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Abstract. In the framework of a unified formalism for
Kolmogorov-Lorenz systems, predictions of times of regime
transitions in the classical Lorenz model can be successfully
achieved by considering orbits characterised by energy or
Casimir maxima. However, little uncertainties in the starting
energy usually lead to high uncertainties in the return energy,
so precluding the chance of accurate multi-step forecasts.
In this paper, the problem of obtaining good forecasts of
maximum return energy is faced by means of a neural
network model. The results of its application show promising
results.

1 Introduction

In the past few decades basic concepts of dynamical systems
theory have been applied to a wide variety of real systems.
One of the most important applications, for its impact on
every-day life and society, has been in the field of numerical
weather forecasts (Palmer and Hagedorn, 2006).

On the one hand the detailed study of several low-
order chaotic systems has shed much light on their strange
and unexpected behaviour, like the well-known fact that
a small initial uncertainty can propagate in the course of
time evolution even exponentially, making deterministic
predictions about the final state possibly meaningless.

On the other hand the much more complex models like
those used in operational meteorology gave no chance at
all for a complete characterisation of their solutions, due to
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the impressively large number of variables and parameters
involved. Such a characterisation would represent, in fact, a
task well beyond the current state of computer technology.

Nevertheless, although questionable in principle, some
of the concepts developed in the framework of low-order
chaotic systems have been empirically transferred to the
latter models, and have largely shown their usefulness for
practical purposes.

Apart from operational meteorology, also climatology has
benefited from elementary concepts of dynamical systems
theory, such as that of “climate attractor” (see, e.g., Corti et
al., 1999), whose existence for real climate system is a matter
of philosophical controversy, and that of “climatic regimes‘”
(see Stephenson et al., 2004, for a critical discussion on their
definition and existence).

Motivated by new results obtained within the class of the
so called Kolmogorov-Lorenz low-order models (Pasini and
Pelino, 2000; Pelino and Pasini, 2001), which includes the
famous Lorenz-63 model and a symmetric version of Lorenz-
84 model, in a recent paper (Pelino and Maimone, 2007) it
has been proposed a possibly useful predictor, namely the
intrinsic energy maximum, as a natural candidate to be used
in forecasting various system’s occurrences, such as regimes
changes, mean lasting times in a given regime, and even,
to some extent, the sequence of mean lasting times in the
different regimes.

Multiple regimes and chaotic transition among them seem,
in fact, to be a very common feature of dynamical systems,
including fluid-dynamical ones, and the possible existence of
approximate long-term predictors can be a desirable feature
in many circumstances.

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

http://creativecommons.org/licenses/by/3.0/


810 A. Pasini et al.: Energy-based predictions in Lorenz system

A first necessary step in view of a possible empirical
application of the energetic argument to real systems,
particularly within low-frequency variability of atmospheric
patterns, in the same spirit of Kondrashov et al. (2004) –
where a Lorenz model is also used as a test case – and
Deloncle et al. (2007), is to check whether a given statistical
tool working solely on the solutions of the model (i.e.,
ignoring dynamical laws) is able to capture the relation
between predictors and predictands in the system itself.

Aim of the present paper is to show that this is indeed
possible using a neural network based technique.

2 A unified formalism for Kolmogorov-Lorenz models
and the role of maximum energy

Let us start with a brief summary on Kolmogorov-Lorenz
models. These models possess three degrees of freedom
and their describing equations can be written as the sum
of the Lie-Poisson brackets of the algebra of SO(3) spatial
rotation group, and of dissipation and forcing terms (Einstein
summation convention is used):

ẋi = {xi,H }−3ijxj +f i, (i = 1,2,3) (1)

assuming the following gyrostat-like Hamiltonian

H =
1

2
�ikxixk +hkxk , (2)

and the Lie-Poisson bracket structure

{F,G} = Jik∂iF∂kG, with Jik = εijkxj , (3)

where εijk is the Levi-Civita symbol representing the
constants of structure of the algebrag= so(3), andF,G ∈

C∞(g∗) (Pasini and Pelino, 2000; Pelino and Pasini, 2001).
The main point on the above formalism is precisely the

possibility to clearly separate dynamics into a Hamiltonian,
a dissipation and a forcing contribution.

To be more specific, let us consider Lorenz-63 case, which
is analysed in Pelino and Maimone (2007): the reader can
refer to this paper for further details. In this particular case,
Kolmogorov-Lorenz parameters become� = diag(2, 1, 1)
andh = (0,0,−σ) for the Hamiltonian part,3 = diag(σ,1,β)

for the dissipation term andf = (0,0,−β(ρ +σ)) for the
forcing term. In the dynamical integrations we will perform
here, the standard valuesσ = 10,ρ = 28 andβ = 8/3 will be
considered.

The main peculiarity of the model’s dynamics consists
in the following: for a suitable choice of the parameters, a
chaotic macro-dynamics can be identified, which consists of
sudden and unpredictable transitions between two separate
regions in phase-space, which will be referred to as the
left (9L) and right (9R) regions covering the attractor9 =

9L ∪9R.

Fig. 1. Ellipsoid of Casimir extremes intersecting the attractor in
four regions: the two stripes in the semi-spacex2 < 0 represent the
set of maxima and the remaining two (x2 > 0) the minima. Figure
from Pelino and Maimone (2007), copyright American Physical
Society.

The intrinsic energyE: 1
2�ikxixk +hkxk = H defines a

foliation of the phase-space into ellipsoid surfaces, while
extreme values we are interested in are accomplished by the
conditionḢ = 0. By means of Eq. (1) one can see that this
condition turns out in a geometric condition on the phase
space, defining a new (fixed) ellipsoid.

This ellipsoid intersects9 in four separate regions, which
possess a natural fractal structure. Two of these regions
correspond to minimum values of intrinsic energy and are
located, by symmetry, each on a lobe of the attractor, while
the other two ones represent the maximum values (as in
Fig. 1).

A remarkable property of maximum energies, as opposed
to the minimum ones, is that they have a natural order
with respect to the distance from the fixed points in
correspondence with each lobe. We can then consider the
return map connecting points on a given region of maximum
energies.

Another notable property of maximum energy regions is
that they can be divided into ordered shells, each of which
is associated with a given range of return time, and to a
precise number of turns of the system’s representative point
on the opposite lobe. Moreover, it turns out that return times
have a natural band structure, with the bands separated by
a common distance of the order ofτ0 ≈ 0.66 (for the given
parameters).

On the other side, the knowledge of the starting shell
of energy does not turn into a precise knowledge of the
return shell, by which one could be allowed to re-iterate the
forecast of the subsequent number of turns. However, shells
themselves could be divided into sub-shells, each sub-shell
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corresponding to the number of turns that the representative
point will perform after the second passage from the initial
regime to the other one, and so on.

It is also worthwhile to note that what we have said for
energy is also valid for Casimir functionC, defined as the
kernels of bracket (3), i.e.{C,G} = 0,∀G ∈ C∞(g∗). In the
present case it is easy to check thatC = xkxk. In Fig. 1
the maximum regions lying on the intersection between the
maximum Casimir ellipsoid and the attractor are shown.

In summary, once known the energy of a starting point on
a Casimir maximum at a certain lobe, the number of turns the
system experiences in the other lobe is precisely determined.
But, unfortunately, a little uncertainty in this starting energy
is generally associated with a large uncertainty in the energy
maximum on the first lobe when the trajectory is back: this
fact does not allow us to perform a forecast for the next
number of turns on the second lobe and achieve a multi-step
forecast.

In the next section we will show that a learning algorithm
is able to efficiently analyse the couples maximum energies
– return times and to achieve just a reliable forecast of the
energy maximum on the first lobe when the trajectory is back.

Dynamical integrations are performed via a 4th-order
Runge-Kutta scheme with time step1t = 0.01, while for
neural runs we use the model that will be sketched in the
next section.

3 A neural network model for empirical forecast
of the return maximum energy

During the last decades, neural networks (NNs) have shown
their increasing usefulness in analysing many nonlinear
systems, especially as far as the search for robust and reliable
nonlinear relations between system variables (predictors and
predictands) is concerned, even in presence of uncertainties
and chaotic behaviours.

At present, many applications can be found in the realm of
geophysical and environmental sciences: for recent reviews,
see, for instance, Krasnopolsky (2007), Hsieh (2009) and
some specific papers in Haupt et al. (2009). Furthermore,
even several properties of the Lorenz-63 model have been
analysed by means of NNs: see, for instance, de Oliveira
et al. (2000), Boudjema and Cazelles (2001), Roebber and
Tsonis (2005) and Pasini (2008). In this last recent paper,
in particular, the difficulty of forecasting Lorenz variables in
one-step by NN models is discussed, also through examples
(see also references therein).

In this framework, the discovery of the particular role
of maximum energy (inside the formalism sketched in the
previous section) leads us to analyse if information about it
and the return time allows a NN to establish a reliable relation
with the return maximum energy. This could be the first step
towards an extension of the prediction time-horizon on the
Lorenz attractor.

Up to now, many kinds of NNs, endowed with distinct
architectures and learning algorithms, have been developed.
Here, for our investigation we adopt multi-layer perceptrons
(MLPs) with a backpropagation training scheme.

General surveys of these networks can be found in Hertz
et al. (1991), Bishop (1995) and Hsieh (2009), while the
specific tool used in the present investigation has been
worked out some years ago for diagnostic characterisation
and forecast activity in complex systems (Pasini and Potestà,
1995; Pasini et al., 2001). Since its development, this tool
has been applied to diagnostic and prognostic problems in the
atmospheric boundary layer (Pasini and Potestà, 1995; Pasini
et al., 2001, 2003; Pasini and Ameli, 2003), to attribution
and impact analyses in the climate system (Pasini et al.,
2006, 2009; Pasini and Langone, 2010) and to analyses of
predictability in unforced and forced Lorenz models (Pasini,
2008).

The kernel of this tool consists in feed-forward networks
with one hidden layer, characterised by nonlinear transfer
functions (sigmoids) – calculated at hidden and output
neurons – and a backpropagation training method with
updating rules for weights including gradient descent and
momentum terms. At each iteration stept , these rules read
as follows:

Wij (t +1) = Wij (t)−η
∂Eµ

∂Wij (t)
+m

[
Wij (t)−Wij (t −1)

]
= Wij (t)+ηg′

i

(
h

µ
i

)(
T

µ
i −O

µ
i

)
V

µ
j

+ m
[
Wij (t)−Wij (t −1)

]
(4)

and

wjk (t+1) = wjk (t)−η
∂Eµ

∂wjk (t)
+m

[
wjk (t)−wjk (t −1)

]
= wjk (t)+ηg′

j

(
h

µ
j

)∑
i

Wij g′

i

(
h

µ
i

)(
T

µ
i −O

µ
i

)
I

µ
k

+ m
[
wjk (t)−wjk (t −1)

]
(5)

Here, referring to Eqs. (4)–(5) and Fig. 2,Wij andwjk are
the weights associated to the “synapses” connecting hidden
to output layer and input to hidden layer, respectively,µ is
the number of a specific pattern of inputs-target couples,I

µ
i

are the input data about predictors,T
µ
i are the targets, i.e.

the real values of predictand data to be reconstructed/forecast
by the NN, O

µ
i are the outputs, i.e. the results of the

NN in reconstructing/forecasting the targets,h
µ
j andh

µ
i are

the weighted sums converging to the neurons of the hidden
and output layers, respectively,gj andgi are the sigmoids
calculated at hidden and output neurons,V

µ
j represent what

exits from the hidden neurons after the calculation of their
nonlinear transfer functions,g′ are the sigmoid derivatives,η

is the learning rate, directly associated with the minimization
of the total error (a quadratic cost function ofT

µ
i andO

µ
i ) on
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Fig. 2. A feed-forward neural network.

the training set via gradient descent, and the termm is the so-
called momentum term, useful for avoiding large oscillations
in the learning process. A good combination ofη and m

permits to escape from relative minima of the cost function
and to reach a deeper minimum.

Once fixed the weights at the end of the iterative training
(on a training set), the network is nothing but a function
that maps input values to output ones. If this map shows
its validity also for data which are unknown to the network
(i.e. on validation/test sets), we have found a fully nonlinear
regressive law linking input and output data (predictors and
predictands). Of course, methods are to be used in order to
prevent overfitting: here, early stopping is adopted.

Together with these quite common features of NN
models, our tool provides also many training/validation/test
procedures and facilities which are very useful for handling
data from complex systems.

4 NN runs and results

By performing dynamical integrations of the Lorenz
system, 66 000 points characterised by maximum energies
are obtained on the attractor. Then we calculate return time
and maximum return energy for trajectories starting from
these points. Thus every point can be labelled by a triplet-
pattern (maximum starting energy, return time, maximum
return energy). We consider the first 44 000 patterns as
training set, the following 11 000 as validation set and the
last 11 000 as test set for our NN runs.

As cited above, the main scope of using NNs in this
framework is to analyse if information about maximum
starting energies (Est) on a lobe and return times permits to
forecast the values of maximum return energy (Eret) on this
lobe of the attractor when the trajectory is back. However, as
a preliminary test of neural performance, it is interesting to
analyse if NNs are able to predict the correct values of return
time, starting from data aboutEst.

Fig. 3. Return times as a function of Casimir. Figure from Pelino
and Maimone (2007), copyright American Physical Society.

Table 1. Performance of linear and NN predictions on the test sets
summarised in terms of the linear correlation coefficientR between
targets and outputs.

Input Target Linear Neural
variables regression networks

Est Return time 0.920 0.991±0.006
Est Eret 0.367 0.559±0.037
Return time Eret 0.109 0.702±0.026
Est + Return time Eret 0.679 0.960±0.019

From Pelino and Maimone (2007) it is known that these
return times are quite precisely determined by the knowledge
of Est (or Casimir) and this is substantially due to a sort
of “quantisation” of their values, as shown in Fig. 3: the
“band structure” of the return times is well described in the
same paper, too. As a matter of fact, a network endowed
with Est as input, return time as target and 10 neurons in
a single hidden layer is able to catch this relationships as
shown, for instance, by the performance in predicting the
values of return time on the test set, summarised in the first
row of Table 1. In this table the error bars associated with
NN forecasts are derived by ensemble runs of the model
performed for networks with the same topology but endowed
with different initial random weights, so that the networks
themselves are able to widely explore the landscape of the
cost function. The interval indicates±2 standard deviations.

After this preliminary test, the main task of predicting the
target values of maximum return energy is tackled. Some
attempts are performed by considering just one predictor
(Est or return time) at once. Even if the performance of
these networks is much better than linear regressions (see
Table 1), these results are not accurate enough and do not
supply us with a satisfying forecast of the return energy
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Fig. 4. Results of NN forecasts: outputs (Eret predictions) vs.
targets (Eret real values) on the test set.

values. Thus, a new network characterised by topology 2-
20-1 is now trained for this task. Here,Est and return time
are the inputs (predictors) andEret is the target (predictand).
Empirical tests show that an amount of 20 neurons in a single
hidden layer is enough to correctly capture the underlying
function linking the data and not so high to lead us to fall
into overfitting problems.

If Table 1 supplies us with an index of clear increase in
performance, an analysis of Figs. 4–7 permits to achieve a
deeper insight of the neural results.

In Fig. 4 the scatter plot of NN outputs (Eret predictions)
vs. targets (Eret real values) is shown on the test set. Due
to the high correlation coefficient shown in Table 1, one
foresees a cloud of points quite closed to the bisecting line
and somewhat homogeneous. As a matter of fact, the points
are closed enough to the bisecting line, if we exclude the
poorer performance for high energies, but, in any case, the
graph seems quite strange: the cloud is not homogeneous
and several preferred lines are visible. May we suppose
this is due to the structure of our data, in particular to the
“quantised” band structure of return times?

In order to test this hypothesis, the results ofEret
predictions are divided into classes, one for each band of
return times: in Fig. 5 the results for the first eight classes
(# 1, . . . , # 8) are shown. It is now clear that each preferred
line visible in Fig. 4 is associated with a different band of
return times.

From Figs. 4–5 a decrease in performance for high
energies, especially for high bands of return times, is also
evident. The reason for this lack of performance can be
twofold. First of all, in these regions we find just a few
points and we have a poor statistics for the training of NNs.
Secondly, the dynamics of the Lorenz system implies that
at high starting energies a little change (error) inEst leads
to a big change (error) inEret. Look at Fig. 6, where the
blue squares show the dynamical law linkingEst andEret:
the blue curves become more and more vertical as starting
energy increases.
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Fig. 5. Results of NN forecasts: outputs (Eret predictions) vs.
targets (Eret real values) on the test set for the first eight classes
of return-time bands.
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Fig. 5. Continued.

Also Fig. 6 helps us to recognise the goodness of NN
forecasts and their correct reconstruction of the dynamical
law for medium-low starting energies. Furthermore, this
figure shows that the performance of NN nonlinear model
overwhelms the poorest performance of the multi-linear
regression.

Finally, in Fig. 7 the results of our 1-step forecast for
return energy are presented on a specific subset. One can
see that the prediction results cover almost completely the
curve representing the dynamical relationship betweenEst
andEret.

In summary, a simple NN model fed by data about
maximum starting energy on a lobe and return time has
shown its ability to predict the value of maximum return
energy when the trajectory is back on the same lobe of the
Lorenz system.
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Fig. 6. Dynamical relation between starting energy maxima and
return energy maxima (blue squares), NN forecasts (red diamonds)
and multi-linear forecasts (green triangles) on a sample of the test
set.
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Fig. 7. Example of NN prediction (red line) of the real values of
maximum return energy (blue line) on a subset of the test set.

5 Conclusions and prospects

In this paper, we adopted a unified formalism which
previously showed the importance of considering energetic
maxima for achieving an increased predictability in the
Lorenz system. This formalism led to a quite precise
determination of return times referred to the transitions from
a lobe to the other one. Nevertheless, in Lorenz dynamics
little uncertainties in starting energy are related very often to
high uncertainties in return energy, so precluding successful
iterated predictions of regime transitions.

In this chaotic framework, we analyse the chance of
identifying an empirical tool which is able to capture the
relation between maximum starting energy and maximum
return energy, thus supplying us with a first correct step
towards a possible long-term prediction of regime transitions
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on the Lorenz attractor. A NN model has shown good results
in predicting return energy once fed by data about starting
energy and return time.

Here, simple multi-layer perceptrons are applied and
prediction is limited to 1-step forecasts. As prospects of
further research, application of improved NN models is
planned and multi-step forecasts are envisaged.

Furthermore, the formalism adopted here can be applied
also in the case of more general and realistic N-dimensional
fluid-dynamical systems, such as those discussed in Pelino
and Maimone (2007). Thus, we are confident that our
dynamical and NN approach can be pursued to catch
some features of dynamics and predictability of the real
atmosphere, too.
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