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Abstract

We illustrate how to estimate parameters of linear state-space models using the Stata
program sspace. We provide examples of how to use sspace to estimate the parame-
ters of unobserved-component models, vector autoregressive moving-average models, and
dynamic-factor models. We also show how to compute one-step, filtered, and smoothed
estimates of the series and the states; dynamic forecasts and their confidence intervals;
and residuals.
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1. Introduction

Stata is a general purpose package for statistics, graphics, data management, and matrix
language programming. Stata’s coverage of statistical areas is one of the most complete
available, with many commands for regression analysis (StataCorp 2009k,l,m), multivariate
statistics (StataCorp 2009i), panel-data analysis (StataCorp 2009h), survey data analysis
(StataCorp 2009n), survival analysis and epidemiology statistics (StataCorp 2009o), and time-
series analysis (StataCorp 2009p). It is used for data management (Mitchell 2010), health
research (Juul and Frydenberg 2010; Cleves, Gould, Gutierrez, and Marchenko 2010), as well
as in economic analysis (Cameron and Trivedi 2009; Baum 2006). Stata is also a programming
language used by researchers to implement and disseminate their methods; see any of the more
than 40 issues of The Stata Journal for examples of peer-reviewed user-written programs and
see StataCorp (2009j,f,g) for Stata’s programming capabilities.

The Stata command sspace, released in version 11, estimates the parameters of linear state-
space models by maximum likelihood (StataCorp 2009e). As demonstrated by Harvey (1989)
and Commandeur, Koopman, and Ooms (2011), linear state-space models are very flexible,
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2 State Space Methods in Stata

and many linear time-series models can be written as linear state-space models. In this
article, we show how to use sspace to estimate the parameters of linear state-space models.
We also note that Stata has some additional commands, such as dfactor, which provide
simpler syntaxes for estimating the parameters of particular linear state-space models.

Because of this flexibility, sspace has two syntaxes; we call them the covariance-form syntax
and the error-form syntax. They are illustrated by estimating the parameters of a local-
linear-trend model with a seasonal component and a vector autoregressive moving-average
(VARMA) model, respectively. In each syntax, the user must specify one or more state
equations, one or more observation equations, and the stochastic components.

2. Case 1: The local-level model

The local-level model is described by Commandeur et al. (2011, Section 2.1) and we briefly
review it here. The observation and state equations of this model are

yt = µt + εt,

µt = µt−1 + ξt, (1)

respectively, where εt ∼ N(0, σ2ε ) and ξt ∼ N(0, σ2ξ ) and both are independent. We express
the level component at time t, µt, as a function of that at time t−1. This notation is a subtle
change from that in Commandeur et al. (2011), but it is more consistent with the syntax of
Stata’s sspace for describing the model and how sspace executes the state-space recursions
by starting with index 0 instead of 1. The parameters in this model are σ2ε , σ

2
ξ , and µ0.

2.1. Covariance-form syntax

The covariance-form syntax of sspace is as follows:

sspace state_eq [state_eq ... state_eq]

obs_eq [obs_eq ... obs_eq] [if] [in] [, options]

where state_eq are state equations of the form

(statevar [lagged_statevars] [indepvars], state [noerror noconstant

covstate(covform)])

and obs_eq are observation equations of the form

(depvar [statevars] [indepvars] [, noerror noconstant

covobserved(covform)])

A list of state equations, observation equations, and options specifies an sspace model. The
square brackets indicate optional arguments, so the syntax diagram indicates that at least one
state equation and one observation equation are required. Each equation must be enclosed
in parentheses. In Stata parlance, a comma in the command toggles the parser from model
specification mode to options specification mode. Options included within an equation are
applied to that equation. Options specified outside the individual equations are applied to
the model as a whole.



Journal of Statistical Software 3

Each state equation specifies the name of a latent variable and must have the state option
specified. A state equation optionally contains a list of lagged state variables and a list
exogenous covariates. By default, a constant is included in the equation unless the noconstant
option is specified. By default, an error term is included in the equation unless the noerror

option is specified. The option covstate() allows you to specify the covariance structure
of the state equations. The covform in the syntax diagram may be identity, dscalar,
diagonal, or unstructured. The default is diagonal. The option dscalar states that the
covariance is diagonal and that all the variance terms are equal.

Each observation equation specifies the name of an observed dependent variable. An observa-
tion equation optionally contains a list of contemporaneous state variables and a list exogenous
covariates. By default, a constant is included in the equation unless the noconstant option
is specified. By default, an error term is included in the equation unless the noerror option
is specified. The option covobserved() allows you to specify the covariance structure of the
observation equations. The covariance forms are the same as the option covstate().

The [if] and the [in] specifications allow you to estimate the parameters using a subsample
of the observations.

The options in the main syntax diagram include model, optimization, and display options.
An important model option is constraints(), parameter constraints that identify the model.
A popular optimization option is the technique() option. Two good techniques for sspace

are technique(BHHH), or the Berndt-Hall-Hall-Hausman technique; and the technique(NR),
for Newton-Raphson. Optimization techniques may be mixed; such is the default, technique
(BHHH 5 NR), which specifies the BHHH method for the first 5 iterations and NR for the
remaining iterations. An example of a display option is level(), which allows you to set the
confidence level to something other than the default of 95%.

We clarify this syntax in the following example.

2.2. Estimating the variances of a local-level model using sspace

Here we illustrate the sspace syntax by estimating the parameters of the local-level model
on the well-known Nile dataset containing observations on the annual Nile River flow volume
at Aswan, Egypt, from 1870 to 1970. The Stata command use loads the dataset into memory
and the command describe describes it.

. use http://www.stata.com/ddrukker/nile.dta

(Nile river annual flow volume at Aswan from 1870 to 1970)

The describe command will display a dataset’s size, its variables, their storage type and
format, any labels associated with the variables, sorting information, and any descriptive
information that you have added to document your data.

. describe

Contains data from data/nile.dta

obs: 100 Nile river annual flow volume

at Aswan from 1870 to 1970

vars: 2 16 Jun 2008 10:49
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size: 1,200 (99.9% of memory free)

------------------------------------------------------------------------------

storage display value

variable name type format label variable label

------------------------------------------------------------------------------

AFV long %12.0g Annual Flow Volume

year long %ty

------------------------------------------------------------------------------

Sorted by: year

Stata computes time-series operators of variables using a time variable specified by the tsset

command. Below we specify year to be our time variable; we tsset the data, in Stata
parlance.

. tsset year

time variable: year, 1871 to 1970

delta: 1 year

We could now use sspace to estimate the parameters using the code

constraint define 1 [level]L.level = 1

constraint define 2 [AFV]level = 1

sspace (level L.level, state noconstant) ///

(AFV level, noconstant), ///

constraints(1 2)

While this code is transparent to Stata users, we discuss it in some detail for readers who are
unaccustomed to Stata.

The first two lines define constraints on the model parameters, as discussed below. The third
line begins with the command sspace and is followed by the definition of the state equation

(level L.level, state noconstant)

which is best understood from right to left. The option noconstant specifies that there is no
constant term in the equation; the option state specifies the equation as a state equation;
and the comma separates the options from equation specification. By specifying the equation
as level L.level, we specify level as the name for the unobserved state and we specify that
the state equation is

levelt = αlevelt−1

We use Stata’s lag operator, L. in this example, to model level as a linear function of the
lagged level.

At the end of third line, the three slashes, ///, denote a line continuation in Stata. In this
example, we see that lines 3, 4, and 5 compose a single Stata command.

The fourth line specifies that the observation equation in the model is

AFVt = βlevelt + εt
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where the εt are independent and identically distributed (IID) normal errors. As in the state
equation above, we used the noconstant option to suppress the constant term.

The model in Equation (1) requires that α = β = 1. Lines 1 and 2 declare these constraints;
on line 4, the option constraints(1 2) applies them to this model.

Repeating the code, we proceed with estimation:

. constraint define 1 [level]L.level = 1

. constraint define 2 [AFV]level = 1

. sspace (level L.level, state noconstant) ///

> (AFV level, noconstant), ///

> constraints(1 2)

searching for initial values ...

(setting technique to bhhh)

Iteration 0: log likelihood = -635.14379

Iteration 1: log likelihood = -633.9615

Iteration 2: log likelihood = -633.60088

Iteration 3: log likelihood = -633.57318

Iteration 4: log likelihood = -633.54533

(switching technique to nr)

Iteration 5: log likelihood = -633.51888

Iteration 6: log likelihood = -633.46465

Iteration 7: log likelihood = -633.46456

Iteration 8: log likelihood = -633.46456

Refining estimates:

Iteration 0: log likelihood = -633.46456

Iteration 1: log likelihood = -633.46456

State-space model

Sample: 1871 - 1970 Number of obs = 100

Log likelihood = -633.46456

( 1) [level]L.level = 1

( 2) [AFV]level = 1

------------------------------------------------------------------------------

| OIM

AFV | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

level |

level |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

AFV |

level | 1 . . . . .

-------------+----------------------------------------------------------------

var(level) | 1469.176 1280.375 1.15 0.251 -1040.313 3978.666

var(AFV) | 15098.52 3145.548 4.80 0.000 8933.358 21263.68

------------------------------------------------------------------------------

Note: Model is not stationary.

Note: Tests of variances against zero are conservative and are provided only

for reference.
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Commandeur et al.
e() result name notation

e(A) T
e(B)

e(C) R

e(chol_Q) Q1/2

e(D) Z
e(F)

e(G)

e(chol_R) H1/2

Table 1: Kalman filter matrices in Stata’s e() results and their Commandeur et al. (2011)
equivalents.

The output table reports that sspace estimates σ2ξ to be 1,469.2 and σ2ε to be 15,098.5.

Having provided a simple example of how to use sspace, we now provide some technical details
about its implementation. sspace uses the Mata optimizer optimize() (StataCorp 2009c).
sspace uses analytic first derivatives, from which it numerically computes the second order
derivatives necessary for Newton-Raphson optimization. If you are using the multiprocessor
version of Stata (Stata MP), the numerical second derivatives are computed in parallel.

optimize() will not declare convergence until the length of the scaled gradient is smaller

than 10−6. That is when gTk Ĥ
−1

k gk < 10−6, where gk is the gradient on the k-th step and

Ĥk is the approximated negative Hessian. The requirement that Ĥk be nonsingular prevents
sspace from declaring convergence when the parameters are not identified, as discussed in
Drukker and Wiggins (2004).

The standard errors are computed from the negative Hessian unless the variance-covariance
option, vce(), specifies otherwise. The OIM in the table header for the standard errors indi-
cates that the standard errors are computed from the observed information matrix. If non-
normal errors are suspected, use vce(robust) to obtain the Huber-White robust standard
errors (StataCorp 2009q, robust).

Stata estimation commands store their results in a memory region called ereturn. The results
may be accessed by the user and are used by other Stata commands, which are referred to as
postestimation commands in Stata parlance. Typing

. ereturn list

lists the results saved in e(). You may view or access any e() result by identifying the object
as e(name), where name is the name of the object.

The matrices saved off by sspace are listed in Table 1 along with the Commandeur et al.
(2011, Equations 1 and 2) equivalents.

Mixing both notations, a linear state-space model is

αt = Tαt−1 + Bxt + Rηt

yt = Zαt + Fwt + Gεt,
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where xt and wt are column vectors of covariates. The vector wt may contain lagged inde-
pendent variables specified on the left-hand side of observation equations. Commandeur et al.
(2011) incorporate the regression coefficent matrices B and F into the state transition matrix
T and the observation equation matrix Z, respectively.

The Kalman filter recursions are initialized with α1 = Tα0 + Bx1.

In this example the matrices are all 1 × 1, and we have e(A) = 1, e(D) = 1, e(chol_Q)

=
√

var(level), and e(chol_R) =
√

var(AFV). The remaining matrices do not exist for this
model.

Stata’s sspace uses the square-root filter to numerically implement the Kalman filter recur-
sions (DeJong 1991b; Durbin and Koopman 2001, Section 6.3). Moreover, when the model
is not stationary, as is the case here, the filter is augmented as described by DeJong (1991a),
DeJong and Chu-Chun-Lin (1994), and Durbin and Koopman (2001, Section 5.7). The two
techniques are used together to evaluate the likelihood (DeJong 1988) and to provide maxi-
mum likelihood (ML) estimates of the parameters of the state-space model. The techniques
also provide an estimate of the initial state. The initial state, α0 = µ0 is diffuse and is mod-
eled as var(µ0) → ∞ and E[µ0] = δ. The ML estimate of δ is 1120.0. This quantity is not
reported by sspace, but is stored as e(d).

We can obtain predictions using the predict command, after estimating the parameters. All
the standard objects and their standard errors can be predicted using predict after sspace.
These objects and the syntax for predict after sspace are discussed in StataCorp (2009d).

2.3. Case 1 postestimation

With the local-level model estimates still in memory we predict the smoothed trend of the
Nile annual flow volume using the DeJong (1989) diffuse Kalman filter. Here we use the rmse

option to obtain the smoothed trend root-mean-square error (RMSE) that is subsequently
used to compute 90% confidence intervals. A second call to predict obtains the standardized
residuals. We graph the series, trend, and trend confidence intervals in one graph and the
standardized residuals in a second graph. We then combine the two graphs into one and allow
it to render. This graph is displayed in Figure 1.

. predict trend, state equation(level) smethod(smooth) rmse(rmse)

.

. scalar z = invnormal(.95)

. gen lb = trend - z*rmse

. gen ub = trend + z*rmse

.

. predict res, rstandard

.

. twoway (tsline AFV trend) (tsrline lb ub), tlabel(1870(50)1970) ///

> ytitle(Annual Flow Volume) name(AFV) nodraw legend(off)

.

. tsline res, yline(3 -3) yline(0) tlabel(1870(50)1970) name(RES) nodraw

.

. graph combine AFV RES, name(AFVR) rows(2)

Next, we demonstrate forecasting. First we use the preserve command to save the original
dataset. We then extend the data by 10 years using the tsappend command. We compute
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Figure 1: In the upper panel we display the Nile annual flow volume time-series (blue) with
smoothed trend estimates (red) and trend 90% confidence intervals. The lower panel displays
the standardized residuals.

the one-step predictions, compute dynamic forecasts from 1971 to 1980, and compute the
RMSE’s for the predictions and forecast predictions. We then compute the 50% confidence
intervals for the forecasts and graph the results. Finally, we restore the original dataset. The
graph is shown in Figure 2.

. preserve

. tsappend, add(10)

. predict flow, dynamic(1971) rmse(rflow)

. scalar z = invnormal(.75)

. gen lb = flow - z*rflow

(1 missing value generated)

. gen ub = flow + z*rflow

(1 missing value generated)

. twoway (tsline AFV flow) (tsrline lb ub if year>=1970), ///

> tlabel(1870(10)1980) ytitle(Annual Flow Volume) name(FOR1) xline(1970) ///

> legend(label(1 "AFV") label(2 "predicted/forecast") label(3 "50% CI"))

. restore
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Figure 2: The Nile river annual flow volume (blue), one-step predictions and dynamic forecasts
(red), and forecast 50% confidence intervals.

3. Case 2: A local-linear-trend model

In this section we review the structure of a local-linear-trend model with an autoregressive
component, AR(1), and a seasonal component. The state-space form of a time-domain sea-
sonal component is described in Commandeur et al. (2011, Section 2.1). Our state-space
model is

µt =µt−1 + νt−1 + ξt, (2)

νt =νt−1, (3)

ηt =φ · ηt−1 + ζt, (4)

γ1,t =− γ1,t−1 − γ2,t−1 − γ3,t−1 + ωt, (5)

γ2,t =γ1,t, (6)

γ3,t =γ2,t, (7)

yt =µt + ηt + γ1,t, (8)

where ζt ∼ NID(0, σ2ζ ), ξt ∼ NID(0, σ2ξ ), and ωt ∼ NID(0, σ2ω).

Equation (8) is the observation equation and it depends on the states µ (the linear trend),
η (the AR(1) term), and γ1 (the seasonal component). The observation equation has no
error term. The model has six state equations: two for the linear trend, one for the AR(1)
component and three for the seasonal component.
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3.1. Estimating parameters of the local-linear-trend model using sspace

We now use sspace to estimate the parameters of a local-linear-trend model with an AR(1)
component and a seasonal component. We fit this model to quarterly data on the food and
tobacco production (FTP) in the United States for the years 1947 to 2000. Cox (2009) uses
the dataset to demonstrate graphing seasonal time-series data in Stata.

First we read the dataset into memory and describe it:

. use http://www.stata.com/ddrukker/ftp.dta

(Food and tobacco production in the United States for 1947-2000)

. describe

Contains data from data/ftp.dta

obs: 216 Food and tobacco production in

the United States for

1947-2000

vars: 2 11 Jan 2010 10:02

size: 2,592 (99.9% of memory free)

------------------------------------------------------------------------------

storage display value

variable name type format label variable label

------------------------------------------------------------------------------

ftp float %8.0g food and tobacco production

date float %tq

------------------------------------------------------------------------------

Sorted by: date

As before we tsset the data:

. tsset date

time variable: date, 1947q1 to 2000q4

delta: 1 quarter

The code to estimate the parameters of the model is:

constraint 1 [trend]L.trend = 1

constraint 2 [trend]L.slope = 1

constraint 3 [slope]L.slope = 1

constraint 4 [season]L.season = -1

constraint 5 [season]L.s2 = -1

constraint 6 [season]L.s3 = -1

constraint 7 [s2]L.season = 1

constraint 8 [s3]L.s2 = 1

constraint 9 [ftp]ar = 1

constraint 10 [ftp]trend = 1

constraint 11 [ftp]season = 1

sspace (trend L.trend L.slope, state noconstant) ///

(slope L.slope, state noerror noconstant) ///
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(ar L.ar, state noconstant) ///

(season L.season L.s2 L.s3, state noconstant) ///

(s2 L.season, noerror state noconstant) ///

(s3 L.s2, noerror state noconstant) ///

(ftp ar trend season, noerror noconstant), ///

constraints(1/11) covstate(diagonal)

The basic structure is the same as in the previous example. After defining some constraints,
we issue the sspace command. The structure of the sspace command is also similar to the
previous example. After specifying the state equations, we specify the observation equation,
and then we specify the model-level options. The syntaxes for the state equations for the
observation equation are similar to those in the previous example. The model-level option
covstate(diagonal) is new; it specifies that covariance matrix of the state-errors have a
diagonal structure. Each error has its own variance, but the errors are independent of one
another.

The 6 state equations in the code above correspond the state equations (2)–(7). The algebraic
version of the observation equation in the code above is given in Equation (8).

Repeating and running the code yields

. constraint 1 [trend]L.trend = 1

. constraint 2 [trend]L.slope = 1

. constraint 3 [slope]L.slope = 1

. constraint 4 [season]L.season = -1

. constraint 5 [season]L.s2 = -1

. constraint 6 [season]L.s3 = -1

. constraint 7 [s2]L.season = 1

. constraint 8 [s3]L.s2 = 1

. constraint 9 [ftp]ar= 1

. constraint 10 [ftp]trend= 1

. constraint 11 [ftp]season= 1

. sspace (trend L.trend L.slope, state noconstant) ///

> (slope L.slope, state noerror noconstant) ///

> (ar L.ar, state noconstant) ///

> (season L.season L.s2 L.s3, state noconstant) ///

> (s2 L.season, noerror state noconstant) ///

> (s3 L.s2, noerror state noconstant) ///

> (ftp ar trend season, noerror noconstant), ///

> constraints(1/11) covstate(diagonal)

searching for initial values ..

(setting technique to bhhh)

Iteration 0: log likelihood = -405.11164

Iteration 1: log likelihood = -366.97349

Iteration 2: log likelihood = -347.30821

Iteration 3: log likelihood = -347.08995

Iteration 4: log likelihood = -346.9888

(switching technique to nr)

Iteration 5: log likelihood = -346.96929

Iteration 6: log likelihood = -327.72965 (not concave)

Iteration 7: log likelihood = -306.45684 (not concave)

Iteration 8: log likelihood = -295.90364
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Iteration 9: log likelihood = -294.77578

Iteration 10: log likelihood = -294.67933

Iteration 11: log likelihood = -294.59382

Iteration 12: log likelihood = -294.59331

Iteration 13: log likelihood = -294.59331

Refining estimates:

Iteration 0: log likelihood = -294.59331

Iteration 1: log likelihood = -294.59331 (backed up)

State-space model

Sample: 1947q1 - 2000q4 Number of obs = 216

Wald chi2(1) = 0.11

Log likelihood = -294.59331 Prob > chi2 = 0.7363

( 1) [trend]L.trend = 1

( 2) [trend]L.slope = 1

( 3) [slope]L.slope = 1

( 4) [season]L.season = -1

( 5) [season]L.s2 = -1

( 6) [season]L.s3 = -1

( 7) [s2]L.season = 1

( 8) [s3]L.s2 = 1

( 9) [ftp]ar = 1

(10) [ftp]trend = 1

(11) [ftp]season = 1

------------------------------------------------------------------------------

| OIM

ftp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

trend |

trend |

L1. | 1 . . . . .

|

slope |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

slope |

slope |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

ar |

ar |

L1. | .1522196 .4519697 0.34 0.736 -.7336248 1.038064

-------------+----------------------------------------------------------------

season |

season |

L1. | -1 . . . . .

|

s2 |

L1. | -1 . . . . .

|

s3 |

L1. | -1 . . . . .
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-------------+----------------------------------------------------------------

s2 |

season |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

s3 |

s2 |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

ftp |

ar | 1 . . . . .

trend | 1 . . . . .

season | 1 . . . . .

-------------+----------------------------------------------------------------

var(trend) | .385335 .0958063 4.02 0.000 .1975581 .5731119

var(ar) | .0987783 .095571 1.03 0.301 -.0885374 .286094

var(season) | .0356305 .0136982 2.60 0.009 .0087825 .0624785

------------------------------------------------------------------------------

Note: Model is not stationary.

Note: Tests of variances against zero are conservative and are provided only

for reference.

The coefficient table lists 15 estimates, only 4 of which are unconstrained: ar.L1 = 0.152,
var(trend) = 0.385, var(ar) = 0.0988, and var(season) = 0.0356. These are estimates of
φ, σ2ξ , σ

2
ζ , and σ2ω, respectively. We specified that the covariance for the state equations be

diagonal; this is the default and was added for clarity.

3.2. Case 2 postestimation

After estimation, we can use the predict command to compute estimates of the observables
or unobservables using the one-step, filter, or smoothed methods (Durbin and Koopman 2001,
Chapter 4; DeJong 1989). The observation equation residuals or standardized residuals may
be computed using the one-step or smoothed methods.

Below we compute the one-step estimates of the food and tobacco production:

. predict ftp1

(option xb assumed; fitted values)

Now we predict the one-step trend:

. predict trend, state equation(trend)

Finally, we compute the residuals:

. predict res, residuals

Now we perform some computations to produce more informative graphs. In the code below,
we store the index that marks the last quarter of the sample in a local macro and generate a
new variable q containing the quarter per annum of each observation.



14 State Space Methods in Stata

Figure 3: Quarterly data on food and tobacco production in the United States with smoothed
series and the filtered trend in the top panel. The one-step residuals are in the bottom panel.

. local n = floor(3*_N/4)

. generate int q = quarter(dofq(date))

The next block produces the graphs shown in Figure 3. Figure 3 shows the time-series plots
using plotting tips by Cox (2009) with the smoothed series and filtered trend. We only graph
the last quarter of the sample. (The growth in the series covers up the seasonal detail when
we graph the series over the entire sample.)

. twoway (scatter ftp date in `n'/L, msymbol(none) mlabel(q) ///

> mlabposition(0) ytitle(production) ylabel(#3)) ///

> (tsline ftp1 trend in `n'/L), nodraw name(FTP1)

. tsline res in `n'/L, nodraw name(RES) yline(0)

. graph combine FTP1 RES, name(FTP2) rows(2)

. graph drop FTP1 RES

Next we illustrate how to forecast estimates. We begin by extending the data, adding two
years starting at Q1 of year 2001.

. tsappend, add(8)

The next code block predicts ftp, specifying that dynamic forecasts should begin on quarter
Q1 of 2001. The function tq(2001q1) translates the string “2001q1” to the appropriate
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Figure 4: One-step predictions of US food and tobacco production with dynamic predictions
starting at Q1 of year 2001. Approximate 95% confidence bounds are also given.

numeric value: the number of quarters since Q1 1960. We also request the root-mean-square
error (RMSE) of the residuals. We use the RMSE estimates to compute an approximate 90%
confidence intervals about the forecast values. These are displayed in Figure 4.

. predict ftp1, dynamic(tq(2001q1)) rmse(rftp)

. scalar z = invnormal(0.95)

. gen lb = ftp1 + z*rftp if date>=tq(2001q1)

. gen ub = ftp1 - z*rftp if date>=tq(2001q1)

. tsline ftp1 if date>=tq(1995q1) || tsrline lb ub if date>=tq(1995q1), ///

xline(`=tq(2001q1)') legend(label(2 "90 \% CI")) name(DYN)

4. Case 3: The vector autoregressive moving-average model

We used freduse (see Drukker 2006) to obtain Federal Reserve data on the capacity utilization
rate, caputil, and manufacturing hours, hours, for the US economy (http://research.
stlouisfed.org/fred2). Here we model the differenced series, D.caputil and D.hours, as
a first-order vector autoregressive moving-average (VARMA(1,1)) process. In this model, we
allow the lag of D.caputil to affect D.hours, but we do not allow the lag of D.hours to affect
the lag of D.caputil, as was done in StataCorp (2009e, Example 4).(

∆ct
∆ht

)
=

(
φ1 0
φ2 φ3

)(
∆ct−1

∆ht−1

)
+

(
θ1 0
0 0

)(
ηt−1,1

ηt−1,2

)
+

(
ηt,1
ηt,2

)
(9)

http://research.stlouisfed.org/fred2
http://research.stlouisfed.org/fred2
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The state equations and the observation equations for the state-space form of this VARMA(1,1)
model may be written, respectively, in vector form asαt,1αt,2

αt,3

 =

φ1 1 0
0 0 0
φ2 0 φ3

αt−1,1

αt−1,2

αt−1,3

+

 1 0
θ1 0
0 1

(ηt,1
ηt,2

)
, (10)

(
∆ct
∆ht

)
=

(
1 0 0
0 0 1

)αt,1αt,2
αt,3

 (11)

where αt,1 = ∆ct, αt,2 = θ1ηt,1, αt,3 = ∆ht, and the 2 × 2 covariance matrix cov(ηt) is
diagonal.

Next we use the sspace error-form syntax to estimate the parameters of this model.

4.1. Error-form syntax

The error-form syntax of sspace has the same overall structure as the covariance form, but
it has an extra component in the state equation.

(statevar [lagged_statevars] [indepvars] [state_errors], state [noconstant])

The optional [state_errors] lists state-equation errors that enter a state equation. Each
state error has the form e.statevar, where statevar is the name of a state in the model.
The state_errors define the covariance structure so the option covstate() is not necessary.
Also, the noerror option has no meaning in this style of syntax.

4.2. Estimation of the VARMA(1,1)

We now use the error-form syntax of sspace to estimate the parameters of the VARMA(1,1)
model whose state-space form is given in Equations (10) and (11).

The code for estimating the model parameters is given below:

constraint 1 [u1]L.u2 = 1

constraint 2 [u1]e.u1 = 1

constraint 3 [u3]e.u3 = 1

constraint 4 [D.caputil]u1 = 1

constraint 5 [D.hours]u3 = 1

sspace (u1 L.u1 L.u2 e.u1, state noconstant) ///

(u2 e.u1, state noconstant) ///

(u3 L.u1 L.u3 e.u3, state noconstant) ///

(D.caputil u1, noconstant) ///

(D.hours u3, noconstant), ///

constraints(1/5) covstate(diagonal) vce(robust)

The code has the same structure as the previous examples. After defining the contraints, we
use them in the sspace command. The sspace command itself has two parts: First come
the equations that define the state-space form of the model. Second we specify model-level
options.
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The code specifies the five equations that define the state-space form of the model. The first
three equations are the state equations whose algebraic counterparts are in Equation (10). The
only difference in the two versions is that the states are named α1, α2, and α3 in the algebra
and named u1, u2 and u3 in code. The last two equations are the observation equations whose
algebraic equivalent is given in Equation (11).

We have already discussed the model-level options constraints() and covstate(). The
model-level option vce(robust) specifies that the standard errors should be estimated using
the Huber-White robust estimator which is robust to nonnormal errors in this case.

Below we read in the dataset and run the code.

. webuse manufac.dta

(St. Louis Fed (FRED) manufacturing data)

. constraint 1 [u1]L.u2 = 1

. constraint 2 [u1]e.u1 = 1

. constraint 3 [u3]e.u3 = 1

. constraint 4 [D.caputil]u1 = 1

. constraint 5 [D.hours]u3 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) ///

> (u2 e.u1, state noconstant) ///

> (u3 L.u1 L.u3 e.u3, state noconstant) ///

> (D.caputil u1, noconstant) ///

> (D.hours u3, noconstant), ///

> constraints(1/5) covstate(diagonal) vce(robust)

Iteration 0: log pseudolikelihood = -468.09528

Iteration 1: log pseudolikelihood = -436.36371

Iteration 2: log pseudolikelihood = -417.72583

Iteration 3: log pseudolikelihood = -414.07834

Iteration 4: log pseudolikelihood = -411.97958

(switching technique to nr)

Iteration 5: log pseudolikelihood = -410.90058

Iteration 6: log pseudolikelihood = -408.46772

Iteration 7: log pseudolikelihood = -408.44012

Iteration 8: log pseudolikelihood = -408.44012

Refining estimates:

Iteration 0: log pseudolikelihood = -408.44012

Iteration 1: log pseudolikelihood = -408.44012

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443

Wald chi2(4) = 281.15

Log likelihood = -408.44012 Prob > chi2 = 0.0000

( 1) [u1]L.u2 = 1

( 2) [u1]e.u1 = 1

( 3) [u3]e.u3 = 1

( 4) [D.caputil]u1 = 1

( 5) [D.hours]u3 = 1

------------------------------------------------------------------------------
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| Robust

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

u1 |

u1 |

L1. | .8041549 .0586271 13.72 0.000 .6892478 .919062

|

u2 |

L1. | 1 . . . . .

e.u1 | 1 . . . . .

-------------+----------------------------------------------------------------

u2 |

e.u1 | -.5236703 .0807037 -6.49 0.000 -.6818466 -.365494

-------------+----------------------------------------------------------------

u3 |

u1 |

L1. | .0861277 .0247206 3.48 0.000 .0376762 .1345791

|

u3 |

L1. | -.4734121 .1275157 -3.71 0.000 -.7233384 -.2234859

e.u3 | 1 . . . . .

-------------+----------------------------------------------------------------

D.caputil |

u1 | 1 . . . . .

-------------+----------------------------------------------------------------

D.hours |

u3 | 1 . . . . .

-------------+----------------------------------------------------------------

var(u1) | .3564469 .0407754 8.74 0.000 .2765287 .4363651

var(u3) | .060721 .0120762 5.03 0.000 .0370521 .0843898

------------------------------------------------------------------------------

Note: Tests of variances against zero are conservative and are provided only

for reference.

The output table gives us the parameter estimates, the estimated standard errors, confidence
intervals, and tests against zero. Using the notation of Equation (9), the estimates of the AR
parameters are φ̂1 = 0.804, φ̂2 = 0.0861, and φ̂3 = −0.473. The estimated MA parameter is
θ̂1 = −0.524. The variance estimates are v̂ar(ηt,1) = 0.356 and v̂ar(ηt,2) = 0.0607.

4.3. Case 3 postestimation

We now predict the differenced capital utilization using the one-step predictions and the
standardized residuals:

. predict pcaputil, equation(D.caputil)

(option xb assumed; fitted values)

. predict stdres, rstandard equation(D.caputil)

predict computes predicted values for both D.caputil and D.hours by default because there
are two observation equations in our model. To override the default behavior, we specify the
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Figure 5: The upper panel displays the one-step predictions of manufacturing capacity uti-
lization starting at January 1990. The standardized residuals are displayed in the lower panel.

option equation(D.caputil), which instructs predict to perform the computation only for
the D.caputil equation.

. tsline D.caputil pcaputil if month>=tm(1990m1), name(CAP) nodraw

. tsline stdres if month>=tm(1990m1), name(RES) nodraw

. graph combine CAP RES, rows(2) name(CH2)

. graph drop CAP RES

Figure 5 displays the capacity utilization time series and the one-step predictions in the upper
panel. The lower panel displays the standardized residuals. Only the latter half of the data
are shown.

5. A dynamic-factor example

State-space models have been used to formulate estimators for popular models such as ARMA
and VARMA models and to formulate estimators for new models suggested by the state-space
framework. The unobserved-components (UC) model discussed in Harvey (1989) and the
dynamic-factor model are two of the most important models that naturally fit into a state-
space framework. Above we considered UC models and a VARMA model; now we consider a
dynamic-factor model.

Dynamic-factor models are VAR models augmented by unobserved factors that may also have
an autoregressive structure. Dynamic-factor models have been applied in macroeconomics,
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see Geweke (1977), Sargent and Sims (1977), Stock and Watson (1989), Stock and Watson
(1991) and Watson and Engle (1983). Lütkepohl (2005) provides a good introduction to
dynamic-factor models and their state-space formulation. StataCorp (2009a) provides a quick
introduction to these models and has several examples including the one discussed below.

In this example, we consider a dynamic-factor model without exogenous variables in which
the dynamic factor follows an AR(2) process, and the disturbances in the equations for the ob-
servable variables follow AR(1) processes. This example illustrates how to specify a dynamic-
factor model and how to specify an AR(2) process. The dfactor command is an easy-to-use
alternative to sspace for dynamic-factor models.

The state-space form of the model we consider is

ft = φ1ft−1 + φ2ft−2 + ηt (12)

ft−1 = ft−1 (13)

µt = Ψµt−1 + εt (14)

yt = bft + µt (15)

where ft is an unobserved factor that follows an AR(2) process; µt is a 4× 1 vector of errors,
each of which follows an AR(1) process; and yt is a 4×1 vector of dependent variables. Equa-
tions (12), (13), and (14) are the state equations. Equation (15) is the vector of observation
equations.

The system is driven by ηt (a scalar IID error) and by εt (a 4 × 1 vector of IID errors). By
restricting Ψ to be 4 × 4 diagonal matrix, we specify that the unobserved factor is the only
source of correlation between the dependent variables. φ1 and φ2 are the coefficients of the
AR(2) process for the dynamic factor. b is a 4× 1 vector of coefficients.

We downloaded some US macroeconomic data from the FRED database of the St. Louis
Federal Reserve using the freduse command discussed in Drukker (2006). Specifically, we
have data on the yt variables industrial production index, ipman; real disposable income,
income; an aggregate weekly hours index, hours; and aggregate unemployment, unemp. These
data were used in the Stata manuals, so we use the webuse command to download the dataset
and read it into memory.

In the code below, we use sspace to estimate the parameters of this model:

. webuse dfex, clear

(St. Louis Fed (FRED) macro data)

. constraint define 1 [Lf]L.f = 1

. constraint define 2 [D.ipman]u1 = 1

. constraint define 3 [D.income]u2 = 1

. constraint define 4 [D.hours]u3 = 1

. constraint define 5 [D.unemp]u4 = 1

. constraint define 6 [var(f)]_cons = 1

. sspace (f L.f L.Lf, state noconstant) ///

> (Lf L.f, state noconstant noerror) ///

> (u1 L.u1, state noconstant) ///

> (u2 L.u2, state noconstant) ///
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> (u3 L.u3, state noconstant) ///

> (u4 L.u4, state noconstant) ///

> (D.ipman f u1, noconstant noerror) ///

> (D.income f u2, noconstant noerror) ///

> (D.hours f u3, noconstant noerror) ///

> (D.unemp f u4, noconstant noerror), ///

> covstate(diagonal) constraints(1/6)

searching for initial values ...............

(setting technique to bhhh)

Iteration 0: log likelihood = -667.60855

Iteration 1: log likelihood = -631.10186

Iteration 2: log likelihood = -618.21015

Iteration 3: log likelihood = -615.08888

Iteration 4: log likelihood = -613.63357

(switching technique to nr)

Iteration 5: log likelihood = -612.55257

Iteration 6: log likelihood = -610.31321

Iteration 7: log likelihood = -610.28847

Iteration 8: log likelihood = -610.28846

Refining estimates:

Iteration 0: log likelihood = -610.28846

Iteration 1: log likelihood = -610.28846

State-space model

Sample: 1972m2 - 2008m11 Number of obs = 442

Wald chi2(10) = 990.91

Log likelihood = -610.28846 Prob > chi2 = 0.0000

( 1) [Lf]L.f = 1

( 2) [D.ipman]u1 = 1

( 3) [D.income]u2 = 1

( 4) [D.hours]u3 = 1

( 5) [D.unemp]u4 = 1

( 6) [var(f)]_cons = 1

------------------------------------------------------------------------------

| OIM

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

f |

f |

L1. | .4058457 .0906183 4.48 0.000 .2282371 .5834544

|

Lf |

L1. | .3663499 .0849584 4.31 0.000 .1998344 .5328654

-------------+----------------------------------------------------------------

Lf |

f |

L1. | 1 . . . . .

-------------+----------------------------------------------------------------

u1 |

u1 |

L1. | -.2772149 .068808 -4.03 0.000 -.4120761 -.1423538

-------------+----------------------------------------------------------------
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u2 |

u2 |

L1. | -.2213824 .0470578 -4.70 0.000 -.3136141 -.1291508

-------------+----------------------------------------------------------------

u3 |

u3 |

L1. | -.3969317 .0504256 -7.87 0.000 -.495764 -.2980994

-------------+----------------------------------------------------------------

u4 |

u4 |

L1. | -.1736835 .0532071 -3.26 0.001 -.2779675 -.0693995

-------------+----------------------------------------------------------------

D.ipman |

f | .3214972 .027982 11.49 0.000 .2666535 .3763408

u1 | 1 . . . . .

-------------+----------------------------------------------------------------

D.income |

f | .0760412 .0173844 4.37 0.000 .0419684 .110114

u2 | 1 . . . . .

-------------+----------------------------------------------------------------

D.hours |

f | .1933165 .0172969 11.18 0.000 .1594151 .2272179

u3 | 1 . . . . .

-------------+----------------------------------------------------------------

D.unemp |

f | -.0711994 .0066553 -10.70 0.000 -.0842435 -.0581553

u4 | 1 . . . . .

-------------+----------------------------------------------------------------

var(f) | 1 . . . . .

var(u1) | .1387909 .0154558 8.98 0.000 .1084981 .1690837

var(u2) | .2636239 .0179043 14.72 0.000 .2285322 .2987157

var(u3) | .0822919 .0071096 11.57 0.000 .0683574 .0962265

var(u4) | .0218056 .0016658 13.09 0.000 .0185407 .0250704

------------------------------------------------------------------------------

Note: Tests of variances against zero are conservative and are provided only

for reference.

The code is similar to what we have seen in previous examples. Equation (13), which is the
second equation specified in the sspace command, is the new element in this example. This
method of including lags as additional trivial state equations is a standard trick in state-space
modeling, see Lütkepohl (2005, Chapter 18.2) and Hamilton (1994, Chapter 13.1).

The Stata command dfactor provides an easy-to-use syntax for estimating the parameters
of dynamic-factor models. For example, the command

. dfactor (D.(ipman income hours unemp), noconstant ar(1)) (f = , ar(1/2))

produces the same parameter estimates as the above sspace command.

predict after sspace and after dfactor provide all the standard options to forecast the
observed dependent variables or to extract unobserved factors. We have already illustrated
the use of predict after sspace, see StataCorp (2009b) for further examples and a detailed
discussion of the underlying mathematics.
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6. Conclusion

We have illustrated how to estimate the parameters of UC models, VARMA models, and
dynamic-factor models using Stata’s sspace command. Stata’s sspace command can estimate
the parameters of many other linear state-space models.

Using Stata’s ADO programming language (StataCorp 2009q), the sspace command could
be used as a computational engine for new estimation commands. The dfactor command
is an example. These commands would be easy-to-use versions of sspace, presenting a sim-
plified syntax unique to the target model. Because Stata is such a popular platform among
applied researchers, sspace provides an opportunity for theoretical researchers to easily make
their methods available to a huge audience of applied researchers. More complicated estima-
tors could combine Stata’s byte-compiled matrix language Mata, see StataCorp (2009f) and
StataCorp (2009g), and sspace to implement new estimators.
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