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Abstract. In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain). The
high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of
Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW). A total of 27 simulations
were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical
parameterizations and geometrical factors (size and position of the outer domain, definition or not of nested
grids, horizontal resolution and number of vertical levels). The Factor Separation Method was applied in
order to identify the major model sensitivity parameters under this unusual meteorological situation. Results
associated to percentage changes relatives to a control run simulation demonstrated that boundary layer and
surface layer schemes, horizontal resolutions, hydrostaticity option and nesting grid activation were the model
configuration parameters with the greatest impact on the 48 h maximum 10 m horizontal wind speed solution.

1 Introduction

On 28–29 November 2005 an extratropical storm affected
the Canary Islands (Spain) causing significant damage re-
lated to high sustained wind and intense gusts (Table 1) over
some islands of the archipelago (Fig. 1). The extratropical
storm named Delta was characterized by a warm core around
850 hPa (Beven, 2006; Mart́ın et al., 2006). It represented
an unusual meteorological phenomena for that region, and
its impacts were underestimated by the different operational
meteorological forecasts (Mart́ın et al., 2006). Highly non
linear interaction of the flow with the islands complex topog-
raphy, due to the existence of the warm core at the moun-
tain top level, was the main factor that produced gusts over
160 km/h at La Palma, 90 km/h on the coast in Tenerife, and
over 215 km/h in its mountain top with the development of
strong downslope winds (Jorba et al., 2007; Marrero et al.,
2007). Further details can be found in (Jorba et al., 2008).
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Several authors have analyzed the sensitivity of numerical
weather prediction models under extratropical storm situa-
tions, taking into account the impact of the observing system
and the initial conditions (Zou et al., 1998; Zhu and Thorpe,
2006; Froude et al., 2007) and the model uncertainties such
as numerical scheme, horizontal and vertical resolution and
physical parameterizations (Orlanski et al., 1991; Prater and
Evans, 2002; Forbes and Clark, 2003; Jung et al., 2006).
They have found a clear dependence on the predictability of
extratropical cyclones with the initial condition and model
configuration. The main objective of the present work aims
to analyze the sensitivity of the Weather Research & Fore-
casting Model (WRF-ARW v2.1.2 & WRF Standard Initial-
ization preprocessor) (Michalakes et al., 2004; Skamarock
et al., 2005) modelling the extratropical storm Delta (NHC,
2006) in its fast evolving extratropical transition phase in ref-
erence with the surface wind field. We have designed 27
configurations of WRF-ARW to take into account modifi-
cations in domain dimension and location, horizontal reso-
lution, number of vertical levels and physical parameteriza-
tions. These permitted us to survey their impact on the 10
m horizontal wind field. The factor separation method (Stein
and Alpert, 1993; Alpert et al., 1995b) was used to quantify
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Table 1. 10 m maximum wind speed (MWS10m) and gusts
(GS10m) measured by the principal meteorological stations located
in the Canary Islands.

Station name MWS10m GS10m Time UTC
km/h km/h 28 Nov 2005

Hierro airport 67 118 18:00
Tazacorte 31 59 12:30
La Palma airport 104 166 19:00
La Gomera 48 92 16:00
Tenerife North airport 30 70 16:00
S/C de Tenerife 57 132 21:00
Tenerife South airport 87 134 21:40
Izaña 180 218 20:00

Hierro airport

Tazacorte
La Palma airport

La Gomera Tenerife south
airport

Izaña

S/C de Tenerife

Tenerife North
airport

Figure 1. Location of the Canary Islands and the observation
points. Tenerife and La Palma are the islands of the archipelago
with the steepest orography and were the most affected by Delta.

in detail the effect of the variation of these parameters on the
simulated 10 m horizontal wind speed. It is a consistent ap-
proach for calculating the contributions of various physical
processes, as well as their mutual interactions. The method
has been widely used by several authors; for example, see
Alpert and Tsidulko(1994), Alpert et al. (1995a), Alpert
et al. (1996a), Alpert et al. (1996b), Berger(2001), Darby
et al. (2002), Guan and Reuter(1996), Lynn et al. (2001),
Ramis and Romero(1995) andRomero et al.(1997).

2 Methods

2.1 Model setup

To explore the impact of the model configuration in the
wind flow numerical solution we have designed several non-
hydrostatic and hydrostatic experiments taking into account
physical parameterizations and geometrical factors (size and
position of the outer domain, definition or not of nested grids,
horizontal resolution and number of vertical levels).

3 km 10º E3 km 10º E

27

d01:165x120 ; d02:142x109

d03: 250x187

27-9-3 km

d01:165x120 ; d02:142x109

d03: 250x187

27-9-3 km

d01:165x120 ; d02:142x109

d03: 250x187

27-9-3 km

d01:165x120 ; d02:142x109

d03: 250x187

Figure 2. Domain configuration of the Control Run Experiment
designed using the wrfsi preprocessor. The horizontal grid resolu-
tions are 27, 9 and 3 km, with a 31 vertical levels WRF-ETA dis-
tribution. Associated physics are: WSM microphysics, MO-YSU
surface layer and boundary layer, and KF cumulus parameteriza-
tion.

Twelve combinations of physical schemes (Skamarock
et al., 2005) were obtained using 3 microphysics (MP)
schemes: Lin scheme (LIN), WSM 3-class simple ice
(WSM) and Ferrier microphysics (FER); 2 surface-boundary
layer schemes (SL&BL): Monin-Obukhov (MM5 similar-
ity) & YSU (MO-YSU) and Monin-Obukhov (Janjic Eta)
& Mellor-Yamada-Janjic (Eta) TKE (MOJ-MYJ); 2 cumu-
lus options (CU): Kain-Fritsch (KF) and Betts-Miller-Janjic
(BMJ).

Lateral boundary conditions (LBC) are known to provide
a basic limitation to the predictability of local area mod-
els (Warner et al., 1997). Several errors produced on LBC
specification are mainly propagated into the domain at near-
advective speeds by the mean flow, so in order to mini-
mize these effects in our interest area, the mother domain
has been dimensioned considering HYSPLIT (Draxler and
Rolph, 2003) backward trajectories results (not shown) with
the destination centered in the Canary Islands (28◦N 16◦W)
at several levels (0.5, 1, 2, 3, 4, 5, 6, 8 and 10 km) in the 48 h
model simulation run.

The Control Run Experiment (CRE) domain, with two-
way nesting grids of resolution 27, 9 and 3 km (Fig. 2) and a
31 sigma (WRF-Eta) levels configuration scheme (McCaslin
et al., 2004), has been designed in order to optimize compu-
tational costs (most of the simulations were run with this do-
main configuration). The associated physical combination of
the CRE was: WSM microphysics, MO-YSU surface layer
and boundary layer and KF cumulus parameterization.

The 31 sigma levels distribution was interpolated applying
a cubic spline scheme to obtain the 41 and 61 level arrange-
ments. Two cases were run considering variations of the CRE
with these level schemes. Other experiments were built posi-
tioning the mother domain 10◦ S, 10◦ E and 10◦W in relation
to the centered case and reducing it by 25% and 50%.
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Figure 3. Maximum 10 m horizontal wind speed (f ) in km/h for
the 48 h run, results shown for experiment 11 (see Table 3).

Non-nested domain cases were defined with resolutions of
2, 3, 6, 9 and 27 km. Two other experiments using 31 vertical
levels with two-way nesting grids of horizontal resolutions of
18, 6, and 2 km, and 61 levels with resolutions of 27, 9, 3, and
1 km were conducted. The last experiment was run using 27,
9 and 3 km two-way nesting grids with the hydrostatic option
activated. A total of 27 experiments formed a cluster avail-
able to explore the variability of the numerical solution. All
simulations used the 0.25◦ reanalysis of the European Center
for Medium Range Weather Forecasting (ECMWF) as initial
and boundary conditions every six hours. Comparisons of the
model simulations with surface observations have been pre-
sented in previous work (Jorba et al., 2007, 2008; Marrero et
al., 2007).

2.2 Factor separation methodology

To quantify the impact on the 10 m wind solution due to
different configurations of the WRF-ARW model, we have
used the factor separation technique formulated byStein and
Alpert (1993), following the methodology adopted byJankov
et al.(2005). Based on this methodology the contribution of
each factor can be quantified by:

f̂x = fx − f0 (1)

f̂y = fy − f0 (2)

f̂xy = fxy − ( fx + fy) + f0 (3)

where f0 represents the CRE output for the chosen variable
(in our case the maximum grid point 10 m horizontal wind

Table 2. Configuration parameter options defined in the 27 experi-
ments.

Configuration parameter Notation

Microphysics options MP
Lin. scheme LIN
WSM 3-class simple ice WSM
Ferrier microphysics FER

Surface-Layer & Boundary-Layer Options SL&BL
Monin-Obukhov & YSU Scheme MO-YSU
Monin-Obukhov (Janjic Eta) & MOJ-MYJ
Mellor-Yamada-Janjic (Eta) TKE

Cumulus options CU
Kain-Fritsch KF
Betts-Miller-Janjic BMJ

Inner grid resolution GR
27, 9, 6, 3, 2
or 1 km

Nesting two-way activation NA
Yes or No

Number of WRF-ETA scheme vertical levels NL
31, 41 or 61

Percentage of mother grid reduction PGR
25% or 50%

Position of mother grid PMG
Centered, 10E,
10W or 10S

Hydrostaticity HY
Yes or No

speed in the 48 h run (Fig. 3)),fx represents the maximum
10 m wind speed produced by a run that has one of the con-
figuration parameters of the model changed,fy the maximum
wind speed obtained when another parameter is changed and
fxy obtained when the two parameters are changed simulta-
neously. f̂xy stands for a synergistic term reflecting the non-
linear interaction between the two different configuration pa-
rameters. Notation presented in Table 2 will be used to iden-
tify the different model configurations used with this method-
ology.

3 Results

A total of 24 configurations have been compared against the
CRE (synergism among three different processes were not
considered), with italic and bold letters in Table 3 identify-
ing the options that were varied. Nonlinear interactions were
calculated in cases 5, 6, 7, 8 and 9. In experiments 11, 20,
22, 23 and 24 only the factorfxy was determined. Percentage
changes for every grid point were plotted in order to measure
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Table 3. Configuration details of experiments compared against the Control Run Experiment (CRE). Italic and bold letters indicate the
parameters (notation defined in Table 2) that have been varied in each experiment.

Experiment Configuration Parameter
MP SL&BL CU GR NA NL PGR PMG HY

CRE WSM MO-YSU KF 3 Y 31 0 C N
EXP.1 WSM MO-YSU BMJ 3 Y 31 0 C N
EXP.2 WSM MOJ-MYJ KF 3 Y 31 0 C N
EXP.3 LIN MO-YSU KF 3 Y 31 0 C N
EXP.4 FER MO-YSU KF 3 Y 31 0 C N
EXP.5 WSM MOJ-MYJ BMJ 3 Y 31 0 C N
EXP.6 LIN MOJ-MYJ KF 3 Y 31 0 C N
EXP.7 FER MOJ-MYJ KF 3 Y 31 0 C N
EXP.8 LIN MO-YSU BMJ 3 Y 31 0 C N
EXP.9 FER MO-YSU BMJ 3 Y 31 0 C N

EXP.10 WSM MO-YSU KF 2 Y 31 0 C N
EXP.11 WSM MO-YSU KF 1 Y 61 0 C N
EXP.12 WSM MO-YSU KF 3 Y 41 0 C N
EXP.13 WSM MO-YSU KF 3 Y 61 0 C N
EXP.14 WSM MO-YSU KF 3 Y 31 25 C N
EXP.15 WSM MO-YSU KF 3 Y 31 50 C N
EXP.16 WSM MO-YSU KF 3 Y 31 0 E N
EXP.17 WSM MO-YSU KF 3 Y 31 0 W N
EXP.18 WSM MO-YSU KF 3 Y 31 0 S N
EXP.19 WSM MO-YSU KF 3 Y 31 0 C Y
EXP.20 WSM MO-YSU KF 2 N 31 0 C N
EXP.21 WSM MO-YSU KF 3 N 31 0 C N
EXP.22 WSM MO-YSU KF 6 N 31 0 C N
EXP.23 WSM MO-YSU KF 9 N 31 0 C N
EXP.24 WSM MO-YSU KF 27 N 31 0 C N

the magnitude of the variation in a common domain of 3 km
resolution. This percentage change was calculated as

f̂x

f0
x100,

f̂y
f0

x100 or
f̂xy

f0
x100 (4)

Histogram diagrams for every experiment showing the
number of grid points per percentage change class in a lim-
ited area around La Palma and Tenerife (Fig. 4) were added
to summarize this information. Maximum, minimum, mean
(x̄), standard deviation (s) and skewness (γ3) values are
shown in Table 4, where

x̄ =
1
n

n∑
i=1

xi , (5)

s=

√√
1
n

n∑
i=1

(xi − x̄)2 and (6)

γ3 =

∑n
i=1(xi − x̄)3/n

s3
(7)

are the mathematical definition of the statistics, and
x1, x2, · · ·, xn are then grid point values of percentage change
used in their calculation.

Figure 4. Areas of La Palma and Tenerife selected for statistical
analysis.

Only the most relevant graphics and histograms are pre-
sented in Fig. 5 (ordered from a) to h) experiments 1, 6, 19,
24, 21, 20, 11 and 2). A shift to negative values are shown in
figures a) to d). In contrast, positive increments in maximum
velocities are presented in figures e) to h).

Adv. Sci. Res., 2, 151–157, 2008 www.adv-sci-res.net/2/151/2008/



C. Marrero et al.: Sensitivity study of surface wind flow of a limited area model 155

c)

a)

b)

d)

e)

f)

g)

h)

changed toCU BMJ

MP SL&BL to MOJ-MYJchanged to andLIN

HY changed to Y

GR NAand Nchanged to to27

NA changed to N

GR NAand Nchanged to to2

GR NLand to 61changed to 1

SL&BL changed to MOJ-MYJ

Figure 5. Percentage changes relatives to the Control Run Experiment. Histograms present data from La Palma and Tenerife areas and their
statistics: maximum, minimum, mean (x), standard deviation (s) and skewness (γ3). Ordered from a) to h) experiments 1, 6, 19, 24, 21, 20,
11 and 2 are shown. The title of each histogram indicates the model options that were changed using the acronyms defined in Table 2.

4 Discussion and conclusions

The study of the results shows that most of the modifications
of the model parameters had a moderate to strong impact in
the 10 m maximum wind speed solution (see Table 4). The
greatest positive variations were associated with modifica-
tions of the BL&SL parameterization, increase in horizontal
resolution and size domain diminishing without nesting. The
largest negative changes were due to the nonlinear interaction
between MP and BL&SL in the case of L and MOJ-MYJ, de-

crease in horizontal resolution and to the hydrostaticity ac-
tivation. Neither increasing the number of levels to 41 or
61 nor changes in cumulus parameterization showed a sig-
nificant variation. Size mother domain reduction, with two-
way nesting grids activated, had a minor impact in the posi-
tion of the storm modifying slightly the pattern of stagnation
areas and the position of the maximum winds. The hydro-
static case showed a systematic diminishing of the maximum
wind speed on the leeside locations. Symmetric histograms
in experiments 4, 7 and 8 demonstrated an spatial shift in
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Table 4. Statistics of percentage changes (%) relatives to the CRE
associated to La Palma and Tenerife area values defined in Fig. 4.
The 25% of the highest values are marked in red, and the 25% of
the lowest in blue for every statistic.

Experiment Statistics
Max. Min. x̄ s γ3

EXP.1 23.7 −16.6 0.3 4.7 0.9
EXP.2 105.1 −21.3 17.4 25.8 1.0
EXP.3 43.5 −17.8 2.9 4.9 1.5
EXP.4 31.5 −44.3 −4.4 8.9 0.0
EXP.5 26.7 −39.0 −3.9 8.3 −0.4
EXP.6 45.2 −72.0 −3.8 10.2 −1.2
EXP.7 44.3 −38.4 1.6 10.0 −0.2
EXP.8 28.2 −39.2 −0.4 5.4 0.2
EXP.9 21.6 −30.5 −0.7 7.2 −0.3

EXP.10 39.0 −15.9 3.3 6.6 0.9
EXP.11 92.6 −43.8 3.7 14.3 1.0
EXP.12 41.3 −12.9 1.9 5.9 1.8
EXP.13 40.7 −13.8 2.3 6.0 1.2
EXP.14 83.6 −34.2 1.2 10.4 4.9
EXP.15 38.9 −28.2 0.4 7.3 1.1
EXP.16 60.2 −38.0 2.2 10.0 0.9
EXP.17 42.6 −18.4 1.0 5.0 2.0
EXP.18 41.8 −22.6 1.1 7.7 0.4
EXP.19 30.7 −47.6 0.3 11.8 −0.3
EXP.20 83.4 −19.1 11.5 14.0 1.2
EXP.21 84.7 −18.8 10.3 13.5 1.1
EXP.22 50.6 −37.2 −2.4 14.0 0.6
EXP.23 74.7 −42.5 −6.8 17.4 0.9
EXP.24 111.8 −47.5 −15.1 22.8 1.9

the positions of the wave pattern associated to the maximum
winds. Percentage change graphics depict wavelike features
associated to the capability of the model to reproduce the
amplitude and spatial phase of the mountain wave structures.
Strong hydraulic jumps on the leeside of Tenerife and La
Palma are emphasized by some of the configurations (exper-
iments 11, 20 and 21) or minimized by others (experiments
22, 23, 24 and 19). These variations are related to resolution,
nesting capability and hydrostaticity.

To conclude, taking into account that further meteorologi-
cal cases should be simulated to confirm these results, it ap-
pears that if an ensemble for 10 m wind speed were to be
designed, model runs with different BL&SL schemes, hor-
izontal resolutions, hydrostaticity options and nested grids
activations should be included as an efficient way to increase
the spread. Future work will focus on the use of these results
to test an experimental ensemble system to forecast wind
speeds at 10 m.
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