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Abstract

Classical supervised learning enjoys the luxury of accessing the true known labels for
the observations in a modeled dataset. Real life, however, poses an abundance of problems,
where the labels are only partially defined, i.e., are uncertain and given only for a subset
of observations. Such partial labels can occur regardless of the knowledge source. For
example, an experimental assessment of labels may have limited capacity and is prone to
measurement errors. Also expert knowledge is often restricted to a specialized area and
is thus unlikely to provide trustworthy labels for all observations in the dataset. Partially
supervised mixture modeling is able to process such sparse and imprecise input. Here, we
present an R package called bgmm, which implements two partially supervised mixture
modeling methods: soft-label and belief-based modeling. For completeness, we equipped
the package also with the functionality of unsupervised, semi- and fully supervised mixture
modeling. On real data we present the usage of bgmm for basic model-fitting in all
modeling variants. The package can be applied also to selection of the best-fitting from a
set of models with different component numbers or constraints on their structures. This
functionality is presented on an artificial dataset, which can be simulated in bgmm from
a distribution defined by a given model.

Keywords: mixture modeling, semi-supervised modeling, belief-based modeling, soft-label
modeling, R.
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1. Introduction

The most fundamental applications of statistical learning include supervised modeling (classi-
fication) and unsupervised modeling (clustering). In the first case, also called discrimination
analysis, observations in the modeled dataset are all labeled with their known class. In the
second case, no information about the classes of the observations is given, and labeling them
with their corresponding cluster is the task of the modeling. The number of clusters may
be given in the input, but may as well be estimated by the model. Recent developments
in statistics offer a range of learning variants, spreading between the fully supervised and
unsupervised approaches, and can be divided into two different types.

The first type is semi-supervised modeling, which takes as input a dataset where for a sub-
set of observations the labels are known, and the remaining part is unlabeled (Ambroise,
Denceux, Govaert, and Smets 2001; Zhu and Goldberg 2009; Zhu 2005). The second type is
implemented by the recently developed partially supervised modeling (Ambroise and Govaert
2000; Come, Oukhellou, Denceux, and Aknin 2009; Hiillermeier and Beringer 2006; Lawrence
and Scholkopf 2001; Bouveyron and Girard 2009). Partially supervised modeling works with
datasets, where for a subset of observations labels may be concluded, but the labels are un-
certain, i.e., determined with some probability. Figure 1 illustrates the different modeling
variants with respect to utilizing knowledge.

Partially supervised modeling constitutes the most general variant and is applicable in an
abundance of real-life problems. The uncertainty may result from the properties of the knowl-
edge sources from which the labels are derived, e.g., a literature study of similar, but not
exactly the same objects, noisy measurements due to technological limitations, or a panel of
experts who may disagree in some cases. Depending on the problem, the partially supervised
modeling methods may be applied to classification improved with the use of additional unla-
beled data, or to clustering by utilizing the labeled observations. To unify the nomenclature
we embrace these two applications in a single term prediction, as in both cases modeling is
applied to predict correct (either class or cluster) labels.

All the described learning variants are developed in the area of mixture modeling. The
common point of various mixture modeling methods is the assumption, that observations
come from a mixture of components with different distributions. Each component is related
to a cluster in unsupervised modeling or to a class in fully supervised modeling. Fitted mixture
models are applied to prediction of labels for the partially labeled or unlabeled observations:
the observations are assigned the label, which is the most probable according to the model.

In this paper we present an R package called bgmm (for belief-based Gaussian mixture
modeling) that is available from the Comprehensive R Archive Network (CRAN) at http://
CRAN.R-project.org/package=bgmm. The package implements different multivariate Gaus-
sian mixture modeling methods, each representing a particular learning variant. Gaussian
mixture modeling and its variants are shortly introduced in Section 1.1. The focus of our
work is on two partially supervised mixture modeling methods: soft-label modeling, intro-
duced by Come et al. (2009), and our contribution, called belief-based modeling. Belief-based
modeling was described theoretically, compared to the soft-label modeling and verified in
application to one-dimensional gene expression data in Szczurek, Biecek, Tiuryn, and Vin-
gron (2010). Here, the formulation of the belief-based and soft-label modeling methods is
only briefly recapitulated in Section 1.2. Section 1.3 lists existing software that provides
implementation of the fully, semi- and unsupervised modeling.
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Figure 1: Amount of knowledge required by the different variants of modeling. z-axis: Knowl-
edge certainty. y-axis: The percentage of observations for which knowledge is provided as
labels. The modeling method variants are color-coded. Unsupervised modeling (blue dot)
requires no input knowledge. On the other hand, fully supervised modeling (violet star) re-
quires 100% certain knowledge about all labels. Semi-supervised modeling (red line) take
in the input certain knowledge given for any subset of all observations. The most general
partially supervised modeling (green area shaded darker for increasing knowledge) accepts
uncertain knowledge about a subset of observations.

Both the partially supervised belief-based and soft-label modeling methods are supported
by the bgmm package. Fully supervised, semi-supervised, and unsupervised modeling are
added to the package for completeness. Section 2 presents the basic usage of the implemented
model-fitting functions, model initialization and model-based label prediction in application
to genotyping data of Takitoh, Fujii, Mase, Takasaki, Yamazaki, Ohnishi, Yanagisawa, Naka-
mura, and Kamatani (2007). The bgmm package offers automatic selection of the optimal
model structure and the number of components. This functionality is presented on a simulated
dataset in Section 3.

1.1. From fully supervised to fully unsupervised mixture modeling

Gaussian mixture model is defined by a pair (X,Y) of random variables, where the d-
dimensional variable X takes values in R%, while Y takes values in the set J = {1,...,k}. The
value k defines the number of mixture components. The variable Y follows a multinomial
distribution with probabilities (71, 7o, ..., T ), called mixing proportions or prior probabilities.
X|Y = y follows a multidimensional Gaussian distribution with parameters 6, = (u, Xy),
and with a density function f(z,6,). The density of the joint distribution of the variables
(X,Y) reads

f(x7y) = 71-yf(xa ey)a

where z € R? and y € ) is the y-th Gaussian component. Accordingly, the marginal distri-
bution of X is a mixture of &k multivariate Gaussian distributions:

k
fl@) =" myf(x,0y).
y=1
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Usually the parameters p,,, as well as m, are unknown. However, additional constraints
may be put on the model structure, for example, the equality of the parameters p, or X,
for all y € ) (see Section 2.1). To estimate the set of mixture model parameters & =
(71, .oy Tk, 01, ..., O), the number of components k needs to be fixed. In real life problems,
often the number of components is not known a priori. In such a case, mixture models for
different values of k£ can be fitted in order to choose the one that best satisfies given model
selection criteria (Section 3.4). The same criteria can be used to compare models having
different constraints put on their structures (Section 3.3).

Consider n realizations of the random variables (X,Y), denoted z;,y;, for 1 < ¢ < n. The
values of the variable X are observed. For the variable Y, four different scenarios define four
mixture modeling variants, which differ in the amount of knowledge given about y;:

1. Fully supervised modeling: Variable Y is observed for all realizations, i.e., y; is given
for all .

2. Semi-supervised modeling: Variable Y is observed for m realizations (0 < m < n).

3. Partially supervised modeling: Variable Y is observed for m realizations (0 <
m < n), but those observations are uncertain, i.e., their values are given with some
probability (see Section 1.2). The bgmm package implements two partially supervised
mixture modeling methods: belief-based and soft-label mixture modeling.

4. Unsupervised modeling: Variable Y is not observed for any realization.

Realizations, for which the values of Y are known, or (in the case of partially supervised
modeling) can be pointed as the most probable, are called labeled. Thus, each label assigns to
a given observation its mixture model component, which according to the model’s application
may correspond to a class or a cluster. Without loss of generality, we assume that the labeled
observations have indexes 1 < ¢ < m, while the remaining observations are indexed with
1> m.

1.2. Partially supervised belief-based and soft-label mixture modeling

Belief-based modeling

In belief-based modeling, first introduced by Szczurek et al. (2010), the uncertainty of labels
is expressed as a probability distribution over the set of components. Technically, for the
first m observations a so called (m x k) beliefs matrix B is defined. The matrix entry b; ;
is interpreted as a belief that observation i belongs to component j. The belief values for a
given observation ¢ need to define a probability, i.e., Z?:l bi,j = 1 (the values in the i-th row
of B need to sum up to 1). For the m labeled observations, their belief values replace the
prior probabilities and remain fixed during the estimation process.

The log likelihood can be written as

(X, B,®) = i log (S5 bijf(wi,0)) +
St log (Shoy i (21.6))
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where X = {xy,..,z,} is the input set of n observations, B is the beliefs matrix,
b = (71, ..., T, 01, ...,0;) stands for the set of model parameters, and 0; = (u;,%;) are the
Gaussian parameters of the i-th component.

The parameters in ® can be estimated with an expectation-maximization (EM) method. In
the (q+1)-th iteration, the posteriors are calculated in the E step as

t(q-i-l) :{ Uf(xlv j 2)/25 1bzlf (Cﬂz, ) 1< m

iy , (1)
7 ;q)f (:ci,ej(q /lel 7Tl f (:c,-,@l(q)) i>m

In the M step the model parameters are updated to

@t Z o m) 2)

i=m-+1
q+1 <Z xzt(q—i-l ) (Z t%—&-l)) (3)
=1
= (3 (o) () ) ()
i=1 i=1

Soft-label modeling

The soft-label approach, introduced by Come et al. (2009), works with more general labels
than our implementation. Each label can be a subset of the model components. We reduce
this general approach to a particular case, where only labels that are single components are
allowed. In this formulation, soft-label modeling takes as the input a (n x k) matrix of plau-
sibilities P, defined for all observations. The plausibility p; ; stands for a weight of the prior
probability that the observation i belongs to the component j. Thus, the lack of additional
knowledge about a given observation is reflected in equal weights. We add a constraint on
plausibilities, i.e., for each observation they have to sum up to 1, i.e., E?ﬂ pi,j = 1. This con-
straint is added for the sake of unified implementation of different methods, and has no effect
on the maximum likelihood estimate, since it only rescales the likelihood. The log likelihood
is given by

(X, P,®) Zlog (meﬂkf 2,0 )) .
In the (¢ 4 1)-th iteration of the EM algorithm, the posteriors are computed in the E step as
(g+1) _ (9) (9) : (9) ()
tis ) = pigm” f (fﬁiﬁjq ) /> piam® f (xzs@lq ) ;1 <m,
=1
while the M step the mixing proportions are updated by

M =3 (5)
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and the Gaussian parameters are updated using Equations 3 and 4.

Note that the belief-based and soft-label modeling methods differ in the way the uncertain
knowledge is incorporated into the models, and beliefs should be interpreted differently than
plausibilities. In the belief-based approach beliefs replace priors for the labeled observations,
while in the soft-label approach plausibilities work as weights for priors. For example, in
the belief-based approach beliefs (0.33,0.67) represent prior knowledge that the observation
belongs to the first component with 0.33 probability and to the second component with the
probability 0.67. In contrast, in the soft-label approach plausibilities (0.33,0.67) represent
knowledge that the observation belongs to the second component with twice as high proba-
bility than defined by the mixing proportions.

Fixing uniform beliefs incorporates specific knowledge that each component is equally proba-
ble, since the beliefs replace the priors for the observations. In contrast to that, fixing equal
plausibilities does not incorporate any knowledge (i.e., the user does not know whether the
components are equally probable, or whether maybe one of them is much more probable than
the others). Thus, when only m observations are labeled, in the case of soft-label model-
ing the remaining observations are given plausibilities that are uniformly distributed over all
components. This is in contrast to beliefs in belief-based modeling, which are not defined
for the remaining observations. Szczurek et al. (2010) show that due to differences in mixing
proportion estimation (Equation 2 vs. 5), belief-based modeling is more suitable for the more
realistic problems with only a small subset of observations labeled. Soft-label modeling should
rather be applied when the observations are labeled in a large part.

Note also, that partially supervised modeling is more general than semi-supervised modeling.
Semi-supervised modeling is implemented by the belief-based modeling when for the labeled
observations b;; € {0,1} (i < m and j € ), as well as by soft-label modeling when for
the labeled observations p; j € {0,1} and for the remaining observations the plausibilities are
uniform. Szczurek et al. (2010) prove advantage of the partially supervised modeling methods
over semi-supervised modeling. In contrast to semi-supervised modeling, which assumes that
the input labeling of observations is fixed, partially supervised modeling uses the entire (also
unlabeled) data to verify the knowledge about the labels. After the model is fitted, it may
predict labels that are different than the ones specified as the most believed or plausible. Such
“re-labeling” happens for observations originally labeled with components, which are highly
improbable according to the fitted model.

1.3. Implementations of the fully, semi- and unsupervised modeling

The fully supervised modeling variant proceeds in one simple step, by estimating each compo-
nent’s parameters directly from its observations. For a given component y € ), the parameters
ty and X, are estimated by the mean vector, and the covariance matrix of the observations
labeled y. The estimator of the prior probability m, is given by the proportion of the obser-
vations labeled y toward all observations. Such estimations can be made with the R package
MASS (Venables and Ripley 2002). In the general case, supervised modeling is also called
quadratic discriminant analysis, and is implemented by the function gqda() in the MASS
package. In some applications it is convenient to force XJ; = X; for all 1 <4, j < k. This case
is called linear discriminant analysis and is implemented by the function 1da().

Despite the large number of publications in which authors show the advantages of semi-
supervised modeling (Bair and Tibshirani 2004; Zhu and Goldberg 2009; Zhu 2005), its
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implementations are not easily available in statistical packages. In R (see R Development
Core Team (2012)) both packages phyclust (Chen 2011) and spa (Culp 2011) provide some
support for semi-supervised modeling. However, neither of them focuses on estimation of
Gaussian mixture models. Although the inner procedures of the phyclust package do esti-
mate a mixture model, the package works specifically on DNA sequence data and is aimed at
reconstruction of phylogenetic trees and phyloclustering. The spa package contains functions
for semi-supervised regression-like estimation and graph-based estimation.

A broad variety of CRAN packages supporting unsupervised learning and mixture modeling is
available. A list of them may be found in the task view “Cluster Analysis and Finite Mixture
Models” (Leisch and Griin 2012). One of the most flexible packages for unsupervised mixture
modeling is mclust, (Fraley and Raftery 2006) which implements an EM algorithm for model
fitting, and uses the Bayesian information criterion(BIC, Schwarz 1978) to determine the
number of components. Another package, HDclassif (Bergé, Bouveyron, and Girard 2012)
contains functions both for fully unsupervised and fully supervised modeling. Similarly as our
bgmm, the packages mclust and HDclassif allow specifying additional constraints for model
parameters. In all three packages the constraints reduce the number of degrees of freedom of
the models and result in more stable estimates. With this respect, the approach implemented
in HDclassif differs from the one provided by mclust and bgmm. In the latter packages the
user can choose one of a few classes for covariance matrices, while in HDclassif constraints
are defined on the eigenspace of covariance matrix and are more data-guided.

The package Spider, (Weston, Elisseeff, Bakir, and Sinz 2010) a comprehensive object-oriented
environment for machine learning in MATLAB, provides semi-supervised learning with the
support vector machine (SVM) method (see Weston, Leslie, Ie, Zhou, Elisseeff, and Noble
(2005) for an example application).

Szczurek et al. (2010) provided initial implementation of the partially supervised belief-based
and soft-label mixture modeling methods in the first version of bgmm package. This imple-
mentation was applied specifically to expression data measured upon single-gene knockouts
and other single-measurement experiments. Thus, modeling was limited to one-dimensional
data only. Moreover, model selection was not supported. In this paper, we extend the package
to contain full functionality. To our knowledge, it is the first exhaustive partially supervised
modeling software available open source. For completeness, the package provides also the re-
maining three modeling variants, namely the fully, semi- and unsupervised mixture modeling
methods. Those different variants of mixture modeling are handled in a similar way. For
all of them functions for parameter estimation, cross-validation and structure selection are
provided. Note that in case of supervised modeling other packages contain more specialized
functions like receiver operating characteristic (ROC) curves, different error measures, more
flexible cross-validation schemes, etc. The package is available for download from CRAN and
from the project website http://bgmm.molgen.mpg.de/.

2. Basic model-fitting with the bgmm package

First, we illustrate the basic functionality of the bgmm package in application of the imple-
mented mixture modeling methods to single-nucleotide polymorphism (SNP) genotyping data.
SNPs are different mutations of the DNA sequence, which appear in the genomes of a given
population. Typically, each SNP has two different mutations, called alleles. We analyze the
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dataset of Takitoh et al. (2007), where each observation is represented by two real values,
measured by the Invader assay (Ohnishi, Tanaka, Ozaki, Yamada, Suzuki, and Nakamura
2001). Each value represents an intensity of the fluorescence signal corresponding to a given
allele of a given SNP. Three types can be distinguished in the measured set of 333 SNPs. The
first type occurs only as its first possible allele 1, second only as its second possible allele 2,
and third as both alleles. The fluorescent points cluster accordingly. Assigning the SNPs to
their correct types based on the fluorescence intensities is called genotyping. In other words,
genotyping is a clustering problem, where the clusters to be found in the data correspond to
the three types of SNPs that can occur. Thus, the required number of model components
is known and equals three. The correct types of the 333 SNPs in the Takitoh et al. (2007)
dataset are also known and can serve as labels for the supervised modeling methods.

The input data and knowledge for the modeling methods is gathered in the genotypes object
in the bgmm package. To prepare the input for the partially and semi-supervised modeling
methods, we separated 15 SNPs, choosing at random five per each cluster, and labeled them
with their correct type. For the partially supervised methods, the belief/plausibility values
of the most probable type reflect the high certainty of the labels and are set to 0.95, and of
the remaining types are equal 0.025. The remaining 318 SNPs are kept unlabeled.

R> library("bgmm")
R> data("genotypes")
R> str(genotypes)

List of 4
$ X : num [1:318, 1:2] 0.741 0.682 0.797 0.772 0.738 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:318] "im ngm ngn ngn
.. ..$ : chr [1:2] "allelel" "allele2"
$ knowns: num [1:15, 1:2] 0.815 0.955 0.833 0.772 0.828 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:15] "knownl1" "known2" "known3" "known4"
.. ..$ : chr [1:2] "allelel" "allele2"
$B : num [1:15, 1:3] 0.95 0.95 0.95 0.95 0.95 0.025 0.025 0.025 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:15] "knownl" "known2" "known3" "known4"
.. ..$ : chr [1:3] "qm n3m non
$ labels: Named int [1:15] 1 111133333 ...
..— attr(*, "mames")= chr [1:15] "knownl" "known2" "known3" "known4"

The object genotypes contains four slots with data.frames. First, the data.frame in slot $X
is filled with fluorescence intensities for allele 1 and allele 2, measured for the 318 unlabeled
SNPs. Second, the data.frame in the slot $knowns contains intensities for the 15 SNPs that
are labeled with their correct type. Third, the data.frame $B keeps the beliefs about the
assignment of the 15 known SNPs to each type (i.e., each mixture component). In the following
usage cases we assume that for those 15 labeled genes the plausibilities are distributed in the
same way as the beliefs. Recall from Section 1.2 that the remaining unlabeled SNPs should
have plausibilities that are uniformly distributed over the mixture components. The fourth
slot $1abels contains a vector of labels for the 15 known SNPs.
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The bgmm package provides five model-fitting functions, one per each of the mixture modeling
variants. Due to differences in the basic input expected by the modeling variants, these
functions differ slightly in the lists of their arguments:

e A function belief () takes at least three arguments: X — a data.frame with the unlabeled
observations, knowns — a data.frame with the labeled observations, and B — a beliefs
matrix with the distribution of beliefs for the labeled observations. Unless explicitly
provided, the argument k fixing the number of components is by default equal the
number of columns of B,

e A function soft () takes the same arguments as belief, but instead of B, the argument
P can be provided. P is the matrix of plausibilities, but specified only for the labeled
observations. The function assumes that the remaining observations are unlabeled and
gives them uniformly distributed plausibilities by default,

e A function semisupervised() takes the same arguments as belief, but instead of B,
the argument class can be provided. class has to contain the vector of classes for the
labeled observations,

e A function supervised() assumes that all observations are labeled. Thus it requires
only two arguments, i.e., X with the data and class with the labels. The number of
components is derived from the number of unique labels,

¢ A function unsupervised() takes only two arguments, i.e., X with the observations and
k with the number of components.

In fact, the implementation of the model-fitting functions is very flexible, and adjusted to allow
maximally similar input between the functions. For example, the user may provide argument
B to the soft () function, and it will automatically be treated as the argument P. Moreover,
providing distributions over components with the arguments B or P to the semisupervised()
function is also possible, as they can be used by the function to derive the most probable
labels and convert them to classes by default. For more details on the full spectrum of the
function parameters refer to the package manual.

Below usage cases for each model-fitting function are presented. Each function returns an
object of the class mModel. The mModel class overloads the plot () function. Figure 2 shows
the plots for the models fitted with the presented function calls. In case of supervised modeling
model is build with use of only 15 labeled observations, in other cases all observations are
used. Note that the genotypes dataset easily separates into three disjoint clusters, and here
it serves only to illustrate the modeling functionality of bgmm. Modeling of more complicated
data is presented in Section 3.1.

R> modelSupervised <- supervised(knowns = genotypes$knowns,

+ class = genotypes$labels)

R> plot(modelSupervised)

R> modelSemiSupervised <- semisupervised(X = genotypes$X,

+ knowns = genotypes$knowns, class = genotypes$labels)

R> plot(modelSemiSupervised)

R> modelBelief <- belief(X = genotypes$X, knowns = genotypes$knowns,
+ B = genotypes$B)
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Figure 2: The models fitted with different mixture modeling variants to the two-dimensional
SNP genotyping data of Takitoh et al. (2007). The axes correspond to fluorescence intensities
for allele 1 (z-axis) and allele 2 (y-axis). Black dots, visibly grouping into three clusters,
represent observations without labels. Colored symbols code for the three possible SNP types,
used as labels for the known observations. Colored ellipses are graphical representations of the
fitted Gaussian components, one per each of the SNP types. In this example, the models fitted
by the belief (), soft() and semisupervised() functions are identical and thus plotted on
a common panel (middle). The colors of the Gaussians fitted with unsupervised modeling
(right panel) are arbitrarily assigned to the identified clusters of data. On the contrary, the
Gaussian components fitted by the supervised modeling method (left panel) correspond only
to the SNP types of the observations that are known to come from those components (see
Section 2.3). Thus the colors of those Gaussians match the colors of the label symbols. In
this example, the number of labeled observations utilized by the supervised() function is
much smaller than the number of all observations (utilized by the remaining functions). This

is the reason why the left plot has fewer points.

R> plot(modelBelief)

R> modelSoft <- soft(X = genotypes$X, knowns = genotypes$knowns,
+ P = genotypes$B)

R> plot (modelSoft)

R> modelUnSupervised <- unsupervised(X = genotypes$X, k = 3)

R> plot (modelUnSupervised)

Objects returned from these functions describe the fitted model:
R> str(modelBelief)

List of 15
$ pi : Named num [1:3] 0.456 0.116 0.428

..~ attr(*, "names")= chr [1:3] "i" "3" "2"
: num [1:3, 1:2] 0.765 0.196 0.745 0.246 0.613 .

$ mu ..
: num [1:3, 1:2, 1:2] 0.00476 0.00161 0.01137 0.00184 ...

$ cvar
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..— attr(*, "dimnames")=List of 3
..$ : NULL
..$ : chr [1:2] "allelel" "allele2"
.. ..$ : chr [1:2] "allelel" "allele2"
$ B : num [1:15, 1:3] 0.95 0.95 0.95 0.95 0.95 0.025 0.025 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:15] "knownl" "known2" "known3" "known4"
..$ : chr [1:3] "qm n3m nan

$m : int 15

$n : int 333

$k : int 3

$d : int 2

$ likelihood : num 817

$ n.steps : num 5

$ tij : num [1:333, 1:3] 11111

..— attr(x, "dimnames")=List of 2
..$ : chr [1:333] "knownl" "known2" "known3" "known4"
.. ..$ : chr [1:3] m"qm n3n nonm
$ X : num [1:318, 1:2] 0.741 0.682 0.797 0.772 0.738 ...
..— attr(x, "dimnames")=List of 2
..$ : chr [1:318] "im ngm ngn ngn
.. ..$% : chr [1:2] "allelel" "allele2"
$ knowns : num [1:15, 1:2] 0.815 0.955 0.833 0.772 0.828 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:15] "knownl" "known2" "known3" "known4"
..$ : chr [1:2] "allelel" "allele2"
$ model.structure:List of 4
..$ mean : chr "D"
..$ between: chr "D"
..$ within : chr "D"
..$ cov : chr "D"
$ dof : num 15
attr(*x, "class")= chr [1:2] "beliefModel" "mModel"

The objects returned by all five functions share a common class attribute mModel, thus in all
cases the generic function plot () in fact calls the function plot.mModel().

The object contains slots for the model parameters: a vector with the fitted mixing propor-
tions $pi, a matrix $mu with the means fitted for all components, and a three-dimensional
matrix $cvar with the covariance matrices fitted for all components. The first dimension
in this array corresponds to the index of Gaussian component, so that $cvar[i, , ] re-
sults in a two-dimensional covariance matrix of the ¢th Gaussian component. It holds also
slots for the input data and knowledge: $X for the unlabeled and $knowns for the labeled
observations, $B for the beliefs matrix (in a mModel object returned from the soft() func-
tion there is a corresponding slot $P instead, whereas models fitted with the supervised()
and semisupervised() functions contain a slot class), $n for the number of all and $m for
the number of unlabeled observations, $k for the number of components and finally, $d for
the data dimension. The slot $likelihood contains the log-likelihood of the fitted model,

11
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$n.steps the number of steps performed by the EM algorithm, $model.structure the set
of constraints kept during fitting process (see Section 2.1 below), $dof the number of degrees
of freedom and $tij the posteriors for each observation. In this example, the likelihood of
the model fitted by the belief () function equals:

R> modelBelief$likelihood

[1] 817.1028

2.1. Constraining the model structure

For some problems, it is possible to a priori specify constraints on the structure of the fitted
model. For example, it may be known that within each model component the measurements
in each dimension are independent and have equal variances (for two-dimensional data this
would imply that the Gaussians are circular). The bgmm package allows incorporating such
prior information into the model estimation procedures. The specified model constraints affect
the M step of the EM algorithms used in all mixture modeling variants.

Constraining model structure decreases the number of degrees of freedom of the model,
thereby increasing the stability of parameter estimation, and is particularly useful when the
number of observations is small. For d-dimensional data, an unconstrained mixture model
with & components is defined by kd + kd(d + 1)/2 + k — 1 degrees of freedom. This total
number consists of kd parameters for the component means p1, ..., g, kd(d — 1)/2 for the
covariance matrices X1, ..., 2, and k — 1 for the mixing proportion parameters my, ..., Tp_1.
Thus, for example, forcing independence and equal variances of the data vector components
(corresponding to data dimensions) within each model component reduces the number of de-
grees of freedom to k(d 4+ 2) — 1. Table 1 presents numbers of degrees of freedom for different
constraints of the model structure possible in the bgmm package.

Specifying the preferred model structure in bgmm can be performed using a function called
getModelStructure (). By default, the function returns an unconstrained structure. We list
the possible arguments and their settings, which allow for introducing constraints:

e A constraint mean = "E" forces equality of the means’ vectors between the components,
i'e°7 Vze)}/% = M1,

e A constraint between = "E" forces equality of the covariance matrices between the
components, i.e., Viey X; = X,
e A constraint within = "E" forces equality of variances within each covariance matrix i

to some constant v; and equality of covariances to some constant w;, i.e., Vi<,<q2i[r, 7] =
Vi, Vi<rte<d2i|T, €] = wy,

e A constraint cov = "O" forces equality of covariances within each covariance matrix 4
to 0, i.e., Vicpze<qXilr, ] =0,

where ¥;[r, c] is the entry in the r-th row and c-th column of the i-th covariance matrix.

For example, below we set all the means’ vectors equal with the use of the mean argument:
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Model structure # Ind. parameters Model structure # Ind. parameters

DDDD ked + kd(d + 1)/2 EDDD d+ kd(d+1)/2
DDDO kd + kd EDDO d+ kd
DDED kd + 2k EDED d + 2k
DDEO kd + k EDEO d+k
DEDD kd + d(d +1)/2 EEDD d+d(d+1)/2
DEDO kd +d EEDO d+d
DEED kd + 2 EEED d+2
DEEO kd + 1 EEEO d+1

Table 1: Degrees of freedom for different model structures. Each number is given omitting
the k — 1 parameters defining the mixing proportions, e.g., the total number of degrees of
freedom for the structure DDDD is kd + kd(d + 1)/2 + k — 1. The structures are coded with
four-letter strings. The letters refer, in order from left to right: first, the relation between the
means’ vectors of the components, which can either be equal (letter "E") or unconstrained
("D"). Second, the relation between covariance matrices, which can all either be equal ("E"), or
unconstrained ("D"). Third, the relation between the data vector components (corresponding
to data dimensions) within each covariance matrix, i.e., each covariance matrix can either
have all variances equal to some constant and all covariances equal to some constant ("E")
or can be unconstrained ("D"). Fourth, the covariances in each covariance matrix, which can
either all be forced to equal 0 ("0") or be unconstrained ("D").

R> model.structure.m.E <- getModelStructure(mean = "E")
R> str(model.structure.m.E)

List of 4
$ mean : chr "E"
$ between: chr "D"
$ within : chr "D"
$ cov : chr "D"

Model fitting with a predefined structure can be performed by setting the model.structure
argument in any of the fitting functions. For example, below a belief based model is created
with a specified model structure.

R> modelBelief <- belief(X = genotypes$X, knowns = genotypes$knowns,
+ B = genotypes$B, model.structure = model.structure.m.E)
R> modelBelief$likelihood

[1] 222.498

Note, that in the likelihood for a model fitted to the genotypes data, where the component
means are forced to be equal is much lower than the likelihood for an unconstrained model
(equal 765.6777; see Section 2). That difference gives evidence against the equality of com-
ponent’s means. Similar observation can be concluded from graphical representations of the
two models (compare Figures 3 with 2) or applying model selection criteria to the choice of
the optimal model structure (see Section 3.3).

13
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belief model, k=3, structure=EDDD

1.0
-
)
’I II
P i It ——-— - L, #
08 7 + A L
.l ’I A o,
+ =TS T
0.6 ‘ .
+t \ \ ',-,\-.v' LAVIEN
\ \ “-._:,r/ [N ~
L,
NEE \\ o -\"/.”( \ \\
- - f
0.4 - 5. ~ A \\
RS . ~wg<{' L. A
S . ’ \ v’ .
. N .
RN / //‘\// -*E.J 3-:_. -
e //II\.__;‘.. A
0.2 — Ple T
/ // 1
I I I I

Figure 3: A three-component model fitted to the genotypes data by belief-based mixture
modeling with forced equality of the component means. The designation of the axes and the
data visualization are the same as in Figure 2. Visibly, the fitted model components do not
capture the correct data clustering: instead of overlaying the real clusters in the data, the
Gaussian ellipses are all centered in the same point between the clusters, and consequently
spread also over the spaces between the clusters.

2.2. Prediction

The model fitted with a chosen function from the bgmm package can be used for classification
or clustering to the most probable component. This maximum a posteriori probability (MAP)
prediction of components is implemented by the overloaded function predict(). The first
argument of this function is the fitted model, the second argument is the data.frame with the
observations for which the predictions should be made. The resulting object has two slots,
tij with the posterior probabilities calculated for the observations, and class with the index
of the most probable component.

R> preds <- predict(modelSoft, X = genotypes$X, knowns = genotypes$knowns,
+ B = genotypes$B)
R> str(preds)

List of 4
$ tij.X :num [1:318, 1:3] 1111111111

..— attr(*, "dimnames")=List of 2
..$ : chr [1:318] "qinm n2n n3n nwgn
..$ : NULL

$ tij.knowns : num [1:15, 1:3] 11111

..— attr(*, "dimnames")=List of 2
..$ : chr [1:15] "knownl" "known2" "known3" "known4"
..$ : NULL
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$ class.X : Named int [1:318] 1 111111111

..— attr(*, "names")= chr [1:318] "i" "2m n3n n4n

$ class.knowns: Named int [1:15] 1 11113 3333...

..— attr(*, "names")= chr [1:15] "knownl" "known2" "known3" "known4"

2.3. Parameter initialization

All model-fitting functions in the bgmm package implement an EM algorithm, which needs to
be properly started from an initial set of parameters (except for supervised() where direct
estimation is possible, see Section 2). The package provides two initialization procedures,
both via a function called init.model.params(). The argument method allows to choose
from the following;:

1. With method = "knowns" the initialization is based only on the labeled observations,
i.e., observations with certain or probable components assigned. The initial model
parameters for each component are estimated in one step from those observations which
are assigned to this component, as described for the fully supervised model estimation
in Section 1.3.

2. With method = "all" (default) the initialization is based on all observations. In this
case, to obtain the initial set of model components, we start by clustering the data using
10 iterations of the k-means algorithm (Venables and Ripley 2002). For one dimensional
data the clusters are identified by dividing the data into intervals of equal sizes. Each
resulting cluster corresponds to one initial model component. For the partially and
semi-supervised methods, this correspondence rises a technical problem: the cluster
corresponding to component y should be as close as possible to the set of observations
labeled y € V. Note that for the unsupervised modeling this problem is irrelevant and
any cluster may be used to initialize any component.

To label the clusters with model components, we use a greedy heuristic. The heuris-
tic calculates weighted distances between all possible pairs (Cluster;, Label;), where
‘Cluster;” denotes a mean value of observations in cluster ¢ while ‘Label;’ denotes a
mean value of observations with the known label ;. In each step, the pair with a mini-
mal distance is chosen (in case of ties, one pair is chosen at random). For the pair with
smallest distance, the observations from cluster i are labeled with the label j. Next, the
cluster ¢ is removed from the set of considered clusters and label j is removed from the
set of labels. These steps are repeated until the set of labels is empty. Finally, having
all clusters labeled, we provide this labeling to the fully supervised estimation of the
initial model.

In the example below the initial values for model parameters are initialized based on labeled
observations only. It is assumed that for every component at least one labeled observation is
specified:

R> initial.params <- init.model.params(X = genotypes$X,
+ knowns = genotypes$knowns, class = genotypes$labels, method = "knowns")
R> str(initial.params)

15
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List of 3
$ pi : num [1:3] 0.333 0.333 0.333
$ mu : num [1:3, 1:2] 0.84 0.206 0.811 0.278 0.626 ...
$ cvar: num [1:3, 1:2, 1:2] 0.00464 0.00055 0.00412 0.00279 0.00191

The obtained initial model parameters can be explicitly specified in all model-fitting functions,
except for the supervised() function, using an argument called init.parauns, e.g:

R> model <- soft(X = genotypes$X, knowns = genotypes$knowns,
+ P = genotypes$B, init.params = initial.params)

Without this argument specified, by default the functions themselves run the initialization
based on all observations (i.e., with method = "all").

3. Choosing the model structure and number of components

Depending on the nature of a given mixture modeling problem, two cases are possible: the
number of components and the model structure may either be (i) easy or (ii) impossible to
determine a priori. In the second case, model selection criteria should be used to identify the
best fitted model from a set of models with different structures or component numbers. We
show that both these cases are supported by the bgmm package. Section 2 illustrates the first
case, giving straightforward instructions of fitting mixture models with a user-defined number
of components or constraints on the model structure. To illustrate the second case, in the
following we introduce the principles of model selection in the bgmm package (Section 3.2).
We exemplify on simulated data (Section 3.1) how to use the package to select the model that
under a specified criterion is optimal from a set of models varying over a range of component
numbers or a set of model structures (Sections 3.3-3.5).

3.1. Simulated dataset

The simulateData() function in the bgmm package simulates data from a given model with
a specified structure. Simulated datasets are useful for the investigation of properties of
different modeling methods. If the “true model” used to generate the dataset is known, the
performance of the modeling methods is easy to evaluate and compare.

The simulateData() function takes the following arguments specifying the observations to
be generated:

e An argument d sets the dimension of the data,
e An argument n sets the total number of observations, both labeled and unlabeled,
e An argument k sets the number of the model components,

¢ An argument mu sets a matrix with k rows and d columns, which defines the means’ vec-
tors for the corresponding model components. If not specified, its content is generated
from a normal distribution p; = (i1, .o, pia)s pij ~ N0, 7%), i=1,...k, j=1,...d,
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e An argument cvar sets a three-dimensional array with the dimensions (k, d, d). If not
specified, for each mixture component ¢, its covariance matrix is generated in three
steps:

1. Generate 2*d realizations of a d-dimensional normal distribution k; j ~ N(0, Iz).

2. Calculate a (d x d) covariance matrix K, K; for these realizations, where K; =
(ki kiag) T

3. Scale the resulting sample covariance matrix by a factor generated from an expo-
nential distribution 7; ~ Exp(1), i.e., ¥; = K, K;.

e Arguments mean, within, between, cov set constraints of the model structure. By
default, all are equal to "D". If other values are set, the parameters mu and cvar are
adjusted to match the constraints,

e An argument s.pi sets a vector of k probabilities, which specify a multinomial distribu-
tion over the components, from which the observations are generated. By default this
distribution is uniform.

In addition, the simulateData() function calculates also a beliefs matrix (which can be used
also as the matrix of plausibilities) for a specified number of observations. The beliefs are
calculated based on the true components from which the observations were generated, and on
the following function arguments:

e An argument m sets the number of the observations, for which the beliefs are to be
calculated,

e An argument n.labels sets the number of components used as labels, defining the
number of columns in the resulting beliefs matrix. By default n.labels equals k, but
the user can specify a smaller number. For example, using this argument the user can
define a scenario in which the data are generated from a mixture of three components,
but only two of them are used as labels in the beliefs matrix (applied below),

e An argument b.min sets the belief that an observation does not belong to a component.
Formally, the belief b;; for the observation i to belong to component j is equal b.min if
1 is not generated from component j. Thus, the belief that ¢ belongs to its true compo-
nent is set to 1 - b.min * (n.labels - 1), and b.min is constrained that b.min <
1/n.labels. By default b.min = 0.02.

In the example below, a dataset with k = 3 components is generated, the model parameters
mu and cvar are chosen randomly, yet are given constraints that within each component the
variances are all equal and the covariances are 0. The resulting dataset is presented in Figure 4
(left panel). A beliefs matrix is generated for a set of m = 60 observations, with the columns
corresponding to the first n.labels = 2 components:

R> set.seed(1313)

R> simulated <- simulateData(d = 2, k = 3, n = 300, m = 60, cov = "O",
+ within = "E", n.labels = 2)

R> str(simulated)

17
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Figure 4: The left plot presents the simulated dataset, which was generated from a mixture
of three Gaussians. The right plot presents a two-component model fitted to this dataset.
The axes correspond to the two dimensions of the data. In the simulated dataset the column
names (corresponding to the dimensions of the data) are "Col 1" and "Col 2" respectively.
These names are presented as axes labels. Colored symbols stand for the component labels of
the observations, for which the beliefs were generated in the simulated dataset. Black dots,
which visibly group into three clusters, represent the remaining observations in the dataset.
One of the fitted Gaussian components (the red ellipse) covers two true clusters in the data.
Only one of those two clusters was generated from a component that was used as a label.

List of 5
$ X : num [1:240, 1:2] 3.42 0.37 4.28 3.89 4.27 ...
..— attr(x, "dimnames")=List of 2
..$ : NULL

..$ : chr [1:2] "Col 1" "Col 2"

$ knowns : num [1:60, 1:2] 0.2953 6.1983 -0.0476 3.4602 0.9769 ...
..— attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "Col 1" "Col 2"

$ B : num [1:60, 1:2] 0.98 0.02 0.98 0.02 0.98 0.98 0.02 ...
$ model.params:List of 7

..$ pi : num [1:3] 0.333 0.333 0.333

..$mu : num [1:3, 1:2] -0.918 4.665 2.588 5.478 -8.147 ...
..$ cvar: num [1:3, 1:2, 1:2] 1.572 2.165 0.219 0 O ...
..$m : num 60

..$n : num 300

..$k : num 3

..$d : num 2

$ Ytrue

:int [1:300] 1212112212 ...
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The result is an object of a class simulated, and contains the $X, $knowns and $B slots,
which are the same as for objects of the mModel class, the slot $model.params, which holds
the values of the above described arguments that define the simulated data, and, finally, the
$Ytrue slot, which is a vector specifying the true components from which the observations
in $X were generated. Any model-fitting function in the bgmm package (Section 1.1) can be
applied to model a dataset obtained from the simulateData() function. Here, we apply the
belief () function:

R> model <- belief(X = simulated$X, knowns = simulated$knowns,
+ B = simulated$B)
R> plot (model)

By default, belief () assumes that the number of model components equals the number of
columns in the beliefs matrix specified by the argument B, which in this case is wrong (here,
the number of components is equal to three while the number of columns in the belief matrix is
equal to two). Consequently, the fitted model presented using the plot () function in Figure 4
(right panel), illustrates the mistake which is made when fitting only a two-component model
to a dataset generated from a mixture of three Gaussians. Knowing the correct number of
model components a priori, we could avoid this mistake by setting the argument k = 3 in
the belief () function. Otherwise, we can apply the model selection criteria in the bgmm
package, which we present in application to the simulated dataset in the following sections.

3.2. Model selection criteria

For model comparison and selection, the bgmm package uses a broad class of generalized
information criteria (GIC; Konishi and Kitagawa 1996). The criteria are based on a penalized
likelihood and evaluate the goodness of fit of the model to the data. They allow for comparison
of different models taking into the account their number of degrees of freedom. Recall from
Section 2.1 and Table 1 that the number of degrees of freedom depends on the number of
model components, data dimension and model structure. In its general form, the formula for
the GIC scores reads:

GIC(®) = —=21(X,®) + p|®|, (6)

where [(X ™, ®) is the likelihood of the model defined by the set of model parameters @, given
the data X'~, while |®| stands for the number of degrees of freedom of the model and p is
called the penalty parameter of the GIC score. In our application, X'~ is the set of unlabeled
observations, which allows for a comparison of the models fitted by unsupervised modeling
with models fitted by the semi- or partially supervised methods, putting the belief of plausi-
bility distributions aside. We are aware that in some applications it might be advantageous
to use all observations rather than only unlabeled observations in the calculation of the GIC
coefficient. Thus in our functions related to GIC usage of all observations can be forced by
setting parameter whichobs = "all".

The lower the GIC score, the better the model. Note that for p = 2, the GIC score is
equivalent to the Akaike’s information criterion (AIC; Akaike 1974). For p = In(n — m) it
is equivalent to the Bayesian Information Criterion (BIC; Schwarz 1978; used in the mclust
package), where n—m is the number of observations in X' ~. Thus, leaving p as a parameter in
the GIC formula allows the user to freely choose between applying the popular AIC, BIC, or
any own or existing criteria like AIC3, AICc, AICu, CAIC, CLC, ICL-BIC, AWE (see Fonseca
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2008 for list of popular criteria and references). In our simulations, models selected with BIC
meet our expectations most frequently. Refer to Steele and Raftery (2009) for a discussion
about the performance of different model selection criteria in the context of Gaussian mixture
models.

The GIC scores computed using the bgmm package can be applied to select the model which
fits best to a given dataset from a list of models with different structures or component
numbers.

A generic function mModelList () in the package fits a collection of models with a given list
of structures and component numbers. The following function arguments can be specified:

e An argument funct points to a function which will be used for model-fitting. By default
is set to belief, other possible settings are semisupervised, soft and unsupervised,

e Arguments X, knowns, B, P, class, init.params are passed to the function specified
by funct. Refer to Section 1.1 for the basic input arguments for each model-fitting
function,

e An argument kList points to a list or a vector of component numbers for the fitted
models, specifying the numbers of components to consider (exemplified in Section 3.4),

e Arguments mean, between, within, cov together define a list of model structures for
the fitted models. By default the value of all these arguments is c("D", "E"), except
for cov, which by default is set to c("D", "0"). Thus, the value of each argument
specifies whether in the fitted models the corresponding constraint should be set (e.g.,
for mean = "E"), or not (mean = "D"), or both (mean = c("D", "E")). The function
mModelList () fits a list of models with all combinations of those constraint settings.
By default, models with all sixteen possible structures are fitted.

While mModelList () can run any model-fitting variant given by funct, in the bgmm package
specialized functions for each particular modeling variant are also available: beliefList ()
fits a list of models using the belief-based method, whereas softList(), semilist() and
unsupervisedList () use the soft-label, semi-supervised and unsupervised methods, respec-
tively. In other words, beliefList () is the function mModelList () with the argument funct
= belief, etc.

The mModelList () function and its specialized versions return an object of the class mModelList,
with the following slots:

e An element $models refers to a list of the fitted models, each of the class mModel,

e An element $loglikelihoods refers to a vector with log likelihoods estimated for each
of the $models,

e An element $params refers to a vector with the numbers of parameters calculated for
each of the $models,

e An element $names refers to a vector with names for the $models. Each name defines
the number of components and the structure of the model, coded by a four-letter string
as described in Table 1.
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On an object of the class mModelList the following functions can be applied:

e A function plot () plots all models from the list of models in the slot $models,

e A function plotGIC() draws a chart presenting the GIC scores for the list of models.
Takes an argument penalty, which specifies the penalty parameter in the GIC formula.
By default penalty = 2, which corresponds to the AIC score. Both numeric values
and criteria names are allowed settings of the penalty parameter. Valid criteria names
are penalty = "AIC", "AIC3", "AIC4", "AICc", "AICu", "CAIC", "BIC", "MDL", "CLC",
"ICL-BIC", "AWE".

e A function chooseModels() returns a subset of models, specified by two arguments:
a vector kList with model component numbers, and a vector struct with four-letter
strings describing the model structures (see Table 1),

e A function chooseOptimal() returns the model with the lowest GIC score. Takes an
argument penalty, which specifies the penalty parameter in the GIC formula. By
default penalty = 2, which corresponds to the AIC score.

3.3. Selecting the model structure

First, we illustrate model structure selection applying the generic mModelList () function
(Section 3.2) to the example simulated dataset (Section 3.1). We fit a list of models with
fixed three components and all possible structures using the belief-based method:

R> modelsl <- mModelList (X = simulated$X, knowns = simulated$knowns,
+ B = simulated$B, kList = 3, mean = c("D", "E"), between = c("D", "E"),
+ within = c¢("D", "E"), cov = c("D", "0"), funct = belief)

Two functions may be used to visualize the resulting list of fitted models. The overloaded
function plot () visualizes the components of all models (see Figure 5):

R> plot(models1)

The function plotGIC() plots the GIC scores with a specified penalty (by default equal 2)
for each fitted model on a dotchart (see Figure 6):

R> plotGIC(modelsl, penalty = "BIC")

Here, a penalty equal In(240) = 5.5 is used, which corresponds to applying the BIC scores
to the 240 unlabeled observations in the simulated dataset. Out of the set of models with
all possible structures, the BIC score is distinctively the lowest for the correct model with
each component having equal variances and covariances forced to 0 and other parameters
unconstrained.

To select the object corresponding to the best-fitting model with respect to BIC, the
chooseOptimal () function can be applied:

R> bestModel <- chooseOptimal(modelsl, penalty = "BIC")
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Figure 5: Models with three components and all possible model structures fitted to the
simulated dataset. The plot axes correspond to the two dimensions of the data. Colored
symbols stand for the component labels of the observations, for which the beliefs were gener-
ated in the simulated dataset. Black dots, which visibly group into three clusters, represent
the remaining observations in the dataset. The titles state the component number and the
structure of each model. The structures are coded by four-letter strings, stating, from left
to right, the mean, between, within and cov constraints as described in Table 1. With the
constraint mean = "E" (plots in the third and fourth row) the different Gaussian components
have the same mean point. With between = "E" (second and fourth row) the components
have identical covariance matrices, which implies that they have the same shape. With within
= "E" (third and fourth column) each component has variances and covariances equal to some
constant, thus the width of each corresponding eclipse is equal to its height. Finally, with the
constraint cov = "0" (second and fourth column), each Gaussian component has all covari-
ances equal to 0, thus the semimajor and semiminor eclipse’s axes are parallel to the plot axes.
Thus, with both within = "E" and cov = "0", the Gaussians are circular (last column).
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Figure 6: The GIC scores (z-axis) plotted by the plotGIC() function for a set of models
of the simulated dataset. The models have three components and all possible structures
(listed in the y-axis). The structures are coded by four-letter strings, stating, from left to
right, the mean, between, within and cov constraints, as described in Table 1. The penalty
parameter is set to the BIC scores. The optimal score is assigned to a model with the structure
"DDEO" (marked by a star), which is the correct model from which the simulated dataset
was generated.

The model may be validated with the k-fold cross-validation method implemented in the
crossval() function. In the presented example dataset is randomly divided into 60 folds.
Proportions between labeled and unlabeled observations are kept for each fold. For each fold
model parameters are refitted base on observations from remaining folds. Fitted model is
applied to the fold and posteriors for observations from the fold are calculated. The error for
given fold is calculated as mean absolute difference between posteriors and beliefs for labeled

cases from this fold. In this examples slot $errors contains 60 values with errors calculated
for 60 folds.

R> amodel = belief(X = simulated$X, knowns = simulated$knowns,
+ B = simulated$B, k = 4)
R> summary(crossval (model = amodel, folds = 60)$errors)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01000 0.01000 0.01000 0.04583 0.01000 0.42950

3.4. Selecting the number of model components

Another application of the GIC scores (see Equation 6) in the bgmm package is evaluation
and comparison of models with different component numbers. In the case of unsupervised and
semi-supervised modeling, the application of the GIC scores is straightforward. In the case of
belief-based and soft-label modeling, a technical problem of scaling beliefs and plausibilities
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Figure 7: Models with a range of component numbers from two to seven and a fixed structure,
fitted to the simulated dataset. Plot designation as in Figure 5. The true number of com-
ponents is three. In the model with only two components (top left panel) one fitted Gaussian
corresponds to two true components. In the models with more than three components, there
are extra, overlapping fitted Gaussians for one true component.

between the models with different numbers of components arises. For example, in the dataset
genotypes, the beliefs are defined for three components. Thus if one wants to fit a model
with four components the beliefs distribution needs to be scaled. The user can specify beliefs
for four components explicitly by providing a belief matrix. However, in an automated model
selection a default procedure of scaling the original beliefs matrix to a higher number of
components is required. The one implemented in the bgmm package is to set the belief values
for the extra components to 0. This corresponds to the trivial fact that in the original labeling
the observations are not believed to belong to the extra components, and neither the set of
labeled observations nor the beliefs about them should change with the scaling. Scaling of
plausibilities proceeds in the same way.

Note that quite another problem is to scale given beliefs or plausibilities to a smaller number
of components. In the bgmm package it is not supported in the automated scaling, but still
the user can provide their own beliefs/plausibilities matrix for a lower number of components.

In the following example, we apply the beliefList() function to fit a list of models to the
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Figure 8: The GIC scores computed for models with a range of component numbers from
two to seven, and with a fixed structure, fitted to the simulated dataset (the models are
visualized in Figure 7). Plot designation as in Figure 6. The GIC scores with the penalty 5.5
(equivalent to the BIC scores) are the lowest for the model with the correct number of three
components (marked by a star).

simulated dataset (Section 3.1). The models have the number of components ranging from
two to seven, and their structure is fixed to the correct structure from which the dataset was
generated. The minimum number of components that can be fitted is defined by the number
of columns in the original beliefs matrix, which in the simulated$B matrix is equal two. For
the models with higher component numbers the beliefs matrix is scaled automatically.

R> models2 <- beliefList(X = simulated$X, knowns = simulated$knowns,
+ B = simulated$B, kList = 2:7, mean = "D'", between = '"D",

+ within = "E", cov = "0")

R> plot(models2)

R> plotGIC(models2, penalty = "BIC")

The data in the simulated dataset is generated from a three-component model, and therefore
groups into three clusters. Visualization of the fitted model components with the plot ()
function (Figure 7) shows that for the number of components smaller than the correct number,
the fitted Gaussians may embrace more than one true cluster in one component (visualized
already in Figure 3). On the contrary, for higher component numbers, extra components may
be fitted to one true cluster.

Figure 8 shows that the BIC scores plotted with the plotGIC() function favor the model with
the correct component number (equal three) over the models with an insufficient or excessive
number of components.

3.5. Selecting both the model structure and the number of components

Finally, we show how to use the bgmm package to iterate over models with both a given list
of possible model structures and a given range of component numbers. Here, an example
call of the beliefList () function fits a list of models with the component numbers ranging
from two to seven, and all possible model structures restricted only not to have equal means
(together 6 x 8 = 48 models, a combination of six possible component numbers and eight
model structures):
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R> models3 <- beliefList(X = simulated$X, knowns = simulated$knowns,
+ B = simulated$B, kList = 2:7, mean = "D")

The plotGIC() function with the plot.it=FALSE argument allows to see the GIC scores for
each model visualised in a table with columns corresponding to the fitted component numbers
and rows corresponding to the fitted structures. The structures are coded with four-letter
strings, stating, from left to right, the mean, between, within and cov constraints as described
in Table 1:

R> plotGIC(models3, penalty = "BIC", plot.it = FALSE)

k=2 k=3 k=4 k=5 k=6 k=7
structure=DDDD 2071.408 1926.469 1937.027 1960.299 1988.562 2018.308
structure=DDD0 2111.656 1908.782 1930.103 1953.502 1975.321 1992.256
structure=DDED 2132.403 1910.837 1931.207 1957.607 1979.959 1996.528
structure=DDEO 2155.221 1893.123 1910.766 1928.549 1944.893 1955.601
structure=DEDD 2097.053 2035.156 2034.276 2033.243 2032.296 2036.758
structure=DEDO 2124.772 2029.511 2028.761 2027.241 2029.938 2035.450
structure=DEED 2135.221 2029.017 2031.810 2035.389 2037.301 2031.719
structure=DEEO 2157.661 2023.406 2025.587 2028.336 2032.454 2030.202

To access a subset of twelve out of the 48 fitted models for visualization and evaluation, we
apply the chooseModels() function:

R> models4 <- chooseModels (models3, kList = 2:5,
+ struct = c("DDDD", "DDED", "DDEO"))

R> plot(models4)

R> plotGIC(models4, penalty = "BIC")

The output of the plot() function in Figure 9 visualizes the chosen models. The three
models with the structures "DDDD", "DDED", and "DDEO", and with the correct number of
three components (second row of Figure 9) seem to better capture the true clusters in the
simulated dataset than models with less or more components. Still, only by the visual
inspection it is hard to tell which of those models fits best to the dataset. Here, the BIC
scores prove very useful in correctly identifying the best-fitting model (see output of the
plotGIC() function in Figure 10).

3.6. Summary and discussion

The bgmm package offers mixture modeling variants spreading the entire range from unsuper-
vised to supervised modeling. To our knowledge, although the most general and applicable in
many real-life problems, partially supervised modeling was until now not supported by any
open-access software. bgmm is also the only R package, which implements semi-supervised
modeling. The availability of all variants allows for a comparison analysis between estimates
obtained with different models. For such tests, the package offers simulation of data from the
user-defined model parameters. Fitted models of up to two-dimensional data can be visualized
on plots.
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Figure 9: Models with a range of component numbers from two to five, and with one of the
"DDDD", "DDED", and "DDEO" structures, fitted to the simulated dataset. Plot designation as
in Figure 5. The true number of components is three, and the true structure is "DDEQ".
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Figure 10: The GIC scores computed for models with a range of component numbers from two
to five, and with one of the "DDDD", "DDED", and "DDEO" structures, fitted to the simulated
dataset (the models are visualized in Figure 9). Plot designation as in Figure 6. The BIC
scores are the lowest for the model with the correct number of three components and the
correct structure "DDEO" (marked by a star).

Apart from the basic model-fitting functionality, bgmm allows for specifying constraints on the
model structure, which can significantly reduce the number of fitted parameters. Goodness-
of-fit of the models is evaluated using the GIC scores. The scores serve as model selection
criteria in cases, when the structure or the number of model components is not known a priori.
To this end, bgmm fits a set of models with different structures or component numbers, and
selects the model which according to GIC fits best to the data. Finally, the model of choice
can be applied to predict classes or clusters of a given set of observations.

Importantly, the implementation of the presented functionality was designed for maximal
flexibility. Multiple input settings are possible for the model-fitting functions. bgmm provides
a generic function for fitting a range of models with different component numbers or structures,
using modeling variants of choice. The universal interface of bgmm is fully described in the
package manual.

Come et al. (2009) show on benchmark datasets that the partially supervised modeling imple-
mented by the soft-label method is advantageous over unsupervised approaches. Our previous
publication (Szczurek et al. 2010) proves both the belief-based and soft-label methods are
successful in application to differential gene expression analysis. The bgmm package offers
a practical support for Gaussian mixture modeling of one-dimensional expression data. The
standard data are ratios of expression measurements in an experiment comparing some treat-
ment with a control. This functionality of the bgmm, not covered here, provides calculation
of differential expression probabilities for the genes measured under a given experiment. We
hope that in the future more methodological advances can be made on the basis of partially
supervised mixture modeling implemented in bgmm.

In summary, bgmm is practically the only tool applicable for partially labeled data, and proves
to be a convenient, flexible software for mixture modeling.
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