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Introduction 

A large number of small-size water purification devices has been developed to 
provide population and EMERCOM units with water (Vasiliev, 2008; Vasiliev, 
2005; Naidenko, 2007). Since the spectrum of waters in terms of contaminants is 
quite broad, as for their dispersity, solubility and degree of infection by 
pathogens, the design of small-size water treatment installations should take it 
into consideration. Moreover, the small-size water purification units must protect 
from coarse contaminants as well. Otherwise, the subsequent blocks of water 
purification from fine soluble contaminants will be “intoxicated”. As a rule, 
stationary granular layers of silica sand, activated charcoal and other sorbents 
are used for this purpose. But the principal role in the small-size water 
purification units is played by water disinfection blocks. At present, more often 
ozone is used as a disinfection agent. It can be easily produced from air provided 
a source of electricity is available. Together with water ozone is fed via the inlet 
into a sorbent granular layer.  

Today the processes of interaction of ozone molecules with microbes in the flow 
of water, with dissolved or suspended contaminants, have not been completely 
studied. This interaction has become significantly complicated, when water is 
filtered through a granular layer of sorbent. For instance, if the adsorption of 
ozone molecules on the surface of the sorbent’s macro- and micropores is higher 
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than that of the microbes, water disinfection should be done before the granular 
layer. Bellow the analytical and numerical data on mass transfer of a water 
component adsorbed by the surface of the granular layer’s macro- and 
micropores are given. The analytical findings were obtained with the help of the 
Henry sorption isotherm. The numeric and asymptotic data were obtained for the 
increasing concentration of the Langmuir convex isotherm.  

The NNGASU Chair of water supply and sewage has developed a device for 
water purification and ozonation (Figure 1) (Koposov, 2011). It consists of three 
blocks. The bottom cone section of the installation is made in the form of a 
hydrocyclone for cleaning influent water from coarse suspended particles. The 
axially arranged discharge zone for ozone production and filter cartridge with a 
granular layer of activated charcoal are located in the top section of the device. 

 
Figure 1. Water purification installation 1. body; 2. botton cone section; 3. cooling jacket; 4. high 
voltage electrode; 5. low voltage electrode; 6. discharge zone; 7. compressed dried gas inlet pipe; 

8. ozone inlet pipe; 9. influent water inlet pipe; 10. ejector; 11. ozonized water outlet pipe; 12. 
mesh; 13. influent water section; 14. cartridge with filter medium; 15. purified water section; 16. 

high voltage feeder 
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This paper addresses processes of mass transfer in a stationary granular layer of 
activated charcoal. Quite a number of articles (Aerov, 1979; Lykov, 1978; 
Lykov, 1963) were dedicated to the study of thermal mass transfer in a 
stationary granular layer. Conventionally, they can be divided into two groups. 
In the first type local potentials of mass transfer (temperature, component 
concentration) of liquid and solid phases are different. Researches in these 
papers are dedicated mainly to the determination of internal coefficients of heat 
and mass transfer. In the works of the second type, being an extreme case of the 
first type at very large internal coefficients of heat and mass transfer, 
temperatures of the solid body or component concentrations in the micropores of 
the solid body and liquid are almost the same at any point of the granular layer. 
A similar stationary problem of heat transfer was solved, for example, in 
(Isachenko, 1981). Mathematically, the problems of the first type are similar to 
those of the sorption of porous sorbents.  

Methodology 

The granular layer of activated charcoal has porosity П=0,37–0,42. Grains of 
this layer represent a capillary-porous material. According to (Lykov, 1978) this 
material possesses macro capillaries of radius r≥10-5 cm and micro capillaries 
r≤10-5 cm, activated charcoal density ρ=1780 kg/m3, volume of macro capillaries 
0.87 m3/m3, volume of micro capillaries 0.856 m3/m3. A volumetric part of the 
micro capillaries equals 0.986. The surface and volume of macro and micro 
capillaries of the activated charcoal grains determine significantly the statics 
(volume) and kinetics of sorption. At the water flow via a granular layer V=150 
L/h=0.0000417 m3/s and cross-section area of the granular layer F=0.0311 m2 
the water velocity at the layer inlet will be w0=V/F=0.0000417/0.0311=0.00134 
m/s. The water velocity in the layer w=w0/П=0,00134/0.4=0.00335m/s. The 
diffusion coefficient for liquids Di ~ 10-9 m2/s. If the equivalent diameter of the 
activated charcoal grains ~5 mm, the diffusion Péclet number will constitute 
Pe=wd/Di=3.35*5*103>>1. 

Since the Péclet number is large, the diffusion mass transportation can be 
neglected as compared with the convection transportation. 

Let us denote the quantity of the i-component of water absorbed by a unit of 
volume of activated charcoal with СiA(x,τ). And the concentration of the water i-
component in the pores of the activated charcoal granular layer – as Сi (x,τ). 
Where x is a coordinate along the water flow running through the layer, τ is the 
time. Let us calculate the mass balance of the water i-component during the 
infinitely small period of time dτ for the infinitely fine granular layer dx of the 
cross-section area F. The mass wCixFdτ of the i-component is taken to the layer 
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during this time. For the same time, the mass of the i-component outflowing 
through the cross-section (x+dx) is wCi(x+dx)Fdτ. The difference between the 
intake and discharged mass is (Сix-Ci(x+dx))wFdτ. Since the component 
concentration is a continuous function of the coordinate х, it can be presented as 
a Taylor series. Because dx is small, this expansion can be limited by just two 

first terms of the series (linear approximation) 
dx

x
CCС i

ixdxxi ∂
∂

+=+ )(
. Then 

the difference between the intake and discharged mass is 
τwdFdx

x
Сi ⋅⋅
∂
∂

−
. 

According to the principle of mass conservation, this mass will increase 
concentrations of the adsorbed component and that in the pores of the granular 
layer: 

 

 

Equaling these two relations and reducing them by Fdxdτ, 

                                     

( )
τ∂
+∂

=
∂
∂

− iiAi CC
x
Сw

.                                               (1) 

There are two unknown functions in this equation; therefore, we add an equation 
of kinetic sorption in it (Gerasimov Ya. et al., 1970): 

                                           
( )iRi

iA CCC
−=

∂
∂ β
τ ,                                               (2) 

where β is the kinetic coefficient; СiR is the concentration of component being in 
equilibrium with the adsorbed component. 

The relation between CiA=f(CiR) is called an isotherm of sorption. There are 
various types of sorption isotherms (Gerasimov et al.,1970). For analysis in this 

paper the Henry isotherm 
iRiA CC

γ
1

=
 is used, where 1/γ is the constant 

coefficient. It represents an individual case of the Langmuir isotherm for small 
concentrations of component:  
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where p is the constant of the adsorption balance. 

For small concentrations of component 0i

iR

C
Cp

<<1, the Langmuir isotherm 
degrades into the Henry isotherm. For example, application the Langmuir 
isotherm would have made the system of equations (1) and (2) non-linear, 
excluding analytical solution and requiring numerical integration.  

Substituting the Henry isotherm in equation (2) and neglecting Ci as compared 
with CiA, we obtain: 

                                      
,

τ∂
∂

=
∂
∂

− iAi C
x

Cw
                                                       (3) 

                               
( )iAi

iA CCC γβ
τ

−⋅=
∂
∂

  .                                                  (4) 

Let us add initial and boundary conditions to these differential equations: 

                                       ,0)0,( =xCiA                                                             (5) 

                                       0),0( ii CC =τ       .                                                     (6) 

If we exclude CiA(x,t) from the system of differential equations (3) and (4), we 
will get an equation to calculate fields of component concentrations Ci(x,t) in the 
pores of the activated charcoal granular layer. And the other way round, if Ci(x,t) 
is excluded from the system of differential equations (3) and (4), an equation to 
calculated the concentration fields CiA(x,t) of adsorbed components by the grains 
of the activated charcoal will be obtained. Since in our experiment the 
concentrations of components in water were measured on the outlet of the 
granular layer, it makes sense to exclude CiA(x,t) from the system. For this 
purpose, differentiating equation (3) by time and using equation (4), we obtain: 

                  x
CwCCC

x
Cw iiiAii

∂
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+
∂
∂

=
∂
∂

−
∂
∂

=
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Finally, we have the differential equation for calculating concentration fields of 
components in the pores of the granular layer: 
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To find the initial condition Ci(x,0), taking into account eq. (4) let us assume in 
equation (3) τ=0, then the differential equation will be as follows: 

                                

( ) ( )0,0, xC
x
xCw i

i ⋅=
∂

∂
− β

                                               (9) 

Dividing its variables and integrating them, taking into account boundary 
condition (6), we obtain the initial condition: 

                               
( ) ⎟

⎠
⎞

⎜
⎝
⎛ ⋅−⋅= x

w
CxС ii

βexp0, 0
                                            (10) 

The boundary condition accordingly has the following form: 

                                               0),0( ii CC =τ                                                     (11) 

A problem of granular layer heating with gas at a constant temperature at the 
layer’s inlet is solved by the same differential equation (8). The solution of this 
equation in the form of series was obtained by Schumann (Aerov, 1979). Erugin 
(Lykov, 1963) has found the most general solution of this equation, which for 
our case his the following view: 
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where γ
τββ

=
⋅

= t
w

xX ,
 are the non-dimensional coordinates and time 

respectively. I0 (u) is the imaginary zero-order Bessel function of the first kind. 

Equation (12) for large periods of time Z can be arranged in other way, more 
convenient for calculations. For this purpose let us re-write the integral in the 

right-hand part of eq. (11) introducing new variable 2 τ = у: 

                                 
( ) ( ) dyyyIedIe

tX
X

ytX
X

0

2

0

4
0

0

2

2
12 ∫∫

−−
=ττ
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            (13) 

In (Gradstein, 1971) the integral was calculated for τ=∞, which at ν=0; α=¼Х; 
β=1; γ=0 is equal to integral (12) at t=∞: 
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But integral (12) can be expressed as a difference of two integrals: 
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Then equation (11) can be written in the form: 
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At large values of 22 ≥tX , the Bessel function under the integral sign can be 
replaced by its asymptotic formula:  
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In work (Tikhonov, 1972)  the system of non-dimensional differential equations 
of sorption was integrated numerically by the finite difference method: 

                                             t
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where 0i

i

C
C

u =
 is the non-dimensional concentration of the i-component. 

For the non-dimensional Langmuir isotherm: 
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at the boundary and initial conditions: 
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Figure 2. Dependence of the non-dimensional concentration of components on the non-

dimensional coordinates and time 

The calculation results for the values of the non-dimensional time 0 ≤ t ≤ 10 are 
presented in Figure 2. The same graph presents the calculation results of relation 
(12) in the field of the Henry isotherm for π≤0.1. 

For the values of the non-dimensional time t ≥ 10, asymptotic solutions for the 
component concentration fields were constructed (Tikhonov, 1972), 
unfortunately, with some mistakes, which have been corrected in this work. 

Let us solve relation (21) with regard to z: 
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The asymptotic solutions for the fields of component concentrations were found 
in the forms of propagating concentration waves  

                                   ( ) ,,~ tXu σξξψ −==  

                                             ( )ξϕ=v~ ,                                                            (24) 

where σ is the non-dimensional velocity of wave propagation. 

These fields (24) are valid for large distances (at х→∞) or for large periods of 
time (at t→∞): 

( ) ( ) ( ) ( )tXvtXvtXutXu σϕσψ −==−== ~,;~, . 

At these distances or periods of time the concentrations of components must 
satisfy the following conditions of equilibrium: 
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From the boundary and initial conditions (22) we have:  
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Substituting solutions (24) in relations (19), (20), and taking into consideration 
(23), we obtain: 
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Comparing (27) and (26), we have: 

                                         ( ) ( ) 0=− ξϕσξψ .                                                  (29) 
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From relation (25) we will obtain a non-dimensional velocity of propagation of 
the concentration wave of the i-component: 
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( ) ( ) ( )p
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−∞=
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1 2
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ξ .                                   (30) 

Dividing the variables in (28), taking into account (29), we have: 
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Integrating relation (31), we obtain: 
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Substituting formula (30) in relation (33), we have: 
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In this relation ω(φ) changes from +∞ to -∞ at the change of φ from 0 to f1(1). 
To determine the constant В, let us choose it in such a way that: 
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then the constant В will equal: 
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Substituting (35) in relation (34), we obtain finally: 
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The value of the constant ξ0 in relation (32) we will calculate according to the 
formula: 
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Formula (36) can be re-written in the form: 
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The asymptotic solutions for the fields of component concentrations have the 
form, taking into account relations (24) and (29): 

                    ( ) ( ) ( )tXtXtXv ,3069.0,~ 1 ϕσω =+−= −
;                                (39) 

                    ( ) ( ) ( )tXtXtXu ,3069.0,~ 1 ψσωσ =+−= −
.                              (40) 

Unfortunately, formula (38) cannot clearly express φ= φ(ξ-ξ0). 

Results 

As an example of the above data application, let us consider the test results 
presented in Tables 1 and 2. They contain the experimental data on the 
concentration of water pollutants on the inlet and outlet of the water purification 
units. The design of the prototype has no cyclone on the inlet. Therefore, the 
concentrations of water pollutants on the inlet of the granular layer of the 
activated charcoal are available. In a new invented water purification unit there 
is a hydrocyclone on its inlet, and the concentrations of water pollutants on the 
inlet of the activated charcoal granular layer are unknown, the same as on the 
outlet of the hydrocyclone. Let us calculate these concentrations. 

The time of water front passing through a layer of activated charcoal of the 
height h=0.3 m at the flow velocity in the layer w=0.00335m/s is τ=89.55 
s=1.493 min=0.0249 hour=0.001 day. Therefore, the end of this period of time 
can be taken as the initial conditions for pollutant concentration in the liquid in 
pores. As it is evident from Table 2, the change of water pollutant concentration 
at the outlet of the prototype is insignificant during the first three days. 
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Therefore, these concentrations can be extrapolated to the beginning of the first 
day. In this case we obtain turbidity 1.3 mg/L, oxidizability 1.7 mg О2/L, total 
organic carbon 8.85 mg/L. Using relation (10), we will obtain the formula to 
calculate kinetic coefficients of the rate of water pollutant adsorption: 

                                           

( )
( )0,

0,0ln 0

hC
C

h
w

ih

i
i =β

.                                                (41) 

Calculations according to this formula give the following results: turbidity 
βT=0.050531 s-1, oxidizability βOX=0.020851, total organic carbon βTOC=0.3998, 
total microbial count, assuming 1 for 0, βMIC=0.101673. 

Table 1 
Cone angle α, degree Water quality 

parameter  
 

Influent 
water 20 25 30 35 37 40 45 

Turbidity, mg/L 120 1,0 0,73 0,49 0,51 1,27 1,3 1,41 
Oxidizability, 

mgО2/L 11,0 1,8 1,75 1,65 1,6 1,87 1,95 2,0 

Total organic 
carbon, mg/L 13,2 6,95 7,76 6,65 6,61 6,99 7,12 7,2 

Total microbial 
count, units/mL 9000 0 0 0 0 0 0 0 

Table 2 
Prototype New design 

Experiment time, days Experiment time, days Water quality 
parameter 

Influent 
water 1 3 5 7 10 1 3 5 7 10 

Turbidity, mg/L 120 1,4 1,55 1,9 3,5 16 0,5 0,5 0,7 0,9 1,2 
Oxidizability, 

mgО2/L 11 1,95 2,39 3,71 4,92 5,65 1,64 1,72 1,83 1,91 2,16 

Total organic 
carbon, mg/L 13,2 8,95 9,15 9,76 10,53 11,54 6,63 6,88 7,16 7,32 7,92 

Total microbial 
count, units/mL 9000 0 0 19 41 93 0 0 0 0 0 

Knowing the kinetic coefficients of water pollutants with the help of relation 
(42): 

                                  
( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛=

w
hhCС i

ihi
βexp0,0.00

.                                     (42) 

we can determine concentrations of pollutants on the outlet of the hydrocyclone 
or on the inlet on the granular layer of a new design of the water purification 
unit. The calculations gave the following results: turbidity CT 0=46.16 mg/L, 
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oxidizability COX,0=10,35 mg О2/L, total organic carbon CTOC=9.844 mg/L. As it 
was expected, the hydrocyclone had the largest effect on the water turbidity, 
reducing it in 2.6 times, while the oxidizability reduced in 1.06 times, and the 
total organic carbon – in 1.34 times. 

Conclusion 

The offered methods of calculation permit to forecast quality parameters of 
treated water and determine them based on those of influent water; they can be 
applied in any other similar technological processes. 
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