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Abstract. A one dimensional non-linear magneto-
hydrodynamic (MHD) system has been introduced to test a
sequential optimal interpolation assimilation technique that
uses a Monte-Carlo method to calculate the forecast error
covariance. An ensemble of 100 model runs with perturbed
initial conditions are used to construct the covariance, and
the assimilation algorithm is tested using Observation Simu-
lation Experiments (OSE’s). The system is run with a variety
of observation types (magnetic and/or velocity fields) and a
range of observation densities. The impact of cross covari-
ances between velocity and magnetic fields is investigated by
running the assimilation with and without these terms. Sets
of twin experiments show that while observing both veloc-
ity and magnetic fields has the greatest positive impact on
the system, observing the magnetic field alone can also ef-
fectively constrain the system. Observations of the velocity
field are ineffective as a constraint on the magnetic field, even
when observations are made at every point. The implications
for geomagnetic data assimilation are discussed.

1 Introduction

Data assimilation is a mathematical method for combining
physical measurements with model output in order to get a
better estimate of the state of a system. It has been applied
to ocean and atmospheric systems for many years. Only
recently has there been an interest in applying these tech-
niques to other geophysical systems, such as the Earth’s man-
tle (Bunge et al., 2002) or magnetic field (geomagnetism),
which is generated and maintained by convective flow in the
electrically conducting, fluid outer core of the Earth (geo-
dynamo) (Larmor, 1919). The core convection can now be
modeled numerically, albeit operating in parameter domains
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far from that of the Earth (Kono and Roberts, 2002). Sur-
face geomagnetic observations can be traced back up to 7000
years (Bloxham et al., 1989; Constable et al., 2000; Sabaka
et al., 2002). Plaeomagnetic dipole moment record can be
traced much further back in time (Guoyodo and Valet, 1999).

However, combining geodynamo model output with sur-
face geomagnetic observation for better understanding of the
dynamical processes in the outer core (geomagnetic data as-
similation) is very different from those in other fields, pri-
marily because of the inaccessibility to the physical quan-
tities (or state variables) inside the outer core. The state
variables necessary for modeling the core dynamics include
(Kuang and Bloxham, 1999): magnetic field, which can be
described by toroidal scalarTb and the poloidal scalarPb;
the velocity field that can also be described by similar scalars
Tv andPv; and the density perturbation (or temperature per-
turbation if the core convection is driven by thermal buoy-
ancy). It is possible that numerical models could provide
more geophysical variables that may be detectable via non
geomagnetic observations (Jiang et al., 2007; Kuang and
Chao, 2003), but such observations and their relationship to
core dynamics are still in the early stages of development.

Surface geomagnetic observations can only measure part
of the poloidal scalarPb (e.g., if the scalar can be expanded in
spherical harmonic series, the observations can only provide
measurements of up to the first 14 spherical harmonic degree
coefficients). These measurements can be continued down-
ward to the core-mantle boundary (CMB) by assuming the
crust and mantle are electrically insulating, approximately
3000 km beneath the surface. All other physical variables
are practically “invisible” to surface observations.

These observational limitations present a significant ob-
stacle to the success of any geomagnetic data assimilation
system. To make progress in this direction, it is important to
determine whether partially observing one variable (poloidal
magnetic field) can effectively constrain unobserved vari-
ables (e.g. velocity).
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One could analyze the problem with a full-scale geody-
namo model, such as MoSST core dynamics model we are
using for related research (Kuang and Chao, 2003). But
the model is very complicated: in addition to 5 fields, the
model is operating in a 3-dimensional spherical shell, with 4
non-dimensional parameters describing material and thermal
properties specified for the core fluid. With this approach, it
is much harder to develop and test a new algorithm amid the
complicated interactions between the poloidal magnetic field
and other variables in the model.

A reasonable first step is to work with a simplified system
which includes some important physics of the original full
system, and helps us to understand the fundamental proper-
ties of geomagnetic data assimilation. The knowledge ob-
tained from this system could then better help us navigate
through the full scale geodynamo system.

Working with simplified model systems before pursuing
the full scale study is very common in geodynamo stud-
ies. In the early stages of numerical dynamo modeling, sim-
plified systems, e.g. kinematic and parameterized dynamo
models (Kumar and Roberts, 1975; Roberts and Stix, 1972),
had been constructed to better understand dynamo mecha-
nisms, because of computational constraints and lack of de-
tailed knowledge of dynamo operation. Despite the dramatic
growth in computer speed and memory, computational limi-
tations remain a problem: we do not have prior knowledge of
important parameters, and data assimilation algorithms can
be several orders of magnitude more expensive than simply
running a geodynamo model.

The system we present in this paper is nonlinear, one-
dimensional (in space) with two variables. In addition to dis-
sipation and advection, we also include coupling terms in the
two equations to mimic interaction between fluid flow and
magnetic field in the core. We focus on one key issue: how
much can observations of one variable affect the unobserved
variable (and in what direction)?

To understand this, we apply recent methodology from
oceanic data assimilation systems (Borovikov et al., 2005)
that share similar obstacles: satellite observations are lim-
ited to ocean surfaces, such as surface temperature and wind
speed (used as boundary conditions); and a much smaller
number of in situ observations are made below the surface,
such as velocity, temperature and salinity. In this work, the
authors used a forecast error covariance that includes cross
correlation terms for the different variables, but is fixed in
time. They showed that these cross correlations could be
defined in a dynamically consistent manner by creating an
ensemble of model runs with random external forcing. They
found that calculating the covariances between different state
variables was essential for the assimilation system to be suc-
cessful. We propose a similar solution to reduce the compu-
tational expense of propagating error covariances in geomag-
netic data assimilation.

This paper is organized as follows. The model is intro-
duced in Sect. 2, followed by the assimilation algorithm in

Sect. 3. The results are shown in Sect. 4. In the last section,
we discuss the physical implications of the experimental re-
sults and applications to the full geodynamo system.

2 Model description

In full geodynamo models, the governing equations include
the Navier-Stokes equation for the momentum balance, the
induction equation for the magnetic field, and the energy
equation for density variation. Nonlinearity arises from ad-
vection of the fields (variables), and the interactions between
them. These equations are solved in a spherical shell with ap-
propriate boundary conditions (Kuang and Bloxham, 1999;
Kuang and Chao, 2003).

To capture at least some of the coupling of such a system,
in particular the interactions among the variables, it is use-
ful to construct one-dimensional models.Tangborn(2004)
used Burger’s equation with the extended Kalman filter and
Eymin (2004) used a coupled fluid-magnetic system with a
fixed velocity field to test a variational magnetic assimilation
system. The present work, in contrast, is a fully coupled non-
linear modeled MHD system in one-dimensional space:

∂b

∂t
= −v

∂b

∂x
− v

∂b0

∂x
+ q

∂2b

∂x2
(1)

∂v

∂t
= −v

∂v

∂x
+ E

∂2v

∂x2
+ Rb. (2)

The system is defined in the domain[0, 2π ]×[0, ∞), and is
solved with the following periodic boundary conditions and
the initial condition

b(0, t) = b(2π, t), v(0, t) = v(2π, t), (3)

b(x, 0) = f (x), v(x, 0) = g(x). (4)

The initial state is generated from a long model run so as
to remove and all short term transients from the initial state.
This system is nondimensionalized, and the variableb repre-
sents the magnetic field,v represents the velocity field andb0
describes an ambient field (specified asb0=x). The param-
etersq, E andR describe the (scaled) magnetic diffusion,
viscosity and the Lorentz force strength, respectively.

The velocity Eq. (2) is essentially a Burger’s equation
in one-dimension with a forcing term from the magnetic
field. The magnetic field Eq. (1) consists of advection terms
(for both the perturbed and the ambient fields) and a mag-
netic diffusion term. While these are model equations rather
than physical equations, they can be thought of as non-
dimensionalized by the length scaleL=Lo/2π , time scale
τ=qL2/η (η is the magnetic diffusivity), and magnetic scale
Bo.

The simplified model does not include all of the physics of
the geodynamo. However, we construct it by attempting to
retain some important physics for short period geomagnetic
secular variation, in particular the torsional oscillations in the
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Earth’s core (Braginsky, 1976). The ocillations are governed
by the balance of fluid inertia and the Lorentz force on cylin-
drical surfaces co-axial to the Earth’s rotation axis (together
with a weaker, higher order viscous damping effect). Such
balance is retained in Eqs. (1), (2). Consequently, the param-
etersq, E andR of the system should be chosen carefully in
numerical simulations to reflect appropriately the physics in
consideration.

The variablesb andv are discretized on the spatial grid
points

bj = b
(
xj

)
, vj = v

(
xj

)
for j = 1, 2, · · · , Nx .

(5)
The total number of grid points,Nx , is selected according to
the spatial scales of the solutions. The spatial derivatives in
the system (1–2) are approximated via a second order cen-
tered difference scheme. A hybrid, implicit-explicit algo-
rithm is used for time integration of the system. The time
step size varies during simulation, and is dictated by the CFL
condition to ensure stability.

In time integration, the linear terms in Eqs. (1–2) are
solved via a (second order, implicit) Crank-Nicolson scheme,
the nonlinear terms are solved via a (second order, explicit)
Adams-Bashforth scheme. When the time step size is up-
dated according to the CFL condition, a second order Runge-
Kutta method is used for the first two time steps before the
Adams-Bashforth scheme takes over.

For easier presentation, we denote byb andv the vectors
of the discrete magnetic fieldb and the velocity fieldv in x:

b ≡
(
b1, b2, · · · , bNx

)T
, v ≡

(
v1, v2, · · · , vNx

)T
. (6)

The solution, or the state of the system (1–2), is defined as

y ≡

[
b

v

]
. (7)

Unless otherwise specified, we denote byyk the state at the
discrete timetk:

yk ≡ y(tk) (8)

in the rest of the paper.

3 Assimilation methodology

Sequential assimilation techniques (Cohn, 1997) are a class
of Bayesian methods in which a model run is used to produce
a forecast (or prediction) of the state of a system. The fore-
cast is combined with observations made at the same time in
order to produce a more accurate estimate of the state, called
the analysis, which in turn is used as the initial condition for
a new forecast run. These methods require estimates of both
the forecast and observation errors, from which an estimate
of the analysis error can be made. The state of the system
generally includes one or more spatial dimensions, and the
errors are usually spatially correlated. Thus the errors in a

discretized model are represented by an error covariance ma-
trix. An optimal interpolation (OI) algorithm assumes that
the forecast error covariance is fixed in time, and the relative
weighting of the forecast and observations is determined by
minimizing the analysis error.

The Kalman filter (Kalman, 1960) allows the evolution of
the forecast error covariance in time using a tangent linear
model (TLM). It is, however, generally intractable for large
scale problems because of its excessive computational and
storage requirements. The ensemble Kalman filter (enKF)
has been proposed (Evensen, 1994) as an alternative to the
Kalman filter which can better handle non-linearity and re-
duce the computational cost of evolving error covariances.
Yet even this approach is computationally prohibitive for ge-
omagnetic data assimilation, which can require a system with
8LMN degrees of freedom (L is the maximum degree and
M is the maximum order in spherical harmonic expansion,
andN is the number of grid points in radius) and as many
as 106 time-steps (for a moderate truncationLMN=403) to
reach 0.1 magnetic diffusive timeτη (τη≈200 000 years for
the Earth’s core). For this reason we use a “frozen” fore-
cast error covariance approximation, where the covariance is
generated once using the ensemble approach.Miller et al.
(1999) used an extended Kalman filter to demonstrate how
properly constructed error covariances could be used to make
corrections to an unobserved variable in a non-linear system.
Borovikov et al.(2005) showed that a fixed multi-variate er-
ror covariance constructed from an ensemble of perturbed
model runs can provide useful covariance information, par-
ticularly in regards to cross correlations between different
state variables. Because changes in the Earth’s core occur
on very long timescales, the frozen covariance approxima-
tion may be a good approximation over the assimilation pe-
riods, which will never be more than a few hundred to a few
thousand years, depending on what data sets are used.

3.1 Ensemble calculation of a multivariate error covariance

An ensemble ofNens=100 model runs with perturbed initial
states have been carried out, each lasting 2 time units. Denot-
ing byyn (n=1, 2, · · · , Nens) the thenth-simulation solution
of the ensemble, the forecast error covariance matrix is then
calculated as

P∗
=

〈[
(b − µb)/σb

(v − µv)/σv

] [
(b − µb)/σb

(v − µv)/σv

]T
〉

, (9)

whereµ andσ are the mean and the midpoint (i.e. at the grid
point j=Nx/2) standard deviation of the variables over the
ensemble,

µb = 〈b〉 , µv = 〈v〉 ,

σb =

√〈
bNx/2 − µ(b,Nx/2)

〉
, σv =

√〈
vNx/2 − µ(v,Nx/2)

〉
.

Equation (9) implies that the covariance matrix is scaled by
the standard deviation. Similarly, we consider also the scaled
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solution

ys ≡

[
b/σb

v/σv

]
(10)

in the analysis.
The error covariance, shown in Fig.1a, can be understood

by dividing it up into blocks (sub-matrices),

P∗
=

[
bbT bvT

vbT vvT

]
=

[
A B
C D

]
, (11)

which indicates the regions of cross correlation betweenb

andv. While thebvT (or vbT ) covariance is smaller (and
negative), it is still significant and indicates that observations
of the magnetic field alone should have some impact on the
velocity field. The small size of the ensemble (100 members
vs. the 800 degrees of freedom for the model) implies that
the covariance between two points that are far apart will be
mostly non-physical. The covariances should therefore be
truncated at large distances, and we use a piecewise continu-
ous function (Gaspari and Cohn, 1999).

C0(z,
1

2
, c) = (12)

−
1
4

(
|z|
c
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+
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2

(
|z|
c
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+
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8
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|z|
c

)3
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5
3

(
|z|
c

)2
+ 1, 0 ≤ |z| ≤ c,

1
12

(
|z|
c

)5
−

1
2

(
|z|
c

)4
+

5
8

(
|z|
c

)3

+
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(
|z|
c

)2
− 5

(
|z|
c

)
+ 4 −

2
3

(
|z|
c

)−1
, c ≤ |z| ≤ 2c,

0, 2c ≤ |z|.

(13)

to smooth theP∗, where C0(z,
1
2, c) is a homogeneous

and isotropic correlation function. For each index couple
(j, k) in the matricesA, B, C, D, its grid point distance is
zjk=|xj−xk|. Then we compute the smoothingP∗ by multi-
plying each item withC0(zjk,

1
2, c), given a constantc (c=1

in these experiments). From this we obtain the truncated co-
variance matrixPf , which can be seen in Fig.1b.

As was shown byGaspari and Cohn(1999), Pf is an ap-
proximation ofP∗ within the space limited byC0. Covari-
ances at distances longer than the correlation length scale are
set to zero. Removal of longer correlation at larger distances,
shown in Fig.1b, effectively shortens the length scales while
retaining the cross-covariances needed for multivariate as-
similation. These cross-covariances are the couplings be-
tween the magnetic fieldb and the velocityv that indicate
how much an unobserved variable should be corrected, given
a difference between the forecast and observation (O−F ) in
the observed variable. We will analyze the importance of this
part of the error covariance by carrying out the assimilation
with and without the cross covariance part of thePf matrix
in the results section.

3.2 The sequential assimilation algorithm

The sequential assimilation algorithm used here follows the
standard optimal interpolation scheme, using the forecast er-

ror covariance calculated in the previous section. At assim-
ilation times, current observations are incorporated into the
analysis, which in turn becomes the initial state for the next
forecast step.

As in other data assimilation literature, in the rest of the
manuscript we use the superscripts “o” for observations, “t”
for truth, “f ” for forecasts, and “a” for analysis. We also
denote byε the errors to the statey:

ε ≡ [εb, εv]T , (14)

whereεb andεv are the errors for the magnetic fieldb and
the velocity fieldv, respectively.

Numerical experiments are set up using the sequential al-
gorithm by defining an initial true stateyt

0 which differs from

the initial forecastyf

0 by an unbiased Gaussian distributed
initial error ε0 at the initial timeto:

y
f

0 = yt
0 + ε0 . (15)

The true and model states evolve from timetk to tk+1 with
the same dynamics (perfect model assumption),

yt
k+1 = Myt

k and y
f

k+1 = My
f
k , (16)

whereM is the matrix arising from the spatial-temporal dis-
cretization of the system (1–2). The forecast error covari-
ance,Pf , is kept fixed in time, so that it represents more of a
temporally averaged covariance rather than an instantaneous
covariance. Since, by Eq. (9), P∗ is scaled with respect to
the midpoint standard deviationsσb andσv, and the scaled
yo

s observations are taken from the scaled true stateyt
s , with

unbiased Gaussian distributed errorsεo
s :

yo
s = Hyt

s + εo
s . (17)

The scaled analysis fieldya
s is then

(ya
s )k = (y

f
s )k + K

[
(yo

s )k − H(y
f
s )k

]
, (18)

whereH is the observation operator which determines which
variables and locations are observed, andK is the optimal
gain matrix

K = Pf HT (HPf HT
+ R)−1. (19)

K is will be optimal under the conditions that all of the er-
rors are Gaussian, white in time and spatially uncorrelated.
It is determined by minimizing the estimated analysis error
in terms ofK and known variables (seeCohn, 1997for de-
tails). The observation error covariance,R, is assumed diag-
onal (uncorrelated observation errors) and the observations
are given Gaussian distributed random errors of 1%.

The unscaled analysis is determined using the standard de-
viations

ya
k = [σb, σv] (ya

s )k . (20)

The unscaled analysis solution is then used as the initial state
for the next forecast. The true and forecast states used in
the next section to calculate ensemble mean RMS errors as a
means to test the algorithm.
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Fig. 1. The normalized forecast error covariance generated from an ensemble of 100 model runs(a), and after truncation using the Gaspari-
Cohn piecewise continuous functions(b). Note that the periodicity in the computational domain results in wrap-around of the covariances
within each sub-matrix.

3.3 Observing system simulations

Observing system simulations have been carried out as fol-
lows: a “true” state, which uses an initial condition from well
developed simulation results (those past the transient period),
the forecast (or background) state from the same initial con-
dition with an added perturbation of known Gaussian statis-
tics that represent initial errors. In these experiments we as-
sume no model error, so the forecast and the true state use
the same numerical model. At any given timetk, the corre-
sponding observation isyo

k plus some Gaussian noiseεo (in
these numerical experiment, we control the noise’s variance
so that about 97% of the noise is less than 0.05% of the mag-
nitude of the true solutionyt

k). We are most interested in
understanding how the assimilation system responds to dif-
ferent observing networks, including the effect of the number
of observations and which of the variables are observed.

In order to approximate the limited nature of geomagnetic
observations, we assume (in all but one case) that observa-
tions of the variables are made only at points much more
sparse than the numerical grid points in space. The goal is to
obtain some insight into the effectiveness of the Monte-Carlo
constructed error covariance on the spread of the observed
information to unobserved locations to and the unobserved
variable. For this purpose, we have constructed the observing
systems which include bothb andv and justb or v. In addi-
tion, we allow the observation locations vary from as many
as all numerical grid points to as little as only two points in
x. Most of the observing systems are run twice, once with
the full Monte-Carlo generated error covariance, and once
with the cross-covariance terms set to zero. This will help
to quantify the impact of the cross-covariance terms on the
non-observed variables.

4 Assimilation results

We have carried out a number of experiments with different
parameter values and observations. In the following cases we
use

q = 0.95, E = 0.01, R = 100,

Case 1: (b, v) with 10 observations;
Case 2.1: v with 10 observations;
Case 2.2: v with 400 observations;
Case 3.1: b with 10 observations;
Case 3.2: b with 2 observations.

The following two experiments demonstrate how the assim-
ilation system responds with different parameter values. In
these cases, ensembles of model runs with the appropriate
parameter values must be run in order to generate new fore-
cast error covariances.

Case 4.1: q=0.1, E=0.01, R=100b with 10 observations;
Case 4.2: q=0.95, E=0.01, R=10 b with 10 observations;

In all cases the observing networks are uniformly distributed.
In order to obtain meaningful statistics, a set ofNex=20
identical twin experiments are carried out for each observing
system. The solution to Eqs. (1–4) is of the form of coupled
standing waves inb andv, and examples at several different
times are shown in Fig.2 using the parameter values from
Cases 1–3.

We plot the mean RMS difference between the reference
(or true) state and the assimilation state vs. time for each of
the experiments, shown in Figs. 3–7. In each case, the initial
error (or perturbation) is about 3×10−4, and observation are
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Fig. 2. Solutions to the model Eqs. (1–4) at different times, using the parameter values from cases 1–3. These show thatb andv are very
nearly standing waves, with two node points.
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Fig. 3. Case 1, RMS error forb (a) andv (b) when bothb andv are observed, at 10 uniformly spaced locations each. Assimilation is carried
out at t=2,4,6,8. The RMS error for the model run without assimilation is given by the dashed line, and with assimilation is given by the
solid line. Assimilation using a forecast error covarianceP f with the correlation betweenb andv set to zero (univariate) is shown by a
dash-dot line. The full covariance and univariate RMS errors are essentially identically and show a significant reduction from running the
model alone.

assimilated into the system every 2 time units. We calculate
RMS errors forb andv using

RMS(bf
− bt ) =

1

Nex

Nex∑
i=1

[
1

Nx

Nx∑
j=1

(b
f
j − bt

j )
2/σb

]1/2

i

,

(21)

RMS(vf
− vt ) =

1

Nex

Nex∑
i=1

[
1

Nx

Nx∑
j=1

(v
f
j − vt

j )
2/σv

]1/2

i

,

(22)

whereσb andσv are the ensemble standard deviations de-
fined in Sect.3.1 andNx=400. The difference between the
forecast and truth is represented by the ensemble standard
deviation, which gives a consistent normalized error for each
of the two variables. Because there is no model error, a suc-
cessful assimilation should gradually decrease the RMS error
toward zero. In each plot, the RMS error with no assimilation
is given by a dashed line, and the RMS error with assimila-
tion using the full covariance shown in Fig.1b is given by a
solid line. We have also tested the impact of the cross covari-
ances betweenb andv in these assimilations by setting them
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Fig. 4. Case 2.1, RMS error forb (a) andv (b) whenv only is observed at 10 uniformly spaced locations.
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Fig. 5. Case 2.2, RMS error forb (a) andv (b) whenv only is observed at 400 uniformly spaced locations. The RMS error for the model
run without assimilation is given by the dashed line, assimilation with cross covariances is given by the solid line and assimilation without
cross covariances is given by the dash-dot line.

to zero. The RMS error for this case is given by a dash-dot
line.

In case 1 (Fig.3), with each variable observed at 10 lo-
cations the RMS error for the forecast with assimilation de-
creases by nearly 4 orders of magnitude during the course of
the simulation. At each assimilation time there is a notice-
able drop in the RMS errors untilt=8, when the observa-
tion accuracy is reached. There is no significant difference
in the forecast errors when the cross covariance terms are
removed, indicating that the correlation information is not
needed when both magnetic and velocity fields are observed.
It also shows that the correction is dynamically consistent as
it does not produce any significant oscillations.

When onlyv is observed in 10 places (case 2.1, Fig.4), the
assimilation is less successful. For the full covariance (solid
line) there is a significant drop in the RMS error for the ve-
locity field at each analysis time, but rapid error growth re-
turns the error back to the pre-analysis level in a fraction of
one time unit. At the same time the RMS error forb shows
no drop at analysis times, which indicates that the cross co-
variance does not make a consistent correction to the mag-
netic field. The rapid rise in the velocity error is most likely
due to feedback from the magnetic field, which continues
to contain larger errors. With the cross covariance terms in-
cluded, assimilation is actually somewhat worse than the free
running model. Removal of cross covariances improves the
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Fig. 6. Case 3.1, RMS error forb (a) andv (b) whenb only is observed at 10 uniformly spaced locations. The RMS error for the model run
without assimilation is given by the dashed line, assimilation with cross covariance is given by the solid line and assimilation without cross
covariance is given by the dash-dot line.
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Fig. 7. Case 3.2, RMS error forb (a) andv (b) whenb only is observed at 2 uniformly spaced locations. The RMS error for the model run
without assimilation is given by the dashed line, assimilation with cross covariance is given by the solid line and assimilation without cross
covariance is given by the dash-dot line.

assimilation somewhat, which again indicates that the covari-
ance betweenv and b contains little or no information on
how to correct the magnetic field using observations ofv. If
the number ofv observations is increased to 400 (every grid
point), there is no improvement (Fig.5). This implies that
there is some fundamental difference between the roles that
velocity and magnetic field play in the coupled dynamics of
this system.

In contrast, case 3.1 (Fig.6) shows that when onlyb is
observed at 10 (out of 400) points, forecast errors for both
v andb are reduced significantly relative to the free running

model. The importance of the correlation betweenv andb

is seen from the drop in errors when the cross correlation
is included. This indicates that there is additional informa-
tion about the velocity field contained in the magnetic field
observations that can only be obtained through the forecast
error covariance matrix. Notice that the decrease in the RMS
errors is slower than if bothv andb are observed, so there
is indeed information in the velocity field as well. The ve-
locity field is just not useful by itself. The drop in errors
at analysis times are smaller forv than forb, implying that
the frozen covariance information is not perfect. When the
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Fig. 9. Case 4.2,R=10,q=0.95 andE=0.01. RMS error forb (a) andv (b) whenb only is observed at 10 uniformly spaced locations. The
RMS error for the model run without assimilation is given by the dashed line and assimilation with cross covariance is given by the solid
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number of magnetic field observations is decreased to 2 (case
3.2, Fig.7), the rate of decrease in RMS error slows further,
but the improvement due to the cross covariance term is still
apparent by the end of the run.

Cases 4.1–2, (Figs.8–9) which have the same observing
network as case 3.1, show a much less dramatic drop in RMS
error due to the assimilation of magnetic observations. This
difference is particularly obvious in case 4.2, where the im-
provement is very small with only about a 10% error reduc-
tion. This could arise from several factors, including the rela-

tive importance of the coupling terms in Eqs. (1), (2) and the
difference between the true state oscillation frequency and
the analysis frequency.

In order to better understand these assimilation results, we
have plotted the analysis errors at timet=10 for the ensem-
ble mean for cases 2.1 and 3.1. Figures10a, b show the
analysis error when the cross covariance terms are retained.
For bothb andv, observingb results in smaller analysis er-
rors. When the cross covariances are eliminated, the errors
for v are reduced when observingv. This means that the
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Fig. 10. Ensemble mean error at the final time with cross covariance(a) ba
−bt , (b) va

−vt and without cross covariance(c) ba
−bt , (d)

va
−vt with 10 observations ofb (solid lines) or 10 observations ofv (dash-dot line). When cross covariance is retained, observingb

estimates bothb andv more accurately. When the cross covariance is eliminated, observingv estimatesv more accurately, butb is estimated
less accurately.

cross covariance terms actually degrade the analysis ofv.
This cannot be caused directly by the coupling because there
are no magnetic field observations. Rather, the analysis of
the magnetic field that results is not dynamically consistent,
causing more rapid growth in errors in bothv andb.

To understand the poor error reduction in Case 4.2, we
examined the relative importance of various terms in the sys-
tem Eqs. (1) and (2) and the ocillatory frequency of the true
state. Analysis of the balances in Case 4.2 shows that they
are similar to the other cases. For example, in the the ve-
locity Eq. (2), the two dominant terms are the velocity time
derivative and the Lorenz force, while the other terms are two
orders of magnitude smaller. This dominance holds in all of

the cases, though in Case 4.2, the relative importance of the
advection term rises by an order of magnitude. A more sig-
nificant difference occurs in the frequency of oscillation of
the true state compared to the analysis frequency. These are
nearly identical in Case 4.2, which likely results in a sam-
pling error and most of the dynamics of the system being
missed by the observations.

5 Discussion

We have carried out a series of assimilation experiments us-
ing a coupled system of nonlinear, one dimensional equa-
tions. A sequential data assimilation system was constructed
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using a frozen error covariance matrix constructed from an
ensemble of model runs. Observation system experiments
were set up using the same model for the true and fore-
cast fields, differing only by an initial error (perfect model).
Observation information is passed throughout the space and
across fields by both advection and the error covariance.

A series of experiments were carried out with different
numbers of observations. At each assimilation time, the dif-
ference between the observed and forecast magnetic field
values (O−F ) are spread to neighboring grid points via the
gain matrixK , which depends on the error covariancePf .
At the same time a correction is made to the unobserved field
through the gain matrix and the cross covariance terms inPf .
In addition, more distant parts of the domain are eventually
affected by the assimilation by the velocity field, which ad-
vects information from the magnetic observations.

These experiments show that systematic reductions in
the difference between the true and forecast fields can be
achieved with as few as 2 magnetic observation locations
(0.5% of the domain). We have demonstrated that this im-
provement is achieved, in part, through the cross covariance
terms inPf . By contrast, observing the velocity alone at ev-
ery grid point ultimately does not succeed at reducing this
difference, with or without the cross covariance terms. If
both velocity and magnetic fields are observed, the errors are
reduced quickly to the order of the observation errors. We
also see that there is less error reduction (Case 4.2) whenR

is reduced orq is increased. A direct consequence of these
parameter changes is the variation of the typical time peri-
ods of the oscillations. This, coupled with the fixed analysis
period for all experiments, affects the error reduction in the
forecast. Case 4.2, where the analysis and oscillation fre-
quency are nearly equal, shows the poorest performance.

Several questions arise from these experiments. Why can
just two magnetic observations improve the state of the sys-
tem, but a complete field of velocity measurements cannot?
How might these results impact assimilation in a full geody-
namo model? One reason that this transport of information
only works fromb tov is because the driving force of the sys-
tem,Rb directly controls the time variation ofv in Eq. (1).
As long asb is not identically zero,Rb will act to offset
fluid viscosity to maintain the advection. The magnetic field
b changes also from this advection. In other words, in the
simplified system,b is more active, whilev is more passive.
From this point of view, constrainingb from the observation
can be much more significant than constrainingv.

The results from this simplified system are useful for ge-
omagnetic data assimilation for several reasons. First, the
Lorentz force in the Earth’s core is very important in deter-
mining the core flow. The geodynamo is believed to be a
strong field dynamo in which, aside from geostrophic flow,
the Lorentz force is comparable to the Coriolis force, and
to the buoyancy force in the bulk of the outer core (often
called the magnetostrophic balance). This balance deter-
mines the behavior of the Magnetic-Coriolis (MC) and/or

Magnetic-Archimedian-Coriolis (MAC) waves in the core on
timescales of hundreds of years and longer (Braginsky, 1967,
Braginsky, 1980). On the other hand, the zonal component of
the Lorenz force integrated over cylindrical surfaces co-axial
to the Earth’s axis (Taylor’s cylinders) balances fluid iner-
tial forces to leading order, generating torsional oscillations
on decadal time scales (Braginsky, 1976). In other words,
the magnetic field plays a major role in determining various
flow modes in the outer core. From the experiments with
the model system, we can conjecture that observing the mag-
netic field only should constrain the numerical geodynamo
model significantly. Case 4.2 of the experiments also sug-
gests that for successful geomagnetic data assimilation, the
analysis frequency should be substantially different from the
magnetic wave frequencies in the Earth’s outer core.
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