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Abstract

This paper deals with electrochemical insertion into a cathodic material. New results on
modelling of the influence of a solid phase transformation on the shape of voltamograms are
presented. The original experiments concern the insertion of sodium into carbon during the
cathodic reduction of molten NaF at 1020 °C, but in the present manuscript emphasis on the
theoretical aspects of the work is put. Phase transformations during electrochemical insertion are
taken into account, with various values for parameters such as the thermodynamic biphase
equilibrium potential, the compared diffusion and phase transformation kinetics, and the
electrode thickness. The voltamograms calculated present very specific features; some of them
have already been observed experimentally in literature.

Keywords: electrochemistry, EILPT process, modelling

1. Introduction

Many electrochemical processes involve phase transition phenomena. The electrode-
position of metals and the creation of passive films are well known examples for which
theoretical models are well established [1, 2].
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During electrochemical insertion, the incorporation of “guest” species into the lattice
of the host material, accompanied by the injection (or removal) of charge compensating
electrons into (or from) the electronic band, leads to the creation of a new homogeneous
phase characterized by a new crystallographic structure and electronic properties. If the
new phase is not too different from the original material, the insertion process will take
place as if it were in a perfectly non-stoichiometric system. Various theoretical studies
concerning such a phenomenon have been published. However, if structural and
electronic changes are sufficiently important to create limiting compositions and induce
big changes in the transport properties of the guest species, biphase domains may be
created [3]. In that case, the kinetics of insertion process will depend on the mobility of
the interface boundary between the two phases, which is controlled by a phase transition
phenomenon. If the latter process is slow compared to ionic diffusion within both phases,
the kinetics of insertion will not obey classical diffusion laws.

When studying the kinetics of hydrogen insertion into palladium by chronoampero-
metric technique Chen et al. [4] obtained particular chronoamperograms showing a
quasi-plateau region. They attributed this behavior to the occurrence of a two-phase
equilibrium between α (poor) and β (rich) phases of palladium hydride. Using a different
technique (electrochemical potential spectroscopy) to study the insertion of H into
LaNi4.5Al0.5, Li into γ-Fe2O3 [5] and Li into C60 [6], Chabre et al. obtained voltamograms
presenting narrow and asymmetric non-diffusional peaks, characterized by their
stripping peak shape. These results were also ascribed to the control of the insertion
process by a phase transition phenomenon. Although many experimental studies on the
electrochemical insertion process involving a phase transition phenomenon have been
published, the interpretations remained very qualitative and theoretical aspects have
been paid little attention so far.

R. Ash and R.M. Barer [7] studied the diffusion problem in a biphase medium,
considering diffusion in each phase as a quasi-stationary process with a linear concen-
tration profile. They assumed that the concentration of the intercalated species is
constant at the interface boundary, which leads to the phase boundary displacement rate
proportional to t1/2.

M. W. Verbrugge and B. J. Koch [8] proposed a model for the diffusion of Li in
carbon microfiber taking into account the variation of activity of Li with the concentra-
tion in the host material.

E. Wicke and H. Brodowski [9] studied the classical diffusion of atomic hydrogen in
Pd and proposed various experimental means for studying and characterizing these
phenomena.

The aim of the present work is to develop a mathematical model which can be used
to account for the experimental results of electrochemical insertion processes limited by
a phase transition phenomenon (EILPT) and allow an accurate quantitative analysis. It
will be mainly applied to modeling linear sweep voltamograms.
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2. Background of phase transition kinetics

Thermodynamically, every phase transition can be considered as a changeover from
configuration characterized by its initial Gibbs function (Gi) to a new structural
arrangement having Gibbs function (Gf). The difference (Gf-Gi) is the driving force (free
energy) for the phase transition. It depends, for a fixed temperature and pressure, on the
difference of composition between the actual state and the biphase equilibrium state. To
describe the evolution of the system from the initial to the final state, a kinetic model can
be established using considerations on transition processes on the atomic scale. A phase
transition is, strictly speaking, made of two steps. The first one involves the germination
process, which consists in the formation of nuclei as discrete centers. This first step,
which can be instantaneous or progressive, is commonly considered as thermally
activated. The second step concerns the phase growth, which may be a complex process,
mainly when the transition is accompanied by composition changes. In that case, the
phase growth involves both diffusional transport in each phase and mass transfer process
across the interface boundary. Phase growth kinetics can be, in a simplified manner,
divided into two categories depending on whether it is limited by diffusion phenomena
within the phases or by mass transfer across the phase boundary. In the first case,
diffusion within the phases is slower than mass transfer across the interface. According
to the Fick’s laws, it induces a concentration gradient in both phases. Local phase
equilibrium can be assumed at the interface boundary. The flux conservation at the
interface can be expressed by equation (1):

(1)

where ξ is the interface abscissa and Dα, Dβ are diffusion coefficients in α and β phases
(see Fig. 1).

In the second case, when diffusion of the species involved is faster than their transfer
across the interface, the concentration gradients in both phases may be neglected. The
growth process is similar to a thermally activated germination phenomenon [10, 11], and
the interface displacement rate is linked to the phase transition activation energy (∆G*)
and to the phase transition driving energy (∆Gα

β) by the following equation:
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where νβ and να are jump frequencies from α to β and in the opposite direction, respec-
tively.

The δ parameter is the induced interface displacement following the transfer of an
atom from α to β.

The commonly used assumption of jump frequencies equality (νβ=να) allows
equation (2a) to be simplified to:

(2b)

The kph coefficient is called phase transition rate constant.
The two categories of phase growth kinetics presented above correspond to

borderline cases. In general, phase transition is partially controlled both by diffusion and
transfer across the interface. Therefore, in a general model, it is necessary to combine
diffusion laws with equation (2b) corresponding to the transfer process across the
interface.

3. Model formulation

Let us consider a simple reduction process, consisting in the electrochemical
insertion of guest species (M) into a host lattice structure <H> (with thickness e) and
suppose the occurrence of a phase transition process (α-β) (Figure 1). In order to

ph
Gd k 1 exp

dt RT

β
αξ   ∆

= −  
  

Figure 1. Model for the electrochemical insertion process accompanied by a phase
transition phenomenon.
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simplify the mathematical model and keep the computational work at a reasonable level,
we have made the following assumptions:

A1- the phase transition front is considered as an ideal planar surface,
A2- phase (α) is considered as the pure initial structure and the concentration of guest

species is neglected. This assumption can never be satisfied experimentally but it is
necessary for enabling the solution of the mathematical system,

A3- phase (β) is considered as an ideal solid solution in which electrostatic interac-
tions between guest species are neglected. Expansion of the host structure is also taken
as negligible,

A4- ionic diffusion in the electrolyte (D=10-5 cm2 s-1) is high compared with the ionic
diffusion in the host material (D=10-8 to 10-12 cm2 s-1). Diffusion in the electrolyte will
not limit the electroinsertion process and the concentration of (M+) ions at the
electrolyte-electrode interface can therefore be considered as constant (CM

+),
A5- electronic conductivity of the host material is sufficiently high to neglect the con-

tribution of transport by migration within the host structure.
No assumption concerning the phase transition kinetics is made. The general model

will be solved combining diffusion in the phases and transfer kinetics laws across the
two-phase boundary.

4. Basic equations

*Thermodynamic relation: on the basis of assumption (A3), guest species will be
randomly distributed over equivalent sites and then obey Fermi-Dirac statistics [3]. The
chemical potential of (M) inserted in phase β is given by:

(3)

is the relative 

occupancy of insertion sites in phase β and  is the standard chemical potential of the (M+)
species in the β phase.

*Transport laws: assuming pure linear diffusional transport and taking into account
the insertion isotherm, the motion of (M+) in the host structure can be treated according
to the classical Fick’s law:

(4)
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The boundary conditions at the electrode-electrolyte interface (x=0) and at the two-
phases boundary (x=ξ) are:

(5)

(6)

where i is current density.
Equation (6a) is derived from equation (1) by setting Cα=0 and it expresses the absence
of atoms accumulation at the two-phase separation, whereas (6b) expresses the absence
of species diffusion across the electrode bottom (x=e) when the phase transition is
completely achieved.

*Phase transition kinetics: phase growth kinetics is assumed to obey 

Perturbating the biphase equilibrium by increasing the concentration of one of its
components (M) induces growth of the phase where (M) species have the lowest
chemical potential, and the system reaches its initial equilibrium state. Hence, there is a
force, which tends to bring the system back to its equilibrium state. The driving free
energy for the phase transition can be taken as the deviation of Gibbs function value in
the phase equilibrium state:

(7)

(8)
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thermally activated law given by equation (2b):

where ∆Gβ
α is driving energy of the phase transition.
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dt RT
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= −  
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therefore:
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where Eeq is the phase equilibrium potential.
In the particular case when diffusion is very fast compared to phase transition kinetics,
the concentration of the guest species is constant (θβ(x=ξ)=θβ(x=0)) and equation (8)
simplifies to:

(9)

In the general case we must use equation (8).
*Charge transfer kinetics: given the thermodynamic model, the charge transfer flux

at the electrode-electrolyte interface can be written:

(10)

where E is the electrode potential, k0 is the kinetic constant of charge transfer, C(M
+

) is
the guest ion concentration in the electrolyte at the electrode interface, and  is the
standard bulk concentration of (M+) in the electrolyte.

Now we have to find numerical solution of the problem represented by equations (4,
5, 6, 8 and 10) for a given triangular variation of the electrode potential with time. There
is a major difficulty in the way of treating this problem by finite difference method. In
fact, the position of the two-phase separation surface is not known in advance and it has
to be determined in the course of computation. To overcome this difficulty, a number of
authors have utilized the similarity transformation to solve similar problems [13-15].
The singularity can be handled by immobilizing the moving boundary owing to the
introduction of a new variable given by:

η = x/ξ (11)
In addition, during numerical simulation it is more convenient and advantageous to

transform equations into dimensionless form before solving them. By combining the
variable defined by Eq.(11) and dimensionless parameters introduced in Table 1, Eqs.
(4, 5, 6, 8 and 10) become expression as given in equation 12.
This set of differential equations and associated boundary conditions can be solved
numerically using finite differential methods [15, 16]. The implicit finite differential
formulae based on the Crank-Nicolson discretization scheme [17] has been used to
approximate Eqs. (4, 5, 6 and 10). For the discretization of Eq.(8), we preferred the use
of an explicit method, which permits to avoid hard complexity of computation
happening if Crank-Nicolson approximation is used. In general, this process may lead
to the loss of the stability insurance provided by the use of an implicit approximation.
However, in the present case this is found to be without a measurable incidence provided
discretization steps are not too small (>50).

eq
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(12)
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Table 1. Dimensionless parameters definition

Parameter Dimensionless parameter 
Space x - abscissa

ξ - two-phase separation abscissa

e - electrode thickness 
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The successive steps of computation are as follows:
1- initialize all concentration and phase separation abscissa by setting them to zero at
t*=0,
2- estimate ξ at t*=dt* from the explicit discretization of Eq.(8),
3- if ξ ∈]0, e*[, then use the Choleski [16] algorithm to the tridiagonal system obtained
by discretizing Eqs. (4, 5, 6a and 10). This leads to a concentration profile at t*=∆t*,
4- if ξ=e* then the phase transition is achieved and the electrode is constituted of a single
homogeneous phase. So, (dε/dτ = 0) and the system (12) become similar to that of the
classical diffusion phenomenon in a finite media. The concentration profile is also
calculated by the Choleski method applied to the finite difference transformation of Eqs.
(4, 5, 6b and 10).
5- if ξ<0, this corresponds physically to the absence of phase β and the presence of only
phase α, which is assumed to be identical to the initial structure. Then, there is no
diffusion in the bulk of the electrode and the concentration profile remains flat and equal
to zero.

Similarly, if the solution at t* = n∆t* is known, then we can reach its value at
t*=(n+1)∆t* using the successive computation steps described above.

5. Resulting calculated voltamograms

The characteristics of the theoretical voltamograms, obtained from the numerical
solution of the system of Eqs. (12), depend upon several factors, namely phase transition
rate, difference between the biphase equilibrium potential and the standard potential,
charge transfer rate, and the electrode thickness. To obtain useful information and char-
acterize this dependence, all these parameters were varied in the calculations.

5.1. Effect of phase transition rate

To characterize, solely, the effect of phase transition rate we carried out digital
simulations by taking into account reversible charge transfer, fixing Eeq

* and e* and
assuming different values for kph

* that correspond to a dimensionless ratio between the
phase transition rate and diffusion coefficient. Typical simulated curves are shown in
Fig.2. On the one hand, if kph

* <2.10-2 the diffusion is markedly faster than species
transfer across the interface boundary and the process kinetics is limited by the latter
phenomenon. This leads to a small charge transfer flux at the electrode-electrolyte
interface. On the other hand, when kph

* increases, the rate of species transfer across the
two-phase separation becomes progressively faster until it overruns the diffusion rate.
Diffusion into the β phase becomes the limiting phenomenon for kph

* >1. In that case,
voltamograms have the classical shape and characteristics obtained for intercalation in a
perfectly non-stoichiometric and semi-infinite system without phase transition. Since
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several theoretical studies have been devoted to the latter case, we will focus on the
process governed rather by species transfer across the two-phase separation.

In this case, the height of the cathodic peak is smaller than that of the anodic one (Fig.
3). This is directly due to the exponential form of the phase transition law, which means
that to create a phase is more difficult than to make it disappear. Moreover, dimension-
less current is shown to be proportional to kph

* . This implies the invariability of voltam-
mograms when the scan rate varies. Analysis of a large number of calculated curves
allowed us to relate the magnitude of the cathodic current peak to kph

* :

However, the height and position of the anodic peak depend on the switching potential.
Therefore, it is not possible to present a quantitative correlation for the anodic portion.
Nevertheless, the anodic current peak is found to depend linearly on the phase transition
rate kph

* .

Figure 2. Effect of the type of phase growth kinetics on simulated voltamograms.
Reversible charge transfer (k0*=10, α=0.5),  Eeq

* = 4, e*=10.

* *
pic phi 1.516k=
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5.2. Effect of phase equilibrium potential

Phase equilibrium potential is the upper limit of potential, below which the phase
transition occurs. Its value expresses thermodynamic difficulty to create the new phase
β. In fact, typical voltamograms obtained by varying Eeq

* and fixing all other parameters
(Figure 4), show that the beginning of current flow may be delayed to lower potentials
when Eeq

* is decreased. The total absence of current flow when E* is larger than Eeq
* is

directly linked to the stability of phase α only above Eeq
* and to the assumption (A2)

where we supposed the imperviousness of phase α to guest species. In reality, this latter
assumption is not true and the experimental current flow is expected to start growing
smoothly from the initial potential and it has a sharp slope change whenis reached. For
Eeq

* >2, calculated curves show a cathodic peak attributed to the filling of the interfacial
insertion sites. In contrast to diffusion phenomena, the cathodic current reaches a plateau
after the peak. This is related to the occurrence of a steady insertion rate governed by the

Figure 3. Effect of kph
* values on simulated voltamograms when phase transition is

limited by species transfer across the two-phase boundary. Reversible
charge transfer ( k0*=10, a=0.5),  Eeq

* =4, e*=10.
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interface displacement. For Eeq
* <2, the cathodic peak disappears and the steady insertion

rate is rapidly reached. Furthermore, the anodic portion is highly affected by the Eeq
*

value. For Eeq
* <-2 the anodic portion presents a “stripping” peak. The abrupt decrease

of the anodic current corresponds to the complete vanishing of inserted species, which
can be oxidized, and to the time when the interface boundary reaches the electrode-
electrolyte interface.

5.3. Effect of electrode thickness

Under semi-infinite conditions, the electrode thickness is very large compared to the
average distance traveled by the phase transition front, and the process takes place
normally without any interruption. On the other hand, during insertion into a thin
electrode, the phase transition front may reach the other face of the electrode. Thus, the
electrode becomes constituted of a single homogenous phase and the transport process
shifts from a phase transition-limited phenomenon to the classical diffusion-governed
one. This leads to discontinuity of the current intensity observed in the calculated volta-
mograms and it corresponds to the change in the transport limiting process (Figure 5).

364

Figure 4. Simulated voltamograms for various values of . Reversible charge transfer
(k0* =10, a=0.5), kph

* =10-3, e*=10.
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The effect of electrode thickness can be shown more clearly using modeling of
current response to a cathodic potential pulse below Eeq

* (Fig.6). At first, the current
response to such a pulse reaches rapidly a plateau that expresses the limitation of the
process by the phase growth rate. After that, when phase transition is achieved, the
current flow decreases progressively in agreement with the Cottrel’s law. This leads to
typical curves, which were experimentally observed during hydrogen insertion into
palladium [4].

Figure 5. Theoretical voltamograms obtained with different electrode thickness.
Reversible charge transfer ( k0* =10, α=0.5), Eeq

* =-2, kph
* =10-3.

Figure 6. Simulated current response to a potential pulse for various electrode
thickness. Reversible charge transfer ( k0*=10, α=0.5), Eeq

* =4, kph
* =10-3.
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5.4. Effect of charge transfer kinetics

On the one hand, the height of the cathodic peak does not depend on the kinetic
parameter (k0*) but it does depend on the value of the factor of symmetry α (Figure 7).
On the other hand, the peak potential depends slightly on k0*. This behavior is qualita-
tively similar to that encountered with quasi-reversible insertion in perfectly non-stoi-
chiometric system.

Figure 7. Simulated voltamograms for: a) different k0* values (α=0.5,Eeq
* =4, e*=10); 

b) different a values ( k0*=10-3, Eeq
* =4, e*=10).
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The anodic peak is more affected by the change of k0* and α values. Its potential
increases and its magnitude decreases when k0* is decreased. Moreover, a decrease of the
factor of symmetry leads to an increase of the height of the anodic peak and to a
reduction of its half-height width.

6. Conclusions

The theoretical model proposed should be useful in any electrochemical process
where a phase transformation plays a kinetic role. However, in the present state of the
model, the application range is limited because, for mathematical reasons, the authors
had to assume that one of the phases was pure. The generalization of the model to the
case when both phases can have any composition is currently studied.

The calculations have in particular been done for the case of linear sweep voltametry,
for thin or bulky electrodes. According to the values of parameters such as thermody-
namic equilibrium potentials, diffusion and phase transformation kinetics and electrode
dimensions, the calculated voltamograms present some very specific features, some of
which have already been observed experimentally and reported in literature.

In a subsequent paper, the authors will present an experimental work in the view of
validating this theoretical model for the particular case of sodium insertion into
pyrocarbon at high temperatures.
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