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ON INTERTWINING AND w-HYPONORMAL
OPERATORS

Abstract. Given A, B ∈ B(H), the algebra of operators on a Hilbert Space H, define
δA,B : B(H) → B(H) and ∆A,B : B(H) → B(H) by δA,B(X) = AX −XB and ∆A,B(X) =

= AXB − X. In this note, our task is a twofold one. We show firstly that if A and B∗

are contractions with C.o completely non unitary parts such that X ∈ ker�A,B , then
X ∈ ker�A∗,B∗ . Secondly, it is shown that if A and B∗ are w-hyponormal operators such
that X ∈ ker δA,B and Y ∈ ker δB,A, where X and Y are quasi-affinities, then A and B are
unitarily equivalent normal operators. A w-hyponormal operator compactly quasi-similar
to an isometry is unitary is also proved.
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1. INTRODUCTION

Let H be an infinite dimensional Complex Hilbert space and let B(H) denote the
algebra of operators from H to itself (= bounded linear transformations).
Given A,B ∈ B(H), define δA,B : B(H) → B(H) and ∆A,B : B(H) → B(H) by

δA,B(X) = AX −XB and ∆A,B(X) = AXB −X.

The classical Putnam–Fuglede Theorem [21, p. 104] says that if A and B∗ are normal
operators, then ker δA,B = ker δA∗,B∗ .
Analoguesly, if A and B∗ are normal operators, then ker ∆A,B = ker∆A∗,B∗ .
A number of generalisations of the Putnam–Fuglede Theorem, and its ∆A,B

analogue, are to be found in the extant literature, amongst them generalisations
where the normal operators A and B∗ are replaced by larger classes than the nor-
mal operators. The particular classes which have drawn alot of attention are those
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consisting of either subnormal or hyponormal or M -hyponormal or dominant or
k-quasi-hyponormal operators as well as p-hyponormal operators.
It is well known that ker δA,B ⊂ ker δA∗,B∗ (ker ∆A,B ⊂ ker ∆A∗,B∗) for A and

B∗ belonging to many a pair of these classes ([8, 12, 13, 14, 19, 23, 27, 28, 29] and
some of the references there) except for when both A and B∗ are dominant (see
[12, 14, 15]).
In the first part of this note, using the operator equation ∆A,B(X), we show

among other results that Putnam–Fuglede Theorem holds true for contractions A and
B∗ with C.o completely non unitary and one can easily deduce that a w-hyponormal
contraction operator is unitary.
For p > 0, recall that ([1, 2, 12, 17]) an operator A is said to be p-hyponormal

if (A∗A)p ≥ (AA∗)p, where A∗ denotes the adjoint of A. A p-hyponormal is called
hyponormal if p = 1, semi-hyponormal if p = 1

2 . An invertible operator A is called
log-hyponormal if log(A∗A) ≥ log(AA∗).
An operator A is said to be Paranormal if ‖Ax‖2 ≤ ∥∥A2x

∥∥ ‖x‖, for all x ∈ H,
k-paranormal if ‖Ax‖k ≤ ∥∥Akx

∥∥ ‖x‖k−1 for all x ∈ H and k ≥ 2 is some integer and
is said to be k-quasi-hyponormal if A∗k(A∗A−AA∗)Ak ≥ 0 for all x ∈ H and k ≥ 1 .
Of cousre it is well known that neither the class of k-quasi-hyponormal operators nor
the class of k-paranormal operators contain each other and are therefore independent.
Let A = U |A| be the polar decomposition of A, then following ([1, 2]), we

define the first Aluthge transform of A by Ã = |A| 12 U |A| 12 and define the se-
cond Aluthge transform of A by ˜̃

A = |Ã| 12 Ũ |Ã| 12 , where Ã = Ũ |Ã| is the polar
decomposition of Ã.
An operator A is said to be w-hyponormal if

|Ã| ≥ |A| ≥ |Ã∗|.

The classes of log-and w-hyponormal were introduced and their properties studied
in [3, 4, 5, 25, 31, 32] and other references there. In particular, it was shown in [3]
and [5] that the class of w-hyponormal contains both the log- and p-hyponormal
operators.
The class of log-hyponormal operators were independently introduced by Tana-

hashi in his paper [31]. There, he gave an interesting example ([31, Example 12])
of a log-hyponormal operator which is not p-hyponormal for p > 0. Thus the class
of p-hyponormal operators are totally independent of the class of log- hyponormal
operators.
Since the class of w-hyponormal operators contains both log- and p-hyponormal

operators, it therefore provides a unified approach in studying the latter classes.
Indeed, Tanahashi’s example can be used to show that the class of w-hyponormal
operators properly contains the classes of log- and p-hyponormal operators. For if
A ∈ B(H) is the Tanahashi operator ([31, Example 12]), then A⊕0 defined on H⊕H

is w-hyponormal operator but is neither log- nor p- hyponormal operator. Thus in
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general, if B is a non invertible p-hyponormal operator, then A⊕B is w-hyponormal
but is neither log-nor p-hyponormal operator.
It is well known that if an operator A is w-hyponormal, then Ã is semi-

hyponormal and ˜̃
A is hyponormal.

Also if an operator A is p-hyponormal, then kerA ⊂ kerA∗ and if A is log-
hyponormal, then kerA = kerA∗. However, if A is w-hyponormal, then it is not
known whether the kernel condition kerA ⊂ kerA∗ holds. Nevertheless, there are
several properties that p-hyponormal operators share with w-hyponormal operators
A or w-hyponormal operators A with kerA ⊂ kerA∗ ([3] and [5]).
Recall that an operator A ∈ B(H) is said to be dominant if for each λ ∈ C,

there exists a positive number Mλ such that

(A− λ)(A− λ)∗ ≤ Mλ(A− λ)∗(A− λ).

If the constants Mλ are bounded by a positive operator M , then A is said to be
M -hyponormal.
Clearly the following inclusions hold.

Hyponormal ⊂ p-Hyponormal(0 < p < 1) ⊂ w-Hyponormal ⊂ Paranormal

⊂ K-paranormal ,

Hyponormal ⊂ Log-hyponormal ⊂ w-Hyponormal ⊂ Paranormal

⊂ K-paranormal,

Hyponormal ⊂ k-quasi− hyponormal,

and

Hyponormal ⊂ M -hyponormal ⊂ Dominant.

An operator X ∈ B(H) is called a quasi-affinity if X is both injective and has
a dense range. Two operators A and B are said to quasi-similar if ∃ quasiaffinities
X and Y such that X ∈ ker δA,B and Y ∈ ker δB,A.
The operator A is said to be pure if there exists no non-trivial reducing subspace

N of H such that the restriction of A to N (A |N ) is normal and is completely
hyponormal if it is pure.
Recall that every A ∈ B(H) has a direct sum decomposition A = A1 ⊕ A2,

where A1 and A2 are normal and pure parts respectively. Of course in the sum
decomposition, either A1 or A2 may be absent.
We say that the contraction A ∈ to class C.0 of contractions (A∈ C.0) if A∗n → 0

strongly as n → ∞. The contraction A is said to be completely non unitary (c.n.u.)
if there exists no non-trivial reducing subspace U of H such that A restricted to U
is unitary. Every contraction A has a direct sum decomposition A = A1 ⊕A2, where
A1 is unitary and A2 is c.n.u. and of course either A1 or A2 may be absent. Clearly
a pure contraction is completely non unitary.
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Jeon and Duggal [17] have shown among other results that the normal parts of
quasi-similar p-hyponormal operators are unitarily equivalent and that a p-hyponor-
mal operator compactly quasi-similar to an isometry is unitary.
Jeon,Tanahashi and Uchiyama [25] proved that similar results of ([17]) hold true

for the class of log-hyponormal operators.
In the second part of this paper, we use the second Aluthge transform operator˜̃

A and the kernel condition kerA ⊂ kerA∗ as major tools to show that these results
([17] and [25]) still hold true to the more general case of w-hyponormal operators.

2. INTERTWINING OF w-HYPONORMAL OPERATORS

We begin by proving results on contraction operators with C.o completely non unitary
parts.
The following result shows that contraction operators A and B∗ with C.o com-

pletely non unitary parts such that X ∈ ker ∆A,B are unitarily equivalent unitary
operators.

Theorem 1. If the contractions A and B∗ ∈ B(H) have C.o completely non unitary
parts and X ∈ ker ∆A,B for some X ∈ B(H), then X ∈ ker ∆A∗,B∗ , ranX reduces
A, ker⊥X reduces B and A |ran X and B |ker⊥ X are unitarily equivalent unitary
operators.

Proof. Decompose A and B∗ into their unitary and C.o completely non unitary parts,
A = A1 ⊕A2 and B∗ = B∗

1 ⊕B∗
2 . Let X = [Xij ]2i,j=1.

Since A2 and B∗
2 both belong to C.o completely non unitary parts,

‖X12x‖ = ‖An
1X12B

n
2 x‖ ≤ ‖X12‖ ‖Bn

2 x‖ → 0 as n → ∞
for all x ∈ H. Using a similar arguements to the equations X∗

21 ∈ ker ∆B∗
1 ,A∗

2
and

X22 ∈ ker ∆A2,B2 , X22 = X21 = 0.
Consequently applying Putnam–Fuglede Theorem to X11 ∈ ker ∆A1,B1 where

A1 and B1 are unitary operators, X11 ∈ ker ∆A∗
1 ,B∗

1
and the result follows.

Corollary 2 ([13]). If A and B∗ are contractions with C.o completely non unitary
parts such that X ∈ ker ∆n

A,B for some X ∈ B(H), then the conclusions in Theorem 1
above hold.

Proof. Let X ∈ ker ∆n−1
A,B = Y , then clearly Y ∈ ker ∆A,B and by the Theorem,

Y ∈ ker ∆A∗,B∗ . Thus ranY reduces A, ker⊥ Y reduces B and A |ran Y and B |ker⊥ Y

are unitarily equivalent unitary operators.
Let X has a matrix representation as in the proof of the Theorem. Now if A =

= C1⊕C2 and B = D1⊕D2 with H = ranY ⊕(ranY )⊥ and H = ker⊥ Y ⊕(ker⊥ Y )⊥

respectively, then C1 and D1 are unitarily equivalent unitary operators and

Y = X ∈ ker∆n−1
A,B =

[
X11 ∈ ker ∆n−1

C1,D1
X12 ∈ ker ∆n−1

C1,D2

X21 ∈ ker ∆n−1
C2,D1

X22 ∈ ker ∆n−1
C2,D2

]
.

278 M.O. Otieno



Clearly,

X12 ∈ ker ∆n−1
C1,D2

= X21 ∈ ker ∆n−1
C2,D1

= X22 ∈ ker ∆n−1
C2,D2

= 0.

Now X11 ∈ ker ∆n−1
C1,D1

and so is X11 ∈ ker ∆C1,D1 . X11 ∈ ker ∆C1,D1 means

C1X11D1 = X11 = C1X11D1 −X11 = C1X11D1 − C1C
∗
1X11 = 0.

Consequently (−1)C1[C∗
1X11 −X11D1] = 0 and (−1)C1(X11 ∈ ker δC∗

1 ,D1).
Similarly

X11 ∈ ker ∆2
C1,D1

= (−1)2C2
1 (X11 ∈ ker δ2

C∗
1 ,D1

)

and in general

X11 ∈ ker ∆n
C1,D1

= (−1)nCn
1 (X11 ∈ ker δn

C∗
1 ,D1

).

Hence by Lemma 2 of [28],

lim
n→∞

∥∥X11 ∈ ker ∆n
C1,D1

∥∥ 1
n = lim

n→∞

∥∥∥X11 ∈ ker δn
C∗

1 ,D1

∥∥∥ 1
n

= 0.

Thus X11 ∈ ker ∆n
C1,D1

is a zero operator and so X11 ∈ ker ∆n−1
C1,D1

.

Consequently X ∈ ker ∆n−1
A,B and X ∈ ker ∆A,B is a zero operator and again by

the Theorem, X ∈ ker ∆A∗,B∗ and the result follows.

Corollary 3. If A is a k-paranormal or dominant or k-quasihyponormal contractions
operator and B∗ a contraction operator with C.o c.n.u. parts, such that X ∈ ker ∆A,B,
then X ∈ ker ∆A∗,B∗ , ranX reduces A, ker⊥X reduces B and A |ran X and B |ker⊥ X

are unitarily equivalent unitary operators.

Clearly if in Corollary 3, X is quasiaffinity, then A and B are unitarily equivalent
unitary operators.
Similarly if in Theorem 1, the same is true, then we have the following Corollary.

Corollary 4. If the contractions A and B∗ ∈ B(H) have C.o completely non unitary
parts such that X ∈ ker ∆A,B where X is quasiaffinity, then A and B are unitarily
equivalent unitary operators.

We now prove a Putnam–Fuglede Theorem ∆A,B(X) analogue for w-hyponormal
operators.

Theorem 5. Let A, B∗ ∈ B(H) be w-hyponormal operators with kerA(B∗) ⊂
kerA∗(B). If X ∈ ker ∆A,B for some X ∈ B(H), then X ∈ ker ∆A∗,B∗ , ranX
reduces A, ker⊥X reduces B and A |ran X and B |ker⊥ X are normal operators.

To prove the theorem, we need auxiliary lemmas.
The following lemma is well known.
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Lemma 6. If ker ∆A,B ⊂ ker ∆A∗,B∗ , then, for all X ∈ ker ∆A,B, ranX reduces A ,
ker⊥X reduces B and A |ran X and B |ker⊥ X are normal operators.

The next result was proved in [3, Theorem 2.4].

Lemma 7. If A is w-hyponormal, then Ã is semi-hyponormal and ˜̃
A is hyponormal.

The following result is Theorem 2.6 of [3].

Lemma 8. Let A be w-hyponormal with kerA ⊂ kerA∗. If Ã is normal, then A = Ã.

Proof of Theorem 5. Let ˜̃
X =

∣∣∣Ã∣∣∣ 1
2 |A| 12 X

∣∣∣B̃∗
∣∣∣ 1
2 |B∗| 12 . Since X ∈ ker ∆A,B ,

˜̃
X ∈

ker ∆eeA,
eeB
, where ˜̃

A and ˜̃
B∗ are hyponormal operators by Lemma 7.

Applying Putnam–Fuglede Theorem for hyponormal operators analogue to

∆A,B(X) [15, Theorem 2], it follows that ˜̃
X ∈ ker ∆ffA∗,

ffB∗ . Hence by Lemma 6,

ran ˜̃
X reduces ˜̃

A and ker⊥ ˜̃
X reduces ˜̃

B and ˜̃
A |

ran
eeX
and ˜̃

B |
ker⊥ eeX

are normal operators.

Consequently, ˜̃
A and ˜̃

B must be normal operators [9] and by Lemma 8, A and
B are normal operators. Thus ker ∆A,B ⊂ ker ∆A∗,B∗ , and the result follows.

3. w-HYPONORMAL OPERATORS AND QUASI-SIMILARITY

Douglas ([11]) proved that quasi-similar normal operators are unitarily equiva-
lent.This result was extended by Clary ([10]) who proved that quasi-similar hy-
ponormal operators are unitarily equivalent.
In this section, we extend the result of Clary ([10]) to the class of w-hyponormal

operators.
The following lemma is due to Williams [34, Lemma 1.1].

Lemma 9. Let A and B be normal operators. If there exist injective operators X and
Y such that X ∈ ker δA,B and Y ∈ ker δB,A, then A and B are unitarily equivalent.

Theorem 10. Let A and B∗ be w-hyponormal operators with kerA ⊂ kerA∗ and
kerB ⊂ kerB∗ respectively. If there ∃ quasiaffinities X and Y such that X ∈ ker δA,B

and Y ∈ ker δB,A, then A and B are unitarily equivalent normal operators.

Proof. First decompose A and B∗ into their normal and pure parts by A = A1 ⊕A2

and B∗ = B∗
1 ⊕ B∗

2 . Let
˜̃
X =

∣∣∣Ã2

∣∣∣ 1
2 |A2|

1
2 X

∣∣∣B̃∗
2

∣∣∣ 1
2 |B∗

2 |
1
2 . Since X ∈ ker δA2,B2 ,˜̃

X ∈ ker δeeA2,
ffB2
, where ˜̃

A2 and
˜̃
B∗

2 are hyponormal operators by Lemma 7 and
˜̃
X is

quasi-affinity.
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Now by Putnam–Fuglede Theorem for hyponormal operators,

˜̃
X ∈ ker δffA∗

2 ,
ffB∗

2

and

ran ˜̃
X reduces ˜̃

A2 and ker⊥ ˜̃
X reduces ˜̃

B2 and
˜̃
A2 |

ran
eeX
and ˜̃

B2 |
ker⊥ eeX

are unitarily equivalent normal operators. Since ˜̃
X is quasiaffinity,

ran ˜̃
X = H and ker⊥ ˜̃

X = H

and ˜̃
A2 and

˜̃
B2 are unitarily equivalent normal operators. In particular

˜̃
A2 and

˜̃
B2

are normal operators and by Lemmas 8 and 9, the result follows.

From the Theorem, the following corollaries are immediate.

Corollary 11. If a w-hyponormal operator A with kerA ⊂ kerA∗ is quasi-similar to
a normal operator B, then A and B are unitarily equivalent normal operators.

Corollary 12 ([17, Corollary 6] and [25, Corollary 7]). If a p-hyponormal or
log-hyponormal A is quasi-similar to a normal operator B, then A and B are unitarily
equivalent normal operators.

During the early days of operator theory, Berberian S.K. [9] posed a very intere-
sting question on the class of hyponormal operators: “Does there exist a completely
hyponormal operator which is not normal?”. While studying the concept of hypo-
normal operators, Ando [7] gave a negative answer to this question. That is to say,
that every completely hyponormal operator is normal.
From Theorem 10, it is easy to deduce that a pure w-hyponormal operator is

normal, which therefore generalises Ando’s result [7].
However in the sequel, we wish to give an alternative proof of this result.

Theorem 13. If A is w-hyponormal operator, then ‖An‖ = ‖A‖n for all n.

Proof. A is w-hyponormal implies

‖Ã‖ =
∥∥∥|̃A|∥∥∥ ≥ ‖|A|‖ = ‖A‖.

But
‖A‖ ≥ ‖Ã‖ ≥ ‖ ˜̃

A‖
is always true. Hence ‖A‖ = ‖Ã‖. Similarly, ‖Ã‖ = ‖ ˜̃

A‖. Now since ˜̃
A is hyponormal,

by [7]

‖A‖n = ‖ ˜̃
A‖n = ‖˜̃

An‖ = ‖An‖
for all n.
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Corollary 14. Every non-zero w-hyponormal operator has a non-zero element in its
spectrum.

Corollary 15. A pure w-hyponormal operator is normal.

Stampfli and Wadhwa ([30]) proved that if A is dominant and B is a normal
operator such that X ∈ ker δA,B where X has a dense range, then A is normal.
Recently, Duggal and Jeon ([17]) and Jeon,Tanahashi and Uchiyama ([25]) exten-

ded this result to a more general case of p-hyponormal and log-hyponormal respec-
tively.
In the sequel, we try to extend the results of ([17]) and ([25]) to the class of

w-hyponormal operators.

Theorem 16 (Generalised Putnam–Fuglede). Let A be w-hyponormal with
kerA ⊂ kerA∗ and B be a normal operator. If there exists an operator X ∈ B(H)
with a dense range such that X ∈ ker δA,B, then A is normal.

Proof. Decompose A = A1 ⊕ A2 into normal and pure parts respectively. Let A2 =

= U2 |A2|, Ã2 = |A2|
1
2 U |A2|

1
2 and ˜̃

A2 =
∣∣∣Ã2

∣∣∣ 1
2
Ũ

∣∣∣Ã2

∣∣∣ 1
2
.

A2 being pure, it is injective and |A2|
1
2 is quasiaffinity. Also since A1 is normal,˜̃

A = ˜̃
A1 ⊕ ˜̃

A2 = A1 ⊕ ˜̃
A2.

Now if we let T =
∣∣∣Ã2

∣∣∣ 1
2 |A2|

1
2 , then by a simple computation, ˜̃

A2T = TA2 and
T is quasiaffinity.

Also if we let Z = IH⊕T , then clearly Z is also quasiaffinity such that ˜̃
AZ = ZA,

where ˜̃
A is a hyponormal operator.

Thus ˜̃
AZX = ZAX = ZXB and by ([30]), ˜̃

A is normal. Hence by Lemma 8,
we get the result .
Thus from Theorem 16, we immediately recapture Corollary 11 again. However,

the following Corollary says more than this.

Corollary 17. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be a normal
operator. If there exists a quasiaffinity X ∈ B(H) such that X ∈ ker δA,B, then A

and B are unitarily equivalent normal operators.

The following example due to Clary ([10]) shows that it is not possible to replace
a normal operator in Corollary 11 with an isometry.

Example 18. Let U denote the unweighted unilateral shift with multiplicity 1, and
let Sn be the unilateral weighted shift with weights 1

n , 1, 1, 1, . . . . Let U∞ :=
∑∞ ⊕U

and S :=
∑∞

i=1 ⊕Si. Then each Sn is similar to U and so S and U∞ are quasi-similar
by [22, Theorem 2.5]. Clearly U∞ is an isometry and S is hyponormal. But since S

is not bounded from below, U∞ and S are not similar.
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This therefore gave rise to the following question.

Problem. Is it possible to replace the normality of B in Corollary 11 with an
isometry?
However, in affirmative answer to this question, Duggal and Jeon ([17]) recently

proved the result for the case of p-hyponormal operators under the condition that
either X or Y is compact.
In the sequel, we try to extend this result to a more general case of w-hyponormal

operators as follows.

Theorem 19. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be an isometry.
If there exist quasiaffinities X,Y ∈ B(H) such that X ∈ ker δA,B and Y ∈ ker δB,A

where X or Y is compact, then A and B are unitarily equivalent unitary operators.

Proof. Since ˜̃
A is hyponormal, by [36, Theorem 2.1], ˜̃

A is subdecomposable and so

σ( ˜̃
A) ⊆ σ(B) ⊆ D, where D denotes a closed unit disc.

Now since σ( ˜̃
A) = σ(A) by [3, Corollary 2.3],

‖A‖ = ‖ ˜̃
A‖ = r( ˜̃

A) = r(A) ⊆ σ(A) ⊆ D

and A is a contraction. Applying theorem 2 of [6] to Y ∈ ker δB,A if Y is compact, B
is unitary. Similarly, by the same theorem if X is compact, then B(Y X) = Y AX =
= (Y X)B and B is unitary.
Now applying theorem 1 of [6] to the operator equation Y ∈ ker δB,A, A is

unitary and the result follows.

Corollary 20. If a log or p-hyponormal operator A is quasi-similar to an isometry
B, then A and B are unitarily equivalent unitary operators.
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