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Abstract

Chaotic itinerancy is complex behavior in high-dimensional dynamical systems
characterized by itinerant motion among many different ordered states through
chaotic transition. In this study, we robustly observe this behavior in a model
of regional business cycles, in which all regions are homogeneous and connected
through producers’ adaptive behavior based on global information. Although pro-
ducers adjust their output quite slowly toward the average level announced by the
government, regional business cycles begin to synchronize due to the entrainment
effect. Moreover, the economy is more likely to exhibit chaotic itinerancy when
the producers emphasize the expected-profit-maximization and when they adjust
their expectations more slowly toward the average. It is also clarified that behind
the dynamics of chaotic itinerancy exist cycles among periodic orbits with different
unstable directions, which is called unstable dimension variability.
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1 Introduction

Business cycle synchronization has become a topic of growing interest from around the
end of the twentieth century (Antonakakis, 2012; Baxter and Kouparitsas, 2005; Yetman,
2011). The vast empirical literature elucidates a fact that countries with intensified
trade linkages have resemblant business cycles, which Selover and Jensen (1999) and
Süssmuth (2003) explain by proposing a nonlinear mode-locking model. Mode-locking is
an inherently nonlinear linkage phenomenon; cycles of different elements are synchronized,
i.e., attain mode-lock, when the strength of the linkage between oscillating elements
reaches a certain threshold.

On the other hand, with the exception of a stylized fact that fluctuations in different
regions of a national economy are inclined to synchronize with each other (Carlino and
Sill, 2001; Clark and van Wincoop, 1999; Rissman, 1999), little is known about the busi-
ness cycle synchronization across subnational regions within a country, as mentioned by
Kouparitsas and Nakajima (2006). One possible hypothesis about subregional synchro-
nization is that it may occur due to common exogenous shocks such as national fiscal and
monetary policies, sudden changes in world commodity prices, fads among consumers,
and so forth. However, several studies find that common shocks do not seem to be the
cause of such synchronization (Carlino and DeFina, 1995; Kozlowski, 1995). Another
hypothesis is that the synchronization may be caused by trade linkages between different
regions of the economy. A nonlinear mode-locking model is again proposed by Selover et
al. (2005) under a scenario in which the cycles of different regions synchronize through
interregional trade linkages.

It has been well-known that multiple oscillators may synchronize if they directly
interact with each other, since the discovery of synchronization of coupled pendulum
clocks by Huygens in the seventeenth century. In this sense, a scenario of regional business
cycle synchronization through interregional trade linkages is probable and realistic, but
rather straightforward and obvious. In contrast, it is also well-known that Southeast
Asian fireflies within a given tree (or even larger area) begin to flash simultaneously
as night falls. There is no direct interaction among the fireflies; instead, each firefly
is considered to sense others’ flashes and adjust its behavior sensitively to the global
information. Then an intriguing question arises: do the same mechanisms lie in regional
business cycle synchronization? Onozaki et al. (2007) answer this question affirmatively
by proposing another hypothesis that regional business cycles may synchronize through
producers’ adaptive behavior based on global information which government announces.
They study a system of globally coupled maps (GCM) each of which is nonlinear and may
behave chaotically depending on parameter values, and illustrate how synchronization
occurs and how complex its process is.　　　

It would be better to give a short account of a GCMmodel here, which is first proposed
by Kaneko (1990). It is represented as follows:

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

N

N∑
j=1

f(xj(t)), i = 1, · · · , N, (1)

where xi(t) denotes the value of the ith element at discrete time period t, and N the num-
ber of elements. A map f(x) describes each element’s endogenous dynamics. Usually a
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noninvertible map is utilized as f(x) that may exhibit chaotic behavior. The second term
on the right-hand side of (1) represents the global interaction of each element through the
mean field, i.e., a uniform, all-to-all interaction. Therefore, two opposite effects coexist:
the all-to-all interaction is inclined to synchronize all elements, and the chaotic instability
in each element tends to desynchronize them. Depending on the value of ε ∈ (0, 1), i.e.,
the balance between these two effects, the GCM model exhibits a rich variety of complex
phenomena including chaotic itinerancy (Kaneko, 1990) 1. The term describes the phe-
nomenon of an orbit successively itinerating among many ordered states through chaotic
transitions in dynamical systems. The phenomenon was independently discovered in a
model of optical turbulence by Ikeda et al. (1989), a globally coupled chaotic system by
Kaneko (1990), and nonequilibrium neural networks by Tsuda (1990). The terminology
was coined by its discoverers to denote universal dynamics in a class of high-dimensional
dynamical systems (Kaneko and Tsuda, 2000). In an economic context, Yasutomi (2003)
studies the emergence and collapse of money in a computer simulation model from the
viewpoint of chaotic itinerancy.

In this study, we reexamine the model of Onozaki et al. (2007), and robustly observe
chaotic itinerancy for various constellations of parameters as well as various complex
phases of regional business cycle synchronization. The remainder of the paper is organized
as follows. Section 2 describes a regional business cycle model. Section 3 discusses chaotic
itinerancy occurring in the model. Section 4 characterizes chaotic itinerancy compared
with of on-off intermittency. The last section concludes the paper.

2 Model

The economy consists of N regions, each with a separate market which is imperfectly
competitive. There are many producers in each region, and each producer produces ho-
mogeneous goods and delivers them only to the market of its own region. Goods are
perishable and cannot be carried over to the next period. Consumers are uniformly
distributed over all regions and purchase goods from the market they belong to. We
assume that there is no interregional trade in order to concentrate on the effect of pro-
ducers’ adaptive behavior based on global information 2. The government announces
the average price and output for all regions in each period, and each producer adjusts its
production based on this information; i.e., regions are linked via global information. Each
producer decides the next period’s output, considering the average prices and outputs as
reference levels. Producer’s decision-making process consists of the following three steps.

First, at period t, each producer in the ith region expects that the actual price pi(t)
in his market will be adjusted adaptively at period t + 1 toward the announced average

1It is sometimes discussed from the viewpoint of Milnor attractor (Milnor, 1985).
2If considering interregional trade, we have to assume a new economic agent, distributor, who has a

behavioral objective completely different from that of producer. This makes the model much complicated
and far intractable.
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level p̄(t) := (1/N)
∑N

j=1 pj(t) with an adjustment speed ε ∈ (0, 1) such that

pei (t+ 1) = pi(t) + ε(p̄(t)− pi(t))

= (1− ε)pi(t) +
ε

N

N∑
j=1

pj(t), (2)

where superscript e denotes expectations. Under this price expectation, each producer
calculates the output level, x̃i(t + 1), maximizing the expected profit subject to the
production cost x2/2. The resulting amount is

x̃i(t+ 1) = pei (t+ 1). (3)

Second, each producer dislikes discrepancies between the actual output level at period
t, xi(t), and the average level announced by the government, x̄(t) = (1/N)

∑N
j=1 xj(t),

and intends to resolve them. For this purpose, he sets a provisional target of output
x̂i(t + 1) so as to adjust the actual output toward the average level with an adjustment
speed ε ∈ (0, 1):

x̂i(t+ 1) = (1− ε)xi(t) + εx̄(t)

= (1− ε)xi(t) +
ε

N

N∑
j=1

xj(t). (4)

Third, each producer determines a final output plan as a weighted average of pro-
visional target x̂i(t) and expected-profit maximizing output x̃i(t + 1) with a weight
ϕ ∈ (0, 1). The resulting formula is as follows:

xi(t+ 1) = (1− ϕ)x̂i(t+ 1) + ϕ x̃i(t+ 1)

= (1− ϕ)(1− ε) xi(t) + (1− ϕ) ε x̄(t) + ϕ x̃i(t+ 1). (5)

Since the sum of the above three coefficients on the right-hand side is unity, we can para-
phrase the producer’s decision making as follows: Each producer’s output is determined
as a weighted average of xi(t), x̄(t), and x̃i(t+ 1).

The individual demand for each producer’s output is described by a monotonic inverse
demand function as follows:

pi(t) =
1

(yi(t))η
, (6)

where yi(t) is the individual demand and η > 0 is the inverse of the price elasticity of the
demand. At each period, prices are determined in each market for equilibrating supply
and demand. By substituting (2), (3), (4), and (6) into (5), we obtain a GCM model (1)
with a noninvertible map as follows:

f(x) = (1− ϕ)x+
ϕ

xη
, (7)

the behavior of which is well studied by Onozaki et al. (2000) and known to exhibit
chaotic behavior depending on a set of parameters. The larger ϕ and η are, the more
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likely the economy behaves chaotically. After all, the regional business cycle model to be
analyzed in this study consists of (1) and (7).

In what follows, we concentrate on the cases with N = 10 (Section 3) or N = 2 (Sec-
tion 4). Unless otherwise noted, η, ϕ, and ε are fixed as 3.5, 0.7, and 0.315, respectively 3.
We randomly select initial conditions xi(0) (i = 1, · · · , N) from the range [0.5, 1.5]. Note
that one-dimensional map x(t + 1) = f(x(t)) can generate chaotic behavior through a
period-doubling bifurcation as ϕ increases (Fig. 1).

0.4 0.6 0.8 1

0

2

4

6

8

10

x

x

φ

Fig. 1: Bifurcation diagram of one-dimensional map xt+1 = f(xt) with respect to ϕ. The map can
generate chaotic behavior through a period-doubling bifurcation as ϕ increases.

3 Chaotic Itinerancy

This section investigates chaotic itinerancy in the regional business cycle model (1) and
(7). Chaotic itinerancy is a typical phenomenon occurring in high-dimensional chaotic
systems. In its presence, an orbit wanders among different states of complexity (Kaneko
and Tsuda, 2000). We first show the time developments of the model in Fig. 2. In
coupled systems, separate oscillators sometimes synchronize, i.e., a phenomenon called
entrainment. A set of synchronizing oscillators is called a cluster. Ten types of regimes
(from one-cluster to 10-cluster regime) appear in the model’s behavior. The one- and
10-cluster regimes are shown in Fig. 2 (lower left, lower right).

To characterize chaotic itinerancy, we define the effective dimension and its mean
(Komuro, 2005). The effective dimension (ED) of a point x(t) = (x1(t), x2(t), · · · ,
xN(t)) ∈ RN with the precision δ, denoted by ED(x(t), δ), is defined simply as a number
of clusters. Here, variables within a distance δ are considered to belong to the same
cluster 4. We rewrite the model (1) and (7) as a map F : RN → RN which is defined as
follows:

x(t+ 1) = F (x(t)).

Then the mean of the effective dimension (MED) of an orbit {x(t)} with the precision δ

3Onozaki et al. (2007) show that the very long transient behavior exists when the system dimension
N is fixed as 100 and the parameter η is selected from the range [1.0, 8.0].

4The value of δ is fixed as 10−4 throughout this paper.
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Fig. 2: Time development of xi(t) (i = 1, · · · , 10) (upper) and its enlargements. The one-cluster regime
(lower left) and the 10-cluster regime (lower right) are observed.

for lasting time τ 5 is defined as follows:

MED(x, δ, τ) =
1

τ

τ−1∑
t=0

ED(x(t), δ).

Because of entrainment effect, synchronization strengthens and the economy remains for
some time within the one-cluster regime (ED = 1), which is called a laminar state. Then,
the economy leaves the regime and wanders among various regimes, which are called
burst states, until coming back to the laminar state. This process is repeated for an
extended period (Fig. 3).

In Fig. 4, the distribution of lasting time within the regime of ED = 1 is shown to
obey a power-law with an exponent estimated to be −3/2 (Heagy et al., 1994) 6. For
other regimes of ED = 2, 5, 10 the same distributions are found for shorter periods of
time, suggesting that each regime has a mechanism to trap an orbit staying in the regime.
The MEDs of lasting time τ = 105 are calculated after the transients of 105 iterations
for various εs as shown in Fig. 5. An integer MED indicates that the economy remains
in the same regime over 105 iterations. A non-integer MED indicates that the economy
wanders among various regimes of different EDs.

As shown in Fig. 6, we calculate MEDs of the economy by changing a set of parameters
(ϕ, ε), and identify the parameter region (ϕ, ε) where MEDs are non-integers, indicating

5The value of τ is fixed as 105 throughout this paper.
6This kind of power-law distributions are observed in a well-known critical phenomenon called Type

III intermittency in a low-dimensional system, but they are not robust in a parameter space. In contrast,
the distributions in our model are robustly found.
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Fig. 3: Time development of effective dimension (ED) of the economy. It primarily remains within the
one-cluster regime (ED = 1). Once it departs from the regime, it wanders among various regimes of
different EDs until coming back to the one-cluster regime.
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Fig. 4: Distribution of lasting time T for remaining in a regime of ED (= 1 (upper left), 2 (upper right),
5 (lower left), and 10 (lower right)). The distribution for ED = 1 is shown to obey a power-law with an
exponent estimated to be −3/2 as indicated by the straight line. For other regimes of ED = 2, 5, 10 the
same distributions are found for shorter periods of time.

that the economy wanders among various regimes 7. Fig. 6 shows the robustness of
chaotic itinerancy with respect to large ϕ and small ε. When the producers emphasize

7The MEDs are calculated from 10 randomly chosen initial conditions xi(0) (i = 1, · · · , 10) after
neglecting transitions of 103 iterations. If the average is non-integer, the corresponding set of parameters
(ϕ, ε) is plotted in Fig. 6. These calculations are performed for 105 points in a parameter region (ϕ, ε).
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Fig. 5: The MEDs of lasting time τ = 105 of the economy with respect to ε. A non-integer MED
indicates that the economy wanders among various regimes of different clusters (EDs) (left). The graph
of 10−MED for ε ∈ [0, 0.1] (right: logarithmic scale) shows that its value is not zero, implying that the
orbit wanders among various regimes.

the profit maximization more (larger ϕ) and when they adjust their expectations more
slowly toward the average announced by the government (smaller ε), the more likely
the economy will exhibit chaotic itinerancy. By comparing the bifurcation diagram of a
single map (Fig. 1) with Fig. 6, it is apparent that the model shows complex behavior
with multiple regimes around bifurcation points and chaotic regions of a single map. If
a single map (7) is nonhyperbolic in some parameter regions, the GCM (1) can easily
destroy the respective dynamics of ED = 10 8. This can generate chaotic itinerancy by
the extremely small perturbation described by the coupling parameter ε.

φ
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1

φ
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10
−10
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−7

10
−4

10
−1

1

Fig. 6: Parameter region (ϕ, ε) where the economy wanders among various regimes during τ = 105

iterations from 10 initial conditions after the transients of 105 iterations (left). An enlargement of the
left figure in logarithmic scale (right).

8As ε is not infinitely small, the same phenomena can be obtained for f(x) having weak hyperbolicity.
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4 Detailed Structures of Chaotic Itinerancy

This section focuses on the two dimensional map 9

x1(t+ 1) = (1− ε)f(x1(t)) +
ε

2
{f(x1(t)) + f(x2(t))},

x2(t+ 1) = (1− ε)f(x2(t)) +
ε

2
{f(x1(t)) + f(x2(t))},

where f(x) is the same map as (7), and studies chaotic itinerancy especially from the view-
point of routes between synchronized and desynchronized states in subsection 4.2 (Alexan-
der et al., 1992) and the unstable dimension variability in subsection 4.3 (Kostelich et al.,
1997; Bonatti et al., 2005). This is because complex behavior wandering among multiple
states is observable even in a two dimensional map, which is called the on-off intermit-
tency (Fujisaka and Yamada, 1983a, b; Pikovsky and Grassberger, 1991; Glendinning,
2001). We first discuss this point in the next subsection.

4.1 Behaviors in the Two Dimensional Map

Time series of x1 − x2 are depicted in Fig. 7 (left), showing the on-off intermittency
between a synchronized state (ED = 1) and a desynchronized state (ED = 2). The
former is a laminar state where a point (x1, x2) stays in the diagonal line (x1 = x2), and
the latter a burst state where a point (x1, x2) deviates from the diagonal line (x1 ̸= x2)
(Fig. 7 (right)).
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−0.5
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0.5
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4

5

Fig. 7: Time series of x1−x2 (left). Phase space dynamics in (x1, x2) plane (right). On-off intermittency
between a synchronized (laminar) state and a desynchronizwd (burst) state is observed.

Next we shed light on the lasting time of laminar and burst states as seen in the
ten dimensional map. The distribution of laminar lasting time in a regime of ED = 1
is shown to obey a power-law with an exponent estimated to be −3/2 (Fig. 8). For
ED = 2 the same distribution can be found for the shorter period of time. The results
are qualitatively the same as the cases for the ten dimensional map (Fig. 4). Fig. 9 shows
a parameter region where the system shows chaotic itinerancy. This also implies that

9This is identical to the ten dimensional map (N = 10) where the initial conditions are given as
x1(0) = x3(0) = x5(0) = x7(0) = x9(0) and x2(0) = x4(0) = x6(0) = x8(0) = x10(0). If (x1(t), x2(t)) is
the solution, (x2(t), x1(t)) is also the solution due to the symmetry inside the system.
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Fig. 8: Distributions of lasting time T for remaining in a regime of ED = 1 (left) and ED = 2 (right).
The distribution for ED = 1 is shown to obey a power-law with an exponent estimated to be −3/2
as indicated by the straight line. The same distribution can be found with respect to ED = 2 for the
lasting time T shorter than 102.

the chaotic itinerancy in the two dimensional map is qualitatively the same as that of
the ten dimensional map (Fig. 6). The fact is adequate for our concentration on the low
dimensional map in this section although it is said that chaotic itinerancy is a typical
phenomenon mainly in high-dimensional chaos.

φ

ε

1

1

Fig. 9: Parameter region (ϕ, ε) where the economy wanders among various regimes during τ = 105

iterations from 10 initial conditions after the transients of 105 iterations.

4.2 Routes between Laminar and Burst States

We investigate routes from a burst state to a laminar state by comparing a set of initial
points in a burst state, reaching a laminar state within seven iterations for two values
of ε: one is the value where chaotic itinerancy is observed as an attractor (ε = 0.315;
Fig. 10) and the other where chaotic behavior within a laminar state is observed as an
attractor (ε = 0.7; Fig. 11) 10. These figures imply that two nearby initial points are more
likely to exhibit completely different behavior within a few iterations for the parameter
of chaotic itinerancy than for the parameter of a chaotic attractor in a diagonal line. One
dimensional complex route characterizing basin of attractions within a finite number of

10Among 107 initial points chosen from (x, y) ∈ (0, 5)× (0, 5), points reaching a laminar state within
seven iterations are plotted in these figures.
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iterations shows fractality (Alexander et al., 1992; Viana and Grebogi, 2000, 2001). As
the number of iterations increases, almost one dimensional complicated set is identified.
Furthermore, transient time before reaching a laminar state tends to be long at this
parameter value where the system shows complex behavior wandering among multiple
states.

1 2 3 4 50
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4

5

3 4
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4

Fig. 10: Routes from a burst state to a laminar state (ε=0.315) (left) and its enlargement (right).
Transient time before reaching a laminar state tends to be long at this parameter value where the
system shows complex behavior wandering among multiple states.
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Fig. 11: Routes from a burst state to a laminar state (ε=0.7) (left) and its enlargement (right).
Transient time before reaching a laminar state tends to be long at this parameter value where the
system shows complex behavior wandering among multiple states.

On the other hand, initial points in a laminar state, reaching a burst state within
n (= 1, 2, 3, 5, 10, or 20) iterations, are depicted in Fig. 12. They show that the orbit
tends to stay at smaller x1(= x2) values just before leaving the laminar state. They also
implies that an exit from a laminar state to a burst state (around x = 1) is unstable in
the direction perpendicular to the diagonal line.

4.3 Unstable Dimension Variability in Chaotic Itinerancy

Unstable dimension variability is characterized by the existence of cycles among invari-
ant sets with different unstable directions 11. Tsuda (2009) conjectured that unstable
dimension variability can be a key to understand the dynamics of chaotic itinerancy. In
this subsection, we confirm that unstable dimension variability is observed in the two

11Homoclinic tangency and unstable dimension variability (hetero dimensional cycle) are thought to
be typical structures which break hyperbolicity (Bonatti et al., 2005).
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Fig. 12: Routes from a laminar state to a burst state (ε=0.315). Among 107 initial points chosen from
(x, y) ∈ (0, 5) × (0, 5), points reaching a burst state within 1, 2, 3 iterations (upper three, respectively)
and 5, 10, 20 iterations (lower three, respectively) are plotted. It is implied that an exit from a laminar
state to a burst state (around x = 1) is unstable in the direction perpendicular to the diagonal line.

dimensional map through identifying unstable periodic orbits with different unstable di-
rections embedded in an attractor of on-off intermittency and confirming the existence
of cycles among neighborhoods of the unstable periodic orbits.

Unstable periodic orbits play an important role in characterizing chaotic systems
including a system of chaos synchronization (Zhao et al., 2005). A number of unstable
periodic orbits with periods up to 20 are depicted in Fig. 13. The upper graph shows
all the points of the detected periodic orbits, which almost covers the chaotic attractor
(Fig. 7 (right)). We distinguish the periodic orbits by the trajectory in the phase space.
A laminar periodic orbit is labeled if all points along the orbit stay in the laminar state,
while a burst periodic orbit is labeled if at least one point on the orbit goes away from the
laminar state. Among all the burst periodic orbits we classify the repeller (Fig. 13 (lower
left)) and the saddle (Fig. 13 (lower right)) by the number of unstable directions. On
the other hand, the distribution of x1 is investigated for laminar periodic orbits. Fig. 14
represents the distribution of saddles (left) and repellers (right) 12. It is found that
repellers tend to distribute around a repelling fixed point (x1, x2) = (1, 1).

Examples of time series of four types of periodic orbits are depicted in Fig. 15. The
upper left corresponds to burst saddle (period 4), the upper right to burst repeller (period
6), the lower left to laminar saddle (period 10), and the lower right to laminar repeller
(period 4). These imply that repellers tend to stay longer time around (x1, x2) = (1, 1).

In order to investigate how close a chaotic trajectory is to those four types of periodic
orbits, we calculate distances between a chaotic trajectory and each periodic orbit in
Fig. 16. The graphs show that a chaotic trajectory tends to approach to a point on
each of four periodic orbits, implying the existence of an unstable dimension variability
(heterodimensional cycle). That is, both saddles and repellers are embedded in both
laminar and burst states and the connecting orbits among them exist.

12Here the bin width of the histogram is 0.1.
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Fig. 13: Distributions of unstable periodic orbits with periods up to 20 (upper). Distributions of burst
repeller (lower left), burst saddle (lower right).
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Fig. 14: Histograms of a laminar saddle (lower left) and a laminar repeller (lower right). The former
does not distribute around a fixed point (x1, x2) = (1, 1), but the latter does.

5 Conclusion

In this study, we have robustly observed chaotic itinerancy and investigated its detailed
structures in a model of regional business cycles coupled through producers’ adaptive
behavior based on global information. The following results are obtained:

i) The economy wanders among various regimes featuring different numbers of clus-
ters for particular constellations of parameters. Only a small coupling effect is
required for this phenomenon to occur. This implies that although all regions or
agents are economically homogeneous, the situation should not compel attention to
a “representative” region or agent; all must be considered simultaneously.
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Fig. 16: Distance between a chaotic orbit x(t) showing chaotic itinerancy and some point xUPO on each
periodic orbit d(t) = minτ⩽t dist(x(τ), xUPO), where dist(·, ·) denotes the Euclidean distance between
two points (burst saddle in Fig. 15 (upper left), burst repeller (upper right), laminar saddle (lower left),
laminar repeller (lower right)). All of them are shown to be passed by a chaotic itinerancy.
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ii) When the producers emphasize the profit maximization and when they adjust their
expectations slowly toward the average level announced by the government, the
more likely the economy will exhibit chaotic itinerancy.

iii) Behind chaotic itinerancy unstable dimension variability (heterodimensional cycle)
may exist. This is identified by finding unstable periodic orbits with different
number of unstable directions embedded in an attractor showing chaotic itinerancy,
and cycles among them.

The dependency of occurrence of chaotic itinerancy on the system dimension remains
an important issue for future work. The mechanism of the robustness of the phenomenon
is to be clarified.
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