
Informatica Economică vol. 15, no. 2/2011 29

Prototype of Intrusion Detection Model using UML 5.0 and
 Forward Engineering

Muthaiyan MADIAJAGAN, Pragya GARG

Birla Institute of Technology Pilani, Dubai Campus, Dubai, UAE
jagan@bitsdubai.com, prag.garg@gmail.com

In this paper we are using UML (Unified Modeling Language) which is the blueprint
language between the programmers, analysts, and designer’s for easy representation of
pictures or diagrammatic notation with some textual data. Here we are using UML 5.0 to
show “prototype of the Intrusion Detection Model” and by explaining it by combining various
parts by drawing various UML diagrams such as Use cases and Activity diagrams and Class
Diagram using which we show forward engineering using the class diagram of the IDM(
Intrusion Detection Model). IDM is a device or software that works on detecting malicious
activities by unauthorized users that can cause breach to the security policy within a network.
Keywords: Intrusion, Anomaly, UML, Forward Engineering, Intrusion Detection

Introduction
Intrusion is the breach of security policy

of a system or a network by unauthorized
personals. Protection of this vital information
from malicious activities of the Hackers in
the era of networking has become an
important issue. Suspicious activities by
these attackers can be identified either by
user’s behavior or by user profiling by using
user models. Intrusion detection is used to
trace malicious activities by these attackers.
Most of these activities take place at the host
machine. Maximum number of such
anomalies is carried out from a host machine
and they sometimes remain undetected by
few network based intrusion systems.
IDS monitor the network by finding signs
such as that of thwart or intrusion and
produce report to Management Station [4].
The World Wide Web is becoming a vast
resource of information as attackers can now
strategically work on much more
sophisticated attacks with the growing access
to the internet. With time and experience they
use their unpredictable methods for
attacking, making it hard for the agent to
learn its approach. Each time the attacker
comes with more concrete solution and a
better approach for attacking the system.
They are advancing in learning the changes
and limitations of the operating systems,
network protocols and the software
implementations of various kinds. In defense

to such attacks host based solutions like IDS,
antivirus software, fire walls etc. are
commonly used.
 Host based solutions like Intrusion Detection
System, various antivirus software and
firewalls are usually used for anomaly types
such as virus or intrusion detection.
Although, these approaches are not fully
accurate, they also have limitations. Thus,
there arises a need to develop newer systems
to overcome the ever growing network
intrusion threats.
Our main focus of this paper will be to
explain how an intrusion detection model
works, how packets’ are passing, what kind
of components is making the system, how
information flow occurs by the help of UML.
Using UML we will explain the IDM and
later will present a java code for translation
of design artifacts to a foundation of a code
which will show a translation from design
artifacts to a foundation of a code, which is
not meant to illustrate a robust, fully
developed Java program with
synchronization, exception handling and so
on, but only for the better understanding of
the diagram [3]. We have also extended by
giving the UML diagrams and the Forward
Engineering using java code for various
classes later in this paper [1].
The Prototype is shown in the following
Figure1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26858934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30 Informatica Economică vol. 15, no. 2/2011

Fig. 1. Prototype of the IDM [1]

2 UML (Unified Modeling Language)
In the field of software engineering UML is a
general purpose modeling language. It can
be used as a visual language for
specification, documentation and
construction of the artifacts of the systems.
The UML represents diagrammatic notation
or pictures with some textual data. UML is
considered a software blueprint language for
analysts, designers, and programmers.UML
is used for object-oriented problem solving
[12].
TYPES OF UML’s
There are nine types of UML diagrams which
lead to simplification of the problem such as
Use-cases, Class, Object, Sequence,
Collaboration, State chart, Activity,
Component and the Deployment diagrams.
Figure 2 shows a Use- Case UML diagram
drawn in UML 5.0 version. It shows a
standpoint of an external user. It emphasis
more on what a system does rather than how
it is done. Use-Cases are connected to
scenarios. A scenario is an example of what
happens when someone interacts with the
system. It is showing a Use-Case relationship
between Business Rules Engine, Alert Agent,
Verifier and Manual Intervention. Here the
Business Rules Engine will check the XML
packets. It responds to the DOS attacks,

Filtering, Screening and Authentication. If at
all any errors are encountered then Alerts
will be audited, Logged and mailed to
concerned authorities along with the Alert
Agent Component. If at all any anomaly is
detected Business Rules Engine sends it to
Manual Intervention Component as well.
Administrator will manually check for errors
and correct then if sent to Manual
Intervention Component. For further
Analysis of the XML packet Manual
Intervention Component will further send it
to the Verifier. The following figure is
showing a Use-Case relationship between
Business Rules Engine, Alert Agent, Verifier
and Manual Intervention. Here the Business
Rules Engine checks the XML packets. It
will respond to the DOS attacks, Filtering,
Screening and Authentication. If at all any
errors are encountered then Alerts will be
audited, Logged and mailed to concerned
authorities along with the Alert Agent
Component. If at all any anomaly is detected
Business Rules Engine sends it to Manual
Intervention Component as well.
Administrator will manually check for errors
and correct then if sent to Manual
Intervention Component. For further
Analysis of the XML packet Manual
Intervention Component will further send it

Informatica Economică vol. 15, no. 2/2011 31

to the Verifier.

Fig. 2. Use-Case diagram drawn between Business Rules Engine, Alert Agent, Verifier and
Manual Intervention using UML 5.0

Figure 3 represents the same components i.e.
the Business Rules Engine, Manual
Intervention, Alert Agent and Verifier in
UML 5.0 using Activity Diagram. Activity
diagram focuses on the flow of activities
involved in a single process. The Activity
Diagrams shows how these activities depend
upon one another. Activity Diagrams can be
divided into object swim-lanes which will
determine which object is responsible for
which activity. A single transition will come
out of each activity connecting it to the next
activity. A transition branches into two or
more mutually exclusive transitions. Guard
Expressions (inside []) label the transitions
coming out of a branch. A transition may

fork into two or more parallel activities,
which combine later in the form of solid bars.
The diagram begins with a start circle at the
beginning and ends with concentric
black/white stop circles towards the end. The
activities are rounded circles. In this figure
the diagram starts with a black circle marking
the beginning of the activity diagram. As
soon as the anomaly is detected, for each
error is either sent to the Alert Agent
Component or the Manual Intervention. If
sent to the Alert Agent Component then the
Alerts are audited, logged and is mailed to
the concerned Authorities. If sent to the
Manual Intervention component if it
succeeds then it goes to the manually

32 Informatica Economică vol. 15, no. 2/2011

addressing to the administrator of the
location. Upon failure will go for further
analysis to the verifier. In order to check for
known attack signatures send the documents

to the verifier, this activation diagram ends
with concentric black/white stop circles
towards the end.

Fig. 3. Activity Diagram between the Business Rules Engine, Manual Intervention, Alert
Agent and Verifier using UML 5.0

Figure 4 is showing an Activity Diagram of
Database, Updater and Verifier. Here the
activation diagram begins with a start circle
at the beginning. Local Database is used.
Database is used to send web services based
notices to all instances. Updater receives all
the web services updates and keep updating,
changing, upgrading the database with new

information. Using Hash Algorithm picked
up XML packet with given payload are
digested. The verifier checks all the packets
against attacks.
Finally attack is prevented and activity
diagram ends with concentric black/white
stop circles towards the end.

Informatica Economică vol. 15, no. 2/2011 33

Fig. 4. Activity Diagram between Database, Updater and Verifier using UML 5.0

Figure 5 shows a Use-Case diagram of
components and actors involved are the
Cache memory, Sampler, Business Rules
Engine, Network Packet Analyzer and the
Pre-processing Engine. Here Cache Memory
collects network packets.
It can either be a cache hit/cache miss.
Sampler will heuristically pick up sample
network packets, and send them to the

Network Packet Analyzer. Network Packet
Analyzer and Pre-Processing Engine will
analyze the packets and convert them into
XML documents. They will go to the
Business Rules Engine which will check
XML documents for anomalies, detects un-
trusted IP’ s, detects screening, Dos attacks,
filtering and screening.

34 Informatica Economică vol. 15, no. 2/2011

Fig. 5. Use-Case diagram of components and actors involved are the Cache memory,

Sampler, Business Rules Engine, Network Packet Analyzer and the Pre-processing Engine
using UML 5.0

Figure 6 shows a class diagram covering all
components like the Sampler, Alert Agent,
Database, Verifier, Updater, Manual
Intervention and the Business Rules Engine.
A class diagram is used to give the overview
of a system with its classes. Class diagrams
are static-they are only used for displaying
what interacts, how the components interact
is not shown. UML Class diagram consists of
a class name, attributes, and the operations.
Class diagrams have three kinds of

relationships: Association-It is a relationship
in between instances of two classes.
Aggregation-It shows the collection of an
entire class. It is shown by a diamond end
pointing to the part containing the whole and
Generalization-It shows the class-super class
relationship. Class diagrams can show
various multiplicities such as 0...1(zero or
one instance), 0...* or *(either none, or no
limit on the number of instances), 1(exactly
one instance), 1...*(at least one instance) [4].

Informatica Economică vol. 15, no. 2/2011 35

Fig. 6. Class –Diagram using UML 5.0

3 Java coding
This section will present a domain layer of
the classes in Java for this Iteration. The
main point here is that there is a translation
from design artifacts i.e. from a UML class
diagram drawn in UML 5.0 version to a
foundation of code. This code is not meant to
illustrate a fully developed, robust Java
Program with synchronization and exception
handling [3].
Figure 6 represents a Java Program for IDM
Prototype.
 Class Updater
Public class updater
{
Private Packet info1;
Public Updater (Packet
changeoccured) {info1 =
changeoccured ;}
public Packet getinfo1 () {return
info1; }
}

 Class Business Rules Engine
Public class Business Rules Engine
{
private Map<ItemRules,
ManualIntervention>
 Interventions = new
HashMap()<ItemRules,
ManualIntervention>;

public Business Rules Engine()
{
ItemRules ir1 = new ItemRules(100
);
ItemRules ir2 = new ItemRules(200
);
 Rules set = new Rules(30);

 Manual Intervention Inter;
 Inter = new Manual
Intervention(ir1, set, "packet 1"
);

interventions.put(ir1, inter);
inter = new ManualIntervention (
ir2, set, "packet 2");
interventions.put(ir2, inter);

36 Informatica Economică vol. 15, no. 2/2011

}
Public Manual Intervention get
Manual Intervention(Item rules ir)
{
returninterventions.get(ir);
 }
}
 Class Alert Agent
public class Alert Agent
{
privateBuisness Rules Engine Engine;
public Alert Agent(Business Rules
Engine Engine);
{
this.Engine = Engine;
}
public void checkAlerts()
{
currentAlerts.becomeComplete();
}
public void getAudited(Item rules
ir, int number);
{
Manual intervention inter =
Engine.getManualIntervention(ir);
}
public void get logged()
{
current log = new log();
}
public void getUpdate (
changeoccured);
 }
}
 Class Manual Intervention
public class Manual Intervention
{
private Item ir;
private Rules set;
private string intervention;
public Manual Intervention
 (ItemRulesir, Rules set, string
intervention)
}
publicItemIRgetItem() { return ir; }
public Rules getRules() { return
rules; }
public string getIntervention() {
return intervention; }

Class Database
public Class Database
{
private List<VerifierAudits> Audits
= newArrayList()<VerifierAudits> ;
private Number number = new
number();
privatebooleam is complete = false;
private Updater updater;
public packet getUpdated()
{

return updated.getInfo1().
minus(getData());
}
public void become complete () {
isComplete = true; }
public void makeAudits
(ManualIntervention Inter, int
number)
{
Audits.add(new verifier Audits(
inter, number));
public packet getData()
{ Packet data = new Packets();
 Packet subdata = null;
for(Verifier Audits Audits = Audits
)
{
subdata = Audits.get subdata();
Data.add(subdata);
}
return data;
}
public void make update(Packet
changeoccured)
{
update = new update(changeoccured
);
}
}

Class Verifier Audits
public class verifier Audits
{
privateint number;
private Manual Intervention
intervention;
public verifier(Manual Intervention
Inter, int number)
{
this.intervention = inter;
this.number = number;
}
public packet get subdata()
{
returnIntervention.get
value().times(mumber);
}
}
Class Sampler
Public class Sampler
{
privateBuisness Rules Engine Engine
= new Buisness Rules Engine
Engine();
private Alert Agent alert agent =
new Alert Agent(Engine);
public Alert Agent get Alert Agent()
{return alert agent; }

Informatica Economică vol. 15, no. 2/2011 37

4 Conclusion
The proposed architecture will manage the
distributed system components efficiently. It
will allow new computing resources and
services to be added dynamically. Most of
the challenges faced by current IDS are
addressed by the proposed architecture. We
have successfully explained and simplified
the Prototype of the IDM using blueprint
language UML, version 5.0. We have
combined various components and actors for
various for Class, Activity and Use-Case
diagrams. We have also shown Forward

Engineering with the help of Class diagram
using java code.
Future Work
Reading specifications from a file and
drawing the diagram using program. Create a
UML diagram through a program in
JAVA/VB i.e. Reverse Engineering which is
totally opposite of what we have done in this
paper. We aim at getting UML diagrams
directly from Java or some other language
with different diagrams apart from class
diagrams like sequence diagrams.

References
[1] International Journal of Recent Trends in

Engineering, Vol. 1, No. 1, May 2009.
[2] International Journal of Recent Trends in

Engineering, Vol. 1, No. 2, May 2009.
[3] C. Larman, An Introduction to object-

Oriented Analysis and Design and
Iterative Development.

[4] S. R. Pressman, Software Engineering, A
Practioner’ s Approach.

[5] P. China and Huangshan, “Proceedings
of the Second Symposium International
computer Science and Computational
Technology (ISCSCT’ 09)” 26-28, Dec.
2009, pp. 134-138.

[6] M. Chapple and E. Tittle, Certified
information systems security
professional.

[7] International Journal of Recent Trends in
Engineering, Vol. 2, No. 2, November

2009 (Nanyang Technology University),
RESEARCH PAPER.

[8] International Journal of Recent Trends in
Engineering, Issue. 1, Vol. 1, May 2009,
RESEARCH PAPER.

[9] http://technet.microsoft.com/en-
us/library/cc751219.aspx (via.
Google.com)

[10] A. Schwartzbard, A.K. Ghosh, A study in
the Feasibility of Performing Host-based
Anomaly Detection on Windows NT.

[11] M. Speciner, C. Kaufman and R.
Pearlman, “Network Security”.

[12] Ontology for Host-based Anomaly
Detection-Margareth P. Adaa (Oslo
University College) May 23, 2007.

[13] R. King and G. Govanus “Windows
2000 Network Security Design”.

Madiajagan MUTHAIYAN holds a M.S., in Software Systems from BITS,
Pilani, India and a PhD in Component based software Development. He has
15 years of College / University teaching experience and 2 years of
experience in Blue Chip Software Company. Presently, he is working as
Senior Lecturer, CS, BITS, Pilani-Dubai. His areas of interest include
Component Based Software Engineering, Distributed Database Systems,
Software Architecture, and Theory of Computation. He is a Professional

member of Professional bodies ACM, World Enformatica Society and Computer Society of
India.

Pragya GARG is presently a final year student in B.E Computer Science.
She has experience in IT section and is currently working at GBM (IBM) in
Dubai as a Software Sales Trainee in the year 2011. She has Technical skills
in C, Java, JavaScript, PHP, HTML, SQL and UML.

