reported based onn = 3.

concentration range being reported here on a PM mass basis
(w/w) is well within that reported for biomass burning to date
as evidenced by panel A in Fig. 4 (Caseiro et al., 2009).

3.2.4 Anhydro-sugar concentrations in atmospheric
aerosols

Table 3 provides the TE-GC-GC-MS determined anhydro-
sugar concentrations in the three atmospheric aerosol sam-
ples – KNY01, KNY02, and KSV. The absence of MAN and
GAL and scant LG (0.01 µg m−3) in the 24 h KSV aerosol is
consistent with a rural North Carolina agricultural area where
burning activity was limited. Relatively speaking, African
aerosols KNY01 and KNY02 comprise both MAN and GAL
and at least an order of magnitude more LG. As discussed,
Fig. 4, panel B compares our LG concentrations to those
measured previously in a variety of aerosols collected glob-
ally using different analysis techniques. Although the con-
centration of LG in atmospheric PM can vary with many fac-
tors including meteorology, geographic region, and monitor-
ing site proximity to biomass burning sources, LG concen-
trations in the atmospheric aerosols examined for the present
study are well within range of published values (0.004–
7.6 µg/m3). LG enrichment over the accumulation mode in
biomass burning PM2.5 is expected (Fine et al., 2004). For
KNY01 and KNY02, Table 3 gives PM35 enrichment (w/w)
that would substantially increase if only PM2.5 mass were
being considered, suggesting a substantial contribution from
the domestic burning of biomass and waste in urban Nairobi.
In sum, TE-GC-GC-MS is also suitable for anhydro-sugar

determination in atmospheric aerosol matrixes containing
different particle size distributions and variably impacted by
biomass smoke. Note for the Kenyan aerosols that visual
inspection of spent filters following thermo-chemical mea-
surements revealed a substantial crustal or dust component
commonly assigned to a coarse mode.

3.3 Comparisons with other analytical methods

Next, the advantages and disadvantages of quantitative ana-
lytical methods for LG are briefly discussed with regard to
practical TE-GC-GC-MS application. As with Fig. 4, this
discussion is confined primarily to LG as it is a leading focus
of biomass burning related air quality studies currently.

3.3.1 Overall method analysis times

Retention times for LG with conventional GC-MS methods
normally exceed 20 minutes (Zdrahal et al., 2002; Wan et
al., 2007; Williams et al., 2006). HPLC and IC analyses are
generally more rapid (Dye et al., 2005; Engling et al., 2006;
Engling et al., 2006; Schkolnik et al., 2005). LG elutes in less
than 2 min with some HPLC tandem MS and CE-PAD meth-
ods (Gambaro et al., 2008; Garcia et al., 2005). The use of
flow injection to directly introduce sample to an MS detector
is even faster but the lack of selectivity confounds identifica-
tion of the anhydro-sugar isomers and can complicate experi-
mental MS-MS results (Gao et al., 2003). While fast, aerosol
sample handling and pretreatment for these techniques typ-
ically require a minimum of 1 h and often as much as 24 h
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Fig. 4. Literature-reported LG concentrations compared to those of
the present study.(a) LG concentrations measured during biomass
burning source tests with variable biomass fuel types and analyti-
cal techniques (% PM mass). The bottom, middle, and top of the
box plots correspond to the 25, 50, and 75 percentile of each data
set; the bottom and top of the whiskers indicate the 10 and 90 per-
centiles, respectively.(b) Analytical method-based LG concentra-
tions (µg/m3) in ambient atmospheric aerosols collected globally.
Studies with limited data sets precluding box plot creation are in-
dicated by X symbols, which are the data points available for that
particular study.

depending on the exact extraction, filtration, or derivatiza-
tion procedures being utilized. On the other hand, the TE
step requires 25 min or less, and the anhydro-sugars elute
within 7.4 min using fast chromatography. This 32 min run
time may be decreased even further by shortening first and
second dimension column lengths or changing the TE tem-
perature program. Contingent on the number of samples, and
sample preparation steps and analysis times, the TE-GC-GC-
MS method affords up to an approximately two-fold increase
in laboratory throughput over most currently available meth-
ods that speciate LG in aerosols. Of course, as the ability
to perform batch solvent extractions in parallel increases, the
throughput advantage of TE may lessen depending on the ex-
act instrumental approach being taken.

3.3.2 Extraction and recovery efficiency

Method recovery or relative accuracy is defined here as the
difference between a known, fixed concentration of target an-
alyte spiked onto a blank filter and the analytical method-
determined concentration. The TE-GC-GC-MS method LG
recovery is≥90%, which is at the top-end of the performance
range for accuracy presently. In the literature, analytical-
chemical method recoveries for LG generally vary from 69%
to 99% (Gambaro et al., 2008; Zdrahal et al., 2002; Pashyn-
ska et al., 2002; Dye et al., 2005; Simpson et al., 2004;
Schkolnik et al., 2005). Sample filtration, concentration,
and derivatization steps appear common to chromatography
studies that report high recoveries (Schkolnik et al., 2006;
Pashynska et al., 2002); although, the choice of solvent mix-
ture and internal standard may influence these values. For
example, dichloromethane-acetic acid extracts evaporated to
dryness and reconstituted and derivatized in pyridine with-
out an isotopically-labelled anhydro-sugar internal standard
tended to yield low recoveries for LG (Zdrahal et al., 2002).
Low recoveries were also observed following the GC-MS
analysis of ethylacetate-triethylamine extracts despite them
containing a 1,5-anhydro-D-mannitol internal standard and
being derivatized (Simpson et al., 2004). In contrast, ex-
tractions with water, tetrahydrofuran, or a dichloromethane-
methanol mixture (80:20, v/v) recover greater than 90% LG
when using ion-exclusion chromatography (IEC) – HPLC
– photodiode array (PDA) (Schkolnik et al., 2005), HPLC-
ESI-high resolution MS (Dye et al., 2005), and GC-MS-MS
(Pashynska et al., 2002) instrumentation, respectively.

3.3.3 Sensitivity

Instrumental limit of detection (LOD) is an important fac-
tor used to assess method sensitivity. For comparison pur-
poses, the authors explored the possibility of reporting sen-
sitivity for all methods as a function of total extracted and
injected analyte or aerosol mass. However, a literature in-
spection revealed that many of the studies being compared
did not always provide the total aerosol mass or LG ex-
tracted, injection volume, or final concentrated volume val-
ues needed to perform the conversion. LOD units of ng/µL
or similar were most frequently available; thus, these units
are used here for comparison purposes in an effort to be
consistent. For GC-qMS, the LOD for LG is typically
0.1 ng/µL or less (Simpson et al., 2004). LC-MS methods
typically achieve low picogram LODs. For example, Dye
and Yittry (2005) observe 0.03 ng/µL using LC-ESI-TOF-
MS technique, Wan and Yu (2007) use LC-qMS with post-
column chlorine addition for enhanced analyte-adduct for-
mation and report 0.014 ng/µL, while Gambaro et al. (2008)
with LC-qqqMS see an LOD of 0.003 ng/µL albeit with
comparatively low precisions of 20% to 50% RSD. Among
the fastest for LG, high-performance anion-exchange chro-
matography with PAD is also quite responsive showing a
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LOD of 0.002 ng/µL (Engling et al., 2006). At first glance,
TE-GC-GC-MS appears somewhat less sensitive for LG (Ta-
ble 1, LOD = 0.6 ng/µL). However, a fair comparison among
techniques should also consider that TE is a whole-sampling
method. In contrast, most IC, LC, and SE-GC-MS methods
inject a 1–25 µL aliquot that is only a fraction of the total PM
in the liquid extract (which is typically 250 µL or more for
GC-MS methods, for example), reducing the effective sensi-
tivity of these methods. Many solvents are not concentrated
below these levels due to background and contamination is-
sues. Considering this factor, the effective TE-GC-GC-MS
sensitivity for LG in aerosol matter improves by as much
as two orders of magnitude, which places TE-GC-GC-MS
among the most sensitive methods for LG in aerosol matter.

3.3.4 Precision

Differences in precision or reproducibility among methods
are evaluated here using relative standard deviation, which is
the standard deviation of a measurement set (n≥3) divided
by the mean and multiplied by 100%. This value includes
method uncertainty and contributions to variability such as
inconsistencies in internal and calibration standard spike and
injection volumes, instrumentation and peak integration er-
ror, and filter sample inhomogeneities. For matrix blank
spikes and most biomass burning and atmospheric aerosol
samples, the TE-GC-GC-MS precision varied from 3% to
8% RSD. As expected, this value is inversely proportional
to the anhydro-sugar concentration in the aerosol. Literature
values of LG measurement precision depend on the method
applied. For example, the range of reproducibility values re-
ported for GC-MS studies (most with derivatization) is con-
sistently 2–20% RSD (Graham et al., 2003; Simpson et al.,
2004; Graham et al., 2002). For HPAEC-PAD, and HPLC-
aerosol charge detection (ACD), corresponding precisions
of 5.3% and 6.7% RSD are observed (Engling et al., 2006;
Dixon et al, 2006). Generally, the lower reported RSDs are
due to replicate (same sample) extract injections as opposed
to different extraction trials. Elimination of sample loss and
automation of the direct thermal extraction step potentially
explain the high precisions observed for TE-GC-GC-MS. In
addition, further separation of narrow heart-cut sections of
the aerosol sample reduces on-column sample load, matrix
background, and the probability of co-detection, all of which
are likely to improve peak shape, resolution, and stabilize the
MS detector response.

4 Conclusions

A fast two-dimensional GC-MS method with thermal extrac-
tion was developed for trace quantification of anhydro-sugars
in biomass burning and atmospheric aerosols. Anhydro-
sugar stereoisomers were fully extracted and resolved within
30 min. Usingm/z 60 as the target quantification ion, high

average relative accuracies and precisions for the anhydro-
sugars were achieved. A comparative analysis across a lim-
ited set of biomass burning aerosols showed that TE-GC-GC-
MS results compared well to those obtained using conven-
tional SE-GC-MS and that LG is stable in ultra-low tempera-
ture storage for at least 8 years. The method can be success-
fully applied to aerosol matrixes characterizing background
air, weak or intensive biomass burning, or heavily polluted
urban environments. Saccharides and other polar organic
constituents can also be identified and quantified with the
same technique (Ma et al., 2008); only slight changes in the
TE-GC-GC-MS heart-cut intervals are likely to produce ad-
ditional information aboutn-alkanoic acids, substituted phe-
nols, and nitrogen-bearing heterocyclics in biomass burning
aerosols. Finally, we anticipate that this method is likely to
even further enhance the sample throughput and thus tem-
poral resolution of aerosol marker chemistry for improved
source apportionment and understanding of epidemiological
and health effects data.
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