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Abstract. Let J and R be anti-commuting fundamental symmetries in a Hilbert space $.
The operators J and R can be interpreted as basis (generating) elements of the complex
Clifford algebra Clz(J, R) := span{l, J, R,iJR}. An arbitrary non-trivial fundamental sym-
metry from Cla(J, R) is determined by the formula Jz = a1J + a2 R+ agiJ R, where & € S2.
Let S be a symmetric operator that commutes with Cla(J, R). The purpose of this paper is
to study the sets X, (V& € S?) of self-adjoint extensions of S in Krein spaces generated
by fundamental symmetries Jg (Jg-self-adjoint extensions). We show that the sets X, and
ZJE are unitarily equivalent for different &, 3 € S* and describe in detail the structure of
operators A € ¥, with empty resolvent set.
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1. INTRODUCTION

Let $ be a Hilbert space with inner product (-,-) and with non-trivial fundamental
symmetry J (ie., J = J* J?> =1, and J # +I).

The space $) endowed with the indefinite inner product (indefinite metric) [-,]; :=
(J-,-) is called a Krein space (9, [-,]s).

An operator A acting in 9 is called J-self-adjoint if A is self-adjoint with respect
to the indefinite metric [, ], i.e., if A*J = JA.

In contrast to self-adjoint operators in Hilbert spaces (which necessarily have a
purely real spectrum), a J-self-adjoint operator A, in general, has spectrum which
is only symmetric with respect to the real axis. In particular, the situation where
d(A) = C (i.e., A has empty resolvent set p(A) = @) is also possible and it may

297



298 Sergii Kuzhel and Olexiy Patsyuck

indicate on a special structure of A. To illustrate this point we consider a simple
symmetric?) operator S with deficiency indices (2,2) which commutes with .J:

SJ=JS.

It was recently shown [15, Theorem 4.3] that the existence at least one
J-self-adjoint extension A of S with empty resolvent set is equivalent to the existence
of an additional fundamental symmetry R in ) such that

SR=RS, JR=-RJ. (1.1)

The fundamental symmetries J and R can be interpreted as basis (generating)
elements of the complex Clifford algebra Cly(J, R) := span{I, J, R,iJR} [11]|. Hence,
the existence of J-self-adjoint extensions of S with empty resolvent set is equivalent
to the commutation of S with an arbitrary element of the Clifford algebra Cls(J, R).

In the present paper we investigate nonself-adjoint extensions of a densely defined
symmetric operator S assuming that S commutes with elements of Cly(J, R). Precisely,
we show that an arbitrary non-trivial fundamental symmetry Jg constructed in terms
of Cly(J, R) is uniquely determined by the choice of vector @ from the unit sphere S?
in R (Lemma 2.1) and we study various collections X ;_ of Jz-self-adjoint extensions
of S. Such a ‘flexibility’ of fundamental symmetries is inspirited by the application to
PT-symmetric quantum mechanics [5], where P7T-symmetric Hamiltonians are not
necessarily can be realized as P-self-adjoint operators [1,17]. Moreover, for certain
models [11], the corresponding P7 -symmetric operator realizations can be interpreted
as Jz-self-adjoint operators when & runs S2.

We show that the sets ¥ ;. and X J; are unitarily equivalent for different &, 5 €s?
(Theorem 2.9) and describe properties of A € ¥, in terms of boundary triplets
(subsections 2.4, 2.5).

Denote by Z4 the collection of all operators A € ¥ ;. with empty resolvent set.
It follows from our results that, as a rule, an operator A € =5 is J E—Self—adjoint (i.e.,

AeX; . N ZJB) for a special choice of B € S? which depends on A. In this way, for the
case of symmetric operators S with deficiency indices (2,2), the complete description
of Eg is obtained as the union of operators A € ¥;. N EJE, p(A) = 0, Vﬁ € §?
(Theorem 3.3). In the exceptional case when the Weyl function of S is a constant, the
set 25 increases considerably (Corollary 3.5).

The one-dimensional Schrédinger differential expression with non-integrable singu-
larity at zero (the limit-circle case at x = 0) is considered as an example of application
(Proposition 3.6).

Throughout the paper, D(A) denotes the domain of a linear operator A. A [p
means the restriction of A onto a set D. The notation o(A) and p(A) are used for the
spectrum and the resolvent set of A.

1) with respect to the initial inner product (-, )
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2. SETS ¥;, AND THEIR PROPERTIES

2.1. PRELIMINARIES

Let 9 be a Hilbert space with inner product (+,-) and let J and R be fundamental
symmetries in $) satisfying (1.1).

Denote by Cla(J, R) := span{l, J, R,iJR} a complex Clifford algebra with gener-
ating elements J and R. Since the operators I, J, R, and iJ R are linearly independent
(due to (1.1)), an arbitrary operator K € Cly(J, R) can be presented as:

K=oyl +a1J +asR+ a3iJR, o € C. (21)

Lemma 2.1 ([15]). An operator K defined by (2.1) is a non-trivial fundamental
symmetry in 9 (i.e., K2 =1, K = K*, and K # I) if and only if

K = a1J+a2R+Q3’iJR, (22)

where af + a3 +a% =1 and a; € R.

Proof. The reality of «; in (2.2) follows from the self-adjointness of I, J, R, and iJR.
The condition of + a3 + 3 = 1 is equivalent to the relation K? = I. O

Remark 2.2. The formula (2.2) establishes a one-to-one correspondence between the
set of non-trivial fundamental symmetries K in Cly(J, R) and vectors & = (o, a2, a3)
of the unit sphere S? in R3. To underline this relationship we will use the notation Jz
for the fundamental symmetry K determined by (2.2), i.e.,

Js = a1J + as R+ aziJR. (23)

In particular, this means that Jz = J with & = (1,0,0) and Jz = R when & = (0, 1,0).

Lemma 2.3. Let 07,56 S?. Then

Jalz=—JgJa if and only if a- ﬁ: 0. (2.4)
and
Ja+JJg=|a+B|J ays if a#—p. (2.5)
1a-+71
Proof. Tt immediately follows from Lemma 2.1 and identities (1.1), (2.3). O

2.2. DEFINITION AND PROPERTIES OF X,

1. Let S be a closed densely defined symmetric operator with equal deficiency indices
in the Hilbert space $). In what follows we suppose that S commutes with all elements
of Cla(J, R) or, that is equivalent, S commutes with J and R:

SJ=JS, SR=RS (2.6)
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Denote by Y the set of all self-adjoint extensions A of S which commute with J
and R:
T={ADS : A*=A, AJ=JA, AR=RA}. (2.7)

It follows from (2.3) and (2.7) that YT contains self-adjoint extensions of S which
commute with all fundamental symmetries J5 € Cla(J, R).

Let us fix one of them J5 and denote by (), [, -] ) the corresponding Krein space?)
with the indefinite inner product [-, ], := (Ja-, ).

Denote by ;. the collection of all J5-self-adjoint extensions of S:

EJ&:{ADS : J&A*:AJ& } (28)

An operator A € ¥, is a self-adjoint extension of S with respect to the indefinite
metric [, ],

Proposition 2.4. The following relation holds

ﬂ Y. =T.

vaes?

Proof. It follows from the definitions above that ¥ ;. D T. Therefore,

m Zja O 7.
vaes?

Let A € Nyges2 L. In particular, this means that A € X7, A € ¥g, and A €
¥ 7r- It follows from the first two relations that JA* = AJ and RA* = AR. Therefore,
1JRA* = iJAR = A*iJR. Simultaneously, iJRA* = AiJR since A € ¥, ;r. Compar-
ing the obtained relations we deduce that A*iJR = AiJR and hence, A* = A. Thus
A is a self-adjoint operator and it commutes with an arbitrary fundamental symmetry
Jgz € Cla(J, R). Therefore, A € T. Proposition 2.4 is proved. O

Simple analysis of the proof of Proposition 2.4 leads to the conclusion that

ZJEQEJEQEJ:V:T

for any three linearly independent vectors &, B’, 7 € S%. However,
$,,N%, DY, Vd,Fes? (2.9)

and the intersection ;. N X, contains operators A with empty resolvent set (i-e.,

p(A) = 0 or, that is equivalent, o(A) = C). Let us discuss this phenomena in detail.
Consider two linearly independent vectors &, 5 est Ifa- 5 # 0, we define new

vector (3 in S%:

= a+ cﬁ 1

!

Ca+cd’ &3

2) We refer to [4,10] for the terminology of the Krein spaces theory.
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such that @- 3’ = 0. Then the fundamental symmetry

1 c

i B Ja + Gt ob J5 (2.10)
anti-commutes with Jz (due to Lemma 2.3).
The operator
J R iJR
Jy = ’L'JaJB*, =| a1 @ Qs (2.11)
B By B3

is a fundamental symmetry in $ which commutes with S. Therefore, the orthogonal
decomposition of §) constructed by Jy:

1 1
H=9loH, Hl= S+ T5)9, 9 = ST =J5)9 (2.12)

reduces S:
S 0
s=( 55 o) Se=Sln S-Sk (1)

Since Jy anti-commutes with Jg (see (2.11)), the operator J5z maps 1 onto H
and operators S,4 and S,_ are unitarily equivalent. Precisely, Sy_x = J55,4+Jax
for all elements z € D(S,_). This means that S,y and S,_ have equal deficiency

indices.?)
S 0 N S* 0
y—

Denote
N

The operators A, and A% are extensions of S and o(A,) = 0(A%) = C (since S, are
symmetric operators), i.e., these operators have empty resolvent set.

Theorem 2.5. Let &,5 € S? be linearly independent vectors. Then the operators A,
and A% defined by (2.14) belong to X5, N g

Proof. Assume that A € ¥; . NX Ts where @, ﬁ € S? are linearly independent vectors.
Then

JgA=A"Jg, JgA=A"J5 (2.15)
and hence, J5 A = A*J 5 due to (2.10). In that case
JsA = idglgA=iJgA*Jg = iAJs)g = Als
where Jy = iJzJ5 (see (2.11)) is the fundamental symmetry in §.

3) This also implies that the symmetric operator S commuting with Cl2(J, R) may have only even
deficiency indices.
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Since A commutes with J5, the decomposition (2.12) reduces A and

Ay 0
A_( 0+ A), Ap=Algy, A-=Alg, (2.16)

where SWJFQAJFQS’:*/+ and SV,QA,QSTF. This means that

Since Jy anti-commutes with Jy, the operator Jz maps Y)]_Yr onto ﬁ}F. Therefore,
the first relation in (2.15) can be rewritten with the use of formulas (2.16) and (2.17)
as follows:

JagAr = Jz(Ajey + A_x_) = A" Jzx, + Aj_J,;gl‘_ = A*Jszx, (2.18)

where z = x4 +2_ € D(A), x4+ € D(A4).
The identity (2.18) holds for all 2 € D(Ay). This means that

JeAL = A" Js,  JzA- =A% Js (2.19)

It follows from (2.10) and (2.11) that the fundamental symmetry .J; anti-commutes
with Jy. Repeating the arguments above for the second relation in (2.15) we obtain

JsAy = A% T,

JzA- = AL J;. (2.20)

Thus an operator A belongs to X N¥y, if and only if its counterparts Ay and A_
in (2.16) satisfy relations (2.19) and (2.20). In particular, these relations are satisfied
for the cases when Ay = S,;, A_ =S and Ay =57, A_ = S,_. Hence, the
operators A, A7 defined by (2.14) belong to ¥, N EJE' Theorem 2.5 is proved. [

Remark 2.6. The operators A, and A% constructed above depend on the choice of
3 e S2. Considering various vectors § € S? in (2.10), (2.11), we obtain a collection
of fundamental symmetries JV( G- This gives rise to a one-parameter set of different
operators Av( 3 and Af/ @ with empty resolvent set which belong to ¥ ;.

Corollary 2.7. Let &73 € S? be linearly independent vectors and let (2.12) be the
decomposition of $) constructed by these vectors. Then, with respect to (2.12), all
operators A € ¥ ;. N EJE are described by the formula

[ A 0
A_( 0 J&AiJa)’ (2.21)

where AL is an arbitrary intermediate extension of Sy = S [51 (i.e., Sy4+CALC
CS5.).
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Proof. If A € ¥;. N %7, then the presentation (2.21) follows from (2.16) and the
second identity in (2.19).
Conversely, assume that an operator A is defined by (2.21). Since Jz and Jﬁ

anti-commute with Jy, they admit the presentations Jy = ( })4 {)‘i ) and Jﬁ =
(o3

0 Jz

< 7. OB ) with respect to (2.12). Then, the operator equality JzA = A*Jz is
B

established by the direct multiplication of the corresponding operator entries. The

same procedure for J EA =A*J 5 leads to the verification of relations

J,;;JgA.,. = A.,.Jan]ﬂ-‘, JBJ@Ai = Ai‘]ﬁ‘]&' (2.22)
To this end we recall that Jy commutes with A, and

L, la+ed
J@'Jg = *EI — ZTJ.V

due to (2.10) and (2.11). Therefore, A; commutes with J5J7 and the first relation in
(2.22) holds. The second relation is established in the same manner, if we take into
account that Jy commutes with A% and JBJ& = —%I + i@.ﬁ. Corollary 2.7 is
proved. O

Remark 2.8. It follows from the proof that the choice of J5 in (2.21) is not essential
and the similar description of ¥ ;. N'X J5 can be obtained with the help of J 5

2. Denote
Jarg A d# P,
W.5=1{ laid . (2.23)
’ 1 if a=-4
It is clear that W_ g isa fundamental symmetry in $ and Wig = Wsa for any
a0 e s2.

Theorem 2.9. For any & ﬂ € S? the sets ¥, and EJﬂ are unitarily equivalent and
A e Xy, if and only if Wy, AWAﬂ € EJQ

Proof. Since J_gz = —Jgz (see (2.3)), the sets X, and X;__ coincide and therefore,

the case d = —5 is trivial.

Assume that A € X ;_, & # ﬁ and consider the operator W ﬁAW~ =, which we
denote B for brevity. Taking into account that S commutes Wlth Ja for any choice
of @ € §?, we deduce from (2.23) that WﬂBS SWﬂﬁ and W, 75" = S*W, 5
This means that Bx = W, AW, s0 = Wy 25W, sz = Sz for all x € D(S) and
By=W_ BAWq GY = WﬁﬁS W, ﬁy = S*y for all y 6 D(B) = W5 7D(A). Therefore,
B is an 1nter1nedlate extension of S (ie, S C BCS).

It follows from (2.5) and (2.23) that
:%%+@:%%t1:%+@hzwfh. (2.24)

la+p  la+p  lad+p

IsWa g
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Using (2.15) and (2.24), we arrive at the conclusion that
JgB" = JgWy gAW, 5 =W, 5AJaW, 5 =W, AW, 5J5 = BJ3.

Therefore, condition A € X, implies that B =W AW~ g€ E;_ The inverse
implication B € ¥ Iz = A=W, BBW* g€ Yy, is estabhshed in the same manner.
Theorem 2.9 is proved O

Remark 2.10. Due to Theorem 2.9, for any Jz-self-adjoint extension A € ¥ there
exists a unitarily equivalent J E—self—adjoint extension B € X Iz This means that, the
spectral analysis of operators from J,cs> X, can be reduced to the spectral analysis
of Js-self-adjoint extensions from ¥, where & is a fixed vector from S?.

2.3. BOUNDARY TRIPLETS AND WEYL FUNCTION

1. Let S be a closed symmetric operator with equal deficiency indices in the Hilbert
space $. A triplet (H,T,T'1), where H is an auxiliary Hilbert space and Ty, I'y are
linear mappings of D(S*) into H, is called a boundary triplet of S* if the abstract
Green identity

(S*z,y) — (z,5"y) = T12,Toy)n — Loz, T1y)n, x,y € D(S) (2.25)

is satisfied and the map (I'o,I'1) : D(S*) — H @ H is surjective [7,9].

Lemma 2.11. Assume that S satisfies the commutation relations (2.6) and Jz, Jy €
Clo(J,R) are fized anti-commuting fundamental symmetries. Then there exists a
boundary triplet (H,T0,T1) of S* such that the formulas

J:L;=TJs  JTy:=TJy,  j=0,1 (2.26)

correctly define anti-commuting fundamental symmetries Jz and Jz in the Hilbert
space H.

Proof. If S satisfies (2.6), then S commutes with an arbitrary fundamental symmetry
Js € Cla(J, R) and hence, S admits the representation (2.13) for any vector ¥ € S2.

Let S,4+ be a symmetric operator in 7 from (2.13) and let (N,I'j,I'{) be an
arbitrary boundary triplet of ST, .

Since Jr anti-commutes with Js, the symmetric operator S,_ in (2.13) can be
described as S,— = J#S,4Jz. This means that (N, I‘(TJ;7 FTJ;) is a boundary triplet
of S, _.

It is easy to see that the operators

Lif=T(f++f)= ( FEJ{}_ ) (2.27)

(f = f+ + f- €D(S¥), f+ € D(S;.)) map D(S*) onto the Hilbert space

H=H, oH_, H+<]0V>, H_<Z%>
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and they form a boundary triplet (H,Tg,T'1) of S* which satisfies (2.26) with

J;(? é) Jy(é _01>. (2.28)

It is clear that J= and J5 are anti-commuting fundamental symmetries in the Hilbert
space H. O

Remark 2.12. The fundamental symmetries J> and J5 are defined by (2.26) in a
similar way that in [13], where symmetric operators commuting with involution has
been studied.

Remark 2.13. Since J and R can be expressed as linear combinations of Jz, J5, and
iJzJ5, formulas (2.26) imply that

JU;:=T;J,  RL;:=T;R,  j=0,1,

where J and R are anti-commuting fundamental symmetries in H. Therefore, an arbi-
trary boundary triplet (H,To,T'1) of S* with property (2.26) allows one to establish a
bijective correspondence between elements of the initial Clifford algebra Cly(J, R) and
its “itmage” Cla(J, R) in the auziliary space H. In particular, for every Jz € Cla(J, R)
defined by (2.3),

Jil; =T;Jz,  j=0,1, (2.29)
where Jz = a1 J + @2R + a3iJ R belongs to Cla(J, R).

2. Let (H,T0,T'1) be a boundary triplet of S*. The Weyl function of S associated
with (H,To,T'1) is defined as follows:

M(p)Tofy =T1fu, Vfu€ker(S* —ul), VYueC\R. (2.30)

Lemma 2.14. Let (H,T0,T'1) be a boundary triplet of S* with properties (2.26). Then
the corresponding Weyl function M(-) commutes with every fundamental symmetry
Jz €Clay(T,R):

M(WJTz = JaM(p),  VueC\R.
Proof. Tt follows from (2.3) and (2.6) that S*J5; = JzS* for all & € S2. Therefore,
Ja @ ker(S* — pulI) — ker(S* — pl). In that case, relations (2.29) and (2.30) lead to
M(p)Talo fu = Tal1 fu- Thus, JaM (1) Tz = M () or M(p) Tz = JzM (). O

2.4. DESCRIPTION OF % ;. IN TERMS OF BOUNDARY TRIPLETS

Theorem 2.15. Let (H,Tg,T'1) be a boundary triplet of S* with properties (2.26)
for a fized anti-commuting fundamental symmetries Jz, J3 € Cla(J, R) and let Jg be
an arbitrary fundamental symmetry from Cla(J, R). Then operators A € ¥ coincide
with the restriction of S* onto the domains

D(A) ={f € D(57) : U(Jal'1 +ilo)f = (Jalr —ilo)f}, (2.31)

where U runs the set of unitary operators in H. The correspondence A < U deter-
mined by (2.31) is a bijection between the set X ;. of all Jz-self-adjoint extensions of
S and the set of unitary operators in H.
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Proof. An operator A is a Jz-self-adjoint extension of S if and only if JzA is a
self-adjoint extension of the symmetric operator J5S. Since

(JaS)* = 8"Jg = JaS™, (2.32)
the Green identity (2.25) can be rewritten with the use of (2.29) as follows:
(5" Jaz,y) — (x, 5" Jay) = (Tal12,Toy)r — Loz, Tal1y)n

Recalling the definition of boundary triplet we conclude that (H, "o, JzI'1) is a bound-
ary triplet of J5zS. Therefore [9, Chapter 3, Theorem 1.6], self-adjoint extensions JzA
of JzS coincide with the restriction of (JzS5)* onto

D(JzA) ={f € D((JaS)") : U(Jal'1 +ilo)f = (Jal'1 —ilo)f}

where U runs the set of unitary operators in H and the correspondence JzA < U is
bijective. By virtue of (2.32), D((JzS5)*) = D(S*). Hence, Jg-self-adjoint extensions
A of S coincide with the restriction of S* onto D(JzA) that implies (2.31). O

Corollary 2.16. IfA€ X, and A < U in (2.31), then the Jg-self-adjoint operator
B =W, ;AW 5 € Xy (& # —f) is determined by the formula
B=58"1{g€D(S") + W, 3UW; 5(T5I'1 +il0)g = (T5I'1 —il'o)g},

=T x5 15 a fundamental symmetry in H.
la+43]

Proof. Let A € ¥;,. Then B=W_ EAW& 5 € EJE by Theorem 2.9 and, in view of
Theorem 2.15,

where U’ is a unitary operator in H.
It follows from the definition of B that f € D(A) if and only if g = W, 5f € D(B).

Hence, we can rewrite (2.33) with the use of (2.24):
U'(J501 +ilo)g = UWy 5(Jals +ilo) f =
= (J501 —ilo)g = (2.34)
=W, 3(Jal't —ilo) f,
)-

where W, 5I'; = T'; W, 5 , 7=0,1(cf. (2.29
It follows from (2. 23) that W 7 = \7&+g and hence, Wy 5 is a fundamental

ot
symmetry in H. Comparing (2.34) with (2.31), we arrive at the conclusion that U’ =
Wd U Wﬁ . Corollary 2.16 is proved. O

Corollary 2.17. A Jz-self-adjoint operator A € ¥ 5, commutes with Jﬁ, where 62-5 =
0 if and only if the corresponding unitary operator U in (2.31) satisfies the relation

JU =U"1T5. (2.35)
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Proof. Assume that 5 € S? and & - ﬁ = 0. Then JEJ@» = —Jc—ng due to Lemma
2.3. Since ‘]BS* = 5% Jﬁ> the commutation relation AJE = JEA is equivalent to the
condition

Vf € D(A) = Jzf € D(A). (2.36)
Let f € D(S*). Recalling that Jgl'; = I'jJ3, we obtain

(Jal1 + ZTO)Jgf = *jg(jan — i) f,
(Jal'y —il0)Jzf = =T5(Jal't + ilo) f.

Combining the last two relations with (2.31), we conclude that (2.36) is equivalent to
the identity JgU‘ljg = U. Corollary 2.17 is proved. O

Corollary 2.18. A Jz-self-adjoint operator A € ¥ ;. belongs to the subset T (see
(2.7)) if and only if the corresponding unitary operator U in (2.31) satisfies the equality

(2.35) for all 3 € S? such that @- 3 = 0.

Proof. Since U satisfies (2.35) for all 5 € S? such that 62~5 = 0, the operator A € ¥,
commutes with an arbitrary Jg such that J(;Jﬁ = —J[;J@ (due to Lemma 2.3 and

Corollary 2.17). In particular, the fundamental symmetry Jy = iJg.J 5 anti-commutes
with Jz and hence, J3A = AJsy. On the other hand, since A € ¥;_, we have JzA =
A*J5 and

JzA = iJ@J[;A = iJ&AJB = A*iJ@JB =A"J5.
Thus AJs = A*J5 and hence, A = A*. This means that the self-adjoint extension

A D S commutes with all fundamental symmetries from the Clifford algebra Cls(J, R).
Therefore, A € T. O

Corollary 2.19. Let A € ¥, be defined by (2.31) with U = J5, where ¥ € S* is an
arbitrary vector such that & -5 = 0. Then o(A) = C, i.e., A has empty resolvent set.

Proof. Taking into account that JzJs = —J5Ja (since & - ¥ = 0), we rewrite the
definition (2.31) of A:

A=8* 1 {f€D(S*) : Ta(Ts+ DT1f =i(T5 + D)Tof}. (2.37)
Since relation (2.35) holds when U = J5 and 3 = 4, the operator A € ¥,

commutes with J5 (Corollary 2.17). Therefore (cf. (2.16)),

AL 0
A:( 0+ A), Ap=Algy, A-=Algy (2.38)

with respect to the decomposition (2.12). Here SA,+§A+QS;+ and bﬂ,,gA,gS;f7
where S+ = S Fﬁl'
Denote H} = 3(I + J7)H and H? = (I — J5)H. Then

H=H]®H (2.39)
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and (H1,To,I'1) are boundary triplets of operators S*. (due to (2.29) and
Lemma 2.11).
Let f € D(S5;). Then I';f € HY, j = 0,1 and the identity in (2.37) takes the
form
Tal1f = iTof. (2.40)

Since JzJ3 = —J5Ja, the operator Jz maps Hl onto H™. Thus, (2.40) may only
hold in the case where I'g f = T'; f = 0. Therefore, the operator A in (2.38) coincides
with S7.

Assume now f € D(S3_). Then T';f € H”, j = 0,1 and the identity in (2.37)
vanishes (i.e., 0 = 0). This means that A_ = S . Therefore, A = A,, where A, is
defined by (2.14) and o(A,) = C. O

2.5. THE RESOLVENT FORMULA

Let v(u) = (T [ker(s*_u))’l be the v-field corresponding to the boundary triplet
(H,To,T'1) of S* with properties (2.26). Since Jz maps ker(S* — uI) onto ker(S* —pul),
formula (2.29) implies

V() Tz = Jay(p), YpeC\R

for an arbitrary fundamental symmetry Jz € Cly(J, R).

Let Ag = S* [ kerT'g. Then Ay is a self-adjoint extension of S' (due to the general
properties of boundary triplets [9]). Moreover, it follows from (2.7) and Remark 2.13
that Ag € Y.

Proposition 2.20. Let (H,To,T1) be a boundary triplet of S* with properties (2.26)
and let A € ¥ j_ be defined by (2.31). Assume that A is disjoint with Ay (i.e., D(A)N
D(Ao) = D(S)) and 1 € p(A) 1 pl(Ao), then

(A—pl)™t = (Ao — pI) ™" = (W) [M () = Ty (m), (2.41)

where T = iJz(I + U)(I — U)™! is a Jz-self-adjoint operator in the Krein space
(Hv ['7 ]J&)
Proof. Since A and Ay are disjoint, the unitary operator U which corresponds to the

operator A € 3. in (2.31) satisfies the relation ker(I — U) = {0}. This relation and
(2.29) allow one to rewrite (2.31) as follows:

A=S"[{f €D(S") | TTof =1 f}, (2.42)

where T = iJz(I + U)(I — U)™! is a Js-self-adjoint operator in the Krein space
(H,[,"]7,) (due to self-adjointness of i(I + U)(I — U)~'). Repeating the standard
arguments (see, e.g., [8, p.14]), we deduce (2.41) from (2.42). O

Remark 2.21. The condition of disjointness of A and Ay in Proposition 2.20 is not
essential and it is assumed for simplifying the exposition. In particular, this allows
one to avoid operators A with empty resolvent set (see Corollary 2.19 and relation
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(2.37)) for which the formula (2.41) has no sense. In the case of an arbitrary A € ¥,
with non-empty resolvent set, the formula (2.41) also remains true if we interpret T
as a Jz-self-adjoint relation in H (see [12, Theorem 3.22| for a similar result and [6]
for the basic definitions of linear relations theory).

3. THE CASE OF DEFICIENCY INDICES (2, 2)

In what follows, the symmetric operator .S has deficiency indices (2, 2).

1. Let (H,To,T'1) be a boundary triplet of S* with properties (2.26) or, that is
equivalent, with properties (2.29). Let us fix an arbitrary fundamental symmetry
J5 € Cly(J,R) and consider the decomposition H = H] @& HY constructed by J5
(see (2.39)). Then the Weyl function M (-) associated with (H, g, T'1) can be rewritten
as

M() _ ( m++(~) m+—(~) ) , mzy() . ’]—[; — H;, T,y € {+7 —},

m_i () m__()

where mg, () are scalar functions (since dimH = 2 and dimHJ] = 1).
According to Lemma 2.14, M(-) commutes with every fundamental symmetry

from Clo(J,R). In particular, ;M (-) = M(-)o; (j = 1,3), where 01 = ( (1) (1) >7

o3 = ( (1) —01 ) are Pauli matrices. This is possible only in the case

my_(-) =m_4(-) =0, miq (1) =m—_(-),

ie.,

M() = m()E, (3.1)

where m(-) = my4(-) = m__(-) is a scalar function defined on C \ R and F is the
identity 2 X 2-matrix.

Recalling that (H],T'o,T'1) is a boundary triplet of S*, (see the proof of Corollary
2.19) and taking into account the definition (2.30) of Weyl functions, we arrive at the
conclusion that m(-) is the Weyl function of S, = S fﬁl associated with boundary
triplet (K, Tg,T7).

The following statement is proved.

Proposition 3.1. Let (H,Ty,T'1) be a boundary triplet of S defined above. Then
the Weyl function M(-) is defined by (3.1), where m(-) is the Weyl function of S+
associated with boundary triplet (H],To,I'1). The function m(-) does not depend on
the choice of ¥ € S2.

2. Let &,B € S? be linearly independent vectors. According to Corollary 2.7 all
operators A € X7 ﬂEJE are described by the formula (2.21). This means that spectra
of these operators are completely characterized by the spectra of their counterparts
Ay in (2.21).
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The operator A is supposed to be an intermediate extension of S, 4. Two different
situations may occur: 1. Ay = S, or Ay = S35 2. Ay is a quasi-self-adjoint
extension® of S, i.e., Sy+CA+CSy . In the first case, the operators A € 3, N EJB.
have empty resolvent set (Theorem 2.5); in the second case, the spectral properties of
A (and hence, A) are well known (see, e.g., [3, Theorem 1, Appendix I]). Summing
up, we arrive at the following conclusion.

Proposition 3.2. Let S be a simple symmetric operator with deficiency indices (2, 2)

and A € X5, NX;.. Then or o(A) = C or the spectrum of A consists of the spectral
a 3 . . . :

kernel of S and the set of eigenvalues which can have only real accommodation points.

3. Denote by Z5 the collection of all operators A € ¥ ;. with empty resolvent set:
E&:{AGEJ& : p(A):(D}
= . B N . .
and by Eaj the pair of two operators AA/( 4) and A7 @ with empty resolvent set which

are defined by (2.14) for a fixed @ and f.

Theorem 3.3. Assume that S is a symmetric operator with deficiency indices (2,2)
and its Weyl function (associated with an arbitrary boundary triplet) differs from
constant on C\ R. Then

- U  Eis (3.2)

v3es?, a-f=0

Fi for all 3 € S? such that & - 5 = 0. Therefore,

—

QL

Proof. By Theorem 2.5, 255 D &
=5 D U E’&',B'

In the case of deficiency indices (2,2) of S, the set 25 of all Jz-self-adjoint exten-
sions with empty resolvent set is described in [15]. We briefly outline the principal
results.

Denote by M, = ker(S* — ul), p € C\ R, the defect subspaces of S and consider
the Hilbert space 9 = 9;+91_; with the inner product

a,

(2, y)om = 2[(ws, y:) + (i, y—4)],

where x =z; + z_; and y = y; + y—; with x;,y; € W, x_;,y—; € N_;.

The operator Z that acts as identity operator I on 91; and minus identity operator
—1I on 9_; is an example of fundamental symmetry in 901. Other examples can be
constructed due to the fact that S commutes with J> for all E € S2. This means that
the subspaces M4; reduce J 5 and the restriction J 5 [ 9 gives rise to a fundamental
symmetry in the Hilbert space 9. Moreover, according to the properties of Z men-
tioned above, J EZ =27ZJ 7 and J EZ is a fundamental symmetry in 99t. Therefore, the
sesquilinear form

[, ylu;z = (JzZa,y)m = 2[(J57i,yi) — (Jg2—i y—i)]

defines an indefinite metric on 9.

4) This class includes self-adjoint extensions also.
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According to the von-Neumann formulas, any closed intermediate extension A of
S (i.e.,, S C A C S*) is uniquely determined by the choice of a subspace M C 9t:

A=S"Ipuy,  D(A)=D(S)+M. (3.3)

In particular, J g—self—adjoint extensions A of S correspond to hypermazimal neutral
subspaces M with respect to [-, -}Jﬁz. This means that A € X ;. N EJE if and only if
the corresponding subspace M in (3.3) is simultaneously hypermaximal neutral with
respect to two different indefinite metrics [-,-]s.z and [-,-]s;z.

Without loss of generality we assume that Jz coincides with J in (2.3), i.e., & =
(1,0,0). Then fundamental symmetries .J 5 which anti-commute with J have the form

Jg=PaR+ B3iJR, B3+ 05 =1. (3.4)

To specify M we consider an orthonormal basis {e,e4_,e_,e__} of I which
satisfies the relations

Z€++ = €44, Z€+7 = €4, Z€7+ = —€_4, Je__ = —€e__,
Jgery =e4yq, Jgeq_=—eqy_, Jzge_y =e_y, Jze__ = —e__, (3.5)
R€++ = €4, R€+7 = €44, Re__ = €_4, R€,+ =€e__.

The existence of this basis was established in [2] and it was used in [15, Corollary
3.2] to describe the collection of all M in (3.3) which correspond to J-self-adjoint
extensions of S with empty resolvent set. Such a description depends on properties of
Weyl function of S. In particular, if the Weyl function differs from the constant for a
fixed boundary triplet, then this property remains true for Weyl functions associated
with an arbitrary boundary triplet of S. Then, using relations (2.7)—(2.9) in [15],
we deduce that the Straus characteristic function of S (see [18]) differs from the
zero-function on C \ R. In this case, Corollary 3.2 in [15] says that a J-self-adjoint
extension A has empty resolvent set if and only if the corresponding subspace M
coincides with linear span M = span{dy,dy}, where d; = e, +ee, ,dy =e__ +
e"e_,, and v € [0,27) is an arbitrary parameter.

The operator A will belong to s if and only if the subspace M = span{dy,d2}
turns out to be hypermaximal neutral with respect to [-, ] JI5Z- Since dim M = 2 and
dim 9N = 4, it suffices to check the neutrality of M. The last condition is equivalent
to the relations

[d1, dz]ng =0, [d1, dl]JEZ =0, [d2, dQ}JEZ = 0.

Using (3.4), (3.5), and remembering the orthogonality of ex 4 in 9, we establish
that [d1, dQ]JB.Z = 0 for all v € [0,27). The next two conditions are transformed to
the linear equation

(cosy)B2 — (sinvy)Bs = 0, (3.6)
which has the nontrivial solution By = sin+y, 3 = cos~y for any v € [0,27). This
means that an arbitrary J-self-adjoint extension A with empty resolvent set is also
a Jg-self-adjoint operator under choosing 8 and f3 in (3.4) as solutions of (3.6).
Theorem 3.3 is proved. O
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Corollary 3.4. Let S be a symmetric operator with deficiency indices (2,2) and let
(H,To,T'1) be a boundary triplet of S* with properties (2.26). If the Weyl function of
S differs from constant on C\ R, then the set 25 is described by (2.31) where U runs
the set of all fundamental symmetries jﬁ € Cly(J,R) such that & - ﬁ: 0.

Proof. 1t follows from Corollary 2.19 and Theorem 3.3. O

Theorem 3.3 and Corollary 3.4 are not true when the Weyl function of S is a
constant. In that case, the set 25 of Jz-self-adjoint extensions increases considerably
and 5 D UE, 5

Corollary 3.5. Let S be a simple symmetric operator with deficiency indices (2,2).
Then the following statements are equivalent:

a- U  =as

v3es?, &-F=0

(i) the strict inclusion

(1]

holds,
(ii) the Weyl function M(-) of S is a constant on C\ R,
(iii) S is unitarily equivalent to the symmetric operator in La(R,C?):

§'=i—, D) ={ue W3 (R,C?) : u(0) = 0}. (3.7)
Proof. Assume that the Weyl function M (-) of S is a constant. By (3.1), the Weyl
function m(-) of Sy =S 57 is also constant. This means that the Straus character-
istic function of the simple symmetric operator S, with deficiency indices (1,1) is
zero on C\ R (see the proof of Theorem 3.3). Therefore, S, is unitarily equivalent
to the symmetric operator S, = i-L, D(S,) = {u € WH(R) : u(0) = 0} in Ly(R)
[16, Subsection 3.4].

Recalling the decomposition (2.13) of S, where the simple symmetric operator
Sy— =S [ also has deficiency indices (1,1) and zero characteristic function, we
conclude that S is unitarily equivalent to the symmetric operator S’ defined by (3.7).
This establishes the equivalence of (ii) and (iii).

Assume again that the Weyl function of S is a constant. Then the Straus charac-
teristic function of S is zero. In that case, Corollary 3.2 in [15] yields that A € 25 if
and only if the corresponding subspace M in (3.3) coincides with linear span

M =span{di,dy}, di=e s +e e, | dy=e 4P Ve (3.8)

where ¢,y € [0,27) are two arbitrary parameters. Thus the set Z5 is described by two
independent parameters ¢ and ~.

Due to the proof of Theorem 3.3, the operator A € =5 belongs to the subset E&ﬁ
if and only if the subspace M in (3.8) is neutral with respect to [-, -}ng. Repeating
the argumentation above, we conclude that the neutrality of M is equivalent to the
existence of nontrivial solution (s, 33 of the system (cf. (3.6))

{ cos(¢ + v)B2 —sin(¢ +v)f3 =0,

cos(¢ — )2 +sin(¢ — )z = 0. (3.9)
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The determinant of (3.9) is sin2¢. Therefore, there are no nontrivial solutions
for ¢ ¢ {0, 5, , 37”} This means the existence of operators A € Z5 which, simulta-
neously, do not belong to (JE 5. Thus, we establish the equivalence of (ii) and (i).
Corollary 3.5 is proved. O

4. Consider the one-dimensional Schrédinger differential expression

(@)(x) = —¢"(z) + q(2)¢(z),  wE€R, (3.10)

where ¢ is an even real-valued measurable function that has a non-integrable singu-
larity at zero and is integrable on every finite subinterval of R\ {0}.

Assume in what follows that the potential ¢(z) is in the limit point case at z —
400 and is in the limit-circle case at x = 0. Denote by D the set of all functions
¢(x) € Ly(R) such that ¢ and ¢’ are absolutely continuous on every finite subinterval
of R\ {0} and I(¢) € La(R). On D we define the operator L as follows:

Lé=1(¢), VoeD.

The operator L commutes with the space parity operator Pé(z) = ¢(—z) and with
the operator of multiplication by (sgn x)I. These operators are anti-commuting fun-
damental symmetries in Lo(R). Therefore, L commutes with elements of the Clifford
algebra Cla(P, (sgn x)I). However, L is not a symmetric operator.

Denote for brevity Jy = (sgn z)I. Then, the decomposition (2.12) takes the form
Ly(R) = Ly(Ry)®L2(R_) and with respect to it

Ly 0
L—( 0 PL+P>’ Ly =L 1,®,) - (3.11)

The operator L is the maximal operator for differential expression I(¢) considered
on semi-axes Ry = (0,00). Denote by S, the minimal operator generated [(¢) in
Ls(Ry). The symmetric operator S has deficiency indices (1,1).

Let (C,I'¢,TT) be an arbitrary boundary triplet of Ly = S% in Ly(Ry). Then,
the boundary triplet (C2,Tg,T) determined by (2.27) with J- = P and N = C is
a boundary triplet of L = S* in the space Lo (R). Here S = ( St 0 ) is the

0 PSP
symmetric operator in Ly(R) (cf. (3.11)) with deficiency indices (2, 2).

Let Jz be an arbitrary fundamental symmetry from Cly(P, (sgn z)I). By Theo-

rem 2.15, Jz-self-adjoint extensions A € X7, of S are defined as the restrictions of L:

A=1L [ {f eD : U(j@'Fl + Zro)f = (J&I‘l — ’L.F())f}7 (312)

where U runs the set of 2 X 2-unitary matrices. The operators A can be interpreted
as Jz-self-adjoint operator realizations of differential expression (3.10) in La(R).

Since the sets X, are unitarily equivalent for different @ € S? (Theorem 2.9) one
can set J5z = P for definiteness.
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Proposition 3.6. The collection of all P-self-adjoint extensions A € Yp with empty
resolvent set coincides with the restrictions of L onto the sets of functions f € D
satisfying the condition

< isin @ 1—cos€>rlf.( 1+cosf —isind

14+ cosf —isinf o isinf 1 —cosf

) Tof, VO e€]0,27).

Proof. Since Jz = P and Jy = (sgn z)1, relations (2.26), (2.28) mean that o1I'; = T'; P
and o3I'; =T'(sgn z)I (j = 0,1), where o1 and o3 are Pauli matrices. Therefore, the
‘image’ of the Clifford algebra Cla(P, (sgn x)I) coincides with Cly(o1,03) in C? (see
Remark 2.13).

The fundamental symmetries Jg € Cly(01,03) anti-commuting with o7 have the

form ._75 = By09 + B303, (2 + B35 =1, where oy = ic103. Hence,

Ty = ( B3 —if ) _ < cosf) —isinf ), 0 e [0,2n). (3.13)

ila  —f3 isinf —cosf

Here, we set (33 = cos and B2 = sinf (since 53 + 33 = 1). Applying Corollary 3.4
and rewriting (2.31) in the form (2.37) with Jz = 01, J5 = Jjz (here Jj is determined
by (3.13)), we complete the proof of Proposition 3.6. O

Remark 3.7. To apply Proposition 3.6 for concrete potentials ¢(z) in (3.13) one needs
only to construct a boundary triplet (C2,T,T'1) of L with the help of a boundary
triplet (C,T'§", T'T) of the differential expression (3.10) on semi-axis R (see (2.27)). To
do that one can use [14], where simple explicit formulas for operators I‘;r constructed
in terms of asymptotic behavior of ¢(z) as # — 0 were obtained for great number of
singular potentials.
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