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Abstract. Today, there is a growing interest in network water quality modelling. The water quality issues of
interest relate to both dissolved and particulate substances. For dissolved substances the main interest is in
residual chlorine and (microbiological) contaminant propagation; for particulate substances it is in sediment
leading to discolouration. There is a strong influence of flows and velocities on transport, mixing, production
and decay of these substances in the network. This imposes a different approach to demand modelling which
is reviewed in this article.

For the large diameter lines that comprise the transport portion of a typical municipal pipe system, a skele-
tonised network model with a top-down approach of demand pattern allocation, a hydraulic time step of 1 h,
and a pure advection-reaction water quality model will usually suffice. For the smaller diameter lines that
comprise the distribution portion of a municipal pipe system, an all-pipes network model with a bottom-up
approach of demand pattern allocation, a hydraulic time step of 1 min or less, and a water quality model that
considers dispersion and transients may be needed.

Demand models that provide stochastic residential demands per individual home and on a one-second time
scale are available. A stochastic demands based network water quality model needs to be developed and val-
idated with field measurements. Such a model will be probabilistic in nature and will offer a new perspective
for assessing water quality in the drinking water distribution system.

1 Introduction

The goal of drinking water companies is to supply their cus-
tomers with good quality drinking water 24 h per day. With
respect to water quality, the focus has for many years been
on the drinking water treatment. Recently, interest in water
quality in the drinking water distribution system (DWDS) has
been growing. On the one hand, this is driven by customers
who expect the water company to ensure the best water qual-
ity by preventing such obvious deficiencies in water quality
as discolouration and (in many countries) by assuring a suf-
ficient level of chlorine residual. On the other hand, since
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“9/11” there is a growing concern about (deliberate) contam-
inations in the DWDS. Consequently, there is an interest in
the behaviour of both particulate and dissolved substances
throughout the DWDS (Powell et al., 2004). In this paper,
transport mains are defined as pipes that typically do not sup-
ply customers directly; customer connections are attached
to distribution mains only (Fig. 1). Transport mains have
relatively large diameters and supply to distribution mains.
As a result, transport mains have only few demand nodes,
with demands that show a high cross correlation (i.e. show
a similar demand profile over the day), the flows are rela-
tively constant (a high auto correlation) and mainly turbulent
with typical maximum velocities of 0.5–1.0 m/s (Vreeburg,
2007). Because of the high velocities and the fact that no cus-
tomers are directly connected to the transport network, there
is a low discolouration risk in transport mains. A transport
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Figure 1. Part of a distribution network. The line colour and thickness represent the diameter of the pipes, the blue circles are demand
nodes, open circles are nodes with zero demand. The thick yellow, orange and red lines are typically mains with a transport function
(i.e. large diameters and very few demand nodes that are directly connected to it); the thin blue and green lines are mains with a distribution
function (i.e. supply to customers).

network therefore, requires only a relatively simple hydraulic
model (e.g. EPANET) which can be constructed from ba-
sic pipe information (diameters, lengths and pipe material)
and driven by strongly correlated demand profiles applied to
nodes. The model is typically calibrated with pressure mea-
surements (Kapelan, 2002).

Distribution mains have many demand nodes and instan-
taneous demands among individual homes show little auto
and cross correlation (Filion et al., 2006). A distribution net-
work is usually designed for fire flow demands, that typically
are much higher than domestic demand (Vreeburg, 2007).
Therefore, under normal operating conditions, the maximum
velocities in distribution mains can be very low (smaller than
0.01 m/s) and change rapidly. Flow directions may reverse
and travel times may be as long as 100 h due to stagnation
(Buchberger et al., 2003; Blokker et al., 2006). In the dis-
tribution portion of the network, sediment does settle and re-
suspend (Blokker et al., 2007; Vreeburg, 2007). This means
a distribution mains model may need a rather complex struc-
ture of demand allocation.

In modelling water quality in the DWDS the essential as-
pects are transport, mixing, production and decay. Sedi-
ment behaviour, and thus discolouration risk, in a DWDS is
strongly related to hydraulics (Slaats et al., 2003; Vreeburg,
2007). The spread of dissolved contaminants through the
DWDS is strongly related to the flows through the network
(Grayman et al., 2006). The current water quality models are
only validated for the transport network. Because consumers
are located in the distribution part of the network, a water

quality model at that level is important. Because flows are
more variable in the periphery of the DWDS, water quality
models at this level may require a different approach than the
current water quality models.

The key element to a water quality model for a DWDS is
an accurate hydraulic model and therefore detailed knowl-
edge of water demands is essential. This paper reviews the
influence of (stochastic) demands on water quality models
and the consequential constraints on demand modelling. Fol-
lowing first, is a review of water quality modelling of dis-
solved matter and its relation with demands. Next, water
quality modelling of particulate matter and the relation with
hydraulic conditions is described. Thirdly, the characteristics
of demands in hydraulic network models and in network wa-
ter quality models are discussed. After that, some demand
models are considered.

2 Water quality modelling – dissolved matter

With increasing computational power, hydraulic network
models are used more and more for water quality related
subjects, such as determining residual chlorine (Propato
and Uber, 2004; Bowden et al., 2006) and disinfection by-
products in the DWDS (under the US EPA Stage 2 Disin-
fection By-Products Rule USEPA, 2006), optimum sensor
placement for detection of biological and chemical contam-
inations (Berry et al., 2005; Nilsson et al., 2005) and source
location inversion after a contaminant is detected (McKenna
et al., 2005).
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Water quality in a network model can be described with
the Advection-Dispersion-Reaction (ADR) equation:

∂C
∂t
+ u
∂C
∂x
= E
∂2C
∂x2
+ f (C) (1)

whereC is the cross-sectional average concentration (the wa-
ter quality parameter, usually in mg/L), t is the time (s),u
is the mean flow velocity (m/s), x is the direction of the
flow, E represents the mixing (axial dispersion) coefficient
in one-dimensional flow (m2/s) and f (C) is a reaction func-
tion. The left-hand term of this equation depicts the advec-
tion and mainly depends on bulk movement of the water. The
first term on the right-hand side depicts the dispersion and
the last term represents the reaction; both terms on the right-
hand side of Eq. (1) depend on the type and nature of the
considered substance. The reaction function can be very di-
verse for different substances. In most instances, however, a
simple first-order reaction is assumed, e.g. for chlorine de-
cay, f (C)=−KC with K the reaction constant. The reaction
function can include a production term.

The hydraulic network solver EPANET (Rossman, 2000)
comes with a water quality module, as do many commer-
cially available network analysis programs. The water qual-
ity module enables the user to calculate travel times and to
model the migration of a tracer (both conservative and non-
conservative) through a network. It models advection and
reaction with the pipe wall and the bulk of the water, but it
does not take dispersion into account (i.e. neglects the first
term of the right-hand side of the ADR equation). While
EPANET can handle many different time scales (i.e. time in-
tervals over which demands are time-averaged), a time scale
of one hour is commonly used. The solver assumes that the
network is well defined (known pipe diameter, pipe rough-
ness and network layout), that demands are known, and that
water quality reactions (under influence of residence times
and interaction with the pipe wall) are known. Furthermore,
EPANET assumes perfect mixing at junctions and steady-
state hydraulic conditions during every computational inter-
val. Hence, EPANET is not suitable for simulating transient
flow in pipe networks. The accuracy of the calculated results
depends on the validity of these assumptions.

To progress the water quality models, research is done on
several of the assumptions in the models. In this review, the
focus is on model deficiencies with respect to flows and ve-
locities.

With respect to advection, Eq. (1) shows that time, and
thus travel time, is an important factor as is the velocity of
the water. A proper assumption of demands is a key factor
in solving Eq. (1). Several authors (Pasha and Lansey, 2005;
Filion et al., 2005; McKenna et al., 2005) have shown the im-
portance of uncertainty in demands in water quality models.
The needed detail in demand allocation is yet unknown.

Advection is also related to mixing. The conventional
assumption of perfect mixing at junctions has been stud-
ied with measurements and Computational Fluid Dynam-

ics modelling (Austin et al., 2008; Romero-Gomez et al.,
2008a). The studies showed that at T-junctions, that are at
least a few pipe diameters apart, perfect mixing can be as-
sumed, while in cross junctions less than 10% mixing may
occur. In fact, at cross junctions, the rate of mixture in the
two outgoing arms depends on the Reynolds numbers (and
thus the flow rates) in the two incoming arms.

When looking at smaller time steps a steady state as-
sumption may not be valid. Karney et al. (2006) investi-
gated the modelling of unsteadiness in flow conditions with
several mathematical models such as extended period ap-
proaches (like EPANET does), a rigid water column model
that includes inertia effects, and a water hammer model that
includes small compressibility effects. The time scale of
boundary and flow adjustments relative to the water hammer
time scale were found to be important for characterising the
system response and judging the unsteadiness in a system.
When for certain applications the required time step would
be shorter than several minutes, the impact of taking inertia
and compressibility into account should be studied further.
The dispersion term in Eq. (1) is small in case of turbulent
flow, but cannot be neglected in case of laminar flow. Gill
and Sankarasubramanian (1970) derived an exact but cum-
bersome expression showing that theinstantaneousrate of
dispersion in fully-developed steady laminar flow grows with
time and asymptotically approaches the equilibrium disper-
sion rateET given by Taylor (1953),

ET =
d2u2

192D
(2)

whereD is the molecular diffusivity of a solute (m2/s) and
d is the pipe diameter (m). Lee (2004) simplified the 1970
G&S result and provided a theoretical approximation for the
time-averagedunsteady rate of dispersion,E(t), for a solute
moving in steady laminar flow through a pipe,

E (t) = ET

[
1−

1− exp[−16T (t)]
16T (t)

]
(3)

HereT(t)=4Dt/d2 is dimensionless Taylor time andt repre-
sents the mean travel time through the pipe. When Taylor
time is large, Eq. (3) reduces to Eq. (2). For nearly all net-
works links, however, Taylor time is very small [e.g.,T(t)<
0.01]. In this case, the expression in Eq. (3) can be further
simplified,

E (t) ≈
u2t
6
=

uL
6

(4)

where L is the length of the pipe section (m). To illus-
trate, consider a solute with diffusivity D=10−9 m2/s trans-
ported in steady fully-developed laminar flow (say Re=1000)
at 20◦C through a pipe withd=0.15 m and L=100 m.
The corresponding average velocity isu=6.7×10−3 m/s.
Hence, the mean travel time through the pipe link is
t=L/u=15 000 s and the corresponding dimensionless Taylor
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Figure 2. Processes related to particles in the distribution network.

time is T(t=15 000 s)=0.0027. For this condition, Eqs. (3)
and (4) give similar results, namely,E(t)=0.1105 m2/s and
0.1117 m2/s, respectively. These estimates of the dispersion
rate are eight orders of magnitude greater than the rate of
molecular diffusivity. However, they are only two percent of
the equilibrium value given by Taylor’s formula in Eq. (2),
ET=5.26 m2/s. Owing to small molecular diffusivity and rel-
atively large pipe diameters, it is virtually impossible in real
water distribution systems for the time-averaged rate of lami-
nar dispersion to attain the equilibrium value given in Eq. (2).

Recent preliminary experimental evidence indicates that
Eqs. (3) and (4) tend to slightly over-estimate the actual time-
averaged rate of dispersion observed in controlled laboratory
runs (Romero-Gomez et al., 2008b). The reason(s) for this
discrepancy are not clear and this is the subject of ongoing
research investigations.

The influence of dispersion in water quality modelling was
tested with (two-dimensional) ADR models (Tzatchkov et
al., 2002; Li, 2006). Li (2006) showed that dispersion is
important in laminar flows and thus especially in the parts of
DWDS that have pipe diameters designed for fire flows but
with small normal flows. Dispersion is not directly affected
by flow pattern or time scale, although the tests of Romero-
Gomez et al. (2008b) seem to suggest that the dispersion co-
efficient is related to the Reynolds number. Flow pattern and
time scale do, however, affect the probability of stagnation,
laminar and turbulent flows, and thus indirectly do have an
effect on dispersion.

Powell et al. (2004) have established that there is a need to
further investigate the reaction parameters for chlorine decay,
disinfectant by-products and bacterial regrowth. Where the
reaction constantK involves a reaction with the pipe wall, the
stagnation time is of importance. Flow velocities are impor-
tant as they affect chlorine decay rates (Menaia et al., 2003).

3 Water quality modelling – particulate matter

For particulate matter the ADR model also applies; the re-
action function for sediment includes a velocity term. In
the gravitational settling model (Ryan et al., 2008) a parti-
cles cloud is assumed, defined by a non-dimensional particles
cloud heights (proportional to the pipe diameter). When all
particles are settled,s=0. When the flow velocity is larger
than a certian threshold velocity (urs, the re-suspension ve-
locity) all particles are in suspesnion ands=1. When the
flow velocity is smaller than a certian threshold velocity (ud,
the deposition velocity) particles settle with a downward ve-
locity (us, the settling velocity) and 0<s<1:

s(t + ∆t) = s(t) −
us∆t

d
, for u < ud (5)

In the particle wall deposition model (Ryan et al., 2008) the
deposition of particles onto the pipe wall is caused by par-
ticle/pipe surface attractive forces, e.g. Van der Waals force.
The concentration of particles in suspension (C, in mg/L) can
be described as follows:

∂C
∂t
= −α (C −C∞) (6)

Hereα is a decay coefficient (s−1) andC∞ is the final steady
state concentration of particles (mg/L). C∞=βCw, with Cw

the mass of particles on the wall, per unit volume of water
(mg/L) andβ the dimensionless wall mass coefficient.

During a high-flow hydraulic incident (e.g. opening a fire
hydrant) the sediment is resuspended and can thus lead to
discoloured water (Fig. 2). Vreeburg (2007) has shown that
the discolouration risk can be reduced with three types of
measures: the first is to prevent sediment from entering the
DWDS by optimising the water treatment; the second is to
prevent sediment from accumulating in the DWDS by de-
signing self-cleaning networks (Vreeburg, 2007); and the
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Figure 3. Mean (µ) and variation (σ) of cross correlation of measured patterns (Milford, OH) on different temporal scales and spatial scales;
(a) 1 home,(b) 10 homes and(c) 20 homes.

third is to remove sediment by cleaning (flushing) the DWDS
in a timely manner.

Although these three steps have proven to reduce the dis-
colouration risk, the exact relation between the hydraulics
and sediment behaviour (under what conditions does it settle
and resuspend) is still unknown. More insight into the hy-
draulic conditions can further support the second and third
step.

Self-cleaning distribution networks (step 2) are effective
because a regularly occurring threshold velocity prevents
sediment from accumulating in the network. The threshold
design velocity for self-cleaning DWDS is set to 0.4 m/s. Lab
tests in the Netherlands (Slaats et al., 2003) have shown that
sediment is partly resuspended at velocities of 0.1 to 0.15 m/s
and fully resuspended at velocities of 0.15 to 0.25 m/s. In
Australia, Grainger et al. (2003) have researched settle-
ment and resuspension velocities. Settlement was found
at 0.21 m/s (at which it could take several hours to a few
days before all sediment was settled) and resuspension was
found at 0.3 m/s. Field measurements in the Netherlands in
2006 have shown that the self-cleaning concept is feasible
(Blokker et al., 2007; Vreeburg, 2007). The study suggests
that the assumed design velocity of 0.4 m/s might be a con-
servative value and a regular (i.e. a few times per week) oc-
curring velocity of 0.2 m/s or less may be enough. The field
measurements also showed that the current method to calcu-
late the maximum flow (the so called q

√
n method; Vreeburg,

2007) overestimates the regular occurring flow, meaning that
the regular flow for which the DWDS is designed (almost)
never takes place. Since sediment behaviour is related to in-
stantaneous (peak) flows, modelling of sediment in the net-
work requires short time scales.

The self-cleaning design principles have mainly been ap-
plied to the peripheral zones of the distribution system which

can be laid out as branched networks (sections of up to 250
residential connections). Even though the q

√
n method over-

estimates the flows and the design velocity of 0.4 m/s might
be a conservative value, the combination of these rules leads
to self-cleaning networks (Blokker et al., 2007). In order to
scale up the self-cleaning principles to the rest of the (looped)
network it is important to look into a better estimate of the
regular occurring maximum flows, because the q

√
n method

cannot easily be applied in looped networks. Buchberger et
al. (2008) have used the PRP model (Buchberger et al., 2003)
to derive that the maximum flow equals “k1n+k2

√
n”, with n

the number of homes and the constantsk1 andk2 are related
to the PRP parameters (see Sect. 5). Also, more research
must be done on the relation between hydraulics and sedi-
ment resuspension (i.e. establish the actual self-cleaning ve-
locity).

To determine which part of the DWDS needs cleaning
(step 3) several measurement techniques are available to de-
termine where in the DWDS the discolouration risk is the
highest (Vreeburg and Boxall, 2007); one example is the Re-
suspension Potential Method (Vreeburg et al., 2004). Also,
some models are being developed for this purpose. Boxall
and Saul (2005) have developed a “predictor of discoloura-
tion events in distribution systems” (PODDS). This model
is based on the assumption that normal hydraulics forces
(i.e. maximum daily shear stress) condition the sediment
layer strength and hence control the discolouration potential
(or discolouration risk).

4 Demands in hydraulic network models

Demand modelling is done on different temporal and spa-
tial aggregation levels, depending on the model’s purpose.
Three different levels of demand modelling and consequently
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Figure 4. Mean (µ) and variation (σ) of lag-1 auto correlation coefficient of measured patterns (Milford, OH) on different temporal scales
and spatial scales;(a) 1 home,(b) 10 homes and(c) 20 homes.

network modelling can be distinguished. The highest level is
for planning the operation of the treatment plant, for which
it is important to model the demand per day and for the to-
tal supply area of a pumping station. The second level is
modelling on transport level or to the level to which the as-
sumption of cross correlation is still sufficient while for wa-
ter quality modelling on a distribution level (the third level) a
time scale on the order of minutes may be important (Li and
Buchberger, 2004; Blokker et al., 2006).

Temporal and spatial aggregation of demands is related to
cross and auto correlation of flows. A high cross correla-
tion means that demand patterns at different nodes are similar
(flows are proportional to each other). A high auto correla-
tion is found when flow patterns change gradually. Cross and
auto correlation thus are related to maximum flow rates and
the stagnation time. This does not only influence water qual-
ity; the amount of cross correlation is important with respect
to the reliability of a DWDS (Filion et al., 2005) and thus
the cost (Babayan et al., 2005); auto correlation is impor-
tant with respect to the resilience of a DWDS, i.e. the time
to restore service after a break (Filion et al., 2005). Sev-
eral authors (Moughton et al., 2006; Filion et al., 2006; Li
and Buchberger, 2007) have looked at the effect of temporal
and spatial aggregation of demands on cross and auto corre-
lation. They have shown that the longer the time scale and
the higher the aggregation level, the higher the (cross) cor-
relation. When looking at time scales of 1 h and demand
nodes that represent 10 or more connections the assumption
of cross correlation is valid. This means that strongly corre-
lated demand patterns can be applied in the hydraulic model.

Figures 3 and 4 show the mean and variance (µ±σ, repre-
senting the 70% confidence interval andµ±2σ,the 95% con-
fidence interval) of cross and lag-1 auto correlation coeffi-

cient for different time scales (1 to 60 min) and spatial scales
(1, 10 and 20 homes per demand node) of 50 demand pat-
terns as were measured in 1997 in 21 homes in Milford, Ohio
(Buchberger et al., 2003). It shows that the cross correla-
tion for demand patterns of individual homes or at short time
steps are low (the lower bound of the 95% confidence inter-
val is not above 0) and that only for 20 homes and 15 min,
the lower bound of the 95% confidence interval of the cross
correlation is above 20%. The lag-1 auto correlation coeffi-
cient for short time steps can be high due to the high number
of instances of zero flow. With increasing time step, the lag-1
auto correlation coefficient at first decreases with a decrease
in zero flow instances and then increases with longer time
steps, which is related to a more gradually changing pattern.
For individual homes the lag-1 auto correlation coefficient is
low (the lower bound of the 95% confidence interval is not
above 0) due to the stochastic nature of the water use. For 10
homes or more, the average lag-1 auto correlation coefficient
is stable at a time step of ca. 15 min or more, based on data
from the Milford field study.

In a preliminary study Tzatchkov and Buchberger (2006)
have examined the influence of transients and showed that
the operation of a single water appliance inside a home is
almost imperceptible in water mains and larger distribution
network pipes and thus the sum of all residential demands of
a single home can be used to define demands in a hydraulic
model. They also showed that the (instantaneous) demand
pulses deform in their path from the demand point to the
upstream pipes. Thus, the assumption that the instantaneous
rate of flow in a pipe is the sum of the concurrent downstream
demands is a convenient approximation but, nonetheless, one
that is likely to be acceptable in most applications. McInnis
and Karney (1995) calculated transients in a complex model

Drink. Water Eng. Sci., 1, 27–38, 2008 www.drink-water-eng-sci.net/1/27/2008/



E. J. M. Blokker et al.: Importance of demand modelling in network water quality 33

0 15 30 45 60
0

0.2

0.4

0.6

0.8

1

time step (min)

pr
ob

ab
ili

ty
 o

f 
st

ag
na

tio
n

 

 

0 15 30 45 60
0

0.2

0.4

0.6

0.8

1

time step (min)

pr
ob

ab
ili

ty
 o

f 
la

m
in

ar
 f

lo
w

 

 

0 15 30 45 60
0

0.2

0.4

0.6

0.8

1

time step (min)

pr
ob

ab
ili

ty
 o

f 
tu

rb
ul

en
t f

lo
w

 

 

1
5

10
20

50
100

150
200

# homes

Figure 5. Probability of stagnation (Re=0), laminar flow (Re<2000) and turbulent flow (Re>4000) for different time steps and number of
homes (1, 5 homes: Ø59 mm; 10 homes: Ø100 mm; 20, 50, 100, 150 homes: Ø150 mm; 200: Ø300 mm). The demand patterns that were
used to construct these graphs were simulated with SIMDEUM (Blokker and Vreeburg, 2005; Blokker, 2005).

from several pressure events using different models of de-
mand aggregation. The model results could be improved
(compared to available field data) by artificially damping the
residual pressure waves and by increasing instantaneous ori-
fice demands. This means that in transient models insight
into demands is very important. Skeletonisation also has an
impact on hydraulic transient models (Jung et al., 2007), es-
pecially in modelling the periphery of the distribution net-
work (as opposed to the larger diameter pipes or transport
network).

The flow variance and scale of fluctuation, the probability
of stagnation and the flow regime (laminar or turbulent flow)
are affected by the time scale that is used in a water qual-
ity model (McKenna et al., 2003; Li, 2006). Figure 5 shows
for some typical (Dutch) flow patterns at different temporal
scales and spatial scales (i.e. different number of downstream
homes with appropriate pipe diameter) what the probability
of stagnation, probability of laminar flow (Re<2,000) and
probability of turbulent flow (Re>4,000) are. Above ca. 50
homes the time step has little effect on the probability of
stagnation, laminar and turbulent flow. A small time step
(<1 min) is mainly of interest in the end of the pipe system.
Figure 6 shows, for the same demand patterns, the 95 to 100
percentile of the Reynolds number for different spatial and
temporal scales. It makes clear that for determining the max-
imum flow a 1 min time scale is necessary when demands
from less than 200 homes are considered; if more than 200
homes are involved a time scale of 5 min suffices.

Initial network simulations (1990s era) tended to use
skeletonised distribution systems with a “top-down” demand
allocation, a one hour time step, and an advection-reaction
(AR) water quality model (Rossman et al. 1994 is the clas-
sic example). This type of model can be calibrated with
pressure measurements. Dispersion can be neglected where
turbulent flows dominate (Li, 2006). More recent analyses
(since 2000) attempt finer resolution simulations using all-
pipe networks with “bottom-up” demand allocation, a five
minutes to one hour time step, and an Advection-Dispersion-
Reaction (ADR) water quality model (Tzatchkov et al., 2002;
Li, 2006). Here top-down demand allocation means that the
measured demand multiplier pattern of the pumping station
is allocated to the demand nodes with a correction factor to
account for total demand on that node, and thus applying
strongly correlated demand patterns. A bottom-up demand
allocation means that the demands are modelled per individ-
ual home and subsequently the individual demand patterns
are summed to obtain the demand patterns at demand nodes.

Water quality modelling requires a detailed model of a
distribution system. Demands must be known on a rela-
tively small temporal (less than 5 min) and spatial (mains in
a street) aggregation level and should be constructed by a
bottom-up approach from demands of single homes. Since
not every home can be modelled individually a stochastic
approach is required. In water quality modelling disper-
sion must be taken into account in an Advection-Dispersion-
Reaction (ADR) model, especially if laminar type flow con-
ditions are expected to occur in the distribution mainlines
(Tzatchkov et al., 2002; Li, 2006).
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Figure 6. Maximum Reynolds number (95 to 100 percentile) for different time steps and number of homes (1, 5 homes: Ø59 mm; 10 homes:
Ø100 mm; 20, 50, 100, 150 homes: Ø150 mm; 200: Ø300 mm). The demand patterns that were used to construct these graphs were simulated
with SIMDEUM (Blokker and Vreeburg, 2005; Blokker, 2005).

5 Demand modelling

For a water quality network model a stochastic demand
model per (household) connection on a per minute or finer
basis is needed. Today, two types of demand models are
available that fulfil this requirement: the Poisson Rectangular
Pulse model and the end-use model SIMDEUM.

Buchberger and Wu (1995) have shown that residential
water demand is built up of rectangular pulses with a certain
intensity (flow) and duration arriving at different times on a
day. The frequency of residential water use follows a Poisson
arrival process with a time dependent rate parameter. When
two pulses overlap in time, the result is the sum of the two
pulses (Fig. 7). From extensive measurements it is possible
to estimate the parameters to constitute a Poisson Rectangu-
lar Pulse (PRP) model (Buchberger and Wells, 1996). Mea-
surements were collected in the USA (Ohio; Buchberger et
al., 2003), Italy (Guercio et al., 2001), Spain (Garcı́a et al.,

2004) and Mexico (Alcocer-Yamanaka et al., 2006) and for
each area the PRP parameters were determined. To estimate
intensity and duration different probability distributions are
applicable for different data sets, such as log-normal, expo-
nential and Weibull distributions. Alvisi et al. (2003) use an
analogous model based on a Neyman-Scott stochastic pro-
cess (NSRP model) for which the parameters are also found
from measurements. The PRP model is the basis for the de-
mand generator PRPsym (Nilsson et al., 2005).

Obtaining the PRP parameters requires many (expen-
sive) measurements (e.g. the parameters of Milford, Ohio
(Buchberger et al., 2003) were obtained from 30 days of
measurements of 21 homes on a per second basis). It is dif-
ficult to correlate the parameters retrieved from these mea-
surements with e.g. the population size, age, and installed
water using appliances. As a consequence, the parameters
for the PRP model are not easily transferable to other net-
works. Also, the retrieved PRP parameters lead to mainly
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short pulses of 1 min or less, unless outdoor water use is also
measured. This means that showering (ca. 10 to 15 min) is al-
most never simulated as one continuous pulse. Another issue
is that it is difficult to determine how well the simulation per-
forms compared to the measurements, since the simulation
parameters were derived from the same or similar measure-
ments.

Another type of stochastic demand model is based on
statistical information of end uses (Blokker and Vree-
burg, 2005). The demand generator is called SIMDEUM
(SIMulation of water Demand, anEnd Use Model).
SIMDEUM simulates each end use as a rectangular pulse
from probability distribution functions for the intensity, du-
ration and frequency of use and a given probability of use
over the day (related to presence at home and sleep-wake
rhythm of residents, see Fig. 7). The probability distribution
functions are derived from statistics of possession of water
using appliance, their (water) use and population data (cen-
sus data with respect to age and household size). The total
simulated demand is the sum of all the end uses. SIMDEUM
makes use of flow measurement data for validation only.

An end use model requires only a few demand measure-
ments for validation. On the other hand, it requires statisti-
cal data on water appliances and users, which are probably
related to cultural differences and thus are nation specific.
Because SIMDEUM is based on statistical information on
in-home installation and residents, the influence of an aging
population or replacement of old appliances with new ones
can be determined easily and the model can easily be trans-
ferred to other networks. SIMDEUM was applied and tested
with good results in the Netherlands (Blokker and Vreeburg,
2005; Blokker et al., 2006).

SIMDEUM was also applied to Milford, Ohio, and com-
pared to the extensive measurements that are available; also
the PRP model and SIMDEUM were compared (Blokker et
al., 2008). The basics for both models can be described by
the following equations (Fig. 7):

Q =
∑

B (I ,D, τ) (7)

B(I ,D, τ) =

{
I τ < T < τ + D
0 elsewhere

(8)

with D the pulse duration (in seconds),I the pulse intensity
(flow in L/s) andτ the time at which the tap is opened.B(I,
D, τ) is a block function, which equalsI at timeτ to τ+D and
0 during the rest of the day. The summation is done for all
pulses. The PRP model assumes a lognormal probability dis-
tribution for the duration and intensity, with equal parameters
for all pulses. The number of pulses follow a Poisson arrival
process, and the average can vary per hour. SIMDEUM uses
probability distributions of duration, intensity and number of
pulses depending on the type of end-use, with parameters
that may depend on the age of the resident or the number of
residents per household. Blokker et al. (2008) showed that

the simulation results from both models fit the measured flow
data very well. The PRP model uses flow measurements and
accordingly represents the measured data well. The end-use
model SIMDEUM uses sociologic data of the region under
study; the required data for Milford could easily be collected,
except for the specific time use data. With respect to the de-
mand patterns of the single home SIMDEUM performs bet-
ter than the PRP model on the aspects of maximum flow per
second, the number of clock hours of water use and cross
correlation. With respect to the demand patterns of the sum
of 20 homes the PRP model works better than SIMDEUM on
the aspect of fitting the diurnal pattern. The PRP model is a
descriptive model, whereas SIMDEUM is more of a predic-
tive model. Accordingly, the two models have different areas
of application.

6 Discussion

Network water quality models on the distribution level may
require fixture level or household level demands with no sig-
nificant auto and cross correlation. This means that these
models call for demand allocation via a bottom-up approach,
i.e. allocating stochastic demand profiles with a small spatial
aggregation level and appropriate short time scales.

There is currently no hydraulic network model that can
properly work with instantaneous demands (i.e., on a per sec-
ond basis) across an entire municipal network. Hence, even
when nodal demands are known on a per second basis, they
need to be integrated or averaged over a suitable time step
before they can be used in a current network model. The best
time step for hydraulic analysis will differ from the best time
step for water quality analysis or human exposure analysis,
and is related to the spatial aggregation level. When max-
imum flows are of importance (e.g. in sediment behaviour
modelling) a suitable time step is one minute when less than
200 homes are considered; for larger spatial aggregation lev-
els five minutes would suffice, based on typical Dutch flow
patterns. When the probability of stagnation is of importance
(e.g. for modelling dissolved substances that are under the in-
fluence of dispersion and interact with the pipe wall) a suit-
able time step is one minute when less than 20 homes are
considered; for more than 50 homes a one hour time step
would suffice, based on data from the Milford field study.
The question of the most suitable time step for network anal-
ysis needs further investigation. Also, the influence of using
instantaneous demands on transient effects, water compress-
ibility, pipe expansion, inertia effects, etc. in network mod-
els needs to be explored. Starting from very detailed network
models with demands allocated per individual home and with
time steps as short as one second, the effect of skeletonising
and time averaging can be determined for different modelling
purposes.

Both the PRPSym and SIMDEUM demand models have
been combined with hydraulic models in preliminary studies
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Figure 7. Schematic of the PRP and end use demand models. In the PRP model the Poisson arrival rate, intensity and duration are based on
the measurements of pulses (similar to the lower diagram). In the end use model the arrival rate, intensity and duration are based on statistical
information of end uses (toilet flushing, showering, washing clothes, doing the dishes, etc.)

(McKenna et al., 2005; Blokker et al., 2006). So far, little
water quality measurements were done to validate the model
results. Li (2006) has applied PRPSym in combination with
EPANET and an ADR-model to compare the model to mea-
surements of fluoride and chlorine concentrations in a net-
work. The ADR-model with the stochastic demand patterns
gave good results with the conservative fluoride and reason-
able results with decaying chlorine. In particular, predicted
concentrations in the peripheral zone of the network showed
much better agreement with field measurements for the water
quality model with dispersion (ADR) than for the water qual-
ity model without dispersion (AR). Still, more network water
quality models with stochastic demand should be tested with
field data. This will reveal the shortcomings of the models
and will indicate where improvement is to be gained. It will
also provide more insight in the most suitable time step and
spatial aggregation level for modelling.

Pressure measurements do not suffice for calibrating a
network water quality model. Calibrating hydraulic mod-
els on pressure measurements typically means adjusting pipe
roughness. This only affects pressures and not flows. Adjust-
ing flows from pressure measurements is too inaccurate. An
accuracy of 0.5 m in two pressure measurements leads poten-
tially to an uncertainty of 1 m in head loss. On a total head
loss of only 5 m this is a 20% imprecision in pressure and
thus a 10% imprecision in flow. Calibrating a network water
quality model requires flow or water quality measurements,
e.g. through tracer studies (Jonkergouw et al., 2008).

With the use of stochastic demands in a network model
the question arises if a probabilistic approach on network
modelling is required and how to interpret network simula-
tions. Nilsson et al. (2005) demonstrated that Monte Carlo
techniques are a useful tool for simulating the dynamic per-
formance of a municipal drinking-water supply system, pro-
vided that a calibrated model of realistic network operations
is available. A probabilistic approach in modelling and in-
terpreting results is a significant departure from prevailing

practice and it can be used to complement rather than replace
current modelling techniques.

7 Summary and conclusions

Today, there is a growing interest in network water quality
modelling. The water quality issues of interest relate to both
particulate and dissolved substances, with the main interest
in sediment leading to discolouration, respectively in residual
chlorine and contaminant propagation. There is a strong in-
fluence of flows and velocities on transport, mixing, produc-
tion and decay of these substances in the network which im-
poses a different approach to demand modelling. For trans-
port systems the current hydraulic (AR) models suffice; for
the more detailed distribution system a network water qual-
ity model is needed that is based on short time scale demands
that considers the effect of dispersion (ADR) and transients.
Demand models that provide trustworthy stochastic residen-
tial demands per individual home and on a one-second time
scale are available.

The contribution of dispersion in network water quality
modelling is significant. The contribution of transients in
network water quality modelling still needs to be established.
A hydraulics based, or rather a stochastic demands based,
network water quality model needs to be developed and
validated with field measurements. Such a model will be
probabilistic in nature and will lead to a whole new way of
assessing water quality in the DWDS.

Edited by: I. Worm
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