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Abstract

The general theory of continua with microstructure reviewed
in [2] (and, in particular, the theory of gyrocontinua studied in
[1]) is adapted to apply to perfect spin fluids and hyperfluids
[10]. Obvious changes are needed due to the prevailing interest
for solids in [1] and to some extent in [2]; here, in addition, the
conservative character of the continuum is exploited. Finally,
the rôles of metric, coframe, connection, torsion and curvature
in fluids are explored.

1 Introduction

In [1] our study of gyrocontinua was motivated by the possible concrete
applications suggested, e.g., by D’Eleuterio et al. (cfr [6], [7]). Now we
take up the idea, mentioned, e.g., in [10] by Obukhov and Tresguerres,
that a theory of gyrofluids may be of interest in cosmological studies.
We narrow our developments to a classical setting; however:

(i) we secure a link with a general approach to fluids with microstruc-
ture; the link will be particularly detailed for spin fluids (§5);
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(ii) we examine more closely—à la Noll—the consequences of the fluid
nature of the continuum (implying invariance of the constitutive
laws to unimodular deformations);

(iii) we concentrate at first our attention on hyperfluids (i.e. micro-
morphic fluids) and we import some relevant concepts from the
continuum theory of dislocations;

(iv) we take advantage of the occasion for sundry remarks bearing on
the general theory.

2 Perfect fluids with microstructure

As shown in [2], one starting point for a theory of perfect fluids with
microstructure is the choice of a potential ϕ per unit mass:

ϕ = ϕ(ι, ν, grad ν) (1)

as a function of a scalar taking into account the compressibility of the
fluid (i.e. ι := detF with F the placement gradient from a paragon
setting) and ν, a variable which specifies the microstructure: formally
ν is an element of a manifold M of finite dimension.

Then from a variational principle we get the balance equations in
statics

div T + ρf = 0, divS + ρβ − ζ = 0, inB;
Tn = t, Sn = σ, on ∂B;

(2)

where

T := ρι
∂ϕ

∂ι
I − ( grad ν)TS , ζ := ρ

∂ϕ

∂ν
, S := ρ

∂ϕ

∂( grad ν)
(3)

(I, the unit tensor). Here the second addendum in T could be called
the Ericksen stress as in the theory of liquid crystals.

The stress T needs not be symmetric in general; the invariance of
the power of internal actions under changes of observer requires only
that:

�
T = AT ζ + ( gradAT )S, (4)
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where � is Ricci’s permutation tensor and A is the infinitesimal gen-
erator of rotations on the microstructure, i.e. the operator describing
the effect of a rotation q of the observer on the value ν(q) of the mi-
crostructure to the first order in q:

A :=
dν(q)

dq

∣

∣

∣

∣

∣

q=0

. (5)

The constitutive relations (3) are equivalent to (2.1), (2.2) and (2.3)
of [10], though we prefer to restrict dependence upon ι, instead than
upon the whole tensor FTF, due to the fluid nature of the continuum.

No guide is offered in [2] (except through later examples) as to the
choice, in general, of the variable ν that best mirrors given physical cir-
cumstances, though the way equations (2) are deduced implies at least
minimality of the dimension of M. Also the fact that Cauchy’s stress
may not be symmetric, and hence A must then be non-null, implies
that the appropriate choice is, in such cases, observer-dependent.

One could go beyond and examine if and how a gross deformation
of the body influences the reading of ν. More precisely, one could study
the group acting on M, each element of which matches a choice of the
tensor F and determine the corresponding infinitesimal generator for
the change of ν. Following a suggestion of Noll, we presume that, for
a fluid, that generator have a null space that comprises all tensors F

of the form RU, where R is orthogonal and U unitary ( detU = 1).

3 Continua with affine microstructure

3.1 General case

To allow a direct comparison with developments and results of [10], we
specify now the geometric nature of the microstructure by identifying
M with Lin, the linear space of second order tensors N, representing
affine transformations, as was done in §21 of [2], without, at first,
special constitutive assumptions nor reduction to statics.

Then β and ζ are second order tensors, denoted B and Z respec-
tively, A and S are tensors of order three � and � . Introducing also the
density of the kinetic co-energy χ(N, Ṅ) (i.e. the Legendre transform
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with respect to Ṅ of the kinetic energy’s density κ(N, Ṅ)), we may
accept, in addition to the usual balances of mass and momentum, the
following laws

ρ
((

∂χ

∂Ṅ

)

·

− ∂χ
∂N

)

= ρB − Z + div � ,

�
T = � ∗Z + ( grad � ∗) �

(6)

(with ( � ∗C) · c = C · ( � c), ∀C ∈ Lin, ∀c ∈ V), ruling the balance of
micromomentum and total moment of momentum (see (21.1), (21.2)
of [2]).

Many different physical meanings can be attributed to N. In solids
it is often possible to propose a paragon setting (e.g., a, perhaps non-
existent but easily imaginable, setting of perfect crystallinity); then N

might be interpreted as leading from the local reference in a paragon
setting to a current uniform reference, in the sense of Noll, i.e. the
reference from which one counts the elastic response, supposed to be
the same at all points within the body. In other words, if the placement
gradient F is also counted from the paragon setting, then the elastic
potential is the same function of G := NF−1 at all points of the body.
In these cases a rotation Q = e− q of the observer changes N into QN.
Therefore the components of the infinitesimal generator � are

� iJk = �
ikhNhJ ⇒ � ∗kiJ = − �

kihNhJ , (7)

and the second of (6) becomes, in components, (see p. 58 of [2])

skw (Tij + ZiLNjL + � iLhNjL,h) = 0. (8)

The first equation (6) rules the evolution of the uniform reference
(see, e.g., [12] for a recent thorough study), whereas Cauchy’s equa-
tion together with the constitutive law for the stress deriving from the
elastic potential and (8) rule the evolution of the apparent placement.

3.2 Micromorphic hyperelastic continua—case I

The definition of hyperfluid given in [10] leaves open a number of op-
tions for the scholar in continuum mechanics. Formally the availability
of a tensor field over the body B (such as N or G := NF−1) allows one
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to introduce, over B, also a metric tensor (NTN or GTG), a coframe
obtained through N−T from the paragon setting, a connection derived
from the metric in accordance to standard suggestions (see, again, [10]).

But the essential step lays in the physical meaning, if any, that can
be attributed to those mathematical entities. First of all comes the
choice between N and a tensorial variable, say G, related to it, but
independent of unimodular transformations of the paragon setting (as
would be expected in fluids). Then the above mentioned definitions,
which are usually given when dealing with crystal lattices, need be
revisited.

Moreover the theory demands a dependence of ϕ also on a gradient
of N, an issue which is briefly outlined in [2] (as appropriate for a
theory of solids) and needs further investigation here.

A final comment is worthwhile: in the brief outline above Ṅ and
N were indicated as the variables on which the kinetic energy density
κ may depend; however, as noticed in Remark 3 of §6 of [2], such
assumption leads to a seemingly preposterous corollary. Perhaps Ġ

should be the appropriate kinetic variable. When comparing present
developments with those of §21 of [2] notice a discrepancy in notation:
our N here is denoted G there.

All these provisos notwithstanding we explore first the consequences,
in solids, of the existence for all internal actions of a potential of the
type

ϕ = ϕ(F,N, GradN), (9)

where the capital letter in Grad means that differentiation is taken
over the paragon setting. Usually such existence is dismissed, due to
the prevailing interest for cases where almost any change of uniformity
is dissipative; however, even if speculative here, the assumption pro-
vides us with a convenient preamble to our later developments relative
to fluids.

Under the circumstances, the balance laws continue to be equations
(6) plus Cauchy’s equation, whereas the constitutive laws change into

T = ρ
∂ϕ

∂F
FT , Z = ρ

∂ϕ

∂N
, � = ρ

∂ϕ

∂ GradN
(10)

(the Ericksen’s component is now missing).
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3.3 Micromorphic hyperelastic continua—case II

Another case, variously studied and interpreted (cfr, e.g., §22 of [2]),
implies the introduction of a potential ϕ depending upon the Euler-
Lagrange deformation tensor of the gross motion E (i.e. E := 1

2
(FTF−

I)) and an appropriate variable involving N, as for instance

M :=
1

2
(NTF − I). (11)

From the assumption

ϕ = ϕ(E,M) (12)

it follows that

T = ρF
∂ϕ

∂E
FT +

1

2
ρN

∂ϕ

∂M
FT , Z =

1

2
ιρF

(

∂ϕ

∂M

)T

, � =
�

(13)

and (8) is automatically satisfied.
As we wish here to study fluids, neither of the two cases is of im-

mediate help: there may be doubts about the relevance of a paragon
setting (however, think of the case of smectic liquid crystals, where a
paragon setting of perfect order exists and is relevant) and, secondly,
the dependence of the potential on gradN seems to be almost manda-
tory (again the case of liquid crystals is enlightening). Also, as already
mentioned, one must judge if the rôle of G, rather than N, in the
kinetic energy of the body is more appropriate.

We take all these reflections into account when we put forward later
a definition of hyperfluid.

3.4 Continua with dislocations

The attributes of the affine field N are unlike those of the field F, be-
cause N need not be compatible. Only if GradN coincides throughout
the body with the minor right transpose ( GradN)t, there may exist
a vector field a such that N = Grad a and so that N becomes com-
patible; but, actually, the interest lays in the incompatibility of N. In
reality, most often a paragon set of three independent, perhaps even
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orthonormal directors exists, {d∗

(R) | R ∈ {1, 2, 3}}, having an immedi-
ate physical significance in the description of particles (as it would be
for the edges in a perfect orthorombic crystal lattice), the evolution of
which is ruled by N:

d(R) = Nd∗

(R), (14)

and the directors d(R) have the same significance but in the present
setting, where the crystal lattice may be, and usually is, defective.

The reciprocal directors are then defined through the relations

3
∑

R=1

d(R) ⊗ d(R) = I, (15)

and hence

d(R) = N−Td∗(R), N =
3
∑

R=1

d(R) ⊗ d∗(R). (16)

Correspondingly the concepts of linear connection ΓT
RS, of wryness

� and of inhomogeneity � are expedient (in Noll’s terminology—cfr

[9]—our body would be materially uniform and simple; N would corre-
spond to a uniform reference for B; Γ would then be the unique affine
connection called the material connection associated with the material
uniformity; the Riemann curvature associated with this connection be-
ing null, � would be the Cartan torsion of the material connection):

� :=
∑3

R,S=1 d(S),R ⊗ d(S) ⊗ d(R),

� := 1
2
( � − � t), ΓT

RS := d(T ) · (( � d(R))d(S));
(17)

thus ΓT
RS are the anholonomic components of � .

� being right-skew-symmetric, there exists a second order tensor B,
Kröner’s dislocation density (cfr [8]), such that BT = � � T , � T = 1

2
�
BT

and the Burgers vector b relative to a plane of normal n is given by
b = Bn. Furthermore, as � T = 1

2
��� � T , it can be proved that BT =

� � T .
As shown in [9] (equation (15.34)), the nine components of B are

related through the three conditions:

( GradB)N−1 + B( � B) = 0 (18)
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expressing the first Bianchi identity. Condition (18) allows us to dis-
card, formally at least, the gradient of the dislocation density from the
list of state variables when B and N are included.

To make clear the dependence of � upon GradN it is sufficient to
recall definition (17) and relation (16):

�
ijh =

∑3
R,S=1 NiS,Rd

(S)
j d

(R)
h = NiS,RN−1

Sj N−1
Rh ,

Bij = �
jpqNiS,RN−1

Sp N−1
Rq .

(19)

Thus the dislocation density B (or the inhomogeneity � ) measures the
incompatibility of the local deformation.

The field of � or, rather, of B could take the place of GradN in the
potential ϕ; an appropriate interpretation of the derivative ρ ∂ϕ̂

∂B
(where

ϕ̂ is obtained from ϕ, merely by expressing in it GradN in terms of
B) is valuable.

4 The micromorphic hyperelastic fluid or

hyperfluid

4.1 General case

In a non crystalline fluid no privileged settings exist; in particular, no
paragon setting may be summoned, even though molecular number
densities, at least, need be compared (but they are simply determined
by the value of ι−1); hence, at first glance, the concepts reviewed in the
previous section seem to be wholly unsuitable. However, no paragon
setting is needed if, formally, we substitute the tensor N in ϕ with the
tensor G := NF−1. Said differently, even if we were to imagine a set-
ting, chosen at random, as paragon, a successive change of that setting
through any unimodular deformation would have no effect on the po-
tential, hence on all internal actions; that circumstance characterises
fluids even if in a circuitous way. Again, the choice of G en lieu of N

as an argument in ϕ could be said to mean that the paragon setting is
the present one.

In conclusion, for fluids, we may take for the potential a function
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of ι, G, gradG

ϕ = ϕ(ι,G, gradG). (20)

Under a change of observer by a rotation of axial vector q, the
function ϕ changes into

ϕ(q) = ϕ(ι(q),G(q), ( gradG)(q)), (21)

with (let Q = e− q)

ι(q) = ι, G(q) = QGQT ,

[

( gradG)(q)

]

ijk
= QisGsr,pQjrQkp.

(22)

However, being a scalar, ϕ should not be influenced by such changes:
ϕ(q) = ϕ, ∀q. Hence ϕ cannot be any function of its arguments, but
rather depend on G and gradG a peculiar way, through an invariant
base.

To derive the consequences of assumption (20) we may follow §12
of [2]; thus the conditions of static equilibrium are (cfr (2)):

div T + ρf = 0 , div � + ρB − Z = 0 , inB;
Tn = t , � n = S , on ∂B;

(23)

with definitions (take C · [( gradG)c] = [( gradG)∗C] · c, ∀C ∈ Lin,
∀c ∈ V)

T := ρι
∂ϕ

∂ι
I − ( gradG)∗ � , Z := ρ

∂ϕ

∂G
, � := ρ

∂ϕ

∂( gradG)
. (24)

Remark. Following §13 of [2], the invariance of ϕ under changes
of the observer implies and is implied by the balance of moment of
momentum; here, as the components of the infinitesimal generator of
rotations are � ijk = �

ihkGhj + �
jhkGih, equation (13.3) of [2] gives

� (
GZT + GTZ − � t( gradG)T −t ( gradG) � t − ( gradG)Tt �

)

= 0 .

(25)
This result is at distinct variance with the result (8) above and those
of §14 of [2]. The discrepancy is due to the fact that the reading of G

is not affected by a superposed rigid motion of the body, whereas N is.
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4.2 Fluids with dislocations

Perhaps the major interest lays in the subcase when the independent
variables in ϕ are (the scalar ι and) the metric represented by the
symmetric tensor H and the tensor density A of fluid dislocations

ϕ = ϕ(ι,H,A) , H := GTG , Aij = �
jpqGis,rG

−1
sp G−1

rq . (26)

Again an invariant base must be determined, but involving now
only two second order tensors, one of them symmetric.

Because H and A transform under rotation in the standard way
(H(Q) = QHQT and A(Q) = QAQT ), the search of that base coincides
with that of a solution of the equation

�


2
∂ϕ

∂H
H +

∂ϕ

∂A
AT +

(

∂ϕ

∂A

)T

A



 = 0. (27)

Again, when (27) applies, the balance of moment of momentum is
assured. the other balance equations are Cauchy’s equation and

ρ

((

∂χ

∂Ġ

)

·

−
∂χ

∂G

)

= ρB − Z + div � , (28)

where T, Z, � obey the constitutive laws

T = ρι∂ϕ
∂ι

I − ( gradG)∗ � ,

Zhk := 2ρGhp
∂ϕ

∂Hpk

+ρ ∂ϕ
∂Aij

Gil,m
�

jpq(G
−1
mhG

−1
kq G−1

lp − G−1
mqG

−1
lh G−1

kp ),

� ihk := ρ ∂ϕ
∂Aij

�
jpqG

−1
hp G−1

kq .

(29)

Notice that in (28), acceding to an intimation in §3.2 above, we
have chosen G and Ġ as the relevant variables in χ.

5 Spin fluids

One issue left open sofar concerns the explicit expression of the mi-
crokinetic coenergy density χ; the issue is of pressing relevance for
some spin fluids, therefore we address it here, at first in general.
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It was shown in [3] that, even when the expression of the microki-
netic energy density κ is fully known, the coenergy is determined only
to within an additive homogeneous function of ν̇ of degree one. In
particular, if physical circumstances suggest as appropriate for κ a ho-
mogeneous dependence on ν̇ of degree two

κ =
1

2
ν̇αΩαβ ν̇β , (30)

then χ differs from κ only by an addendum of the form λαν̇α, where λ is
an arbitrary covariant vector within the tangent fibre at ν. In general
the term involving κ, and fully determined by κ, is more complex, but
the indetermination is again additive and of the same type.

Within the simpler circumstances and in terms of components the
dynamic version of the second balance equation (2) becomes

ρ

[(

∂κ

∂ν̇α

)

·

−
∂κ

∂να
+ Λαβ ν̇β

]

= ρβα − ζα + Sαi,i . (31)

The extra term within the square brackets, linear in ν̇, is powerless as
the tensor

Λαβ =
∂λα

∂νβ
−

∂λβ

∂να
(32)

is skew.
Before we proceed to specialize the general balance equation (31)

into one valid for spin continua, we must resolve some pertinent riddles,
otherwise misunderstandings coud arise easily. If the basic microstruc-
tural variable for the continuum with spin were the vector specify-
ing an independent microrotation of a subelement within each mate-
rial element (a rotation occurring around an axis fixed materially by
the macromotion and hence measured from the current macro-setting
spelled through the macro-placement gradient F) then one would have
to follow developments as in §19 of [2] (see p. 50) and [1], leading to a
theory of gyrocontinua. But such an approach seems inappropriate to
achieve a physically motivated model of spin fluids, where the relevant
variable is kinetic (i.e., the spinning velocity) rather than geometric
(i.e., the rotation). In fact, even at the macroscopic level, the essen-
tial fields for fluid are kinetic and the molecular identification of each
element in the macromotion is a vacuous goal. Nevertheless, as in the
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macroscopic theory, also here a, to some extent forced, link with the
standard theory of [2] may be found.

Follow the developments at p. 38 of [2] and introduce, for the mi-
crostructure, the anholomic constraint

ν̇ = Am ; (33)

m an arbitrary vector in Euclidean space, so that the microkinetics has
rotational character. Then one is led to (14.7) of [2] as a pure balance
equation

ρ

(

Aα
i

∂χ

∂ν̇α

)

·

= Aα
i (ρβα − ζα + Sαj,j) , (34)

where ζ and S indicate now only the active parts of the corresponding
quantitites. Taking into account the expression of χ which led also to
(31), we get

ρ
[

Aα
i

(

∂κ
∂ν̇α − λα

)]

·

+ ρ∂λα

∂νβ

(

Aα
i A

β
j −Aα

j A
β
i

)

mj =

Aα
i (ρβα − ζα + Sαj,j) .

(35)

This equation can be written in terms of Euclidean vectors and tensors
as follows

ρḣ + ρm × p = ρb − z + div S . (36)

In this balance equation the reduced microforce z and microstress
S:

zi := Aα
i ζα + Aα

i,jSαj , Sij := Aα
i Sαj , (37)

are the transforms of ζ and S in accordance with the formal rules of
change consequent to the change of variable specified by a Jacobian
matrix: here the matrix Aα

i , see rules (10.8) of [2]. The remarks pre-
ceeding that equation in [2] suggest introduction of the tensor Y of
microinertia density

Yij = Aα
i ΩαβA

β
j (38)

(see also (6.15) of [2]) and the vector b of external actions

bi = Aα
i βα . (39)
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Finally three other quantities occur in (36): the skew tensor

�
ijkpk =

∂λα

∂νβ

(

Aα
i A

β
j −Aα

j A
β
i

)

, (40)

the vector
li = Aα

i λα (41)

and the vector h of moment of micromomentum of sorts

h = Ym + l . (42)

In §14 of [2] it was shown that Cauchy’s equation still applies. In
addition it was found that the active macroscopic symmetric stress T

is altered by the addition of a skew reactive term: see (14.6) of [2].
However, in the present instance, that second result does not hold as
it is based on the relation (9.7) of [2] which relies on the assumption,
invalid here, that skw (ḞF−1) and ν̇ be both expressible linearly in
terms of the vector r = − 1

2
� (ḞF−1): rather here ν̇ is linear in the

independent vector m, not affected by r. Hence in analogy with our
Remark in §4.1 we conclude that T is symmetric and wholly active and
enters Cauchy’s equation in the usual way.

Now we may forget how (36) was derived as the steps taken, though
suggestive, were to some extent formal; we may simply take (36) as the
fundamental balance equation ruling the evolution of the microstruc-
ture for a special, though still wide, class of continua which we presume
would include spin fluids. Of course, to come to anything relevant,
we must add substance to form by exploring reasonable constitutive
choices for the many quantities involved.

We quote here one of the simplest choice for the inertia terms

(i) to presume λ to belong to the null space of A and hence l to be
null;

(ii) the microinertia density tensor to be spherical and constant

Y = γ−1I , (43)

leading to an equation resembling in part Gilbert’s equation for
ferromagnets (γ, the gyromagnetic ratio; m the magnetization)

ργ−1ṁ + ρm × p = ρb − z + div S (44)

(see. e.g., [11]).



52 M. Brocato, G. Capriz

Many other deep choices remain open (the constitutive choices for
p, z, S to begin with); they are beyond the scope of the present paper.
Also the specification of the external action b may pose hurdles; h is a
spin velocity read with reference to a frame bound to the macroscopic
element and, as remarked already, one must invent such a frame in
a fluid. A step in that direction was taken in [4], Sect. 14, with the
suggestion that the relevant frame be that of minimal peculiar macro-
scopic moment of momentum; but then another balance equation be-
yond Cauchy’s needs be called upon.
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Fluidi sa spinom i hiperfluidi

UDK 531.01, 532.783

Opšta teorija kontinuuma sa mikrostructurom revijalno izložena u
[2] (kao i, u specijalnom slučaju, teorija girokontinuuma proučena u
[1]) je tako prilagodjena da bude primenjiva na idealne spin-fluide i
hiperfluide [10]. Očigledne promene su, pritom, neophodne zbog pre-
ovladjućeg interesovanja za čvrsta tela u [1] i, do izvesne mere u [2].
Dodatno se ovde iskorǐsćava konzervativni karakter posmatranog kon-
tinuuma. Konačno, uloge metrike, ko-sistema referencije, povezanosti,
torzije i krivine su istražene.


