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Abstract. In ocean general circulation models, near-surfacel Introduction
atmospheric variables used to specify the atmospheric

boundary condition remain one of the main sources of errorNear-surface variables from atmospheric reanalyses (air tem-
The objective of this research is to constrain the surface forcperature and humidity, wind speed, downward radiation and
ing function of an ocean model by sea surface temperaturgyrecipitation) are commonly used to specify surface bound-
(SST) data assimilation. For that purpose, a set of correctiongry condition in ocean general circulation models (hereafter
for ERAinterim (hereafter ERAl) reanalySiS datais eStimatEdOGCMs) required for Operationa| forecasts, ocean reanal-
for the period of 1989-2007, using a sequential assimilationyses, or hindcast simulations of the recent ocean variabil-
method, with ensemble experiments to evaluate the impact oy (the last 50yr). However, these atmospheric variables
uncertain atmospheric forcing on the ocean state. The contradre characterized by significant uncertainties at global scale
vector of the assimilation method is extended to atmospherigs shown in different studies, such Mdliff et al. (1999,
variables to obtain monthly mean parameter corrections by\ang and McPhade2001), Smith et al(2007) or Sun et al.
assimilating monthly SST and sea surface salinity (SSS) cli42003. For example, the use of two different databases (e.g.
matological data in a low resolution global configuration of from numerical weather prediction centers like ECMWF or
the NEMO model. In this context, the careful determination NCEP) to Compute the mean ocean_atmosphere net heat flux
of the prior probability distribution of the parameters is an can lead to discrepancies on the order of at least 100&/ m
important matter. This paper demonstrates the importance afyhjle the signal of a global warming of the world ocean cor-
isolating the impact of forcing errors in the model to perform responds to a value of 0.5 WTh (Josey 2011). It is there-
relevant ensemble experiments. fore important to reduce the atmospheric variables uncertain-
The results obtained for every month of the period betweentes in order to obtain better agreement between the models
1989 and 2007 show that the estimated parameters produgghd the real ocean. Sea surface temperature (SST) is more
the same kind of impact on the SST as the analySiS itself. Th%ccurateb/ observed from space than most near-surface at-
objective is then to evaluate the long-term time series of themospheric variables or air-sea fluxes assimilated in atmo-
forcing parameters focusing on trends and mean error corspheric models to construct the reanalyses. Although SST is
rections of air-sea fluxes. Our corrections tend to equilibratqsed as boundary conditions in these atmospheric models,
the net heat-flux balance at the global scale (highly positiveiarge errors remain in the produced surface atmospheric pa-
in ERAI database), and to remove the potentially unrealis-rameters due to bulk formulae and radiative transfers model
tic negative trend (leading to ocean cooling) in the ERAI netyncertainties. In OGCMs, observed values of SST (intrinsi-
heat flux over the whole time period. More specifically in the cally linked to air—sea exchanges) are not used in the surface
intertropical band, we reduce the warm bias of ERAi dataforcing except when explicitly assimilated. In brief, models
by mostly modifying the latent heat flux by wind speed in- do not benefit, in their forcing, from one of the best observed
tensification. Consistently, when used to force the model, theycean surface variables.
corrected parameters lead to a better agreement between thepne of the approaches to incorporate SST information
mean SST produced by the model and mean SST observanto ocean simulations consists in assimilating observed SST
tions over the period of 1989-2007 in the intertropical band. products to correct the model state. This method can lead
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however to some inconsistency between the “assimilated’suggest that the other sources of model errors (due to the
solution of the model and the “forced” one, and to the re- coarse resolution or to the initial condition for example) can
jection of the information contained in the SST. Since atmo-lead to unrealistic forcing parameters corrections and must
spheric forcing and particularly atmospheric variables are arbe considered very carefully. In particular, they point out the
important source of surface errors, an alternative is to usémportance of a proper determination of the prior probability
SST data assimilation to constrain the surface atmospheridistribution of forcing parameters and of their associated er-
input variables of the atmospheric reanalyses. The aim is t@or covariance matrix to obtain good parameters estimation.
correct the source of errors and not the consequence. An iniFhese results are thus an appropriate starting point for further
provement of fluxes estimation is crucial to perform realis- developments of this approach, investigating its feasibility in
tic ocean simulations and can also help improving the atmo-a more realistic context. In this case the sources of errors are
spheric reanalyses since their atmospheric state estimatiomore diverse and require particular attention.
could benefit from the link with the ocean dynamics via the The purpose of this research is thus to constrain (within
ocean model. Moreover, this approach proposes an alternabservation-based air-sea flux uncertainties) the surface
tive to other corrections of atmospheric forcing realized fol- forcing function of an ocean model (i.e. surface atmo-
lowing ad hoc considerations (elgarge and Yeage2004 spheric input variables from atmospheric reanalyses) by us-
Brodeau et a).2010. ing a methodology based on advanced statistical assimila-
This idea has been explored in previous studies using twdion methods (ensemble Kalman filter) to take into account
different types of data assimilation schemes. On the oneSST satellite observations. In other words, the objective of
hand,Stammer et al(2004 used a four-dimensional varia- this work is to take advantage of an ocean model to correct
tional data assimilation scheme by including air—sea fluxes imear-surface atmospheric variables, and to ensure their con-
the control vector. Over a ten-year period, they assimilated asistency with ocean surface dynamics. With respect to the
large variety of oceanic observations, computed air—sea flustudies briefly described before, this work presents the orig-
corrections, and carried out an important validation effort toinality to be carried out for longer timescales, and with real
compare the corrected fluxes to other independent estimateSST observations assimilated in realistic global ocean model
This pioneering work was the first to demonstration that it is simulations.
possible to make estimates of the atmospheric forcing fields In the present paper, we take one step further than the past
by ocean data assimilation in a realistic case, even if the auidealized studies to estimate a set of corrections for the at-
thors also show that the forcing correction may sometimesnospheric input data from the ERAinterim (ERAI hereafter,
compensate for other errors in the ocean model. On the othdbee et al. 2011) reanalysis for the period of 1989-2007.
hand, fluxes corrections can also be computed using seque®cean modeling can be used to answer a number of particular
tial assimilation methods. These methods are widely usedjuestions, and given the chosen focus, the forcing optimiza-
in ocean data assimilation systems, and are easier to impldion will be designed differently. Here we aim to address the
ment than their variational counterpeBkachko et al(2009 problem of long-term trends and biases in the model, with
and Skandrani et al(2009 explored the capability of such the final objective of improving the mean state of the ocean
methods to estimate forcing parameters corrections by usin long-term hindcast simulations, without modifying its in-
ing ocean observations data. On the basis of a reduced oterannual or high frequency variability. We use a sequential
der Kalman filter, they carried out idealized experiments thatmethod based on the SEEK filter. For experiments over a
differ from the parameters included in the control vector, theone month duration, observed monthly SST produir{
construction of the synthetic observations to be assimilatedrell et al, 2008 and SSS seasonal climatology ddtavitus
and the construction of initial condition. They showed that et al, 1998 are assimilated to obtain monthly corrections
in an idealized case where errors are assumed to be entirelyf the atmospheric forcing parameters (air temperature and
due to forcing parameters, it is possible to implement a sehumidity, zonal and meridional wind speed, and downward
quential data assimilation method to estimate objective corradiation). The expected outcome of our experiment is thus
rections of these parameters. Whi&achko et al(2009 to obtain a comprehensive set of estimated parameters for ev-
used temperature and salinity profiles that simulate the horery month of the period between 1989 and 2007, so that they
izontal and temporal distribution of Argo floats in twin ex- can be used later in a free model simulation.
periments,Skandrani et al(2009 assimilated sea surface  We first describe in Sec® the forcing function of the
temperature and sea surface salinity extracted from a Mermodel and the Kalman filter methodology used as a basis
cator Ocean reanalysiBérry et al, 2010. The first study by  for this work. Sectior8 concerns the principal adjustments
Skachko et al(2009 showed that this procedure leads to ac- necessary to fit our realistic context and the long-term fo-
curate estimations of parameters included in the control veceus of this study. Finally, a selection of results that illustrate
tor, and following these first resultSkandrani et al(2009), the strengths and weaknesses of the method is presented in
in a more realistic context, estimated forcing parameters corSect.4.
rections leading to reduced differences between the free sim-
ulation and the reanalysis. However, these two studies also
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2 Estimation method — The radiative fluxes involve the knowledge of
_ X g = (radsy, rady) the downward radiation, with
2.1 Ocean model and forcing by the atmosphere rads, being the downward shortwave radiation, and

. , ) ) i rady the downward long-wave radiation:
The OGCM is the first key ingredient to estimate relevant pa-

rameters corrections, and to evaluate their validity and their Osw= (1—a)radsy

impact in free (i.e. without data assimilation) model runs.

Since the estimation problem requires a large number of Ow = rady —eo Ts",

model simulations (to perform the ensemble experiments),

and since the goal is to explore the problem at a global scale, =~ Where a is the ocean surface albedo-0.066),
we chose to use a coarse resolution OGCM: theegolution —eoTs* is the infrared radiation flux from the
configuration of NEMO Kladec 2008, with 46 vertical lev- ocean surface witla the Stefan—Boltzmannonstant
els. In previous studie§kachko et al(2009 andSkandrani (5.67x1078), ande the seawater emissivity (0.98).

et al. (2009 chose this coarse resolution approach to set up
their idealized experiments before considering applying it to
higher resolution configurations. Implementing this kind of

— The freshwater flux involves the knowledge of precip-
itation (precip):

methodology with high resolution models would indeed be Fw = —E + precip+ R
numerically too expensive to be considered as a first step.

Different methods exist to force an ocean-only model. with R the continental contribution to the freshwater
Here, the model forcing function is computed following the budget.

methodology proposed Hyarge et al(1997). All fluxes are ) . .

calculated at every model grid point with classical bulk for- Néar-surface variables (air temperature and humidity,
mulas which take as input the near-surface atmospheric vari/ind speed, downward radiation and precipitation) from at-
ables (air temperature and humidity, zonal and meridionafoSPheric reanalysis (here ERA) used to specify surface

wind speed and precipitation), downward atmospheric fluxe?0undary condition of the model are characterized by large
(short wave and long wave radiation) and the ocean SurfacgncertamUes at global scale. Temperature and humidity are

variables calculated by the model (SST and surface currentdiStantaneous forecasts at 2m above the ocean surface and
velocity). is mentioned ag andgy, respectively, hereafter. Zonal and

The components of the forcing function are the freshwa-meridional wind speeds are instantaneous forecasts at 10m
ter flux (Fy), the momentum fluxz), and the net heat flux aPove the surface, and are noted gsandvio. Atmospheric
(One) Which is compiled as the sum of the short wave solgrradiation ar)d precipitation ﬂu.xes are 12h integrated fore-
radiation flux Qsw), the long wave radiation flux@y), the casts. ERAI outputg were avallaple to us every 6 h. We thus
sensible heat flux@send and the latent heat fluxQar). propose here to estimate corrections;0f2, u10, vio, ratsw,

Air-sea fluxes estimation in the model requires the SST off@dw and precip. N _
the model {%), the atmospheric state, the downward radia- CH, Ce andCp are the bulk transfer coefficients for sensi-

tion, and the precipitation. Atmospheric state and downward?!€ heat, humidity and momentum, respectively. Several pa-

radiation are involved in the fluxes computation as follows: f@meterizations exist to compute these coefficients. All of
them present some uncertainties but the one used in our

— The turbulent fluxes involve the knowledge of gcean model NEMO (hereafter LYO4) is the one described by
X4 = (Ta qa, U10) the atmospheric state, withy be- | arge and Yeage2004). Even if they are impacted by forc-
ing the air temperature, the specific humidity and  jng modifications, we chose to focus here on the atmospheric
U1p the relative wind speed at ten meters above theyariables corrections, instead of following the approach of

surface: Skachko et al(2009 and Skandrani et al(2009 used in
Osens= pa CH(Ts, X 4) Cp |AU 10| [Ta— T4l previous work, because as shown in Figthe contribution
of atmospheric variable error on the net heat-flux uncertainty
Qiat = pa Ce(Ts, X4) Ly |AU10| [ga— gsat(Ts)] is more important than the contribution of bulk coefficient
uncertaintyBrodeau(2007).
T = paCp(Ta, X4) [AU10| AU10

2.2 Kalman filtering for parameter estimation

E =—Quat/lvep In the standard current state of the art of ocean data as-
where p, is the air density considered as a similation systems, sequential data assimilation methods are
constant of 1.29kgm?, Cp the air specific most often used to correct the model state (Extvillon

heat (~1000Jkg*K™1), Ly the latent heat et al, 2008. However, these traditional implementations
(2.26x 10°Jkg™), and gsar the saturation spe- do not actually correct the source of errors but the con-
cific humidity. sequence and can lead to possible inconsistencies between
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Fig. 1. Top: Mean difference between turbulent heat fl@ (ip = Qjat + Osens in W m~2) climatologies (1984—2000) estimated from
different bulk algorithms (different transfer coefficients parametrizations): COA3 describedifayl et al.(2003 and LY04. These clima-
tologies are computed with the same atmospheric forcing field and the same prescribed SS8rqftean(2007)). Bottom: Mean difference
between net heat-flux (in Wn?) climatologies (1989-2007) estimated with air temperature, air humidity and wind speed from different
data sets (ERAinterim and DFS4.3 as describegrodeau et a).2010. These climatologies only differ by the atmospheric parameters used
and are computed with the LY04 bulk algorithm.

the assimilated solution and the forcing. The method de-wind speed, rag, the downward shortwave radiation, fad
veloped here proposes an alternative to this classical apthe downward long-wave radiation, and precip the precipita-
proach by estimating corrections of a source of model er-tion.

rors: the forcing parameters. Here we use the same method- The background control vectsf is the model output from
ology (based on a Kalman filter analysis) as developed bya simulation forced by the first guess atmospheric parameters
Skandrani et ali2009 to estimate atmospheric forcing pa- over the assimilation window extended to these atmospheric
rameter corrections. With respect to the classical formulatiorparameters. We can then obtain the best estifb&tef the

of the Kalman filter Kalman 1960, the control vector ini-  control vector by taking into account available observations
tially containing the model state is extended to the forcing(the vectory):

parameters that we want to estimate (Eq-The control vec-
tor becomes

2=z K(y-HAzh @)
T ] with &f the background simulatiof the observation opera-
92 tor, andK the Kalman gain given by
ulo o ’\f’\T AAf’\T -1
s ; K=PH (HPH R 3
xz[[x]]WIth[p]z V10 1) ( +R) ()
racsy with R the observation error, arRi the forecast error covari-
radw ance matrix.
| precip | The formulation of the Kalman filter applied to an ex-

with x the ocean state control vector containing the SST andended state vector needs to know the forecast error covari-
the SSS, angh the parameters vector that we aim to correct, @nce matrix in the augmented space, given by

wheret, is the 2m air temperaturep the 2m air humid-  af ~aanT A

. ; . P =MPM 4

ity, u10 the 10 m zonal wind speed;o the 10 m meridional +Q )
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with P* the background error covariance matrix, or initialisa-  Finally, two additional refinements of the forecast error
tion error,M the model operator, ar the model error. statistics will be used in the experiments. First, to avoid spu-
The knowledge of thé’f matrix (and thu®® andQ) is cru- rious long range influence of the observations, the ensemble
cial in statistical estimation approaches. As already pointeccovariance matrix will be localized as describedimnkart
out by Skachko et al(2009 the impact of the background et_al.(2_01]),_ using a horlzontgl cuttn_wg length scale of three
error on the model results is even more important when thed"id points (i.e. about 600 km in longitude along the equator).
model state correction is not applied. In their more realisticAlthough itis an arbitrary choice, the length scale of 600 km
study,Skandrani et a{2009 also highlight the fact that mak- corresponds to the scale of the impact of a monthly perturba-
ing appropriate assumptions about the forecast error statistidéon of the forcing. Several possibilities have been tried be-
is increasingly important as the problem becomes more realfore choosing this one, which is a good compromise between
istic. capturing the impact of a monthly forcing perturbation while
However, the objective is here different from these two not introducing artificial large-scale correlations. Second, to
previous studies, as it focuses on a mean long-term correc@void excessive_a}nd pon-physica_l parameters corrections, the
tion of the forcing parameters. The aim is not to correct theforecast propablhty dlStrlbuthn \_NIII l_:)e assumed to be a trun-
model state and improve the short-term forecast of the modecated Gaussian probability distribution, as developetday
but to estimate long-term atmospheric parameter correction¥ernet et al(2009, and as already used Bkandrani et al.
to be used in another independent free simulation. For thi§2009. In practice, all parameter corrections above 1.5 stan-
reason, we decided to use a different strategy and to carr§lard deviations will be truncated.
out an independent ensemble experiment for each assimilaz- hall ¢ listi licati
tion window instead of running a classical chain of analysis -3 Challenge of a realistic application

cycles. This process simplifies the estimation of the forCing'The first challenge of a realistic application of this method

error covariance matrix (described in Se)t.Moreover, un- is that available observations of the real ocean are sparse in

der the assumption that all the forecast error is due to forcmgspace and time. We chose to assimilate monthly mean SST

error and that the forc!ng correction is |d_ea_l, the bapkgroupddata' which is one of the most accurate observations of the
error covariance matrix for the next assimilation window is

N i .~ ocean, and SSS climatological data to constrain the freshwa-
a}ss.um'ed very small. In practlc.e, i we consider that the Nter budget of the system, and thus to limit unrealistic impact
tlgh_zatlon state of_each experiment is close eno_u_g_h 10 @Syt the correction on the SSS. We use the Hurrel database
similated observatlons,AvZe can then neglect the |n|t|aAIferror(|_|urre|| et al, 200§ giving SST monthly mean between
covariance error and sét to zero in the expression & 1989 and 2007, and a climatology of monthly SSS for the

(Eq.4). same period fronbevitus et al.(1999. Since the available

The expression of théf matrix will become information is now more limited than in idealized cases, this
g application involves some crucial adjustments of the method-
P =0Q. (5) ology (see SecB).

. The time resolution of available data implies considering

In this approximation, the estimation E’F involves only  assimilation windows of one month, and thus monthly pa-
the knowledge of the model err@ generated by forcing rameters corrections. However we do not have access to the
errors during the assimilation window. As this matrix must corresponding subsurface mean state to construct the ideal
be representative of forcing parameters errors only, we havénitial condition in order to ensure the validity of the assump-
to reduce all the other error sources in the ensemble experiion of P equal to zero. For our application, this will be the
ments to avoid compensation effects in the parameters estfirst adaptation to make to the initial methodology.
mation. In this context, the main difficulty is to preserve the  \jith these observations, we will compute corrections to
robustness of the methodology previously developed. Conthe atmospheric parameters from the ERAI reanalysis avail-
trary to Skachko et al(2009 and Skandrani et al(2009,  able between 1989 and 2007. ERAI is the most recent reanal-
the observation errors need to be taken into account. We dgsijs produced by the European Center for Meteorological
not know the true value of forcing parameters, neither thegnd Weather Forcasting (ECMWF). The atmospheric vari-
perfect initial condition that will ensure the efficiency of as- aples are available every 6 h far4 and every day foX g
similation experiments. We also have to make the distinctionand precipitation at the same spatial resolution as the model,
between forcing errors and other potential errors in the syshut we do not have access to the associated uncertainties. The
tem to obtain the least versatile correction possible. Indeedestimation of the prior probability distribution of the forcing
the solution will depend on the model used and it could beparameters is the second difficulty of a realistic experiment.
difficult to apply the same parameter corrections to other con-The monthly uncertainties associated to the parameters have
figurations where the nature of the model error is different.to be characterized. Finally, to run Monte Carlo experiments
All these matters will be addressed to evaluate the relevancey estimate the matrifQ, the forcing error in the model has

of the method and results in Sedtl to be isolated to avoid potential compensation effects.
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3 Error statistics relaxation time constant to allow the model to react to atmo-
ot spheric forcing without getting to far from the climatology.
The forecast error covariance matix reflects the impact Two domains are thus specified where the relaxation charac-
of the forcing parameters errors on the model state. We estiteristics are different:
mate this matrix by running Monte Carlo experiments, or en- i . .
semble experiments, as performed3kachko et al(2009 — The first 400m _from thg .surface are likely FO be im-
and Skandrani et al(2009. For each month, we run 200 pacte_d by a forcing modification _atmonthly “me?’ca'e.-
experiments from the same initial condition. These exper- The tlme constant _Of the relaxation is one year n this
iments only differ by the atmospheric parameters used to domain to constrain the large-scale feature while al-

Af o lowing for a possible impact of the atmospheric fluxes
force the modelP is then deduced from a statistical anal-

i on the dynamics.
ysis of the 200 forecast states ensemble. However, to be con-
sistent with prior assumptions which are needed to apply the — Below 400 m depth, the relaxation applied is strong
filter methodology, the ensemble experiments have to be rep- with a one-month relaxation constant. The large-scale
resentative of the impact of the forcing parameters error only. feature is thus strongly constrained at depth to ensure
We need thus to take care of three constraints that represent @ good consistency with the observed ocean and limit
the most important methodological developments necessary non-forcing-error sources.
for a realistic application, and that will be described in the

: . The robust diagnostic approach is a tool used here to pro-
following sections:

duce a density field consistent with an incomplete set of ob-
— minimization of the model errors that are not due to S€fvations. The purpose is to help the identification of a par-

the forcing function by a robust diagnostic approach: ticular set of atmospheric parameters and not to produce a
relevant description of ocean circulation. In the constrained

_ minimization of the initial condition errors: simulations, the large-scale water masses positioning in the
model solution (e.g. the structure of gyres) are more consis-
— computation of parameter perturbations representativdent with observed ocean (figure not shown). The first use

of the forcing uncertainties. of the method was to evaluate the ocean response to a given
atmospheric C@ field (Sarmiento and Bryanl982. This
3.1 Robust diagnostic ensemble experiments first approach presents some similarities with our objective

to identify the impact on the ocean surface of a given atmo-

The 200 model states ensemble have to be representative ephere.
the impact of forcing errors on monthly timescale ocean dy- A robust diagnostic simulation introduces artificial sources
namics, and particularly on the surface where observationsind sinks of heat and freshwater in the conservation equa-
are assimilated. To ensure the consistency of this assumptioions and can lead to an unrealistic representation of some
other possible errors have to be minimized while performingprocesses. However, since the relaxation is lighter in the re-
ensemble experiments. Indeed, the coarse resolution modeion directly affected by atmospheric forcing, the relevance
used here involves parametrization and approximations t@f our approach is still valid in this special zone of interest.
compensate unresolved processes. It thus contains errors thahis three-dimensional relaxation ensures a limited effect of
are not attributable to forcing, which lead in particular to a non forcing errors in the ensemble experiments, so that the
bad positioning of the water masses in strong advection rep’ matrix is only representative of the errors in the atmo-
gions such as western boundary currents. If this type of errogpheric parameters. The validity of this hypothesis is crucial
is present in the ensemble runs, it will lead to an inconsis+o estimate consistent parameter corrections and to reduce
tent estimation oP and finally to unphysical parameters possible compensation effects.
compensating the non-forcing errors. As a consequence, en-
semble runs have to be as close as possible to the real oceah? Initialization procedure
and be representative of the forcing errors only.

We chose to constrain the model by using a robust diag- The second assumptlon of this study is that the initial error
nostic approachSarmiento and Bryarl983 consisting in  for every month (the>” matrix in Eq.4) can be r:eglected
a three-dimensional relaxation of the solution to temperaturdf P is non- negligible, then the final equation Bf (Eq. 5)
and salinity climatologiesLevitus et al, 1998. Relaxation cannot be considered valid. In absolute terms, to ensure that
terms are added to heat, mass and salt conservation equatloﬁs is equal to zero we should initialize ensemble experi-
and create artificial sources and sinks to bring back the simments with the true ocean state. However this true three-
ulation to the corresponding climatologies. The relaxationdimensional ocean state is not available. To obtain a reason-
strength is adapted through its time constant. A large valueable approximation of an initial condition with the correct
of this time constant corresponds to a light relaxation, and &SST, a simulation over the 1989-2007 period strongly con-
small one to a strong relaxation. In our case, we adjust thestrained to fit surface observation is constructed. From this
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t2: Janu.

jation (C) radsw: January ensemble standard deviation (W.m?®)

T

0.0 1.0 20 3.0 4.0 5.0 6.0

standard deviation (m.s™)

0.0 1.0 20 3.0 4.0 5.0 0.0

Fig. 2. January ensemble standard deviation in terms of air temperature (top left), shortwave radiation (top right), zonal wind speed (bottom
left), and meridional wind speed (bottom right).

simulation we then extract the initial condition that will be rections, see Sec?.2) and its covariance matrix is derived
used for ensemble experiments. To carry out this simulationfrom the ERAI reanalysis intra-seasonal and interannual vari-
a strong relaxation is applied to the surface in addition to theability between 1989 and 2007. Perturbations are specific to
robust diagnostic approach described in the previous sectiora given month and constant over each monthly assimilation
The surface relaxation is prescribed with a time constant ofwindow. For example, to estimate a set of perturbations for
two hours to deprive the model of surface evolution freedom.April, we consider the reanalysis signal corresponding to all
However the objective is to construct an initial condition for three month windows (March-April-May) of the reanalysis
the ensemble experiments. This particular initial conditionover the 1989—-2007 period (60 states). This Gaussian has a
construction is the best compromise that we have found t@ero mean, and its covariance is defined by the covariance of
initialize the ensemble experiments, and it is an importantthe parameters around their mean over these three months pe-
additional procedure allowing a realistic application of the riods. This assumption is made to characterize the covariance
methodology developed kandrani et al2009 to be car-  of atmospheric parameters. The choice of intra-seasonal and
ried out. interannual variability rather than the total variability is made
For each month the corresponding initial condition is ex- to avoid in the perturbations of April, for example, a variabil-
tracted from the strongly constrained simulation. It is thenity that is characteristic of wintertime. A random sample of
used to initialize ensemble experiments. To build consistenR00 perturbations is then constructed for each month.
parameters corrections, the background simulation of one Figure?2illustrates the standard deviation of the parameter
month that gives the background control ve(ﬁf)r(Eq. 2) perturbations for a given month ensemble (here January). To

has to be initialized with the same ideal conditions. ensure relevar® estimation, this amplitude has to be rep-
resentative of the uncertainty of each atmospheric variable.
One can see that the standard deviation associated to each

The last important assessment to make concerning the e barameter corresponds to monthly parameter uncertainties at
P 9 he global scale, with values in the range of 0-=°LFor the

semble experiments setup is to ensure that the perturbatiorhgmperature 10 to 25WTR for the downward shortwave
applied to atmospheric parameters are actually represente';édiaﬁon an'd 05 to 3nT2 for the zonal and meridional
tive of the real forcing uncertainties. It is assumed that pa- ind spe,ed HoWever at high latitudes, the ensemble disper-
rameters uncertainties are comparable to their intra—season\é\ion of temberature a'nd shortwave raéliation is larger (up to
and interannual variability in the ERAI reanalysis. This as- 6°C for the temperature and 70 Wfor the shortwave ra-
sumption turns out to be a fair way to identify parameters

uncertainties. but one could envisage other options. such diation). These values are clearly excessive to represent the
uantifyin tr;e uncertainties b usigr]1 the Iocgl diﬁérencegseal uncertainty, which illustrates the limits of considering
q 9 y 9 the intra-seasonal and interannual variability of parameters

betwee_n_ tWO. or more fprcmg data sets. Th_e param eters PrIofy quantify the uncertainties. The problem described here is
probability distribution is defined as Gaussian (strictly speak-

; ) . not related to the ice extent variability in the ocean model,
ing, a truncated Gaussian to avoid extreme parameter cor-

3.3 Parameter perturbations computation
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since the ocean model is not involved in the computation of January 2004 SST mean difference (C):
the parameters perturbations. The monthly variability of at- cedby ERA)
mospheric variables is much larger at high latitudes, particu- s S W o :

larly for the temperature and radiative fluxes, mostly becaus¢
of the position of the sun influence. The assumption made tc
generate the parameter perturbations in the ensemble expe
iments could thus be irrelevant in high latitudes regions be-
cause changes from one month to another in the three mont
period can be much larger than the uncertainties. As a conse
quence, the results in these regions must be interpreted cal
tiously. In practice, the whole procedure is repeated monthly
between 1989 and 2007, which results in running 200 times -2. -1. 0. 1. 2.
the model over the 19 yr period to obtain the set of forcing January 2004 SST mean difference (C):

corrections. Such an important amount of simulations anc free fun model (forced by ERAcor) - free F@gﬂ?‘ (forced by FRAD
could be a critical difficulty with a higher resolution model. = Sy =T =

4 Results

The objective of this section is to analyze the strength anc
weaknesses of the methodology that has been adapted to cc
rect ERAI variables. The relevance of specific assumptions
described above is evaluated by selecting some diagnostic i
global and regional scales. As a first step, we will focus on -1 0. 1. 2.
the capability of the method to isolate the forcing impact in

the model and compute realistic parameter corrections. SeGig. 3. SST differences between the free model run forced by ERAI
ond, we will look at the results in terms of global scale heatand the result of the analysis step (top), and between the free model
budget resulting from our corrections. Lastly, we will discuss run forced by ERAI and the free model run forced by ERAcor (bot-
the impact of the computed corrections in the intertropicaltom) for January 2004.

band where the method presents the maximum reliability.

4.1 Assessment of the method S
The second step to evaluate the reliability of our method to

The first important step of the method validation is to look at improve the forcing for free model simulations is to look at
the results over a specific month (January 2004) which corthe consistence of the amplitude of parameter corrections es-
responds to one assimilation window. We compare (Big. timated by the method with the uncertainties on atmospheric
top panel) the SST resulting from the analysis step of thevariables. Since the focus is here to correct potential long-
Kalman filter (i.e. the output of E®), and (Fig.3, bottom  termtrends and mean error, it is of primary importance to as-
panel) the SST computed by a free model run forced by thesess the regional relevance of the corrections temporal mean
newly estimated parameters (hereafter ERAcor). This diagbetween 1989 and 2007 (Fig.for the local values, and
nostic will determine if the use of corrected parameters in aFig- 5 for the zonal mean).

free simulation has the same impact as the correction com- In Figs.4 and5, we notice that for the major part of the

puted by the analysis scheme. In other words, the objectivavorld ocean the corrections are consistent with the assumed
forcing uncertainties (e.g-1 to 1°C for the 2 m air temper-

ature, 1.5 to 1.5ms for wind speed, or-20 to 20 W n12
for shortwave downward radiation), which is comparable to
e 1989-2006 mean differences between the forcing pa-

. . . Af
here is to evaluate if we have properly determined Fhe
matrix which describes the impact of forcing errors in the
model. Figure83 compares the mean SST increment resulting

from the analysis step to the mean SST increment produce .
y P P rameters of ERAI and DFS4.3Bfodeau et a.2010 (not

in a free run model forced by ERAcor atmospheric variables. - _
In both cases, the resulting SST shows a better agreemeﬁpown)' Furthermore, temperature and humidity corrections

with its observed counterpart (not shown). Furthermore, onej;'a?.ve a fsmllar btehawor., (E)(I)nS'S_ﬁ]me with the strontg corri-
can see that both increments are very similar in structure an lon ot Inese two variables. he same comment can be

intensity. This result means that the error covariance matri{pade regarding shortwave and long-wave radiation correc-
tions. On the other hand, the large-scale structure of the cor-

A f . . . .
P constructed here is consistent with the actual impact ofsctions is mostly zonal. For example, we obtain a mean

forcing errors in the model. shortwave radiation (ra@) correction of of approximately
+15Wnm 2 in the intertropical band, and-15W n2 for
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Fig. 4. 1989-2007 mean computed corrections of temperatgfyehumidity (g2), zonal wind speedu(;g), meridional wind speedvf),
downward shortwave radiation (rag), and downward long-wave radiation (fgdl
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Fig. 5. 1989-2007 zonal mean computed corrections of temperag)reh(imidity (g2), zonal wind speedu( o), meridional wind speed
(v10), downward shortwave radiation (r&g, and downward long-wave radiation (radlw).

mid-latitudes. Long-wave radiation corrections have an op-itudes), which are not appropriate in forcing corrections.
posite behavior with negative corrections in the intertropical These structures are particularly obvious in the southern
band (5W m~2) and positive corrections at mid-latitudes ocean in the temperature, shortwave radiation and wind
(5Wm~2). The corrections obtained with our method are speed corrections, and are likely to be the result of the local
thus physically reasonable in terms of large-scale intensitimplementation of the analysis. These small-scale structures
and structure. make it difficult to interpret the corrections obtained in the
However, a critical analysis of Figl allows some per- Southern Ocean, and highlight one limit of the use of local
sisting problems to be identified. These correction fieldsdata assimilation. The same problem has already been evi-
present some small-scale features (especially at high latdenced byStammer et al(2004) in a variational approach.

WWWw.ocean-sci.net/9/867/2013/ Ocean Sci., 9, 8883 2013



876 M. Meinvielle et al.: Optimal adjustment of atmospheric forcing parameters

Small-scale structures in the Southern Ocean lead to imporset, was developed B§rodeau(2007). Instead of using the
tant gradients in the correction and can result in instabilitymodel SST, this diagnostic involves a prescribed SST (here
propagation when applied to a free model run. However, crit-the Hurrel SST). Inter-comparison between different atmo-
ical gradients of 20 to 40 W nt for the shortwave radiation ~ spheric data set to quantify the parameter modifications im-
in this region are not only explained by the localized analysis.pact is thus easier than in the model where the SST feedback
Indeed, we noticed in Se@.3that the assumption made to on the flux computation is taken into account. All fluxes pre-
compute parameters perturbations (and thus parameter pri@ented in the following are computed using this offline ap-
probability distribution) was not relevant at high latitudes, proach. Global results concerning the net heat flux will be
which can lead to spurious corrections. These spurious corpresented first, before focusing on the intertropical band to
rections have obviously not been totally eliminated by thequantify the distribution of this integrated modification over
truncation of the prior probability distribution mentioned in the different net heat-flux components.
Sect.2. The combination of this problem with the covariance  The net heat-flux integrates all modifications applied to
localization hampers the relevance of the correction in thethe latent, sensible and radiative fluxes. The diagnostic of
high latitudes. the parameter corrections impact on this flux thus reflects

Figure 4 also allows the results in strong advection re- the global effect of forcing modifications. The first criterion
gions to be looked at more precisely, such as the Gulf Streamysed to evaluate a forcing data set is to look at the global
the Kuroshio region, or the Agulhas Current region but alsoheat balance over the considered period (here 1989 to 2007).
the Antartic Circumpolar Current region. As mentioned in A balanced budget is a sign of quality for the given forcing.
Sect. 3.1, the water masses and front positioning in theseFigure6 shows that the corrections modify the net heat-flux
regions are not properly represented in our ocean modebudget from a positive value of almost 15 W #&left) to ap-
Despite of the use of a robust diagnostic approach to comproximately 2 W nt?2 (right). This result means that forcing
pute ensemble experiments, these non-forcing errors are stithe model with ERAi atmospheric variables would lead to
present in the model, with the consequence that estimatedn excessive heating of the ocean, while our corrections re-
corrections in these regions are often excessive (with forduce drastically this heat excess and maintain the heat budget
example orders of magnitude of°@ for the temperature, close to equilibrium.
3ms! for the zonal wind speed, and up to 60 W fnfor Furthermore, a clear negative trend is present in the ERAI
the shortwave radiation). These values are typical of compentime series of the net heat flux. This trend is inconsistent
sation effects. We have here an overestimation of parametewith the observed global warming for the last twenty years
modifications compensating for other model errors. Consid{Bindoff et al, 2007). This negative trend is not present any
ering that larger observation errors are not sufficient to by-more in the time series of the net heat-flux calculated with
pass this problem, we cannot be very confident in the realisnthe corrected parameters. This diagnostic leads to two crucial
of estimates made in mid-latitude strong advection regions. results since the methodology does not involve any explicit

Finally, we observe that the corrections computed for theconstraint to obtain a balanced heat budget or to remove po-
precipitation field are negligible (figure not shown). This is tential unrealistic trends.
consistent with the fact that the SSS assimilated aims to avoid
unbalanced corrections, and not to actually generate signifi4.3  Intertropical band
cant precipitation corrections. . .

In summary, we have identified in this section the limits of R€Sults commented on in Seét1 allowed regions where

the method implemented to compute upgraded atmospherif:e"abi"ty of the methoc_;l is questionable to be identified.
variables. And the conclusion is that even if the results look 0 évaluate locally the impact of computed corrections on
rather consistent with parameter uncertainties in the majofach nét heat-flux component, we chose now to focus on the
part of the world ocean, we have to be cautious with regionaf€9ion between 2N and 20 S, called intertropical band.
corrections computed in the high latitudes and strong advecd NiS région has the advantage not to be affected by spurious
tion regions. However these problems remain quite local andorrections or biases in the model circulation ment|o_ned in
we can still look at the global impact of the correction on the S€ct-4.1 Furthermore, the model used here has @ngrid-

ocean heat budget. ional resolution along the equator and thus captures the criti-

cal scales of the equatorial current systévtaflec and Im-
42 Global results bard 1996. As a consequence we ex'pect th.at the results
there reach the maximum reliability. It is thus interesting to

To study this global impact we have to compute air—sead® further from the net heat-flux diagnostic and to look at

fluxes corresponding to this new forcing parameters data séf'€ impact of parameter corrections on the sensible, latent,

using the bulk formulas. The objective here is to evaluate!ONg-wave radiation and shortwave radiation fluxes.
this new data set reliability to force a free model run. The To summarize the main parameter modifications in this re-

tool used to compute air—sea fluxes offline, using the sam@ion, the results preser'lted.in Sett (Fig. 4) evidenced the
formulae as the ocean model and a given atmospheric dat!l0Wing mean corrections:
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Qnet global mean from ERAinterim Qnet global mean from ERAcor
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Fig. 6.1989-2007 time series of global net heat fluxes monthly means (in red) computed with ERAI variables (left) and ERAcor variables
(right). The black lines represent the global mean of the net heat flux over the whole 1989-2007 period.

— temperature and humidity reduced by 0 t&Cland O Qnet 1989—2007 mean correctlon (W m?)
to 1gkg1, respectively, -

— wind speed increased by 0.5 to 1.5 §Fig. 8),

— downward shortwave radiation increased by 5 to _go. -g0. -40. -20. 0. 20. 40. 60. 80.
10Wn 2,

Qsen 1989-2007 mean correction (W.m?)

— downward long-wave radiation reduced by 5 to
10Wm 2.

EE

Figure 7 illustrates the impact of these modifications on -gg. -40. -20. 0. 20. 40. 60.
the mean of the different net heat-flux components over the
period 1989-2007. As expected, given the reduced globa
heat budget, we observe a reduction of the net heat flux o
about 20 W m2. This tends to reduce the warm bias in the
intertropical band that can be evidenced by comparing the
model SST to the observations (see Hifjdescribed later).
Furthermore, since we compute corrections separately for ev
ery atmospheric variable, we can access to valuable informa C-

-60. -40. -20. 0. 20. 40. 60.

tion regarding the relative contribution of each componentof - | | ‘\f_\, ; ; .
the net heat flux to this reduction of the net heat flux. From I |
this diagnostic, it appears that to reduce the heat gain in thi-60- -40. -20. 0. 20. 40. 60.
intertropical band, the radiative fluQgw + Oww) remains al- st 1989—2007 mean correctlon (W m’ )

most the same (augmentation about 5 WAnwhile the heat

loss through turbulent fluxes is clearly increased. As a con-

sequence, the net heat flux decrease is mostly due to a mor [

ification of the turbulent fluxes. All variable corrections in

the intertropical band contribute together to an increased heav

loss by turbulent fluxes (decreased temperature and humiditysig. 7.1989-2007 means of net heat-flux correction, radiative heat-

and increased wind speed). flux corrections and turbulent heat-flux corrections in thé 120
Among these contributions, wind speed is identified by 20° S latitude band.

our method to be the essential mechanism involved in the

increase of the turbulent heat loss (Faj.

-40. -20. 0. 20. 40. 60.
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dard deviation of the monthly differences between observed

and simulated SST is also reduced by up to°@2n aver-

age in the intertropical band (figure not shown). The strategy

developed here to compute independent monthly corrections

is thus consistent with our initial objective to improve the

long-term mean forcing.

Fig. 8.1989-2007 mean wind speed correction in theI2020° S Besides the consistence between observed and simulated

latitude band. Isocontours from2 to 2ms 1 by 1. SST in the intertropical band, the interannual variability of
the model response is not modified by the forcing corrections
as shown in Figl2. This figure shows the interannual vari-

4.4 Long-term free model simulation ability of the global means of the SST, the sea surface height
(Fig. 12, top panel), and the meridional overturning cell in-

The last diagnostic used here to assess the method is thensity at 30 S (Fig.12, bottom panel). It is clear that despite

analysis of a free model run forced by the corrected paramethe discrepancies between the mean values, the year to year

ters. We showed in the previous sections that our correctionsariations are in a very good agreement. This result ensure

present some unreliable characteristics that could propagatiat the corrections applied do not hampers the interannual

in the model. Parameter corrections are thus post-processedriability of the initial ERAI forcing.

before being used in the model, in order to smooth unrealis-

tic small-scale features, and to avoid spurious corrections to _

be applied in the model. 5 Conclusions

To smooth small-scale features, an anisotropic boxcar fil-
ter is applied to each monthly correction. The box size s 10

In this study we explored the feasibility of a sequential data
in latitude and 20 in longitude in order to keep the zonal assimilatiqn methodology to (_astimate monthly correptions of
signal structure while limiting local gradients. The large- ERAI fé)rutng pa:ﬁllmdet?rs usilngl rfaI—SST qbsert\/aﬁons.bln—
scale correction characteristics thus persist but the parasitgepen ent monthly data assimilation experiments have been
structures observed for example in the Southern Ocean a erf_o rmed over the period 1989_2007 to_ compute a corrected
smoothed out as shown in Fig. Since spurious corrections orcing data set ERAcor (without correcting the model state),
(go be used in a free model run. The prior probability distri-

are still present at high latitudes, the corrections are set to X . .
for latitudes larger than 60n both hemispheres because the ution of the parameters has been characterized by the intra-
;leasonal and interannual variability of ERAI reanalysis, and

error is considered to be mostly due to other processes tha A
y P nsemble experiments of 200 members were performed to

forcing (essentially the fact that the method does not take intd”"> . ) .
stimate the forecast error covariance matrix. Implementing

account the ice cover in these regions). Resulting 1989-200% . . . .
mean corrections are shown in Fay. such a methodology in a realistic case is challenging, by the

Although this procedure does not allow the corrections ac-car€ needed t(.) U?a'.‘e a}ssumptlons and methodolpgy de\{el-
pments. The initialization procedure of the experiments is

tually computed by the data assimilation method to be testedc,) ) ; . o .

the 1989-2007 net heat-flux time series computed from tngrucial to avoid the propagation of potential initial condition
parameters after correction and from the original ERAI vari- &' 0'> unrelgted to the forc_mg. For this matter, initial COﬂdI-
ables are well correlated>(0.5 in the intertropical band), tion as consistent as possible with the surche ob_servat!ons
which gives an insight on the good stability of the corrections has been extra_lcted from a stropgly constrained simulation.
(e.g., Fig.10). Furthermore, we can evaluate the correctionsMorepver’ the impact of the forcing on the model state haq
in terms of impact in the model focusing on the results in thet© be isolated from other model errors in the ensemble experi-

intertropical band where this post-processing has not a dradhents W'th a rObl:.St dla;]gnosglc aplpro_tac dhl.)Fln?Ily, th?. res'??ﬁ |
tic impact on the solution since it is the region of correction excessive corrections have been imited by a truncation of the

maximum validity. prior probability distribution of the parameters as described

In Sect.4.3we had shown that the integrated impact of our n _ﬂffandram etli’:ll(ZtOOtQ. the benefit of usi biecti
parameter corrections is to reduce the net heat flux in the in- thlsdptaper tl' ustrafes e bene It' 0 us;_r;}g an (t)hjedc r']\le
tertropical band. A reduced SST in the free model run is thu cthod 1o estimate forcing corrections. 1his method has
expected when replacing ERAI forcing by corrected parame- een succes_sfu_lly demonstrated in identifying properly the
ters. In Fig.11, we first observe that the simulation forced by monthly forcing impact on the model state:

ERAi variables presents a long-term mean warm biasranging  _ por every given month, the computed corrections ap-

between 0.5 and L in the intertropical band (top). Reduc- plied to a free model run have the same impact as the
ing this warm bias to reach values below 8Gfor most of analysis step on the model SST.

the region (consistently with a reduced net heat flux), our cor-
rection thus leads to a better agreement with observed SST — The net heat-flux budget resulting from ERAcor
from a long-term point of view (bottom). Moreover, the stan- (highly positive in ERAI database) is balanced at the
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Fig. 9. 1989-2007 mean corrections of temperatugg, rumidity (g2), zonal wind speeduf o), meridional wind speedvfg), downward
shortwave radiation (ragl), and downward long-wave radiation (fg{l after anisotropic boxcar smoothing and masking high latitudes
values.

ERAIi and ERAcor timeseries correlation: 1989-2007 mean SST difference (C):
1989-2007 Qnet monthly anomalies free run model (forced by ERAI) - Hurrel observations
7‘| | i L 7”’ I
| I
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1989-2007 mean SST difference (C):
free run model {(forced by ERAcor) - Hurrel observations
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Fig. 10.1989-2007 ERAi and ERAcor monthl@net anomalies  Fig. 11.1989-2007 mean differences between Hurrel SST and free
time series correlation map. Isocontours frerh to 1 by 0.2. model run forced by ERAI (top), and between Hurrel SST and free
model run forced by ERAcor (bottom) in the 2R-20° S latitude
band.

global scale, and the potentially unrealistic negative

trend observable in the time series of this flux in the

ERAI database (leading to ocean cooling) over the tions mostly used to adjust forcing parameters (e.g.,
whole time period has been removed. Brodeau et a).2010.

— Parameter corrections computed improve the long-We have not evaluated the consistency of the interior ocean
term mean state of a free (without data assimila-dynamics by comparing our results to observations. Indeed,
tion) simulation with respect to ocean-surface obser-since the consistency of the corrections is mainly assessed
vations, and can guide typical ad hoc forcing correc- for the intertropical band, it would be first useful to construct
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Fig. 12. Comparison between the simulations forced by ERAI (black) and ERAcor (red). Top: time series between 1995 and 2007 of the
global mean of the sea surface height in m (left), and of the global mean of the temper&@rgight). Bottom: time series between 1995
and 2007 of the maximum intensity of the meridional overturning circulation @30 Sv.

a comprehensive forcing data set including these corrections The diagnostic of the computed correction itself has high-
without introducing any discontinuity in the forcing field be- lighted some limits of the method. Small-scale features prob-
fore looking at the behavior of the global ocean circulation. ably due to the local application of the Kalman filter analy-
However, we diagnosed the equatorial undercurrent in thesis appear in the correction fields. We also computed some
simulation forced by ERAcor and it turned out that the cor- spurious corrections in strong advection regions and at high
rected forcing leads to a better representation (in terms of inlatitudes despite the effort made to reduce non-forcing uncer-
tensity) of this important equatorial circulation feature than tainties in ensemble experiments and to define an appropriate
ERAinterim with respect to TAO observations (not shown). parameter prior probability distribution. Improving the iden-
As a further step, one could envisage applying a similartification of forcing error in the model is essential to expand
method to an operational system for short term forecast irthe validity domain of the corrections from the intertropical
present-day operational systems. Indeed, the ocean state cdrand to the whole ocean (sea ice covered regions would prob-
rection can present some inconsistency with the forcing paably need to be treated separately). In our study, the problem
rameters used, whereas our approach proposes an alternatioé non-forcing-errors limitation has been addressed by us-
to keep the interactive ocean—atmosphere link while correcting a robust diagnostic approach. Quantifying properly the
ing efficiently the ocean surface state. remaining part of the error which is directly due to a given
model implies to run exactly the same experiments but with
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another model. We could then identify the part of the correc-constrain our system. Recent progresses in intensive ocean
tion which is dependent to the spatial resolution for exampleobservation give a strong potential to our methodology in ad-
or to a given formulation used in the model. Unfortunately, dressing the problem of the objective computation of forcing
this kind of diagnostic would be numerically very expensive, correction.
and does not guaranty to capture properly the part of the cor- On the other hand further work could be developed in or-
rection corresponding to the model in all cases but locallyder to take advantage of the results already available from our
in space and time. To go further one could consider to constudy. Our method is numerically expensive since it involves
strain the water masses by the same type of relaxation bubumerous simulation experiments, and could not reasonably
using an ocean reanalysis as reference instead of temperhe used at present for higher resolution models. Furthermore,
ture and salinity climatology. As there are now many atmo-even if the results are inhomogeneous in quality depending
spheric reanalyses available (ERAI, JRA25, NASA MERRA, on the region considered, the method is certainly able to give
NCEP/DOE...), the definition of parameter prior probability valuable insights to guide typical ad hoc forcing adjustments.
distribution could also be based on the magnitude differencefesults should be first subject to further evaluation by com-
observed between different atmospheric reanalyses insteguarison with available atmospheric or fluxes observations
of intra-seasonal and interannual variability of a single re-like TAO/TRITON, PIRATA (Pilot Research Moored Array
analysis (asihucas et al.2008. This could represent a sub- in the Tropical Atlantic), RAMA, and reconstructions based
stantial improvement of the method since it would provide aon reanalyses and satellite observations, such as OAflux (
more realistic description of the parameter uncertainties andnd Weller 2007 or TROPFlux Praveen Kumar et aR011)
would reduce spurious corrections at high latitudes. databases. VOS-based products like NOB&y and Kent
Furthermore, the model convergence to assimilated obser2009 database can also be useful to conduct further evalu-
vation strongly depends on the presence of the initializatiomation of our correction as far as we consider a region with
procedure in the experiments. Parameters computed via thigcceptable sampling erroG(lev et al, 2007). This work
method are thus not necessarily appropriate to reduce theould make possible to identify more precisely the strengths
instantaneous discrepancies between model state and obsand weaknesses of the method, to have a more critical look
vations when applied to a free model long-term simulation.on the results, and to identify the benefit of the corrections in
However, our results show that these corrections have a posevery particular application.
tive impact on the long-term mean values of fluxes and ocean A wider perspective concerns the implementation of re-
surface state. The heat budget resulting from corrected paanalyses. While in the construction of an ocean reanalysis, it
rameters is closer to zero than the one computed with origiis certainly useful to extend the ocean state control vector to
nal ERAI variables, with a heat excess reduced by more thanhe forcing parameters to avoid the propagation of forcing er-
10 W m2. In addition, our corrections remove the unrealis- rors in the system (e.gGerovecki et a].2011), our method-
tic negative trend observed in the time series of the globablogy could also be valuable to provide improved ocean
net heat flux computed with ERAI forcing parameters andboundary information for the implementation of atmospheric
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