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Abstract. Fluctuations in wetland hydrology create an in-
terplay between aerobic and anaerobic conditions, control-
ling vegetation composition and microbial community struc-
ture and activity in wetland soils. In this study, we inves-
tigated the vegetation composition and microbial commu-
nity structural and functional changes along a wetland hy-
drological gradient. Two different vegetation communities
were distinguished along the hydrological gradient;Carice-
tum gracilisat the wet depression andArrhenatheretum ela-
tioris at the drier upper site. Microbial community structural
changes were studied by a combined in situ13CO2 pulse la-
beling and phospholipid fatty acid (PLFA) based stable iso-
tope probing approach, which identifies the microbial groups
actively involved in assimilation of newly photosynthesized,
root-derived C in the rhizosphere soils. Gram negative bac-
terial communities were relatively more abundant in the sur-
face soils of the drier upper site than in the surface soils of the
wetter lower site, while the lower site and the deeper soil lay-
ers were relatively more inhabited by gram positive bacterial
communities. Despite their large abundance, the metaboli-
cally active proportion of gram positive bacterial and actino-
mycetes communities was much smaller at both sites, com-
pared to that of the gram negative bacterial and fungal com-
munities. This suggests much slower assimilation of root-
derived C by gram positive and actinomycetes communi-
ties than by gram negative bacteria and fungi at both sites.
Ground water depth showed a significant effect on the rela-
tive abundance of several microbial communities. Relative
abundance of gram negative bacteria significantly decreased
with increasing ground water depth while the relative abun-
dance of gram positive bacteria and actinomycetes at the sur-
face layer increased with increasing ground water depth.
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(wajira.balasooriya@ugent.be)

1 Introduction

Wetland ecosystems are characterized by hydric soils
which support hydrophilic vegetation (Mausbach and Parker,
2001). Fluctuations in wetland hydrology regulate the avail-
ability of oxygen, resulting in the interplay between aerobic
and anaerobic processes of key biogeochemical cycles, such
as nitrification, denitrification and methanogenesis (Davids-
son et al., 1997). These wetland biogeochemical cycling pro-
cesses are mostly microbially mediated. While wetland mi-
crobiology is receiving increasing research attention, it still
remains under investigated. Wetland biogeochemistry re-
search has mainly focused on (i) biogeochemical studies of
processes, and, although less thoroughly studied, (ii) micro-
bial ecological studies of populations and community struc-
ture (Gutknecht et al., 2006).

Hydrology is a dominant factor controlling microbial pro-
cesses in wetlands (Bardgett and Shine, 1999; Gutknecht et
al., 2006; Mentzer et al., 2006). Higher water levels increase
the rate of anaerobic processes, such as denitrification (Smith
and Tiedje, 1979), methanogenesis (Coles and Yavitt, 2004),
and sulfate reduction (Devito and Hill , 1999), and decrease
rates of aerobic processes, such as nitrification (Qiu and Mc-
Comb, 1996) by creating low oxygen and anaerobic soil mi-
cro sites. In addition, temporal fluctuations of soil mois-
ture from drying/wetting cycles stimulate denitrification in
wet cycles and nitrification in dry cycles (Qiu and McComb,
1996; Venterink et al., 2002).

Additionally, hydrology affects vegetation composition
since wetland plant species occurrence has been shown to be
highly responsive to fluctuations in water level (Leyer, 2005;
Van der Hoek and Sykora, 2006) and hydroperiod (Battaglia
and Collins, 2006; Peters et al., 20071). Plants can influence
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microbial functions directly by providing resources in lit-
ter (Bardgett and Shine, 1999), with variations among plant
types or species depending on their nutrient content (Hume
et al., 2002). Indirectly, plants affect microbial processes
through their rhizosphere characteristics. The rhizosphere
receives readily decomposable labile resources from plant
roots (Kennedy, 2005) and increase oxygen levels relative
to the surrounding wetland soil (Colmer, 2003).

While bacterial communities generally dominate the wet-
land soil microbial community (Boon et al., 1996), mycor-
rhizal fungi adapted to wetland conditions also occur (Anu-
pam, 2003). Wetland hydrology may affect the general mi-
crobial community structure (Sundh et al., 1997; Mentzer et
al., 2006), or specific organisms, such as mycorrhizal fungi
(Wetzel and VanderValk, 1996). Wetland microbial com-
munity structure has also been shown to vary among plant
species rhizospheres (Halbritter and Mogyorossy, 2002) and
with plant community composition (Borga et al., 1994;
Sundh et al., 1997; Ingham and Wilson, 1999).

Different biochemical and microbiological techniques
have been used to describe the general structure of soil
and aquatic microbial communities. In situ characteriza-
tion of microbial community composition is commonly done
through in situ analysis of specific components (biomark-
ers), which are only produced by and therefore character-
istic for specific microbial groups. For example, the anal-
ysis of phospholipid fatty acids (PLFA) is based on the anal-
ysis of a group of cell membrane lipids, several of which
can be used as biomarkers for specific microbial communi-
ties (Vestal and White, 1989; Zelles, 1997). The polar group
of phospholipids is rapidly hydrolyzed upon microbial cell
death, hence the fatty acids in intact phospholipids are as-
sumed to originate from living micro organisms (White et
al., 1979; Zelles, 1997). In wetland studies, PLFA analy-
sis has shown microbial community compositional changes
across different wetlands (Borga et al., 1994; Boon et al.,
1996; Sundh et al., 1997) as a result of differences in hy-
drological fluctuations (Sundh et al., 1997; Mentzer et al.,
2006). Although most PLFA studies have provided valuable
information regarding the structure of the microbial commu-
nity (Frostegard et al., 1993; Bossio et al., 1998; Steer and
Harris, 2000; Fierer et al., 2003; Drissner et al., 2007), they
usually do not reveal any information regarding the func-
tion of microbial communities associated with C cycling.
Technological developments in mass-spectrometry in the last
decades have made it possible to integrate stable isotope
analysis into biomarker analysis (Boschker and Middleburg,
2002). The combination of13C stable isotope and PLFA
analysis through Gas Chromatography-Combustion-Isotope
Ratio Mass Spectrometry (GC-C-IRMS) has made it possi-
ble to trace the flow of C from a13C-labeled substrate into
the PLFA fraction of the microbial communities (Boschker
et al., 1998), and to identify the microbial communities ac-
tively assimilating the labeled substrate-derived C. This com-
bined approach is unique as it allows to assess the specifi-

cally “active” proportion of the microbial community and to
link biogeochemical processes with microbial identity. Sta-
ble isotope probing (SIP) of PLFA has been successfully at-
tained through laboratory incubations with13C enriched sub-
strate additions (Waldrop and Firestone, 2004), in situ en-
riched substrate additions (Williams et al., 2006), as well as
in situ 13CO2 pulse labeling of growing plants (Treonis et
al., 2004; Prosser et al., 2006; Denef et al., 2007; Lu et al.,
2007). By using in situ PLFA-based SIP analysis, several
studies have demonstrated a dominant contribution of fungi
in the immediate assimilation of rhizosphere-derived C in
grasslands (Butler et al., 2003; Treonis et al., 2004; Olsson
and Johnson, 2005; Denef et al., 2007). In this study, PLFA-
based SIP was performed through an in situ stable isotope
13CO2 pulse labeling approach in a natural wetland ecosys-
tem to examine the incorporation of rhizodeposition into in-
dividual PLFAs across a spatial and temporal hydrological
gradient. The main objective of this study was to examine
if a wetland hydrological gradient and consequent vegetation
composition distributions are linked to microbial community
structural differences.

2 Description of the study site

The study was conducted along a topographical tran-
sect in the Northern part of the wetland nature reserve
Bourgoyen-Ossemeersen, Ghent, Belgium. The Bourgoyen-
Ossemeersen is an alluvial complex characterized by flood-
plains of the river Leie. Higher levees are found next to
the river with well drained sandy to silty textured soil types
while floodplain depressions in the hinterland have clay soils
with gleyic properties. The management of the Bourgoyen-
Ossemeersen aims at increasing the botanical and ornitho-
logical value of the nature reserve area. During winter
(November–March), a floodgate is closed and the gravita-
tional drainage of the area is blocked up to a height of
5.67 m a.s.l. The rate of ground water depth rising is depen-
dent on the precipitation during this period. From the first
of March on, gravitational drainage is allowed to a height
of 5.27 m a.s.l., but evapotranspiration losses might further
lower the actual ground water depth. The vegetation of
Bourgoyen-Ossemeersen consists of several grassland asso-
ciations. Areas with high productivity are mown twice a year
(June and September), whereas areas with lower productiv-
ity are mown once a year. Some other parcels are seasonally
grazed. Along the transect, an upper site on the levee and a
lower site in the depression, each approximately 15 m long,
were selected. Each of the two sites was subdivided in a
left, middle and right sampling point (Fig.1). The elevation
ranges from 5.3 m a.s.l. at the lower site to 7 m a.s.l. at the up-
per site (Peters et al., 2006). Soil texture at the different sites
could be summarized as: (i) clay soils at the lower site; (ii) a
sandy loam soil texture at the upper left sampling point, and
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(iii) sandy soils at the upper middle and upper right sampling
points.

3 Methods

3.1 Monitoring of the eco-hydrological site conditions

3.1.1 Hydrological data

At each sampling point (left, middle and right) of the lower
and the upper site, soil water content reflectometers (CS616,
Campbell Scientific Ltd.) were installed at 10 and 30 cm
depths for measuring the volumetric water content (VWC) of
the soil [cm3 cm−3]. In addition piezometers were installed
and equipped with divers (TD Diver, Van Essen Instruments)
to measure ground water depths relative to the soil surface.
Details on the field position of the devices can be seen in
Fig.1. Hourly data recorded during a sampling period of two
years (from 21 June 2005 until 21 June 2007) was extracted
for this study. Additional information on precipitation was
gathered from the nearby weather station Vinderhoute (4 km
from the study area), managed by the Flemish environmental
agency VMM (hydronet databankhttp://www.hydronet.be).
Time series of precipitation, ground water depth and soil wa-
ter content are given in Figs.2 and3.

3.1.2 Vegetation data

Vegetation at the lower and the upper sites have been moni-
tored on both floristic composition and vegetation structural
variables. Floristic data were gathered by installing six per-
manent quadrats of 2 m by 2 m at both sites (12 quadrats
in total), located near the three sampling points. In Au-
gust 2006, the species composition within these quadrats was
described, and the abundance of recorded species was esti-
mated using the decimal Londo scale (Londo, 1976). The
vegetation structure was described by means of two vari-
ables: living above ground biomass [gm−2], and leaf area
[m2m−2], which is the quotient of the total one-sided green
leaf area and the ground area. Therefore monthly samples
were taken by harvesting six randomly distributed 30 cm by
30 cm patches on the lower and upper site. Dead and liv-
ing plant materials of the vegetation samples were separated
prior to the determination of the leaf area using a LI-3100
leaf area meter (LI-COR Biosciences). Finally, the plant ma-
terial was oven dried (48 h, 70◦C) and weighted to determine
the above ground biomass.

3.2 Assessment of microbial community structure and
function

3.2.1 Experimental13CO2 pulse labeling

In April and June 2007,13CO2 pulse labeling events were
conducted. In April, pulse labeling was performed on three
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Fig. 1. Lower and the upper site along the topographical transect inthe Bourgoyen-Ossemeersen. The left, middle and right sampling points
at each site are indicated by arrows, long tubes are the piezometers and + indicates the soil water content reflectometers.Fig. 1. Lower and the upper site along the topographical transect

in the Bourgoyen-Ossemeersen. The left, middle and right sam-
pling points at each site are indicated by arrows, long tubes are the
piezometers and + indicates the soil water content reflectometers.

replicate plots at the lower site whereas in June, this was done
on three replicate plots at both the lower and upper site on
two consecutive days. For each pulse labeling event, 500 ml
of 13C labeled (99 atom %) CO2 was supplied to photosyn-
thesizing plants inside a Plexiglass chamber (30×30×30 cm)
over a period of 6 daylight hours. A Tedlar gas sampling
bag (1L, Alltech) fixed to a 50 ml gas sampling bulb with a
stop cock was used in the field to temporarily store13CO2
gas from the pressurized gas bottle, and allowed sampling
of a known volume of13CO2 gas at atmospheric pressure
prior to injection into the labeling chamber. When the CO2
level in the chambers fell below 250 ppm, 100 ml of13CO2
was transferred into a 100 ml gas tight syringe (1100, Hamil-
ton) from the gas sampling bulb and injected into the la-
beling chamber through a septum. The injections were re-
peated four times more, approximately in one hour intervals.
Each injection was done when CO2 levels inside the cham-
bers were below 250 ppm. Three replicate chambers, placed
2 m apart were placed on top of stainless-steel frames firmly
inserted in the soil to a depth of about 10 cm. CO2 concentra-
tions were monitored (EGM-4, PP systems) within the cham-
bers during the 6 hour pulse labeling to follow the uptake of
13CO2 by photosynthesizing plants. The next day, cham-
bers were removed approximately 24 hours after the first
labeled CO2 injection, when all respired13CO2 was com-
pletely taken up by plant photosynthesis.

3.2.2 Sampling andδ13C determinations in solid samples

From each pulse labeled square within a site (n=3), soil
samples at 0–10 cm and 10–20 cm depth and shoot samples
were taken after 24 h, immediately following the removal of
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Fig. 2. Time series of precipitation, ground water depth and volumetric water content (VWC) in the lower site from 21/06/2005 to21/06/2007.

Fig. 2. Time series of precipitation, ground water depth and volumetric water content (VWC) in the lower site from 21 June 2005 to 21 June
2007.
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Fig. 3. Time series of precipitation, ground water depth and volumetric water content (VWC) in the upper site from 21 June 2005 to 21 June
2007.

Hydrol. Earth Syst. Sci., 12, 277–291, 2008 www.hydrol-earth-syst-sci.net/12/277/2008/



W. K. Balasooriya et al.: Microbial community structure along a hydrological gradient 281

the chambers. In addition, composite samples of soil and
shoots were taken prior to labeling as controls. All sam-
ples were immediately stored on ice and transported to the
laboratory where soil samples were frozen (−20◦C). Later,
soil samples were thawed and wet sieved through a 250µm
sieve to remove all visible roots, macro fauna and fresh lit-
ter since plants contain large concentrations of the fungal
biomarker PLFA “linoleic acid” (18:2ω6,9c) (Zelles, 1997).
Direct dry sieving was not practicable due to high density of
root mats and clayey texture in the samples from the lower
site. The soil suspension from wet sieving was centrifuged at
2500 rpm for 10 min and the pellet was immediately frozen
(−20◦C) to recover the soil fraction. To obtain a dry sam-
ple for PLFA analysis, these frozen soil pellets were freeze
dried. Dry sieving was done as the last step (50µm) in order
to exclude any fine root hairs. Shoot samples and separated
root fractions were oven dried (24 h at 60◦C) and then ground
to a fine homogeneous powder using an ultra centrifugal mill
(ZM200, Retsch Germany). A subsample of ground shoot
and root samples (1.5 mg) and soil samples (20 mg) were an-
alyzed for C, N and13C content using an Elemental Analyzer
(EA) (ANCA-SL, Europa PDZ, UK) coupled to an Isotope
Ratio Mass Spectrometer (IRMS) (20-20, Sercon, UK) (EA-
IRMS). Samples measured in tin capsules were loaded into
the EA using an auto sampler. The temperature at the com-
bustion and reduction stages was 1800◦C and 600◦C respec-
tively. Water is removed by a magnesiumperchlorate trap.
Before entering the mass spectrometer, the gas stream passes
a gas chromatograph which separates CO2 from N2 gas. In
the IRMS (90 eV electron voltage, 144µA trap, He carrier
gas, continuous flow, 10−7 mbar vacuum pressure, 90% fo-
cus) gaseous molecules are ionized in the ion source, then
separated according to their mass-to charge ratio and finally
collected in an array of Faraday cups (three Faraday cup col-
lectors form/z 44, 45, and 46). Reference CO2 of known
isotopic composition was used for sample calibration and in-
troduced directly into the source three times at the start and
end of each run. Each sample was run in duplicate to ensure
reliable mean13C values. Isotope ratios were calculated as
below (Dawson et al., 2002), and reported in terms ofδ13C ‰
(per mil) values.

δ13C =
Rsample− Rreference

Rreference
× 103 (1)

whereRsampleis the13C/12C ratio of sample andRreferenceis
the13C/12C ratio of Vienna-Pee Dee Belemnite (V-PDB) ref-
erence standard from the IAEA. Finally the13C enrichment
(1δ13C ‰) of shoot, root and soil samples was calculated
by subtracting the pre-labeling natural abundanceδ13C val-
ues from the post-labelingδ13C values of solid samples.

3.2.3 PLFA extraction and quantification

The extraction, quantification and compound specificδ13C
analysis of PLFAs was performed following the method de-

scribed byDenef et al.(2007). Total lipids were extracted
from 6 g of soil using phosphate buffer/chloroform/methanol
at a 0.9:1:2 ratio. Total lipids retrieved in the chlo-
roform phase were partitioned on silica gel columns
(CHROMABOND SiOH 500 mg). Neutral and glycolipids
were eluted from these columns with 6 ml of chloroform
and 10 ml of acetone and discarded. Phospholipids were
eluted with 5 ml methanol and the solution was dried un-
der N2. Phospholipids were subsequently transesterified by
mild methanolysis (1:1 methanol-toluene, 0.2 M methano-
lic KOH, heated for 15 min at 35◦C) to form volatilizable
fatty acid methyl esters (FAMEs). FAMEs were analysed
by capillary gas chromatography combustion-isotope ra-
tio mass spectrometry (GC-C-IRMS) (GC-C/DeltaPLUS XP
Thermo Scientific) via a GC/C III interface. The gas chro-
matograph (splitless mode; He carrier gas) was equipped
with a Chrompack CP-SIL88 column (100 m×0.25 mm
i.d. ×0.2 mm, Varian Inc.). The oven temperature was
programmed at 75◦C for 2 min, followed by a ramp at
5◦C min−1 to 180◦C with a 20 min hold, and a final ramp
at 2◦C min−1 to 225◦C with a 20 min hold. Individual
fatty acids were identified based on relative retention times
compared to two internal standards (12:0 and 19:0) which
were added to the FAME extract prior to gas chromatogra-
phy and cross referenced with several standards: a mixture
of 37 FAMEs (37 component FAME mix, no. 47885, Su-
pelco Inc.), a mixture of 24 bacterial FAMEs (BAME mix,
no. 47080, Supelco Inc.) and several individual FAMEs (Su-
pelco Inc. and Larodan Inc.).

On average, 25 PLFA peaks were detected and quantified,
but only 14 were investigated in this study depending on their
use as biomarker fatty acids for different microbial commu-
nities (Zelles, 1997). Fatty acid nomenclature consists of the
total number of C atoms, a colon, and the number of double
bonds. Then an “ω” and a number showing the position of
the double bond in the chain, sometimes followed by a “c” or
“t” for “cis” or “trans” configuration respectively. The pre-
fixes “i”, “a” and “10Me” refer to methyl branching at the iso
and anteiso positions and the carboxyl group from the 10th
carbon respectively. Cyclopropane fatty acids have the pre-
fix “cy” ( Sundh et al., 1997). The 14 biomarker PLFAs anal-
ysed within this data set included: 18:1ω9c and 18:2ω6,9c
(indicative of saprotrophic fungi), 16:1ω5c (indicative of ar-
buscular mycorrhizal fungi (AMF)), i14:0, i15:0, i16:0, i17:0
and a17:0 (indicative of gram positive bacteria), cy17:0,
16:1ω7c and 18:1ω7c (indicative of gram negative bacteria)
and 10Me16:0 and 10Me18:0 (indicative of actinomycetes)
(Denef et al., 2007). In most GC chromatograms, a17:0 and
16:1ω7c peaks overlapped, leading to an identification based
on the relative abundance of other biomarker fatty acids in
the sample. Chromatographic peak area ratios of each indi-
vidual PLFA to that of 16:0, a universal PLFA occurring in
the membranes of all organisms, were determined. Peak area
ratios less than 0.02 were excluded from the data set (Drijber
et al., 2000). Based on regressions between peak area and
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Table 1. Cross-correlations between ground water depth changes
and precipitation for different time lags [h] after the rainfall event.

LOWER UPPER
left middle left middle

GWD vs. Precipitation
time lag 0 h 0.22 0.16 0.20 0.19
time lag 1 h 0.37 0.22 0.30 0.24
time lag 2 h 0.23 0.32 0.40 0.31
time lag 3 h 0.20 0.24 0.30 0.28
time lag 10 h 0.02 0.03 0.02 0.15

GWD vs. VWC10
time lag 0 h 0.31 0.25 0.51 0.62
time lag 1 h 0.17 0.14 0.19 0.25
time lag 2 h 0.12 0.12 0.16 0.22
time lag 3 h 0.06 0.077 0.08 0.10
time lag 10 h 0.006 0.016 0.02 −0.009

GWD vs. VWC30
time lag 0 h 0.056 0.055 0.36 0.26
time lag 1 h 0.046 0.030 0.18 0.34
time lag 2 h 0.018 0.018 0.14 0.32
time lag 3 h 0.031 0.023 0.08 0.31
time lag 10 h 0.014 0.099 0.02 0.17

Maximal cross-correlation values are underlined.

PLFA concentration of a dilution series of the quantitative
“37 component FAME mix”, the C concentrations [nmol g−1

soil] of the individual biomarker PLFAs in the soil samples
were quantified (Denef et al., 2007). Relative proportions
of the individual PLFA-C ([PLFA-C]i) to total PLFA-C of
the sample (MCi) were calculated and expressed as PLFA-
C mol% as an indicator of relative abundance of microbial
communities.

MCi =
[PLFA-C]i∑
[PLFA-C]i

× 100 (2)

3.2.4 Compound-specific13C analysis

In order to calculateδ13C value in each PLFA, theδ13C val-
ues of FAMEs obtained from GC-C-IRMS were corrected for
the addition of the methyl group during transesterification.

δ13CPLFA =
[NPLFA + 1]δ13CFAME − δ13CMeOH

NPLFA
(3)

where NPLFA is the number of C atoms of the PLFA compo-
nent, CFAME is theδ13C value of the FAME and CMeOH is the
δ13C value of methanol determined by EA-IRMS (−36.7%,
n=5).

The13C enrichment or net labeling of PLFAs (1δ13C ‰)
was calculated by subtracting the pre-labeling natural abun-
dance PLFAδ13C values from the post-labeling PLFAδ13C
values. The proportion of root-derived PLFA-C was calcu-

lated for each individual PLFA through the following equa-
tion (Williams et al., 2006):

FCi =
δli − δui

δr − δui

× MCi (4)

where FCi is the relative fraction of C in each PLFA derived
from the 13C-labeled roots, MCi is the relative mol % of
PLFA-C in each PLFA to the total PLFA-C in the sample.δli

represents theδ13C of the PLFA-C in the post-labeled sam-
ple,δui represents theδ13C of the PLFA-C in the pre-labeled
sample, andδr represents theδ13C of the post-labeled roots.
The relative proportion of root-derived PLFA-C (PFi) was
then calculated for each individual PLFA using the follow-
ing equation (Williams et al., 2006):

PFi = MCi/
∑

FCi × 100 (5)

4 Results and discussion

4.1 Spatio-temporal changes of eco-hydrological variables

4.1.1 Ground water depth

A clear gradient in ground water depths can be observed
along the studied transect. Temporal averages range from
4.6 cm and 15.5 cm below surface at the lower middle and
left monitoring points respectively, to 37.9 cm and 94.7 cm
below surface at the left and middle monitoring points of the
upper site. Ground water depths showed an annual pattern,
with a deeper ground water table during summer and a more
superficial ground water table during winter. Although this
pattern was observed at all measurement points, inundation
only occurs at the lower site with average flood durations of
three to five months during winter and spring. Beside the an-
nual ground water fluctuations, a daily fluctuation can be ob-
served at the lower site during dry periods. These fluctuations
can be a result of ground water consumption through tran-
spiration activities of phreatophytic plant species, similar to
what was reported in many other studies (White, 1932; Engel
et al., 2005; Schilling, 2007). During daytime, when plants
are actively photosynthesizing, water consumption causes a
drop down of the ground water table which is (partially) re-
plenished during night. At the upper site, this phenomena is
absent (upper middle) or less pronounced in amplitude (up-
per left) (Peters et al., 20071).

The cross-correlation function was calculated to inspect
the relationship between hourly precipitation [mm h−1] and
the change in ground water depth [cm h−1] for different time
lags [h] after the rainfall event (Table1). Maximal cross-
correlation values were found one or two hours after rainfall,
since higher infiltration rates at the upper site compensate
for the higher distance to the ground water table. The highest
cross-correlation value was calculated at the upper left moni-
toring point and results from the high permeability of the soil,
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the relative superficial ground water table and the lack of in-
undation. At the lower site, notwithstanding a shallow mean
ground water depth, cross-correlation values were found to
be lower, which may be attributed to the winter inundations.
During inundations, cross-correlations are low (0.13) due to
saturated conditions compared to cross-correlation value dur-
ing summer (0.49). At the upper middle monitoring point,
cross-correlation is lowest, indicating the less pronounced re-
sponse of the ground water table to a rainfall event. Because
of the greater depth of the ground water table, a relatively
large proportion of the precipitation water never reaches the
ground water table as it is stored in the soil volume above.

4.1.2 Soil water content

At the lower site the volumetric water contents of the soil lay-
ers increases with increasing depth (Fig.2). At 30 cm depth,
a year round soil saturation results in a constant volumetric
water content of around 0.8 cm3 cm−3. At 10 cm depth, sat-
uration is only interrupt during summer, but even then values
are very high (in the range of 0.5–0.7 cm3 cm−3). These high
values result from the high amount of organic C in the top soil
(Table2). The time series of volumetric water contents at the
upper middle and left point differ considerably. At the upper
middle sampling point, volumetric water content increases
with depth, and fluctuations are noticed in both. The upper
left site, however, is characterized by a higher water content
at 10 cm depth, and saturated soil water conditions at 30 cm
depth.

The relation between precipitation and volumetric water
content at different depths was evaluated using the cross-
correlations function. At a depth of 10 cm high correlations
were found immediately after the rainfall event. At the upper
site, correlations are twice as high as at the lower site due to
the lack of winter inundation. A response of soil water con-
tent at a depth of 30 cm to precipitation is only present at the
upper site.

4.1.3 Vegetation

Based on species occurrence and abundance data, two dif-
ferent vegetation associations could be distinguished along
the transect using TWINSPAN (Hill , 1979): Caricetum gra-
cilis Almquist 1929 at the lower site andArrhenatheretum
elatioris Braun 1915 at the upper site.Caricetum gracilis
Almquist 1929 (Schamińee et al., 1995) is a Carex acuta
L. dominated vegetation type withRanunculus flammula
L. andGalium palustreL. Arrhenatheretum elatiorisBraun
1915 (Schamińee et al., 1996) is a grassland association with
Arrhenatheretum elatioris(L.)J. & C. Presl.,Festuca rubra
L., Plantago lanceolataL. andRanunculus repensL. Ellen-
berg moisture figures (Ellenberg et al., 1992) indicate a clear
gradient from species occurring at intermediately moist habi-
tats at the upper site toward species occurring on hydric soils
in the depression (Fig.4).
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Fig. 4. Synoptic table of species abundances per quadrat (.1<1%, .2=1–3%, .4=3–5%, 1=5–15%, 2=15–25%, 3=25–35%, 4=35–45%,
5=45–55%, 6=55–65%, 7=65–75%, 8=75–85%, 9=85–95%, 10=95–100%), according to the Londo scale (Londo, 1976) and subdivided
according to TWINSPAN (Hill, 1979). Quadrats are located near the left (l), middle (m) and right (r) sampling points of the upper and the
lower sites (see Fig. 1).
F∗ Ellenberg moisture figure (Ellenberg et al., 1992), indicating the occurrence of plant species in the gradient from dry,shallow-soil rocky
slopes to swampy ground (1-9) as well as from shallow to deep water (10-12). The symbol ‘˜ ’ stands for changing moisture conditions, ‘=’
for species of (temporarily) inundated habitats, ‘x’ for indifferent species.

Fig. 4. Synoptic table of species abundances per quadrat (.1<1%,
.2=1–3%, .4=3–5%, 1=5–15%, 2=15–25%, 3=25–35%, 4=35–
45%, 5=45–55%, 6=55–65%, 7=65–75%, 8=75–85%, 9=85–95%,
10=95–100%), according to the Londo scale (Londo, 1976) and
subdivided according to TWINSPAN (Hill , 1979). Quadrats are lo-
cated near the left (l), middle (m) and right (r) sampling points of the
upper and the lower sites (see Fig.1). F* Ellenberg moisture figure
(Ellenberg et al., 1992), indicating the occurrence of plant species in
the gradient from dry, shallow-soil rocky slopes to swampy ground
(1–9) as well as from shallow to deep water (10–12). The sym-
bol “∼” stands for changing moisture conditions, “=” for species of
(temporarily) inundated habitats, “x” for indifferent species.

Vegetation structure was described during the year 2006
by means of above ground living biomass [gm−2] and leaf
area [m2m−2] (Table 3). Vegetation development started
from zero at the lower site, and biomass and leaf area val-
ues did not increase very much during the period January–
April. From May until July, a rapid increase in biomass
(from 184.4 gm−2 until 746.3 gm−2) and leaf area (from
2.23 m2 m−2 until 8.27 m2 m−2) was measured, which was
leveled off during August. In September, lower values were
measured due to natural senescence. This was followed by
a mowing event which drastically decreased above ground
biomass (−426.2 gm−2) and leaf area (−3.26 m2 m−2). A
short regrowth period during November increased values
slightly. The observed vegetation development differed quite
a lot between the lower and the upper site. During winter, an
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Table 2. Isotope composition (δ13C ‰) andδ13C enrichment (1δ13C ‰) of shoot, root and soil samples taken prior to (unl.) (n=3), and
24 h after (lab.) (n=3) 13CO2 pulse labeling. Soil organic carbon content (%) is also included.

LOWER UPPER
Month Sample Depth [cm] Organic C unl.δ13C lab.δ13C 1δ13C Organic C unl.δ13C lab.δ13C 1δ13C

April Shoot C −28.02 2819.44 2847.46
Root C 0–10 −28.38 4.42 32.80

10–20 −27.55 −11.29 16.26
Soil C 0–10 3.90 −28.65 −25.23 3.42

10–20 2.84 −28.51 −28.68 −0.17

June Shoot C −27.90 1135.81 1163.71 −29.32 1289.40 1318.72
Root C 0–10 −27.46 −9.39 18.07 −29.29 26.76 56.05

10–20 −28.55 −12.45 16.10 −24.66 61.83 86.49
Soil C 0–10 8.82 −28.42 −25.90 1.81 2.52 −28.29 −22.12 6.17

10–20 4.06 −29.06 −27.46 1.60 1.43 −27.85 −25.6 2.24

1δ13C denotes the net increase ofδ13C ‰ relative to natural abundanceδ13C ‰ values of shoot, root and soil C.

Table 3. Monthly data on biomass [gm−2] and leaf area [m2 m−2] at the lower and the upper site.

LOWER UPPER
Biomass Leaf area Biomass Leaf area

Month mean ±std mean ±std mean ±std mean ±std

Jan 0 – 0 – 127.2 14.6 1.9 1.0
Feb 15.6 4.2 0.15 0.03 107.8 23.6 1.2 0.3
Mar 26.1 38.0 0.10 0.04 63.5 15.6 0.6 0.1
Apr 25.0 6.5 0.28 0.1 65.9 6.9 0.8 0.2
May 184.4 47.5 2.23 0.6 147.0 40.2 1.2 0.2
Jun 654.7 124.6 7.15 1.2 469.7 149.2 3.9 1.2
Jul 746.3 87.3 8.27 0.7 36.7 13.7 0.3 0.2
Aug 757.2 128.8 7.11 1.5 104.6 20.0 1.2 0.2
Sep 450.4 113.9 3.44 1.0 211.3 17.8 3.0 0.5
Okt 24.2 8.2 0.18 0.1 229.8 55.2 3.3 0.9
Nov 56.7 10.7 0.64 0.2 175.4 25.9 2.3 0.2
Dec 35.6 3.2 0.27 0.1 143.7 43.4 2.3 0.5

above ground living biomass of≈115 gm−2 was measured,
which decreased in March and April. As seen at the lower
site, a fast increase in biomass and leaf area was measured
during May and June, with maximal values of 469.7 gm−2

and 3.9 m2 m−2, respectively. A mowing event at the end
of June drastically decreased biomass (−433 gm−2) and leaf
area (−2.7 m2 m−2). Vegetation recovery was fast, and a
second growing period after the mowing event resulted in
biomass and leaf area values as high as 229.8 gm−2 and
3.3 m2 m−2, respectively.

4.2 microbial community structure and function

4.2.1 δ13C enrichment of shoot, root and soil C

All 3 pulse labeling events in the lower and the upper sites
resulted an increasedδ13C signature of the shoot and root

biomass (Table2). Comparatively lowerδ13C signatures
(i.e. more negative or less positive) were observed in soil C,
especially at the lower site, reflecting a small but significant
incorporation of new plant photosynthate-C into the soil ma-
trix. The larger background soil C at the lower the site (Ta-
ble 2) possibly diluted the incomingδ13C from plants and
may explain the observed lower13C enrichment of the soil C
of the lower site compared to that of the upper site (Table 3).
The data was presented asδ13C enrichment (1δ13C ‰) rel-
ative to pre-pulse labeling (control) samples to correct for
initial δ13C differences between sites at each labeling event.
Shoot biomass showed the highestδ13C enrichment, fol-
lowed by root biomass and soil organic C. Enrichment of
soil and root biomass was generally greater at the upper site
compared to the lower site after the pulse labeling in June.
Within the lower site, June labeling resulted in lesserδ13C
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found in the surface soils (0–10 cm) and subsurface soils (10–20 cm) at the lower site in Apri and June 2007.

Fig. 5. The abundance of total PLFA-C in nmol g−1 soil (a), relative abundance of total PLFA-C (MCi ) in mol% (b), net labeling orδ13C
enrichment during labeling (1δ13C ‰) (c), and relative abundance of root-derived PLFA-C (PFi ) in mol% (d) in different PLFA biomarkers
found in the surface soils (0–10 cm) and subsurface soils (10–20 cm) at the lower site in April and June 2007.

enrichment of root biomass and soil C at 0–10 cm depth, than
that in April. These differences were expected to be indica-
tive of differences in microbial performance between sites
and time periods, however, could have been shaded by differ-
ences in solar radiation and other climatic conditions prevail-
ing during the different labeling events that control plant pho-
tosynthetic CO2 uptake and consequently the rhizodeposit-
C transport in the rhizosphere soil. Therefore,δ13C-PLFA
comparisons were performed after expressing the data as pro-
portions of rhizosphere-derived PLFA-C of each individual
fatty acid to that of the total rhizosphere-derived PLFA-C
(PFi).

4.2.2 Spatio-temporal patterns of microbial community
structure

Spatio-temporal patterns of PLFA profiles in the lower and
upper sites are illustrated in Fig.5 and Fig.6. The compar-
isons between sites, time periods and soil depths were done
by ANOVA. The concentration of individual PLFAs ([PLFA-

C], nmol C g−1 soil), representing the abundance of the dif-
ferent microbial cell membrane biomarker lipids, was signif-
icantly higher (p<0.05) in the lower site than in the upper
site throughout the soil profile (0–20ċm) (Fig.6a), indicating
higher microbial abundance at the lower site. A general de-
cline of [PLFA-C] occurred with depth at both sites showing
decreasing microbial abundance with depth. A significantly
greater [PLFA-C] of most of the individual PLFAs occurred
in June compared to April at the lower site (Fig.5a) at both
depths indicating greater microbial abundance in June than
April (except for i14:0, a15:0, 16:1ω7c and 10Me16:0 at 10–
20 cm depth).

The relative abundance of individual PLFAs (MCi%)
represent the relative proportions of the individual PLFA-
C ([PLFA-C]i) to total PLFA-C abundance (Fig.5b and
Fig. 6b). Gram positive bacteria associated fatty acids were
relatively more abundant (higher MCi%) in the wetter lower
site and in the subsurface soils of the drier upper site than in
the upper surface horizon. Among all gram positive PLFAs,
this pattern was significant (p<0.05) for i15:0, i16:0 and
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Fig. 6. The abundance of total PLFA-C in nmol g−1 soil (a), relative abundance of total PLFA-C (MCi ) in mol% (b), net labeling orδ13C
enrichment during labeling (1δ13C ‰) (c), and relative abundance of root-derived PLFA-C (PFi ) in mol% (d) in different PLFA biomarkers
found in the surface soils (0–10 cm) and subsurface soils (10–20 cm) at the lower site and the upper site in June 2007.

i17:0. A general decline of gram positive PLFAs was found
with increasing soil depth, with a significant decline found
in April for most of the gram positive PLFAs (i15:0, a15:0,
i16:0, i14:0) (p<0.05). The observed higher abundance of
gram positive fatty acids in April (significant at 10–20 cm
depthp<0.05) compared to that in June in the lower site fur-
ther confirms the association of this set of fatty acids with
anaerobic conditions which were prevalent in April than in
June, as well as in deeper soil depths and in the lower site
compared to the upper site.

The relative abundance of gram negative PLFAs was
greater in the surface layer of the upper site than in that
of the lower site (Fig.5b and Fig.6b). In the lower site,
greater gram negative relative abundance occurred in the sur-
face samples of June than in the surface samples of April.
Among all gram negative bacterial PLFAs, 18:1ω7c was sig-
nificantly more relatively abundant in the upper site than in
the lower site (p<0.01) and cy17:0 and 18:1ω7c showed a
significant decline in relative abundance with depth at both
sites (p<0.05).

Relative abundance of actinomycetes (10Me16:0) was sig-
nificantly greater (p<0.05) at the lower site than in the up-
per site and generally increased with depth (Fig.5b and
Fig. 6b). The relative abundance of arbuscular mycorrhizal
fungal PLFA (16:1ω5c) was significantly greater (p<0.05)
in the upper site than in the lower site, while saprotrophic
fungi associated PLFAs; 18:1ω9c and 18:2ω6,9c were sig-
nificantly higher (p<0.05) at the lower site. Fungal PLFAs
were relatively high in the surface horizon compared to the
subsurface layers. This decline with depth was significant for
18:1ω9c and 18:2ω6,9c fungal PLFAs in April at the lower
site (p<0.05) and for AMF (16:1ω5c) in June at the upper
site (p<0.05). However, the relative abundance of fungal
PLFA 18:1ω9c was higher at the subsurface layer than at the
surface layer in June at the lower site. Relative abundance of
fungal PLFAs were generally higher in June compared to that
in April at the lower site, while 18:1ω9c and 18:2ω6,9c fun-
gal PLFAs in the surface layer were significantly relatively
higher in June compared to that in April (Fig.5b and Fig.6b).
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Several other studies reported significant changes of soil
microbial communities with depth or in response to land-
use, management or environmental change based on PLFA
analysis (Sundh et al., 1997; Fierer et al., 2003; Bossio et
al., 2006). Similar patterns of relatively more abundant gram
positive bacterial PLFAs in wetlands with prevailing anaer-
obic conditions as compared to more aerated agricultural
fields, and decreased relative abundance of gram negative
bacterial PLFAs with soil depth in both wetland and agricul-
tural land uses were reported byBossio et al.(2006). In ad-
dition, Bossio et al.(2006) suggested a higher growth rate of
aerobic bacteria dominated communities compared to anaer-
obic bacteria dominated communities, based on PLFA in-
dices. This study concluded that the aeration condition was
the predominant determinant of abundances of the microbial
communities across soil types and land usage.Sundh et al.
(1997) found increasing gram positive bacteria and actino-
mycetes with depth (based on total PLFA concentrations), in
dry sites of peatlands, and suggested that these shifts could
be due to anaerobic conditions imposed by ground water
depth. Other studies have detected relatively large actino-
mycetes populations in sub surface soils influenced by anaer-
obic conditions (Federle et al., 1986) and in podzol profiles
under coniferous forest (Fritze et al., 2000). In our study,
anaerobic conditions were expected in the lower site due to a
year round shallow ground water depth compared to the up-
per site, where average ground water depth is below 30 cm
(Figs. 2 and3). Gram positive bacteria are known to have
a strong association with anaerobic conditions (Sundh et al.,
1997) prevailing in wetlands and with increasing soil depth,
while gram negative bacteria are known to associate with
well aerated conditions (Ponder and Tadros, 2002). There-
fore, the observed shift from greater gram negative domi-
nance at the well aerated soil surface in the upper site to
greater gram positive dominance in the lower site and deeper
depth, is consistent with the prevailing anaerobic conditions
in the lower site and with increasing depth. Similar to our
findings,Fierer et al.(2003) reported that gram positive bac-
teria as well as actinomycetes tended to increase in relative
abundance with increasing soil depth, while that of gram neg-
ative bacteria and fungi were higher at the soil surface com-
pared to that in the lower surface in two semi arid soil pro-
files. They concluded that the vertical distribution of these
microbial groups can largely be attributed to the decline in
carbon availability with soil depth.Griffiths et al. (1999)
have shown that higher rates of C addition to soil will raise
the proportions of fungi and gram negative bacteria in the
microbial community and lower the proportions of actino-
mycetes and gram positive bacteria. In this study, greater
biomass turnover occurred at the lower site than in the upper
site (Table3) indicating a higher C addition. Fungal PLFAs
(18:1ω9c and 18:2ω6,9c) were higher at the lower site fol-
lowing the C availability. However, gram negative bacteria
and AMF shifts were opposite than the predictions based
on C availability, i.e. gram negative bacteria and AMF was

higher at the surface layers of the upper site compared to
that in the lower site. At the lower site, the aboveground
plant biomass production was higher in June than in April,
resulting in a temporal shift in the relative abundance of fun-
gal PLFAs, i.e. greater relative abundance of fungal PLFAs
in June than in April reflecting the greater C availability in
June.

The advantage of the pulse labeling approach in combi-
nation with13C PLFA analysis is the identification of those
microbial communities that are actively assimilating newly
produced rhizosphere-C. The two13C-PLFA based indices
used in this study, i.e. net labeling (1δ13C ‰) and PFi , dis-
tinguish the PLFAs associated with the metabolically-active
proportion of the microbial communities from the PLFAs as-
sociated with the inactive or slow active proportion of the
microbial communities with regard to rhizosphere C cycling
(Denef et al., 2007). Net labeling was significantly higher in
the surface layers of the upper site than that in the lower site
(p<0.05) in most of the individual PLFAs except for i14:0
and cy17:0 (Fig.5c and Fig.6c). A general decline of net
labeling occurred with depth. In June, net labeling was gen-
erally higher than in April at the surface layers of the lower
site, except for i16:0, 18:1ω7c and 18:1ω9c. These differ-
ences could be due to differences in microbial functioning
between sites, depths and time periods, however, could be
shadowed by differences in photosynthetic efficiency result-
ing in differences in13C input to the soil.

The relative abundance of root derived PLFA-C (PFi),
which corrects for any differences in photosynthetic effi-
ciency and was used as a measure for the active root-C as-
similating portion of the microbial community structure, was
generally greater at the surface layers compared to that in
the subsurface at both sites except for 10Me16:0, 10Me18:0,
and 18:1ω9c (Fig.5d and Fig.6d). In general PFi was higher
in gram negative and fungal PLFAs at both sites than other
groups confirming their relatively greater and rapid involve-
ment in rhizosphere C cycling than the less active and slower
growing gram positive bacteria and actinomycete communi-
ties at both sites. Rather than a uniform pattern of PFi of all
PLFAs in both sites and periods, PFi of different microbial
groups shifted differently between sites and time periods. For
example, PFi of gram negative bacteria was generally greater
in the surface layer of the upper site than that in the lower site
while PFi of of gram positive bacteria was higher in the sur-
face horizon of the lower site compared to that in the upper
site. Gram negative PFi was generally higher in April than
in June (except cy17:0) at the lower site, while gram posi-
tive PFi in the upper surface showed no prominent difference
between April and June. Both gram negative and gram posi-
tive PFi generally decreased with depth. Among them, i14:0,
i15:0 and i16:0 showed a significant decrease with depth at
the lower site (p<0.05), while i15:0, i16:0 and i17:0 sig-
nificantly decreased with depth at the upper site (p<0.05).
Significantly higher PFi (p<0.01) was observed with actino-
mycetes at the lower site surface horizon compared to that in
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the upper site. At the lower site, actinomycetes (10Me 16:0)
PFi significantly increased with depth (p<0.05) and signif-
icantly greater PFi was found for 10Me16:0 and 10Me18:0
(p<0.05) in June than in April. PFi of fungal PLFAs was not
prominently different between two sites in the surface layer,
while PFi of 18:2ω6,9c and 18:1ω9c in the subsurface layer
of the lower site was greater than that in the subsurface layer
of the upper site. AMF showed higher PFi in June than in
April at the lower site, while the other two fungal PLFAs
showed the opposite pattern between April and June. PFi of
18:1ω9c showed a significant decline with depth (p<0.05)
in lower April and upper June respectively. An increase of
PFi with depth was observed for 18:1ω9c and AMF fungal
PLFAs at lower June.

None of the previous studies on13CO2 pulse labeling
based PLFA analysis, used PFi as an indicator to assess the
proportion of those microbial communities that are actively
assimilating root derived C in the rhizosphere. However, PFi

has been successfully used byWilliams et al.(2006) as an
indicator to assess the active microbial communities assimi-
lating 13C-labeled residue-derived C in rhizosphere byδ13C
enriched straw addition under field conditions. Also a lim-
ited number of previous studies used13CO2 pulse labeling
based PLFA analysis to assess the active microbial communi-
ties in root-derived C cycling in the rhizosphere (Butler et al.,
2003; Treonis et al., 2004; Denef et al., 2007; Lu et al., 2007).
Butler et al.(2003) pulse labeled rye grass in laboratory mi-
crocosms and found maximum labeling in the fungal PLFA
18:2ω6,9c in rhizosphere soils. Treonis et al. (2004) found
greater net labeling of gram negative and fungal PLFAs than
gram positive PLFAs at surface soil layer (10 cm) in up-
land grassland fields.Denef et al.(2007) assessed microbial
community dynamics based on the proportional net labeling
of individual PLFAs compared to that of a universal PLFA
(i.e. 16:0) and found a rapid transfer of newly produced rhi-
zosphere C to fungal PLFAs compared to bacterial PLFAs in
the surface layers (7.5 cm) of grassland soils. Based on cal-
culated net labeling in an in situ pulse labeling study of rice
plants,Lu et al.(2007) reported that gram negative and fungi
were most actively assimilating root-derived C in the rhizo-
sphere, whereas gram positive microorganisms became rela-
tively more important in the soil layer below the root zone.
Our PFi results indicating a relatively greater active propor-
tion of gram negative and fungal PLFAs in the rhizosphere
at both sites are in consistent with the results ofButler et al.
(2003); Denef et al.(2007); Lu et al. (2007). In agreement
with Lu et al. (2007), we found greater active proportion of
gram negative bacteria in the surface layer at the upper site
compared to that in the subsurface layer. However, gram pos-
itive activity was depleted with depth in contrast toLu et al.
(2007).

The PFi of gram positive bacteria and actinomycetes at
both sites was very low despite the observed higher rela-
tive abundances, indicating that more metabolically-inactive
gram positive bacteria and actinomycetes were abundant in

the rhizosphere soils at these sites or that these microbial
communities were more dependent on other C resources such
as soil organic C than newly produced-root derived C. PFi of
gram negative bacteria and fungal PLFA 18:1ω9c and AMF
at both sites and fungal PLFA 18:2ω6,9c at the upper site
were not substantially declined in relation to their relative
abundances, suggesting that these microbial groups are more
dependent on rhizodeposit-C as a C source for their growth.
PFi of 18:2ω6,9c was rather low at the lower site despite
its high relative abundance indicating, a preference of non-
arbuscular mycorrhizal fungi for other C sources than new
rhizodeposit-C at the lower site.

4.3 Linking microbial community structure to hydrological
changes and vegetation composition

The observed shift from greater gram negative dominance at
the well aerated soil surface in the drier upper site to greater
gram positive dominance in the wetter lower site, is consis-
tent with the patterns observed in other soil profiles (Sundh
et al., 1997; Fierer et al., 2003; Bossio et al., 2006). However
the underlying causes of these shifts were interpreted differ-
ently. Fierer et al.(2003) concluded that availability of C
resources and not anaerobiosis was the underlying cause of
these patterns whileBossio et al.(2006) concluded that aera-
tion conditions, and not C availability per se were responsible
for changes of microbial community structure. Hydrological
changes are the key factors influencing aeration conditions
of wetland soils (Davidsson et al., 1997). Anaerobic condi-
tions can be expected in the lower site, due to inundation dur-
ing winter months and a shallow ground water depth (GWD)
throughout the year. In addition, the clayey soil texture in the
lower site enhanced the water logged anaerobic condition of
these soils. In the surface layer of the upper site, more aero-
bic conditions can prevail, due to the sandy loam texture of
the soil and deep GWD, which never rises 30 cm underneath
the soil surface. Monthly average GWD (over 2 years) in
lower left and lower middle sampling points was 8.8 cm in
April and that in June was 21.6 cm. In upper left and upper
middle sampling points the monthly average GWD in June
was 83.3 cm and was significantly higher (p<0.01) than cor-
responding June GWD value in the lower site. The relation-
ship between ground water depth vs. the relative abundance
(MC%) of several microbial groups; gram positive, gram
negative, actinomycetes and fungi (saprotrophic and AMF)
was determined by linear regression. The relative abundance
of a microbial group was calculated by summation of the rel-
ative abundances of individual PLFAs within the microbial
group. Several groups showed significant relationships with
GWD. The relative abundance of the gram negative bacteria
at the surface layer significantly decreased with increasing
GWD (p<0.05, R2

=0.46), while the relative abundance of
the gram positive bacteria in the surface layer was positively
affected by increasing GWD (p<0.05,R2

=0.40). The Ratio
of the relative abundance of the gram negative bacteria over
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that of the gram positive bacteria (Gn/Gp) in the surface soils
showed a significant negative relationship with the increas-
ing GWD (p<0.05,R2

=0.73). Actinomycetes were greatly
increased with increasing GWD at the surface (p<0.01,
R2

=0.95) and at the subsurface (p<0.01,R2
=0.60) (Fig.7).

These results suggest that anaerobic conditions imposed by
incresaing GWD favor the abundance of gram positive bac-
teria and actinomycetes while gram negative bacteria prefer
the aerobic surface layers where ground water is deep.

Soils in the lower site consisted of significantly greater
(p<0.01) organic C content compared to the upper site (Ta-
ble2). Within the lower site, organic C increased from April
to June at the surface layers, while this increment was not sig-
nificant at the subsurface. Linear regression functions were
obtained between the organic C content vs. the relative abun-
dance of several dominant microbial groups. None of the
bacterial communities showed significant relationships with
soil organic C. However, the relative abundance of fungi at
the subsurface soils significantly increased with increasing
soil organic C (p<0.05, R2

=0.74), indicating their depen-
dence on soil organic C resources at depth. Greater biomass
growth rate ofCaricetum gracilisat the lower site thanAr-
rhenatheretum elatiorisat the upper site could have caused
greater soil organic C available in the lower site, explain-
ing the unexpected larger abundance of saprotrophic fungal
communities, which are aerobic (Mentzer et al., 2006) at the
more anaerobic lower sites.Caricetum gracilisin the lower
site was also associated with slow growing anaerobic bacte-
rial communities, whereasArrhenatheretum elatiorisat the
upper site was associated with fast growing aerobic bacterial
communities in the surface soils. However, rather than the
C availability, low C substrate quality, i.e. “low decompos-
ability” in vegetated wetlands found to control the microbial
community structure; (i.e. decrease the relative abundance
of aerobic fast growing bacterial communities) (Bossio et
al., 2006). We therefore expected a greater decomposability
of Arrhenatheretum elatiorislitter thanCaricetum gracilis.
Lower C/N ratios (16.2) found for the shoot samples ofAr-
rhenatheretum elatioristhan for the shoot samples ofCarice-
tum gracilis(21.7) support this hypothesis. However, more
research is needed on decomposition rates in line with SIP-
PLFA analysis to determine the effects of vegetation compo-
sition on soil microbial community structure.

5 Conclusions

The objective of the study was to investigate the effects of hy-
drology and vegetation composition on soil microbial com-
munity structural differences. The study site is characterized
by a hydrological gradient, with superficial ground water lev-
els at the depression and deeper ground water depth at the
upper site. This hydrological gradient resulted in two differ-
ent vegetation communities along the hydrological gradient;
Caricetum gracilisat the depression andArrhenatheretum
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Fig. 7. Linear regression of monthly average ground water depth (GWD) (over two years) vs. relative abundance of actinomycetesand
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Fig. 7. Linear regression of monthly average ground water depth
(GWD, cm) (over two years) vs. relative abundance of actino-
mycetes and Gn/Gp (ratio between the relative abundances of gram
negative bacteria and gram positive bacteria).

elatioris at the drier upper site. The effect of hydrology and
vegetation composition on soil microbial community struc-
tures was investigated using SIP-PLFA technique. SIP-PLFA
analysis showed greater relative abundance of aerobic gram
negative communities in the surface layer of the upper site
than that of the lower site, while the wetter lower site and the
deeper soil layers were inhabited by gram positive bacterial
communities. Despite their large abundance, the metaboli-
cally active proportion of gram positive bacterial and actino-
mycetes communities was less at both sites, suggesting their
slow assimilation of root-derived C or dependence on other
soil organic C sources. However, gram negative bacteria and
fungi (18:1ω9c and AMF) showed greater active involve-
ment in assimilation of root-derived C at both sites. Ground
water depth showed a significant effect on the relative abun-
dance of several microbial communities. Relative abundance
of gram negative bacteria significantly decreased with in-
creasing GWD while the relative abundance of gram posi-
tive bacteria and actinomycetes at the surface layer increased
with increasing GWD, suggesting that anaerobic conditions
imposed by increasing GWD favor the abundance of gram
positive bacteria and actinomycetes while gram negative bac-
teria prefers the aerobic surface layers where ground water is
deep.
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