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Abstract. A one dimensional non-linear magneto- far from that of the EarthKono and Roberts2002. Sur-
hydrodynamic (MHD) system has been introduced to test dace geomagnetic observations can be traced back up to 7000
sequential optimal interpolation assimilation technique thatyears Bloxham et al. 1989 Constable et 12000 Sabaka
uses a Monte-Carlo method to calculate the forecast erroet al, 2002. Plaeomagnetic dipole moment record can be
covariance. An ensemble of 100 model runs with perturbedraced much further back in tim&(oyodo and Valetl999.
initial conditions are used to construct the covariance, and However, combining geodynamo model output with sur-
the assimilation algorithm is tested using Observation Simuface geomagnetic observation for better understanding of the
lation Experiments (OSE's). The system is run with a variety dynamical processes in the outer core (geomagnetic data as-
of observation types (magnetic and/or velocity fields) and asimilation) is very different from those in other fields, pri-
range of observation densities. The impact of cross covarimarily because of the inaccessibility to the physical quan-
ances between velocity and magnetic fields is investigated byities (or state variables) inside the outer core. The state
running the assimilation with and without these terms. Setsvariables necessary for modeling the core dynamics include
of twin experiments show that while observing both veloc- (Kuang and Bloxham1999: magnetic field, which can be
ity and magnetic fields has the greatest positive impact ordescribed by toroidal scaldi, and the poloidal scalaP,;
the system, observing the magnetic field alone can also efthe velocity field that can also be described by similar scalars
fectively constrain the system. Observations of the velocityT, and P,; and the density perturbation (or temperature per-
field are ineffective as a constraint on the magnetic field, evenurbation if the core convection is driven by thermal buoy-
when observations are made at every point. The implicationgincy). It is possible that numerical models could provide
for geomagnetic data assimilation are discussed. more geophysical variables that may be detectable via non
geomagnetic observationdigng et al. 2007 Kuang and
Chaq 2003, but such observations and their relationship to
core dynamics are still in the early stages of development.
Surface geomagnetic observations can only measure part

Data assimilation is a mathematical method for combining®f the poloidal scalap; (e.g., if the scalar can be expanded in

physical measurements with model output in order to get zSbherical harmonic series, the observatipns can only provide
better estimate of the state of a system. It has been app"e@easurements of up to the first 14 spherical harmonic degree
to ocean and atmospheric systems for many years On&oefﬁcients). These measurements can be continued down-
recently has there been an interest in applying these techard to the core-mantle boundary (CMB) by assuming the

niques to other geophysical systems, such as the Earth's maffUst and mantle are electrically insulating, approximately
tie (Bunge et al. 2003 or magnetic field (geomagnetism), 3000 km beneath the surface. All other physical variables

which is generated and maintained by convective flow in theare practically “invisible” to surface observations.

electrically conducting, fluid outer core of the Earth (geo- These observational limitations present a significant ob-
dynamo) Larmor, 1919. The core convection can now be stacle to the success of any geomagnetic data assimilation

modeled numerically, albeit operating in parameter domainsyStém. To make progress in this direction, it is important to
determine whether partially observing one variable (poloidal

Correspondence toA. Tangborn magnetic field) can effectively constrain unobserved vari-
(tangborn@umbc.edu) ables (e.g. velocity).

1 Introduction
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One could analyze the problem with a full-scale geody-Sect. 3. The results are shown in Sect. 4. In the last section,
namo model, such as MoSST core dynamics model we argve discuss the physical implications of the experimental re-
using for related researciKang and Chao2003. But sults and applications to the full geodynamo system.
the model is very complicated: in addition to 5 fields, the
model is operating in a 3-dimensional spherical shell, with 4 .
non-dimensional parameters describing material and thermef  Model description
properties specified for the core fluid. With this approach, it
is much harder to develop and test a new algorithm amid th
complicated interactions between the poloidal magnetic fiel
and other variables in the model.

In full geodynamo models, the governing equations include
he Navier-Stokes equation for the momentum balance, the
induction equation for the magnetic field, and the energy
A reasonable first step is to work with a simplified system equgtlon for dgnsny var_|at|on. Nonllnea}nty arises from ad-
A ) . . vection of the fields (variables), and the interactions between
which includes some important physics of the original full h h . I : herical shell with
system, and helps us to understand the fundamental propetr-em'. These equations are so ved in a spherical shell with ap-
' propriate boundary condition&gang and Bloxham1999

ties of geomagnetic data assimilation. The knowledge ob-Kuang and Cha®003.

tained from this system could then better help us navigate To capture at least some of the coupling of such a system,

through the full scale geodynamo system. . . ; . . -
Working with simplified model systems before pursuing in particular the mtergctmn; among the variables, it is use-
ful to construct one-dimensional model$angborn(2004

Fhe full scale study is very common in geodynamo Stu.d_used Burger’s equation with the extended Kalman filter and
1€s. In the early stages .Of numerlcal dynamo m(_)dellng, SIr.n_Eymin (2009 used a coupled fluid-magnetic system with a
ﬂglgglssﬁi;rgfére\dgl.?okl;r:trglgt;% ?:bgz;a;%tg;gg%/ name;ed velocity field to test a variational magnetic assimilation

’ system. The present work, in contrast, is a fully coupled non-
had been constructed to better understand dynamo meChﬁhear modeled MHD svstem in one-dimensional space:
nisms, because of computational constraints and lack of de- y pace
tailed knowledge of dynamo operation. Despite the dramatic ab 3b dbo 32p
growth in computer speed and memory, computational limi- L + qﬁ (1)

. . ) ar 9
tations remain a problem: we do not have prior knowledge of o

2
important parameters, and data assimilation algorithms can % = _va_v + Ea_v + Rb. 2)
i i i at ax 9x2
be several orders of magnitude more expensive than simply
running a geodynamo model. The system is defined in the domal) 27 ][0, o), and is

The system we present in this paper is nonlinear, onesplved with the following periodic boundary conditions and
dimensional (in space) with two variables. In addition to dis- the initial condition
sipation and advection, we also include coupling terms in the

two equations to mimic interaction between fluid flow and b(0,1) = b(2r,t), v(0,1t) = v(2m,1), 3)
magnetic field in the core. We focus on one key issue: how b(x,0) = f(x), v(x,0) = g(x). (4)
much can observations of one variable affect the unobserved

variable (and in what direction)? The initial state is generated from a long model run so as

To understand this, we apply recent methodology fromto remove and all short term transients from the initial state.
oceanic data assimilation systenBofovikov et al, 2005 This system is nondimensionalized, and the variabiepre-
that share similar obstacles: satellite observations are limsents the magnetic field,represents the velocity field ahg
ited to ocean surfaces, such as surface temperature and wirtibscribes an ambient field (specifiedbas-x). The param-
speed (used as boundary conditions); and a much smallestersq, E and R describe the (scaled) magnetic diffusion,
number of in situ observations are made below the surfaceyiscosity and the Lorentz force strength, respectively.
such as velocity, temperature and salinity. In this work, the The velocity Eq. ) is essentially a Burger's equation
authors used a forecast error covariance that includes crose one-dimension with a forcing term from the magnetic
correlation terms for the different variables, but is fixed in field. The magnetic field Eql} consists of advection terms
time. They showed that these cross correlations could béfor both the perturbed and the ambient fields) and a mag-
defined in a dynamically consistent manner by creating ametic diffusion term. While these are model equations rather
ensemble of model runs with random external forcing. Theythan physical equations, they can be thought of as non-
found that calculating the covariances between different statelimensionalized by the length scale=L,/27, time scale
variables was essential for the assimilation system to be suce=g L2/ ( is the magnetic diffusivity), and magnetic scale
cessful. We propose a similar solution to reduce the compu,,.
tational expense of propagating error covariances in geomag- The simplified model does not include all of the physics of
netic data assimilation. the geodynamo. However, we construct it by attempting to

This paper is organized as follows. The model is intro- retain some important physics for short period geomagnetic
duced in Sect. 2, followed by the assimilation algorithm in secular variation, in particular the torsional oscillations in the
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Earth’s core Braginsky 1976. The ocillations are governed discretized model are represented by an error covariance ma-
by the balance of fluid inertia and the Lorentz force on cylin- trix. An optimal interpolation (Ol) algorithm assumes that
drical surfaces co-axial to the Earth’s rotation axis (togetherthe forecast error covariance is fixed in time, and the relative
with a weaker, higher order viscous damping effect). Suchweighting of the forecast and observations is determined by
balance is retained in Eq4)( (2). Consequently, the param- minimizing the analysis error.

etersq, E andR of the system should be chosen carefullyin  The Kalman filter Kalman 1960 allows the evolution of
numerical simulations to reflect appropriately the physics inthe forecast error covariance in time using a tangent linear

consideration. model (TLM). It is, however, generally intractable for large
The variablesh andv are discretized on the spatial grid scale problems because of its excessive computational and
points storage requirements. The ensemble Kalman filter (enKF)

has been propose&yensen1994 as an alternative to the

bj =b(x;), vj =v(x;) for j =12 Ny, Kalman filter which can better handle non-linearity and re-
(5) duce the computational cost of evolving error covariances.
The total number of grid pointsyy, is selected according to  yet even this approach is computationally prohibitive for ge-
the spatial scales of the solutions. The spatial derivatives "bmagnetic data assimilation, which can require a system with
the system1-2) are approximated via a second order cen-gr ;7 N degrees of freedomi(is the maximum degree and
tered difference scheme. A hybrid, implicit-explicit algo- a7 is the maximum order in spherical harmonic expansion,
rithm is used for time integration of the System. The time and N is the number of gnd points in radius) and as many
Step size varies during Simulation, and is dictated by the CFLaS 1@ time_steps (for a moderate truncatibMN=403) to
condition to ensure stability. reach 01 magnetic diffusive timer, (z,~200 000 years for

In time integration, the linear terms in Eqsl—R) are  the Earth's core). For this reason we use a “frozen” fore-
solved via a (second order, implicit) Crank-Nicolson scheme,cast error covariance approximation, where the covariance is
the nonlinear terms are solved via a (second order, explicit)generated once using the ensemble approdditier et al.
Adams-Bashforth scheme. When the time step size is up{1999 used an extended Kalman filter to demonstrate how
dated according to the CFL condition, a second order Rungeproperly constructed error covariances could be used to make
Kutta method is used for the first two time steps before thecorrections to an unobserved variable in a non-linear system.

Adams-Bashforth scheme takes over. Borovikov et al.(2005 showed that a fixed multi-variate er-
For easier presentation, we denotesbgndv the vectors  ror covariance constructed from an ensemble of perturbed
of the discrete magnetic fieldand the velocity field in x: model runs can provide useful covariance information, par-
T T ticularly in regards to cross correlations between different
b=(b1.b2,-- ,by,) . v=(vrvz - vn) - (6) state variables. Because changes in the Earth’s core occur

on very long timescales, the frozen covariance approxima-
tion may be a good approximation over the assimilation pe-

[b} riods, which will never be more than a few hundred to a few
y=

The solution, or the state of the systeird), is defined as

(7 thousand years, depending on what data sets are used.
v
Unless otherwise specified, we denotejythe state at the 3.1 Ensemble calculation of a multivariate error covariance

discrete timey: . .
k ®) An ensemble oiV,,,;=100 model runs with perturbed initial

= 1 . . . .
_ e = () states have been carried out, each lasting 2 time units. Denot-
in the rest of the paper. ingbyy, (n=1,2,---, Neys) the thenth-simulation solution
of the ensemble, the forecast error covariance matrix is then

S calculated as
3 Assimilation methodology

T
Sequential assimilation techniqueBohn 1997 are a class P* = <[EI; _ Z%;Zﬁ] [gj _ Zb;ﬁi] > 9)
of Bayesian methods in which a model run is used to produce ' ’

a forecast (or prediction) of the state of a system. The forewhereu ando are the mean and the midpoint (i.e. at the grid
cast is combined with observations made at the same time ipoint j=N, /2) standard deviation of the variables over the
order to produce a more accurate estimate of the state, calleehsemble,

the analysis, which in turn is used as the initial condition for

a new forecast run. These methods require estimates of botf» = (&) #y = (v},

the forecast and observation errors, from which an estimate_ _ \/ _ _ \/ _

of the analysis error can be made. The state of the systema bz = ton2) o (w2 = os/2)-
generally includes one or more spatial dimensions, and th&quation @) implies that the covariance matrix is scaled by
errors are usually spatially correlated. Thus the errors in ahe standard deviation. Similarly, we consider also the scaled
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solution ror covariance calculated in the previous section. At assim-
y, = [1’/%} (10) llation times, current observations are incorporated into the
P Lv/ow analysis, which in turn becomes the initial state for the next
in the analysis. forecast step.
The error covariance, shown in Fita, can be understood As in other data assimilation literature, in the rest of the
by dividing it up into blocks (sub-matrices), manuscript we use the superscript$ for observations, #”
; for truth, “f” for forecasts, and4” for analysis. We also
«_[bb" BT _[AB denote bye the errors to the statg
P* = rorl= , (11)
vb' vv CD ,
€ =[ep, €] , (14)

Wh(IjCh 'r\;\cli;fftei; tZeTreglon;Tof cross Corre_latlon Ikl)etwbeg wheree;, ande, are the errors for the magnetic fiebdand
andwv. ile thebv' (or vb") covariance is smaller (an the velocity fieldv, respectively.

negative), it is still significant and indicates that observations Numerical experiments are set up using the sequential al-

of the magnetic field alone should have some impact on the, | ... fini initial hich differs f
velocity field. The small size of the ensemble (100 member;‘gom, m by de mmg?n initia true. statg, whic _dl er.s er
vs. the 800 degrees of freedom for the model) implies thafhe initial forecasty, by an unbiased Gaussian distributed

the covariance between two points that are far apart will pehitial erroreo at the initial timer,
mostly non-physical. The covariances should therefore be y‘g =yp+eo. (15)

truncated at large distances, and we use a piecewise continu-h d model ve f ) ith
ous function Gaspari and Cohri999. The true and model states evolve from timeo #; 1 wit

the same dynamics (perfect model assumption),

Vi1 = My, and y,{+1 = My,{, (16)
: A , , whereM is the matrix arising from the spatial-temporal dis-
(% +1 (%) +3 (% -3 (U) +1, 0<fz/<ec cretization of the systemil{2). The forecast error covari-
A )3 ance P/, is kept fixed in time, so that it represents more of a
. (13) temporally averaged covariance rather than an instantaneous
(U) , c<lz] <2, covariance. Since, by EqQ), P* is scaled with respect to
2 < |z]. the midpoint standard deviatiomg anda,, and the scaled
y¢ observations are taken from the scaled true statevith
to smooth theP*, where Co(z, %,c) is a homogeneous unbiased Gaussian distributed errefs
and isotropic correlation function. For each index couple

Co(z, 5.0) = 12)

o __ t o
(J, k) in the matricesA, B, C, D, its grid point distance is ys =Hys +e. (17)
zjk=|xj—xx|. Then we compute the smoothifg by multi-  The scaled analysis fielgl’ is then
plying each item witiCo(z ., % ¢), given a constant (c=1 f ¥
in these experiments). From this we obtain the truncated co- Dk = (5D +K [(y?)k —Hs )k] ’ (18)

variance matriP”, which can be seen in Figb. whereH is the observation operator which determines which

As was shown bysaspari and Coh(1999, P/ is an ap- 4 iaples and locations are observed, #ni the optimal
proximation ofP* within the space limited by’y. Covari- ain matrix

ances at distances longer than the correlation length scale are i i

set to zero. Removal of longer correlation at larger distances, K=P/H(HP/HT + R)~%. (19)
shown in Fig 1b, effectively shortens the length scales while ¢ is will be optimal under the conditions that all of the er-
retaining the cross-covariances needed for multivariate as;o g are Gaussian, white in time and spatially uncorrelated.
similation. These cross-covariances are the couplings be i getermined by minimizing the estimated analysis error
tween the magnetic fieldl and the velocityv that indicate i, terms ofK and known variables (se@ohn 1997 for de-
how much an unobserved variable should be corrected, givepans). The observation error covarian&,is assumed diag-

a difference between the forecast and observaibr £) in - onaf (uncorrelated observation errors) and the observations
the observed variable. We will analyze the importance of this, .o given Gaussian distributed random errors of 1%.

part of the error covariance by carrying out the assimilation o nscaled analysis is determined using the standard de-
with and without the cross covariance part of fe matrix viations

in the results section. ¢ = [ob, 0] Dk - (20)

3.2 The sequential assimilation algorithm The unscaled analysis solution is then used as the initial state

for the next forecast. The true and forecast states used in
The sequential assimilation algorithm used here follows thethe next section to calculate ensemble mean RMS errors as a
standard optimal interpolation scheme, using the forecast emeans to test the algorithm.
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(a) (b)

Fig. 1. The normalized forecast error covariance generated from an ensemble of 100 moda),rand after truncation using the Gaspari-
Cohn piecewise continuous functiofty. Note that the periodicity in the computational domain results in wrap-around of the covariances
within each sub-matrix.

3.3 Observing system simulations 4 Assimilation results

Observing system simulations have been carried out as folWe have carried out a number of experiments with different
lows: a “true” state, which uses an initial condition from well parameter values and observations. In the following cases we
developed simulation results (those past the transient periodyse

the forecast (or background) state from the same initial con- g =095 E =001, R = 100Q

dition with an added perturbation of known Gaussian statis-

tics that represent initial errors. In these experiments we as-

sume no model error, so the forecast and the true state use Case 1 (b, v) with 10 observations
the same numerical model. At any given timethe corre- Case 2.1 v with 10 observations
sponding observation ig] plus some Gaussian nois (in Case2.2v W!th 400 observa_ltlons
these numerical experiment, we control the noise’s variance Case 3.1 b with 10 observations

so that about 97% of the noise is less thad5@6 of the mag- Case 3.2 b with 2 observations

) L . .
n'tléde of tg_e t”r:e sokllutloryk.). _IV\I_e are most mteresctied 'nd,fThe following two experiments demonstrate how the assim-
understanding how the assimilation system responds to dity system responds with different parameter values. In

ferent observing networks, including the effect of the numberthese cases, ensembles of model runs with the appropriate

of observations and Wh'Ch of the yanables are observed. . parameter values must be run in order to generate new fore-
In order to approximate the limited nature of geomagnetic .o« error covariances.

observations, we assume (in all but one case) that observa-

tions of the variables are made only at points much moreCase 4.1 ¢=0.1, E=0.01, R=1004 with 10 observations
sparse than the numerical grid points in space. The goal is t@€Case 4.2 ¢=0.95 E=0.01, R=10 b with 10 observations
obtain some insight into the effectiveness of the Monte-Carlo

constructed error covariance on the spread of the observelh all cases the observing networks are uniformly distributed.
information to unobserved locations to and the unobservedn order to obtain meaningful statistics, a set /f,=20
variable. For this purpose, we have constructed the observinglentical twin experiments are carried out for each observing
systems which include bothandv and justh orv. In addi-  system. The solution to Eqsl-4) is of the form of coupled
tion, we allow the observation locations vary from as many standing waves ib andv, and examples at several different
as all numerical grid points to as little as only two points in times are shown in Fig2 using the parameter values from
x. Most of the observing systems are run twice, once withCases 1-3.

the full Monte-Carlo generated error covariance, and once We plot the mean RMS difference between the reference
with the cross-covariance terms set to zero. This will help(or true) state and the assimilation state vs. time for each of
to quantify the impact of the cross-covariance terms on thethe experiments, shown in Figs. 3—7. In each case, the initial
non-observed variables. error (or perturbation) is about3.0~4, and observation are
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Fig. 3. Case 1, RMS error fa¥ (a) andv (b) when bothb andv are observed, at 10 uniformly spaced locations each. Assimilation is carried
out at t=2,4,6,8. The RMS error for the model run without assimilation is given by the dashed line, and with assimilation is given by the
solid line. Assimilation using a forecast error covariaté with the correlation betweeh andv set to zero (univariate) is shown by a

dash-dot line. The full covariance and univariate RMS errors are essentially identically and show a significant reduction from running the

model alone.

assimilated into the system every 2 time units. We calculatevhereos;, ando, are the ensemble standard deviations de-

RMS errors forb andv using

l Nex B l NX
RMS®B' —b') = =30 -)?/o
[Vex i=1 | pr j::1 J
. 1 NPX B 1 NX f 2
RMSw/ —v') = — ) @ —v)%/o
Nex,:l_Nx; j e
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1/2
i

(21)
1/2

b)

"(22)

fined in Sect3.1and N,=400. The difference between the
forecast and truth is represented by the ensemble standard
deviation, which gives a consistent normalized error for each
of the two variables. Because there is no model error, a suc-
cessful assimilation should gradually decrease the RMS error
toward zero. In each plot, the RMS error with no assimilation
is given by a dashed line, and the RMS error with assimila-
tion using the full covariance shown in Fitp is given by a
solid line. We have also tested the impact of the cross covari-
ances betweehandv in these assimilations by setting them
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Fig. 5. Case 2.2, RMS error fa¥ (a) andv (b) whenv only is observed at 400 uniformly spaced locations. The RMS error for the model
run without assimilation is given by the dashed line, assimilation with cross covariances is given by the solid line and assimilation without
cross covariances is given by the dash-dot line.

to zero. The RMS error for this case is given by a dash-dot When onlyv is observed in 10 places (case 2.1, Bigthe
line. assimilation is less successful. For the full covariance (solid

. ith h variable ob q | line) there is a significant drop in the RMS error for the ve-
In case 1 (Fig3), with each variable observed at 10 lo- locity field at each analysis time, but rapid error growth re-

cations the RMS error for the forecast with assimilation de'gjrns the error back to the pre-analysis level in a fraction of

cr:eas_es :)y_nearkl 4 oriers O_f n_1|ag_mtude durr]mg the COUrSE Qe time unit. At the same time the RMS error toshows
the simulation. At each assimilation time there Is a notice-\, 4o at analysis times, which indicates that the cross co-
variance does not make a consistent correction to the mag-

Ghetic field. The rapid rise in the velocity error is most likely

in the forecast errors when the cross covariance terms ar§ue to feedback from the magnetic field, which continues
removed, indicating that the correlation information is not ;' ., i larger errors. With the cross co’variance terms in-

needed when both magnetic _and_ velocity flelds are qbserve luded, assimilation is actually somewhat worse than the free
It also shows that the correction is dynamically consistent asrunning model. Removal of cross covariances improves the
it does not produce any significant oscillations. '
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assimilation somewhat, which again indicates that the covarimodel. The importance of the correlation betweeand b
ance betweemw and b contains little or no information on is seen from the drop in errors when the cross correlation
how to correct the magnetic field using observations.df is included. This indicates that there is additional informa-
the number ob observations is increased to 400 (every grid tion about the velocity field contained in the magnetic field
point), there is no improvement (Fi§). This implies that  observations that can only be obtained through the forecast
there is some fundamental difference between the roles thagrror covariance matrix. Notice that the decrease in the RMS
velocity and magnetic field play in the coupled dynamics of errors is slower than if botlh andb are observed, so there
this system. is indeed information in the velocity field as well. The ve-
locity field is just not useful by itself. The drop in errors

In contrast, case 3.1 (Fi@) shows that when onlp is  at analysis times are smaller forthan ford, implying that
observed at 10 (out of 400) points, forecast errors for bothyne frozen covariance information is not perfect. When the
v andb are reduced significantly relative to the free running
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Fig. 9. Case 4.2R=10,¢=0.95 andE=0.01. RMS error fob (a) andv (b) whenb only is observed at 10 uniformly spaced locations. The
RMS error for the model run without assimilation is given by the dashed line and assimilation with cross covariance is given by the solid

line.

number of magnetic field observations is decreased to 2 (castve importance of the coupling terms in Eqg$),((2) and the
3.2, Fig.7), the rate of decrease in RMS error slows further, difference between the true state oscillation frequency and

but the improvement due to the cross covariance term is stilthe analysis frequency.
apparent by the end of the run. o
In order to better understand these assimilation results, we

Cases 4.1-2, (Fig8-9) which have the same observing have plotted the analysis errors at timel0 for the ensem-
network as case 3.1, show a much less dramatic drop in RM$®le mean for cases 2.1 and 3.1. Figui®g, b show the
error due to the assimilation of magnetic observations. Thisanalysis error when the cross covariance terms are retained.
difference is particularly obvious in case 4.2, where the im-For bothd andv, observingb results in smaller analysis er-
provement is very small with only about a 10% error reduc-rors. When the cross covariances are eliminated, the errors
tion. This could arise from several factors, including the rela-for v are reduced when observing This means that the
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Fig. 10. Ensemble mean error at the final time with cross covarigapé“—b’, (b) v*—v' and without cross covariande) b“—b’, (d)
v?—v! with 10 observations ob (solid lines) or 10 observations of (dash-dot line). When cross covariance is retained, obseiving
estimates both andv more accurately. When the cross covariance is eliminated, obsarestimates more accurately, but is estimated
less accurately.

cross covariance terms actually degrade the analysis of the cases, though in Case 4.2, the relative importance of the
This cannot be caused directly by the coupling because theradvection term rises by an order of magnitude. A more sig-
are no magnetic field observations. Rather, the analysis ofificant difference occurs in the frequency of oscillation of
the magnetic field that results is not dynamically consistentthe true state compared to the analysis frequency. These are
causing more rapid growth in errors in battandb. nearly identical in Case 4.2, which likely results in a sam-

pling error and most of the dynamics of the system being
To understand the poor error reduction in Case 4.2, wemissed by the observations.

examined the relative importance of various terms in the sys-

tem Egs. {) and @) and the ocillatory frequency of the true

state. Analysis of the balances in Case 4.2 shows that the§ Discussion

are similar to the other cases. For example, in the the ve-

locity Eq. (2), the two dominant terms are the velocity time We have carried out a series of assimilation experiments us-
derivative and the Lorenz force, while the other terms are twoing a coupled system of nonlinear, one dimensional equa-
orders of magnitude smaller. This dominance holds in all oftions. A sequential data assimilation system was constructed
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using a frozen error covariance matrix constructed from anMagnetic-Archimedian-Coriolis (MAC) waves in the core on
ensemble of model runs. Observation system experimentimescales of hundreds of years and longgaginsky 1967,
were set up using the same model for the true and foreBraginsky 1980. On the other hand, the zonal component of
cast fields, differing only by an initial error (perfect model). the Lorenz force integrated over cylindrical surfaces co-axial
Observation information is passed throughout the space antb the Earth’s axis (Taylor’s cylinders) balances fluid iner-
across fields by both advection and the error covariance. tial forces to leading order, generating torsional oscillations

A series of experiments were carried out with different on decadal time scaleBfaginsky 1976. In other words,
numbers of observations. At each assimilation time, the dif-the magnetic field plays a major role in determining various
ference between the observed and forecast magnetic fiellow modes in the outer core. From the experiments with
values (0 —F) are spread to neighboring grid points via the the model system, we can conjecture that observing the mag-
gain matrixK, which depends on the error covariarié. netic field only should constrain the numerical geodynamo
At the same time a correction is made to the unobserved fieladnodel significantly. Case 4.2 of the experiments also sug-
through the gain matrix and the cross covariance terr®éin  gests that for successful geomagnetic data assimilation, the
In addition, more distant parts of the domain are eventuallyanalysis frequency should be substantially different from the
affected by the assimilation by the velocity field, which ad- magnetic wave frequencies in the Earth’s outer core.
vects information from the magnetic observations.

These experiments show that systematic reductions imcknowledgementsiVe thank A. Fournier and the anonymous
the difference between the true and forecast fields can beeviewer for their helpful comments on the manuscript. This
achieved with as few as 2 magnetic observation locationgesearch is supported by NSF Math/geophysics program under
(0.5% of the domain). We have demonstrated that this im-the grant EAR-0327875, and by NASA Solid Earth and Natural
provement is achieved, in part, through the cross covariancéla@zard Program.
terms inP/. By contrast, observing the velocity alone at ev-
ery grid point ultimately does not succeed at reducing this
difference, with or without the cross covariance terms. |f
both velocity and magnetic fields are observed, the errors are
reduced quickly to the order of the observation errors. We
also see that there is less error reduction (Case 4.2) \Rhen

Is reduced oy is increased. A direct consequence of theseBonham, J., Gubbins, D., and Jackson, A.: Geomagnetic secular

parameter changes is the variation of the typical time peri- variation, Phil. Trans. Roy. Soc. Lond. A, 329, 415-502, 1989.
ods of the oscillations. This, coupled with the fixed analysisgorovikov, A., Rienecker, M. M., Keppene, C. L., and Johnson,

period for all experiments, affects the error reduction inthe . c.: Multivariate error covariance estimates by Monte-Carlo
forecast. Case 4.2, where the analysis and oscillation fre- simulation for assimilation studies in the Pacific Ocean, Monthly
quency are nearly equal, shows the poorest performance. Weather Review, 133, 2310-2334, 2005.

Several questions arise from these experiments. Why caBraginsky, S. I.: Magnetic waves in the Earth's core, Geomag.
just two magnetic observations improve the state of the sys- Aeron., 7, 851-859, 1967.
tem, but a complete field of velocity measurements cannot®raginsky, S. I.: Torsiorjall mag.netohydrodynamic vibrations in the
How might these results impact assimilation in a full geody- Earth's core and variations in day length, Geomag. Aeron., 10,
namo model? One reason that this transport of informatiorigr;&igg?g'l  Magnetic waves inthe core of the Earth II, Geophy
only works fromb to v is because the driving force of the sys- R ’ '

. . L . Astrophy. Fluid Dyn., 14, 189—-208, 1980.
tem, Rb directly controls the time variation af in Eq. (1). Bunge, H. P., Richards, M. A., and Baumgardner, J. R.: Mantle-

As long asb is not identically zero,Rb will act to offset circulation models with sequaential data assimilation: Inferring
fluid viscosity to maintain the advection. The magnetic field  present-day mantle structure from plate motion histories, Phil.
b changes also from this advection. In other words, in the Trans. Roy. Soc. Lond. A, 360, 2545-2567, 2002.
simplified systemb is more active, while is more passive. Cohn, S. E.: An introduction to estimation theory, J. Meteor. Soc.
From this point of view, constraining from the observation Japan, 75, 257-288, 1997.
can be much more Significant than Constraini;ng Constable, C. G., Johnson, C. L., and Lund, S. P.: Global magnetic
The results from this simplified system are useful for ge-  field modeis for the past 3000 years:transient or permanent flux
omagnetic data assimilation for several reasons. First, the '0Pes?. Phil. Trans. Roy. Soc. Lond. A, 358, 991-1008, 2000.
Lorentz force in the Earth’s core is very important in deter- Evensen, G._: Sequentla_ll data assimilation with a nonlinearquasi-
mining the core flow. The geodynamo is believed to be a geo.str_ophlc model using Monte Carlo methods to forecast error
. . . . . statistics, J. Geophys. Res.-Oceans, 99, 10 143-10 162, 1994.
strong field dynamo in which, aside from geostrophic flow -

3 i ' Eymin, C.: Etude des mouvemenidsla surface du noyau terrestre,
the Lorentz force is comparable to the Coriolis force, and “pnp thesis, Universit Pierre et Marie Curie — Paris VI, 2004.

to the buoyancy force in the bulk of the outer core (often Gaspari, G. and Cohn, S. E.: Construction of correlation function in
called the magnetostrophic balance). This balance deter- two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723-757,
mines the behavior of the Magnetic-Coriolis (MC) and/or  1999.
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