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Abstract. Localization via Radio Frequency Identification
(RFID) is frequently used in different applications nowadays.
It has the advantage that next to its ostensible purpose of
identifying objects via their unique IDs it can simultaneously
be used for the localization of these objects. In this work it is
shown how Received Signal Strength Indicator (RSSI) mea-
surements at different antennae of a passive UHF RFID label
can be combined for localization. The localization is only
done based on the RSSI measurements and a Kalman Filter
(KF). Because of non-linearities in the measurement func-
tion it is necessary to incorporate an Extended Kalman Filter
(EKF) or an Unscented Kalman Filter (UKF) where simula-
tions have shown that the UKF performs better than the EKF.
Additionally to the selection of the filter there are different
possibilities to increase the localization accuracy of the UKF:
The advantages of using Reference Tags (RT) or more than
one tag per trolley (relative positioning) in combination with
an Unscented Kalman Filter are discussed and simulations
results show that the localization error can be decreased sig-
nificantly via these methods. Another possibility to increase
the localization accuracy and in addition to achieve a more
realistic simulation is the consideration of the angle between
reader antenna and tag. Simulation results with the incor-
poration of different numbers of fixed antennae lead to the
conclusion that this is a useful surplus in the localization.

1 Introduction

Radio Frequency Identification (RFID)Finkenzeller(2008)
has become very popular in the last decades. Especially in
the field of logistics many different use cases can be found
for the identification as well as tracking of objects and goods
Raza et al.(1999). A surplus of RFID is the possibility to
gain knowledge about the object’s identity as well as its po-
sition.

In this paper different approaches for the localization of a
passive UHF RFID label (LT) with different types of Kalman
Filters are shown. Next to the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF) additional informa-
tion like relative positioning and the usage of Reference Tags
(RTs) is used to improve the localization result.

A use case for the such a localization via RFID is the lo-
calization of trolleys coming inside and moving outside of a
mail distribution center of Deutsche Post AG. With the help
of the localization process a database can always track which
trolley has been where at which point of time. This allows
for missing trolleys to be found easier because possible ac-
tual locations are constrained. The problem of the localiza-
tion of the trolleys though is that there is not only one trolley
coming into the mail distribution center or leaving it, but that
there are in most cases also trolleys parked on the side of the
gates whose tags send their ID back. Those trolleys should
not be detected as coming in or leaving because they are sta-
tionary. Figure1 shows such a scenario where a trolley is just
about ready to be moved out of the mail distribution center
through the left gate and passing through the RFID localiza-
tion area while many other trolleys are standing on both sides
of that gate. In the front part of the picture it can be seen that
there is also a trolley which is passing by the RFID area in-
side the mail distribution center. It is important to be able to
distinguish between these trolleys and the ones coming in or
going out because in the database the status of the trolleys
remaining inside the mail distribution center is not changed.
Through the usage of this RFID-based localization the num-
ber of missing trolleys should be reduced and therefore the
necessity to replace them. Because there are about 80 mail
distribution centers nationwide with about 30 gates each the
hardware should be as inexpensive as possible.

Compared to existing localization techniques for RFID la-
bels like “LANDMARC” Ni et al. (2004) or its expansion to
work with passive tags and in 3-DKhan and Antiwal(2009)
this paper’s approach is aimed to achieve higher localization
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Fig. 1. Test environment for RFID based trolley tracking

work with passive tags and in 3D Khan and Antiwal (2009)70

this paper’s approach is aimed to achieve higher localiza-
tion accuracy. This aim should be reached with off-the-shelf
hardware components for labels, reader and antennae. That
is why a Kalman Filter is chosen which has proven to be
well working for such an application Lee et al. (2010). The75

parameter which is available from almost all RFID readers is
the Received Signal Strength Indicator (RSSI). But previous
research has shown that RSSI measurements are noisy due
to multiple effects of the wireless transmission (like multi-
path propagation caused by reflections) Parameswaran et al.80

(2009); Elnahrawy et al. (2004). Therefore the combination
of RSSI measurements with a Kalman Filter and additional
information might lead to a more accurate localization result.

The paper is organized as follows: In Section 2 the math-
ematical basics about the Extended and Unscented Kalman85

Filter are explained. In the next section the approaches of
differential and relative positioning are shown. Another op-
tion is to incorporate the angle between reader antenna and
tag into the localization process which is described in Sec-
tion 4. After that the Matlab simulation is explained and its90

results are given in Section 5. The paper closes by giving a
conclusion and an outlook on future work in Section 6.

2 Extended and Unscented Kalman Filter

In general a Kalman Filter uses a prediction and an update
step to eliminate errors. Because of its structure only the re-95

sult of the last step and a new measurement are needed to
determine a function that describes how the old result is con-
nected to the new one and how the measurement is connected
with the prediction result. For a more detailed explanation of
Kalman Filters see Thrun et al. (2006).100

2.1 Extended Kalman Filter

The Extended Kalman Filter uses partial derivatives to be
able to cope with non-linearities in the process or measure-
ment function. Therefore it is necessary to calculate the Jaco-
bian Matrices. The input into the filter is a Gaussian position105

estimate of the previous time step t−1 with mean µt−1 and
its covariance Pt−1 as well as the control ut and the mea-
surement zt for updating the position.

In a first step a prediction of the new mean µ̄t is given by

µ̄t = g(ut,µt−1), (1)

where g() represents the relation between the control of the
present time step and the mean of the previous time step.110

Next is the calculation of a prediction of the new covari-
ance P̄t

P̄t = GtPt−1GT
t +R (2)

where Gt is the Jacobian matrix of the control function and
R is the covariance matrix of the process noise.

With the help of this new covariance the Kalman Gain Kt

can be calculated as

Kt = P̄tHT
t (HtP̄tHT

t +Q)−1 (3)

with Ht being the Jacobian matrix of the measurement func-
tion and Q being the covariance matrix of the measurement
noise.115

Now the new values for the mean µt and covariance Pt are
computed as

µt = µ̄t +Kt(zt−h(µ̄t)) (4)

and
Pt = (I−KtHt)P̄t, (5)

where h() is the measurement prediction function. xt and Pt

are the outputs of the Extended Kalman Filter.

2.2 Unscented Kalman Filter

The Unscented Kalman Filter Wan and Merwe (2000) can
also handle non-linearities in the filtering process. This is120

done trough stochastic linearization. So-called Sigma Points
are used which are located at the mean and symmetrically
along the axis of the covariance with two points for each
dimension n leading to an overall number of 2n+1 Sigma
Points.125

The input into the Unscented Kalman Filter is as well as
for the Extended Kalman Filter a Gaussian position estimate
of the previous time step t−1 with mean µt−1 and covariance
Pt−1. Its first step is to calculate the Sigma Points of the
previous step as

χt−1 = (µt−1 µt−1 +γ
√

Pt−1 µt−1−γ
√

Pt−1), (6)

where γ =
√
n+δ and δ = α2(n+κ)−n with α and κ as

scaling parameters and n as the dimension of the state space.

Fig. 1. Test environment for RFID based trolley tracking.

accuracy. This aim should be reached with off-the-shelf
hardware components for labels, reader and antennae. That
is why a Kalman Filter is chosen which has proven to be
well working for such an applicationLee et al.(2010). The
parameter which is available from almost all RFID readers is
the Received Signal Strength Indicator (RSSI). But previous
research has shown that RSSI measurements are noisy due
to multiple effects of the wireless transmission (like multi-
path propagation caused by reflections)Parameswaran et al.
(2009); Elnahrawy et al.(2004). Therefore the combination
of RSSI measurements with a Kalman Filter and additional
information might lead to a more accurate localization result.

The paper is organized as follows: In Sec.2 the mathemat-
ical basics about the Extended and Unscented Kalman Filter
are explained. In the next section the approaches of differen-
tial and relative positioning are shown. Another option is to
incorporate the angle between reader antenna and tag into the
localization process which is described in Sect.4. After that
the Matlab simulation is explained and its results are given
in Sect.5. The paper closes by giving a conclusion and an
outlook on future work in Sect.6.
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determine a function that describes how the old result is con-
nected to the new one and how the measurement is connected
with the prediction result. For a more detailed explanation of
Kalman Filters seeThrun et al.(2006).

2.1 Extended Kalman Filter

The Extended Kalman Filter uses partial derivatives to be
able to cope with non-linearities in the process or measure-

ment function. Therefore it is necessary to calculate the Jaco-
bian Matrices. The input into the filter is a Gaussian position
estimate of the previous time stept −1 with meanµt−1 and
its covariancePt−1 as well as the controlut and the measure-
mentzt for updating the position.

In a first step a prediction of the new meanµ̄t is given by

µ̄t = g(ut ,µt−1), (1)

whereg() represents the relation between the control of the
present time step and the mean of the previous time step.

Next is the calculation of a prediction of the new covari-
anceP̄t

P̄t = GtPt−1GT
t +R (2)

whereGt is the Jacobian matrix of the control function and
R is the covariance matrix of the process noise.

With the help of this new covariance the Kalman GainK t

can be calculated as

K t = P̄tHT
t (Ht P̄tHT

t +Q)−1 (3)

with Ht being the Jacobian matrix of the measurement func-
tion andQ being the covariance matrix of the measurement
noise.

Now the new values for the meanµt and covariancePt are
computed as

µt = µ̄t +K t (zt −h(µ̄t )) (4)

and

Pt = (I −K tHt )P̄t , (5)

whereh() is the measurement prediction function.xt andPt

are the outputs of the Extended Kalman Filter.

2.2 Unscented Kalman Filter

The Unscented Kalman FilterWan and Merwe(2000) can
also handle non-linearities in the filtering process. This is
done trough stochastic linearization. So-calledSigma Points
are used which are located at the mean and symmetrically
along the axis of the covariance with two points for each
dimensionn leading to an overall number of 2n+1 Sigma
Points.

The input into the Unscented Kalman Filter is as well as
for the Extended Kalman Filter a Gaussian position estimate
of the previous time stept −1 with meanµt−1 and covari-
ancePt−1. Its first step is to calculate the Sigma Points of the
previous step as

χ t−1 = (µt−1 µt−1+γ
√

Pt−1 µt−1−γ
√

Pt−1), (6)

whereγ =
√

n+δ and δ = α2(n+ κ)−n with α and κ as
scaling parameters andn as the dimension of the state space.
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Next these points are propagated through the control func-
tion g

χ̄∗
t = g(ut ,χ t−1) (7)

and a predicted mean̄µt and covariancēPt are calculated as

µ̄t =

2n∑
i=0

w[i]
m χ̄∗

t
[i] (8)

and

P̄t =

2n∑
i=0

w[i]
c ( χ̄∗

t
[i]

− µ̄t )( χ̄
∗
t

[i]
− µ̄t )

T
+R, (9)

wherewm andwc are the weights according to

w[0]
m =

δ

n+δ

w[0]
c =

δ

n+δ
+(1−α2

+β) and

w[i]
m = w[i]

c =
1

2(n+δ)
for i = 1,...,2n

with β as a scaling parameter andR as the covariance matrix
of the process noise.

With the help ofµ̄t andP̄t new Sigma Points̄χ t are cal-
culated

χ̄ t = (µ̄t µ̄t +γ

√
P̄t µ̄t −γ

√
P̄t ), (10)

which now capture the uncertainty after the prediction step.
For each of these Sigma Points a predicted observation

point is computed through the measurement functionh

Z̄t = h(χ̄ t ). (11)

Now Z̄t is used to calculate the predicted observationẑt

and its uncertaintySt according to

ẑt =

2n∑
i=0

w[i]
m Z̄

[i]

t (12)

and

St =

2n∑
i=0

w[i]
c (Z̄

[i]

t − ẑt )(Z̄
[i]

t − ẑt )
T

+Q, (13)

whereQ is the covariance of the additive measurement noise.
For the calculation of the Kalman GainK t the cross-cova-

rianceP̄
x,z

t between state and observation is needed

P̄
x,z

t =

2n∑
i=0

w[i]
c (χ̄

[i]
t − µ̄t )(Z̄

[i]

t − ẑt )
T , (14)

which leads to

K t = P̄
x,y

t S−1
t . (15)

Now the outputsµt andPt of the Unscented Kalman Filter
can be computed with the help of the measurementzt as

µt = µ̄t +K t (zt − ẑt ) (16)

and

Pt = P̄t −K tStKT
t . (17)

3 Differential and relative positioning

In Nick et al., 2011a,b approaches are shown how to localize
a passive UHF RFID label with an Unscented Kalman Filter
and the help of relative positioning or reference tags, respec-
tively. The basic principles of both methods are given in the
following.

3.1 Relative positioning

For the relative positioning the object is not only equipped
with one (N = 1) UHF RFID tag, but withN > 1 tags that
have a fixed relative position to each other. In most cases it
is sufficient to equip the object withN = 2 tags. This hardly
adds cost to the localization method and achieves the highest
increase in localization accuracy due to the relative position
information between the two labels.

When needed in the measurement functionh (see Eq.11)
of the Unscented Kalman Filter the RSSI value is trans-
formed into a distance. With the help of these distances
di from each reader antenna to each tag the x-, y- and z-
coordinates of the RFID tags can be computed. For the dis-
tancesdi holds:

di =

√
(xi −x)2+(yi −y)2+(zi −z)2, (18)

wherexi , yi andzi are the coordinates of the reader antenna
i (i = 1,..., M, M = number of antennae) andx, y andz are
the coordinates of the label that has to be located.

When the object that should get localized is equipped with
two RFID labels additional information next to the RSSI val-
ues can be used for the localization. The two tags always
have the same relative position to each other (the same con-
stant distance between each other in all three coordinates).
As a second information you know that these two tags need
to be moving with the same velocity. These data can be given
to the measurement functionh of the Kalman Filter and the
measurement vectorzt has to be build accordingly to these
parameters as well

zt =



di1
di2

distx
disty
distz

0
0
0


. (19)
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The first 2·M componentsdi1 anddi2 of the vector are the
distances calculated from the RSSI measurements. The next
three values are the known fixed distances of the two tags
and the last three values are the differences in velocities in
all three directions which should be zero because the tags are
fixed to the same object.

The additional information about the constant distances
and equal velocitites transform the UKF into a Constrained
Unscented Kalman Filter (CUKF)Simon(2010). The type of
CUKF used here is called “Perfect Measurement” because it
augments the measurement vector by components which are
known.

3.2 Differential Positioning with Reference Tags (RTs)

By placing Reference Tags (RTs) with known location in the
area in which another tag shall be located more information
is available for the localization process. The RTs answer to
the reader queries just like every other tag. That way more
RSSI values are collected. This information can be used for
localizing the tagged object.

RSSI values of the RTs and thek nearest neighbor (kNN)
methodDuda et al.(2000) are used to achieve a better local-
ization result. For the unknown tag (LT) all RSSI measure-
mentsti to theM antennae are written in vectort

t = [t1 t2...tM ] . (20)

The RSSI values from theN RTs to allM antennae are
inserted into matrix2

2 =

 211 212 ... 21M

...
...

2N1 2N2 ... 2NM

. (21)

Based on these RSSI values the Euclidean distance be-
tween each RT and the LT can be calculated as

ej =

√√√√ M∑
i=1

(
2ji − ti

)2 (22)

wherej ∈ (1,N) andej is the distance between thej th RT
and the LT. For allN RTs this leads to a vectorewhich con-
tains the distances between the LT and all RTs in descending
order.

Based on the measure of the Euclidean distance thek

nearest neighbors are chosen. The value ofk can be set to
best fit to the problem that is solved with the algorithm in
different application scenarios. In a next step the weights
wi(i = 1,...,k) of thesek nearest neighbors are calculated
according to

wi =
1/e2

i∑k
i=1

(
1/e2

i

) . (23)

This form of computing the weights implies that the nearer a
RT is to the LT the higher its weight is.

If the kNN algorithm would be used for the localization of
the LT its position inx-, y- andz-coordinates could now be
calculated like

(x,y,z) =

k∑
i=1

wi(xRTi
,yRTi

,zRTi
) (24)

like it is done inNi et al. (2004).
However here the kNN method is used as an additional

information for the Unscented Kalman Filter. Therefore the
kNN result will be handled differently here.

Usually the measurement functionh contains the distance
informationdi(i = 1,...,M) from the LT to allM antennae
(from Eq.18) and the matching measurement vectorzt con-
tains the distances based on the measured RSSI values for
the LT. Now with additional information through the RTsh

also containsk-times the actual position estimates in x-, y-
and z-coordinate before incorporating the measurement.

Those position estimates can be said to be equal to the
positions of the RTs plus additive noise which is comprised
in the covariance matrix of the measurement noiseQ. The
inverse of the weights calculated in Eq. (23) are used here.
This form of choosing the noise for the lower part of the ma-
trix leads to a higher noise when the weight is smaller which
is due to the fact that the RT is further away from the LT.

To fit to the measurement functionh the measurement vec-
tor zt consists of two parts as well. The first part of the vector
comprises the distance measurementsdi(i ∈ (1,M)) based
on the RSSI values from the LT to allM antennae. The rest
of the vector contains the x-, y- and z-coordinates of those
RTs which are thek nearest to the LT.

4 Angle-dependent RSSI measurements

As described inNick et al.(2011c) the angle between reader
antenna and tag has an influence on the measured RSSI value.
Therefore it is useful to take this angle into consideration
when localizing an object which is equipped with an RFID
label.

Based on the RSSI measurement in the directivity of the
antenna a distanceD between antenna and tag can be calcu-
lated. With this distanceD, the position of the antennaO
and the directivity a circle can be set up as can be seen in
Fig. 2. On every point of this circle with radiusr = D/2 the
same RSSI value is measured. Based on the radiusri of ev-
ery of those circles for each antenna the localization can be
done via the UKF.

The description via circles is only possible in this case be-
cause it reflects the antenna’s properties. If an antenna with
a differently formed beam is used it is necessary to employ
another geometric form. For example it might be suitable
for some antennae to use an ellipse instead of the circle to
describe the points where the same RSSI value is measured.

The measurement functionh of the Unscented Kalman Fil-
ter only contains the distance measurements in this case. But
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Unscented Kalman Filter (CUKF) Simon (2010). The type of
CUKF used here is called “Perfect Measurement” because it
augments the measurement vector by components which are
known.160

3.2 Differential Positioning with Reference Tags (RTs)

By placing Reference Tags (RTs) with known location in the
area in which another tag shall be located more information
is available for the localization process. The RTs answer to
the reader queries just like every other tag. That way more165

RSSI values are collected. This information can be used for
localizing the tagged object.

RSSI values of the RTs and the k nearest neighbor (kNN)
method Duda et al. (2000) are used to achieve a better local-
ization result. For the unknown tag (LT) all RSSI measure-
ments ti to the M antennae are written in vector t

t = [t1 t2 ...tM ]. (20)

The RSSI values from the N RTs to all M antennae are
inserted into matrix Θ

Θ =

 Θ11 Θ12 ... Θ1M

...
...

ΘN1 ΘN2 ... ΘNM

. (21)

Based on these RSSI values the Euclidean distance be-
tween each RT and the LT can be calculated as

ej =

√√√√ M∑
i=1

(Θji− ti)2 (22)

where j ∈ (1,N) and ej is the distance between the jth RT
and the LT. For all N RTs this leads to a vector e which con-
tains the distances between the LT and all RTs in descending170

order.
Based on the measure of the Euclidean distance the k

nearest neighbors are chosen. The value of k can be set to
best fit to the problem that is solved with the algorithm in
different application scenarios. In a next step the weights
wi(i= 1,...,k) of these k nearest neighbors are calculated
according to

wi =
1/e2i∑k

i=1(1/e2i )
. (23)

This form of computing the weights implies that the nearer a
RT is to the LT the higher its weight is.

If the kNN algorithm would be used for the localization of
the LT its position in x-, y- and z-coordinates could now be
calculated like

(x,y,z) =

k∑
i=1

wi(xRTi
,yRTi

,zRTi
) (24)

like it is done in Ni et al. (2004).

However here the kNN method is used as an additional175

information for the Unscented Kalman Filter. Therefore the
kNN result will be handled differently here.

Usually the measurement function h contains the distance
information di(i= 1,...,M) from the LT to all M antennae
(from Eq. (18)) and the matching measurement vector zt con-180

tains the distances based on the measured RSSI values for the
LT. Now with additional information through the RTs h also
contains k-times the actual position estimates in x-, y- and
z-coordinate before incorporating the measurement.

Those position estimates can be said to be equal to the185

positions of the RTs plus additive noise which is comprised
in the covariance matrix of the measurement noise Q. The
inverse of the weights calculated in Eq. (23) are used here.
This form of choosing the noise for the lower part of the ma-
trix leads to a higher noise when the weight is smaller which190

is due to the fact that the RT is further away from the LT.
To fit to the measurement function h the measurement vec-

tor zt consists of two parts as well. The first part of the vector
comprises the distance measurements di(i ∈ (1,M)) based
on the RSSI values from the LT to all M antennae. The rest195

of the vector contains the x-, y- and z-coordinates of those
RTs which are the k nearest to the LT.

4 Angle-Dependent RSSI Measurements

As described in Nick et al. (2011c) the angle between reader
antenna and tag has an influence on the measured RSSI value.200

Therefore it is useful to take this angle into consideration
when localizing an object which is equipped with an RFID
label.

Based on the RSSI measurement in the directivity of the
antenna a distance D between antenna and tag can be calcu-205

lated. With this distance D, the position of the antenna O
and the directivity a circle can be set up as can be seen in
Figure 2. On every point of this circle with radius r=D/2
the same RSSI value is measured. Based on the radius ri of
every of those circles for each antenna the localization can210

be done via the UKF.

Fig. 2. Method with circleFig. 2. Method with circle.

compared to the relative or differential methods, in this case
the distance is not calculated between reader antenna and tag.
For the angle-dependent approach the distance between the
center of the circle and the tag is calculated based on the
computed radiiri from all i = 1,...,M antennae used.

5 Simulations

The simulation tool of the 3D localization of passive UHF
RFID labels is written in Matlab. The considered space is
5m×5m×5m in which the antennae (and the RTs) are placed
and the LT is moving For the movement of the tag some way
points are given between which other points are interpolated
based on the time intervaldt and the velocityv. At every way
point the RSSI values to all used antennae are calculated. For
simulating more realistic scenarios noise is added to these
computed RSSI values to take into account disturbances in
real world scenarios. These calculated noisy RSSI values are
then used as measurement inputs for the Kalman Filter.

The result of the simulation shows the localization error of
the Kalman Filter over the desired path. It is the Root Mean
Square Error (RMSE) over the estimates of the filter used
for the localization. The first 10 results are left out since the
filter needs an adjustment period which will take about this
number of position estimates (depends on the chosen initial
values).

For all methods described in the previous sections the sim-
ulation of the localization is carried out with a different num-
ber of antennae. The results of the simulations can be seen
in Table1 for the Extended and the Unscented Kalman Fil-
ter. Table2 shows the results for the relative positioning

Table 1. Results of 3-D localization for EKF and UKF.

# of
Error EKF Error UKF

Ant

2 86.18 cm 69.06 cm
3 66.75 cm 49.30 cm
4 43.45 cm 27.18 cm

Table 2. Results of 3-D localization of UKFRP and UKFRT.

# of
Error UKF RP Error UKFRT

Ant

2 65.84 cm 68.41 cm (3)
3 39.81 cm 45.90 cm (2)
4 25.60 cm 26.82 cm (2)

(UKF RP) as well as the differential positioning (UKFRT).
The number in brackets behind the localization results of the
UKF RT denotes the number of reference tags used for the
kNN positioning. The reference tags are placed with a dis-
tance of 1m from each other in all three dimensions with a
total of 36 RTs placed in the considered localization area.

It becomes obvious that the Extended Kalman Filter is out-
performed by the UKF for all different number of antennae
used. When incorporating additional information into the lo-
calization process the UKFRP achieves better results than
the UKF RT, but both approaches are able to improve the lo-
calization accuracy compared to the UKF. Figure3 shows the
results of the different methods for an exemplary path. The
colored markers denote the positions of the reader antennae
of which three are used for this example.

These simulations have not taken the angle between reader
antenna and tag into account so far. When considering the
angle for the localization with an Unscented Kalman Filter
(UKF wa) the results as shown in Table3 are achieved.

The results of the UKFwa have almost the same localiza-
tion error compared to the UKFRT which performed best
so far. This leads to the conclusion that the incorporation
of the angle is important for a good localization result and
it makes the simulation more realistic as well because it re-
flects the antenna’s properties. An important parameter to
achieve these good localization results with the UKFwa is
the directivity of the antenna. That means it is of importance
to choose wisely how each of the antennae used is aligned
according to the path on which the tagged object is moving.
Slight changes in the alignment may result in huge variations
of the localization error.
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Table 1. Results of 3D localization for EKF and UKF
# of

Error EKF Error UKF
Ant
2 86.18cm 69.06cm
3 66.75cm 49.30cm
4 43.45cm 27.18cm

The description via circles is only possible in this case be-
cause it reflects the antenna’s properties. If an antenna with
a differently formed beam is used it is necessary to employ
another geometric form. For example it might be suitable215

for some antennae to use an ellipse instead of the circle to
describe the points where the same RSSI value is measured.

The measurement function h of the Unscented Kalman
Filter only contains the distance measurements in this case.
But compared to the relative or differential methods, in this220

case the distance is not calculated between reader antenna
and tag. For the angle-dependent approach the distance be-
tween the center of the circle and the tag is calculated based
on the computed radii ri from all i= 1,...,M antennae used.

5 Simulations225

The simulation tool of the 3D localization of passive UHF
RFID labels is written in Matlab. The considered space is
5m×5m×5m in which the antennae (and the RTs) are placed
and the LT is moving For the movement of the tag some way
points are given between which other points are interpolated230

based on the time interval dt and the velocity v. At every way
point the RSSI values to all used antennae are calculated. For
simulating more realistic scenarios noise is added to these
computed RSSI values to take into account disturbances in
real world scenarios. These calculated noisy RSSI values are235

then used as measurement inputs for the Kalman Filter.
The result of the simulation shows the localization error of

the Kalman Filter over the desired path. It is the Root Mean
Square Error (RMSE) over the estimates of the filter used
for the localization. The first 10 results are left out since the240

filter needs an adjustment period which will take about this
number of position estimates (depends on the chosen initial
values).

For all methods described in the previous sections the sim-
ulation of the localization is carried out with a different num-245

ber of antennae. The results of the simulations can be seen
in Table 1 for the Extended and the Unscented Kalman Fil-
ter. Table 2 shows the results for the relative positioning
(UKF RP) as well as the differential positioning (UKF RT).
The number in brackets behind the localization results of the250

UKF RT denotes the number of reference tags used for the
kNN positioning. The reference tags are placed with a dis-
tance of 1m from each other in all three dimensions with a
total of 36 RTs placed in the considered localization area.

Table 2. Results of 3D localization of UKF RP and UKF RT
# of

Error UKF RP Error UKF RT
Ant
2 65.84cm 68.41cm (3)
3 39.81cm 45.90cm (2)
4 25.60cm 26.82cm (2)

Table 3. Results of 3D localization of UKF wa
# of

Error UKF wa
Ant
2 65.96cm
3 38.79cm
4 26.61cm

It becomes obvious that the Extended Kalman Filter is out-255

performed by the UKF for all different number of antennae
used. When incorporating additional information into the lo-
calization process the UKF RP achieves better results than
the UKF RT, but both approaches are able to improve the lo-
calization accuracy compared to the UKF. Figure 3 shows the260

results of the different methods for an exemplary path. The
colored markers denote the positions of the reader antennae
of which three are used for this example.

0
1

2
3

4

0

1

2

3

4

0

0.5

1

1.5

2

2.5

3

3.5

4

 

x−Axis [m]y−Axis [m]
 

z−
A

xi
s [

m
]

Correct Path
EKF
UKF
UKF_RT
UKF_RP

Fig. 3. Localization results of different Kalman Filter with 3 anten-
nae

These simulations have not taken the angle between reader
antenna and tag into account so far. When considering the265

angle for the localization with an Unscented Kalman Filter
(UKF wa) the results as shown in Table 3 are achieved.

The results of the UKF wa have almost the same localiza-
tion error compared to the UKF RT which performed best
so far. This leads to the conclusion that the incorporation270

of the angle is important for a good localization result and

Fig. 3. Localization results of different Kalman Filter with 3
antennae.

Table 3. Results of 3-D localization of UKFwa.

# of
Error UKF wa

Ant

2 65.96 cm
3 38.79 cm
4 26.61 cm

6 Conclusion and future work

In this paper it is shown through simulations that it is possible
to localize a passive UHF RFID label solely with RSSI mea-
surements and additional information combined in a Kalman
Filter. The localization results of the Unscented Kalman Fil-
ter are better than these of the Extended Kalman Filter. The
accuracy of the localization result can further be improved by
the usage of reference tags or an additional tag on the object.
When incorporating the angles between reader antennae and
the tag into the localization process the simulation becomes
more realistic and an accurate localization is possible as well.

For the future these simulation results will be verified
through real world measurements. The results gained from
these measurements might differ from the simulation results
due to multipath propagations in the localization environ-
ment. Therefore it can be useful to incorporate a camera
into the localization process which is independent of these
effects. To be able to view the results of the RFID as well as
the camera-assisted localization easily it might be useful to
implement a demonstration tool to show the different local-
ization results.
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