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Equation of Motion and Determining the Vibration 
Mode Shapes of a Rectangular Thin Plate Simply 
Supported on Contour Using MATLAB 

This paper presents the differential biharmonic equation of thin plates 
through which, the vibration mode shapes for a rectangular thin plate 
simply supported on contour were obtained. Also, the first four vibra-
tion mode and the first four natural frequencies of this rectangular thin 
plate of steel, were obtained. Using MATLAB software, the vibration 
mode shapes were graphically represented. 
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1. Introduction 

Various construction contain in their structure, plates of various shapes and 
sizes which means that plates have a great importance in mechanical engineering.  
In the study of plates, there are two well-known manners of scientific approach:  

A. The first approach is based on the development in a series of the functions 
of stress and strain, on the Z coordinate, as we know it from Cauchy. By 
keeping a minimum possible number of terms into these series, Sophie-
Germaine equation was obtained [1]. Using this approach, Navier solved 
the problems of bending and stability for a rectangular plate with all edges 
simply supported. The analysis of plate behavior in general, was made by 
Poisson, who introduced a further condition for imposing the boundary 
conditions on contour. 

B. The second approach that led to a technical theory of plates is owed to 
Kirchhoff. He introduced the hypothesis of the straight normal. The 
Mindlin-Reissner theory generalizes Kirchhoff theory, which can obviously 
be applied to plates of any thickness [2], [3]. 

In the present paper, for the study of plane plates, in accordance with [4], 
[5], [6], the following hypotheses are used:  
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a. the plate is made of a continuous, homogeneous and isotropic material; 
b. for moderate loads, the plate is elastic and Hooke law applies; 
c. the deformations are negligible compared to the unit; 
d. the displacements are small compared to the thickness of the plate and 

the equilibrium can be written on the undeformed shape; 
e. when the plate is deformed, there are no linear deformations and 

displacements on the mid-surface. 
 

 
2. Formulation of problem and equation of motion 

It is consider a homogeneous and isotropic plate of a constant thickness h, 
with a uniformly distributed mass and subjected to loads in the direction normal to 
its plane, with the mid-surface in the XOY plane. The deformed shape of the mid-
surface Z(x,y) satisfies the Sophie-Germaine differential biharmonic equation of the 
plane plate with a constant thickness as follows [5], [7], [8], [9], [10]: 
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 is the bending rigidity of the plate, Z=Z(x,y) is the mid-surface 

displacement of the plate on the normal direction, h is the thickness of the plate 
andυ  is the Poisson coefficient. 

When the plate undergoes vibrations on the Z direction, the ),,( tyxW  dis-
placements are added to the static arrows Z(x,y), whereas the momentum per sur-

face unit 
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∂ρ−  and the perturbation forces ),,( tyxp0 are added to the static 

load.  
These displacements verify the differential equation of the 4th order: 
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where: 

D

h24 ⋅ρω=λ . (2’) 

 
In the case of a rectangular plate simply supported on two parallel edges: x=0 

and x=a, the function ),( yxZmn has the form: 
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where: *Nn ∈ . 
If the plate is simply supported on the edges: x=0 and x=a, the arrow and 

the bending moment parallel to the edge are zero and satisfy in this case the limit 
conditions [5], [7-10]: 
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Introducing the function (3) in the differential equation of the 4th order (2), it 

is obtain for the function )(yYm a linear differential equation of the 4th order with 
constant coefficients: 
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From the characteristic equation: 
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it is obtain the solution: 
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Using the notations: 
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the solutions as the following form are obtained: 22r β= , with β±=21r ,  and 22r α= , 

with α±= ir 43, , because: 
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The general solution to the differential equation (6) is a function of the follow-
ing form: 
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The constants 4321 CCCC ,,, are determined from the boundary conditions 
that have to be satisfied on the other two edges parallel to the OX axis.  

If the plate is simply supported on the edges: y=0 and y=b, for which the ar-
rows and the bending moment parallel to the edge are null, the boundary condi-
tions are:  

 
0bY0Y0bxZ0xZ mm ==⇒== )()(),(),(  (11) 

  

.0
y

Z

x

Z

by
0y

2

2

2

2

=














∂
∂+

∂
∂

=
=

 (12) 

 
Plugging this condition into (3) and using the Euler relations, it will be:  
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Then: 
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this means that the boundary conditions are satisfied. 

Introducing the conditions (11) and (14) into the equation (10), the linear 
homogeneous system with the unknowns 4321 CCCC ,,,  can be obtained: 
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We get the constants 4321 CCCC ,,,  from the boundary conditions that have to 

be satisfied on the other two edges, parallel to OX axis.  
If, having the conditions that the system (15) also admits solutions other than 

the banal solution, the vibration mode equation can be obtained: 
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By solving the vibration mode equation (16) it can be obtained: 

 
.)sin()()( 0bbshi4222 =⋅α⋅⋅β⋅⋅β+α  (17) 

 
From the (17) equation it can see that: 
 

( ) 0b =⋅αsin , which means that: 
*, Nmmbm ∈π⋅=⋅α  and: .0=β  

(18) 

 
From the expression (18) can be observed that for every natural different 

from zero value of m, there is a infinity of values of the bmβ argument, so: 
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Introducing the value of 2

mα  into (9), according to [5], [7], [8], [9], [10], the 
characteristic equation of the form can be obtained: 
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Put (2’) into (20), the natural pulsation of motion that has the form can be ob-

tained: 
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From (21) it can notice that there is a double infinity of natural pulsations with 

which the plate can perform free harmonic vibrations.  
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For the integration constants 4321 CCCC ,,,  results that 0CCC 321 ===  
and 0C4 ≠ . Then the solution to the differential equation (6) has the form:  
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and the functions of  movement Zmn(x,y) have the form: 
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than 1C4 = , because the values are normalized. 

Once determined the self pulsations and the self functions, it can be write the 
expression of displacement in vibration in a self mode: 
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and the resulting motion is expressed as a superposition of modes: 
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The fundamental node of vibration of the rectangular plate corresponds to the 

values m=1 and n=1, being characterized by the self pulsation 11ω and by the self 

form 11Z , expressed by the particular relations:  
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3. Simulation and the numerical results obtained 

For a rectangular plate made of steel with the edges a=1000 mm and b=500 

mm, with the Young module: 11102,1E ⋅= N/m2, the Poisson coefficient 30,=υ  

and the density 7850=ρ  kg/m3, though Microsoft Excel with the equation:  
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the first four vibration mode and natural frequencies are calculated in table 1, cal-
culated values according with [11], where n şi m are mode numbers: 
 

Table 1. 

Angular frequency [rad/s] Natural frequencies [Hz] 
n 

m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4 

1 149.607 239.372 388.979 598.43 23.822 38.116 61.939 95.291 

2 508.665 598.43 748.037 957.487 80.997 95.291 119.114 152.466 

3 1107.09 1196.86 1346.47 1555.92 176.288 190.582 214.406 247.758 

4 1944.9 2034.66 2184.27 2393.72 309.697 323.990 347.813 381.165 

 
With MATLAB [12], it was determined their vibration mode shapes for the rec-

tangular plate simply supported on the edges, mode shape presented in Figures 1 
÷ 16, Where it was used the step of 0,005 and the relationship: 
 

( ) .sinsin,
b

ym

a

xn
CyxZ 4mn

⋅π⋅⋅π⋅=  (28) 

 

 
Figure 1. Vibration mode shapes, with n=1 and 

m=1. 
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Figure 2. Vibration mode shapes, with n=2 and m=2. 

 

 
Figure 3. Vibration mode shapes, with n=3 and m=3. 

 

 
Figure 4. Vibration mode shapes, with n=4 and m=4. 
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Fig. 5 Vibration mode, with n=1 and m=2. Fig. 6 Vibration mode, with n=2 and m=1. 
  

  
Fig. 7 Vibration mode, with n=1 and m=3. Fig. 8 Vibration mode, with n=3 and m=1. 

  

  
Fig. 9 Vibration mode, with n=1 and m=4. Fig. 10 Vibration mode, with n=4 and m=1. 
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Fig. 11 Vibration mode, with n=2 and m=3. Fig. 12 Vibration mode, with n=3 and m=2. 

  

  
Fig. 13 Vibration mode, with n=2 and m=4. Fig. 14 Vibration mode, with n=4 and m=2. 

  

  
Fig. 15 Vibration mode, with n=3 and m=4. Fig. 16 Vibration mode, with n=4 and m=3. 
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4. Conclusion 

The following conclusions can be made: 
• it is observed from the mathematical model that the solution of the Y 
direction, can be achieved only if the solution of the characteristic equation 
is complex; 
• in Table 1 and 2, it can be observed that the fundamental vibration 
mode, has the lowest value of their mode shapes, respectively the 
fundamental natural frequencies has the lower of their calculated natural 
frequencies; 
• in Figures 2÷16, it is observed that the vibration mode shapes of the  
rectangular plate are damped harmonic, periodic harmonic and with 
sudden variations; 
• the results can be used to validate finite element models. 
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