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Abstract. The computation of spherical harmonic coeffi-
cients of the Earth’s gravity field from satellite-to-satellite
tracking (SST) data and satellite gravity gradiometry (SGG)
data is considered. As long as the functional model related to
SST data contains nuisance parameters (e.g. unknown initial
state vectors), assembling of the corresponding normal ma-
trix must be supplied with the back-substitution operation,
so that the nuisance parameters are excluded from consider-
ation. The traditional back-substitution algorithm, however,
may result in large round-off errors. Hence an alternative ap-
proach, back-substitution at the level of the design matrix,
is implemented. Both a stand-alone inversion of either type
of data and a joint inversion of both types are considered.
The conclusion drawn is that the joint inversion results in a
much better model of the Earth’s gravity field than a stand-
alone inversion. Furthermore, two numerical techniques for
solving the joint system of normal equations are compared:
(i) the Cholesky method based on an explicit computation
of the normal matrix, and (ii) the pre-conditioned conjugate
gradient method (PCCG), for which an explicit computation
of the entire normal matrix is not needed. The compari-
son shows that the PCCG method is much faster than the
Cholesky method.

Key words. Earth’s gravity field, GOCE, satellite-to-
satellite tracking, satellite gravity gradiometry, back-
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1 Introduction

GOCE (Gravity Field and Steady-State Ocean Circulation
Explorer) is a dedicated gravity field mission to be launched
in 2006 within the ESA’s Earth Explorer program (ESA,
1999). The aim of the mission is to provide a high-accuracy,
high-resolution model of the Earth’s static gravity field and
of the geoid. The mission will last for 20 months, including
two 6-month observation periods. The GOCE orbit will be
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almost circular, with the average altitude between 250 and
270 km. The satellite will be supplied with a sophisticated
drag-free control system to compensate for non-gravitational
forces like the atmospheric drag and the solar radiation pres-
sure. A GPS receiver on board will provide the data needed
for a precise satellite orbit determination. Two measure-
ment techniques will be exploited for gravity field determi-
nation: (1) high-low satellite-to-satellite tracking (SST) and
(2) satellite gravity gradiometry (SGG). Gravity field deter-
mination from high-low SST is not new. This technique is
used, for instance, by the ongoing CHAMP mission. Unfor-
tunately, the resolution of Earth’s gravity field models that
can be derived from high-low SST data is very limited. In
order to achieve a higher resolution, SGG data have to be
taken into account. The SGG data alone, however, cannot
be used for an accurate determination of the long wavelength
features in the Earth’s gravity field, because the anticipated
accuracy of SGG data at low frequencies is poor. Therefore,
SST and SGG are complementary, and only a joint inversion
of both data sets may provide a sufficiently accurate gravity
field model. The paper describes the prototype of an algo-
rithm for the joint inversion of SGG and SST data. Numeri-
cal simulations demonstrate that the errors in the models ob-
tained by a stand-alone inversion of SST or SGG data are
much larger than the scientific mission objectives allow for.
Dramatic improvements can be achieved if both data sets are
processed jointly.

2 Theory

2.1 Relationships between the collected data and the
Earth’s gravity field

2.1.1 SGG data

SGG data are measurements of the second derivatives of the
gravitational potential (i.e. the SGG tensor). Four compo-
nents of the SGG tensor will be recorded with high accu-
racy for the purpose of further processing: XX, YY, ZZ, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26838751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


88 P. Ditmar et al.: On the joint inversion of SGG and SST data from the GOCE mission

XZ (the X-axis is nominally directed along the track, the Y-
axis across the track, and the Z-axis upwards, complement-
ing the frame to a right-handed one). In the course of the
pre-processing, the contribution of a reference gravity field
is subtracted from the collected data. The remaining signal
can be linearly related to the parameters describing thedis-
turbing potential:

dsgg = AGxG, (1)

wheredsgg is the vector of pre-processed SGG data;AG is the
design matrixwhich depends on the model parameterization,
andxG is the vector of parameters describing the disturbing
potential. In what follows, we will assume that the disturbing
potential is represented as a series of spherical harmonics, so
that elements of the vectorxG are corrections to be applied
to the harmonic coefficients of the reference potential.

2.1.2 SST data

In the approach adopted, a two-step procedure to handle SST
measurements is used. In the first step, a precise orbit de-
termination procedure is exploited, which results in a series
of satellite positions. The goal of the second step is to con-
vert the positions into parameters of the Earth’s gravity field.
The problem is that the gravity field manifests itself not in
satellite positions directly but in satellite accelerations, i.e.
in second derivatives of positions. There are different ways
to relate the satellite positions to the Earth’s gravity: to de-
rive accelerations by the double numerical differentiation of
positions (Scḧafer, 2001) or to make use of the energy con-
servation low (Wolff, 1969; Jekeli, 1999); the latter approach
may be combined with the fast spherical collocation tech-
nique (Tscherning, 2002). However, the most common (and
mature) way is the orbit integration approach. It starts from
the computation of the satellite orbit corresponding to a ref-
erence gravity field, which can be done by the numerical in-
tegration of the equations of motion. In doing so, one has
to specify the initial state of the satellite (satellite position
and velocity at the initial moment). A least-square adjust-
ment can be used to find the initial state optimally. As soon
as the reference orbit is determined, one should know how it
is influenced by variations of the gravity field. This informa-
tion is contained in the SST-related design matrix, entries of
which can be obtained by integrating thevariational equa-
tions. Importantly, a computation of the gravity field param-
eters should be accompanied by a new computation of the
initial state vector because the optimal estimation of the latter
is not independent from the gravity field model. Then, a re-
lationship between the orbit discrepancies and the unknown
parameters can be written as a system of linear equations:

dsst = ASxG + AAxA, (2)

wheredsst is the vector of orbit discrepancies;xA is the vec-
tor of parameters describing the initial state vector;AS is the
design matrix part which is related to the gravity field, and
AA is the design matrix part which is related to the initial
state vector.

Strictly speaking, the linear relationship (2) holds only
when the reference model is of high quality, so that orbit dis-
crepancies are sufficiently small, otherwise an iterative im-
provement of the solution may be needed. For the time being,
however, we leave this aspect beyond the consideration.

By merging relationships (1) and (2), we can write a joint
system of linear equations:

Ax = d (3)

with

d =

(
dsgg
dsst

)
, A =

(
AG 0
AS AA

)
, x =

(
xG
xA

)
. (4)

2.2 Normal equations

From the relationships (3) and (4) it follows that the least-
square estimation of the vectorxG , which describes the dis-
turbing potential, can be found by solving the system of nor-
mal equations:

N xG = y. (5)

The right-hand side vectory is composed of two terms (the
SGG-related and the SST-related), whereas the normal ma-
trix N composed of 3 terms (the SGG-related, the SST-
related, and the regularization-related):

N = Nsgg+ Nsst + αR, y = ysgg+ ysst (6)

with α standing for the regularization parameter andR for
the regularization matrix. The explicit expressions for SGG-
related terms are straightforward:

Nsgg = AG
T Csgg

−1AG, ysgg = AG
T Csgg

−1dsgg (7)

with Csgg being the covariance matrix of SGG data.
The explicit expressions for SST-related terms can be ob-

tained after elimination of the unknowns related to the initial
state vector by means of the back-substitution:

Nsst =

AS
T Csst

−1AS − AS
T Csst

−1AANAA
−1AA

T Csst
−1AS ,

ysst =

AS
T Csst

−1dsst − AS
T Csst

−1AANAA
−1AA

T Csst
−1dsst. (8)

with Csst denoting the covariance matrix of SST data and
NAA = AAT Csst

−1AA.
In fact, computations of both the SGG- and SST-related

normal matrices according to expressions (7) and (8) suffer
from drawbacks: the expression (8) leads to large round-off
errors whereas computations prescribed by the formula (7)
are simply too time-consuming. More practical algorithms
to compute the normal matrices are discussed in the next sec-
tion.



P. Ditmar et al.: On the joint inversion of SGG and SST data from the GOCE mission 89

2.3 Computation of the SGG-related normal matrix

An explicit implementation of Eq. (7) may result in rather
time-consuming computations. Let us forget for the moment
about the matrixCsgg

−1 (in other words, assume that the
noise in the SGG data is white). Assume further that the
SGG-related design matrixAG is known. As can be easily
seen, the number of operations needed to compute the nor-
mal matrix according to Eq. (7) is of the orderO(N × M2),
whereN is the number of data andM is the number of un-
known parameters.

In practice, it is anticipated that noise in SGG data will
be colored (i.e. frequency-dependent). Then, the covariance
matrix Csgg is non-diagonal, so that its inversion can make
the computation of the normal matrix even more tedious.
Fortunately, it is known that if the noise is stationary, the co-
variance matrix is Toeplitz. The application of the inverse of
such a matrix to a vector can be closely approximated by sim-
ply filtering this vector (Schuh, 1996; Klees et al., 2003). For
computation of the normal matrix it means that each column
of the design matrix should be subject to filtering. Further-
more, it is usually possible to keep the filter lengtho modest
(o � M). Then, we can assert that filtering takes not more
thatO(N) operations per column. Thus, our statement that
the number of operations to compute the normal matrix is of
the orderO(N × M2) remains valid in case of the colored
noise as well.

In order to reduce the number of operations, we propose
to exploit fast synthesis and co-synthesis techniques (Ditmar
and Klees, 2002; Ditmar et al., 2003). With synthesis and
co-synthesis, we mean the application of the design matrix
and of the transposed design matrix, respectively, to a vec-
tor. In order to apply these procedures for the computation
of the normal matrix, a unit vectorem of lengthM has to be
defined. All the elements of this vector are equal to 0 ex-
cept for the element at the positionm: this element is equal
to 1. Sequential application of the synthesis, filtering, and
co-synthesis to this vector results in them-th column of the
normal matrix:

Nsgg
(m)

= AG
T (Csgg

−1(AGem)) (9)

The fast synthesis/co-synthesis consists of the initializa-
tion/finalization, which requiresO(M2) operations, and the
main loop, which needsO(N) operations (Ditmar et al.,
2003). For long data sets, time expenditures for the initial-
ization/finalization are minor, so we can state that all three
steps - synthesis, filtering, and co-synthesis - requireO(N)

operations. Then, the total number of operations for the com-
putation of the normal matrix becomesO(N × M), which
results in a dramatic speed-up of the computations. It should
be pointed out that the fast co-synthesis may also be used to
accelerate the computation of the right-hand side vectorysgg.

2.4 Computation of the SST-related normal matrix

Unlike the case of SGG data, we did not develop an al-
gorithm for computing the SST-related design matrix our-

selves. Instead, we import the design matrix from computer
files, which are created by the software package GEODYN
(Rowlands et al., 1995). The same software is also used to
compute orbit discrepancies. Still, we programmed the com-
putation of the SST-related normal matrix. In principle, the
equations (8) could be used for that purpose directly because
computations in this case are not so time-consuming as those
in case of SGG data. This is because the purpose of SST
data is to determine only the low-frequency part of the spa-
tial gravity spectrum; hence a much lower sampling rate can
be used, so that the total number of SST data is much less
than that of SGG data. There is, however, another problem,
which is caused by the fact that the numerical integration in-
troduces similarities in columns of matricesAS andAA. As
a consequence, the traditional back-substitution prescribed
by Eq. (8) results in a subtraction of two very close matrices,
which cause significant round-off errors. The influence of
the round-off errors is especially strong when the SST-data
are inverted in the stand-alone mode (without SGG data).
In that case, the computed normal matrix may even loose
its positive-definiteness, so that traditional ways to solve the
system of normal equations like the Cholesky decomposition
become impossible.

There is a number of possible solutions to the problem,
e.g. to make computations with enhanced (16-byte) preci-
sion. We proposed, however, another approach, which is in
our opinion the most straightforward: to carry out the back-
substitution not at the level of the normal matrix but at the
level of the design matrix. First of all, assume that the col-
umnm of the matrixAS has to be approximated by columns
of matrix AA. Assume further that difference between the
m-the column of the matrixAS and a linear combination of
columns of the matrixAA should be minimized in the sense
of the L2-norm with weightsCsst

−1:∥∥∥AAβm − AS
(m)

∥∥∥
Csst

−1
= min, (10)

where vectorβm consists of unknown coefficients in the lin-
ear combination. Obviously, the minimum of the expression
(10) is reached when

βm = NAA
−1AA

T Csst
−1AS

(m). (11)

Let us introduce now an updated design matrixÂS , which is
obtained by subtracting the found approximation from each
column of the original design matrix:

ÂS = AS − AANAA
−1AA

T Csst
−1AS , (12)

One can easily see that utilization of the matrixÂS for build-
ing the normal matrix results directly in the desirable matrix
Nsst:

ÂT
SCsst

−1ÂS = (13)

AS
T Csst

−1AS − 2AS
T Csst

−1AANAA
−1AA

T Csst
−1AS+

AS
T Csst

−1AANAA
−1AA

T Csst
−1AANAA

−1AA
T Csst

−1AS =

AS
T Csst

−1AS − AS
T Csst

−1AANAA
−1AA

T Csst
−1AS = Nsst;
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in the derivation, we used the equality
NAA−1AAT Csst

−1AA = NAA−1NAA = I .
The same updated design matrixÂS can be directly used

for the computation of the right-hand side vectorysst:

ÂT
SCsst

−1dsst =

AS
T Csst

−1dsst − AS
T Csst

−1AANAA
−1AA

T Csst
−1dsst

= ysst. (14)

Thus, the expression (12) describes the back-substitution at
the level of the design matrix.

There is a simple geometrical interpretation of the pro-
posed approach. Let us introduce two projecting operators:

(1) operator5
C−1

sst

R(AA)
for projecting onto the spaceR(AA)

(the range space of matrixAA) with respect to metricC−1
sst :

5
C−1

sst

R(AA)
= AANAA

−1AA
T Csst

−1 (15)

and (2) operator5
C−1

sst

R⊥(AA)
for projecting onto the space

R⊥(AA) (the orthogonal space with respect to metricC−1
sst ):

5
C−1

sst

R⊥(AA)
= I − 5

C−1
sst

R(AA)
= I − AANAA

−1AA
T Csst

−1. (16)

Application of these operators to matrixAS allows one to
represented it as sum of two components: the component

A‖

S ≡ 5
C−1

sst

R(AA)
AS that belongs to the range spaceR(AA)

and the perpendicular componentA⊥

S ≡ 5
C−1

sst

R⊥(AA)
AS =

ÂS . A similar decomposition can be applied to the data vec-

tor dsst: dsst = d‖

sst + d⊥
sst, whered‖

sst ≡ 5
C−1

sst

R(AA)
dsst and

d⊥
sst ≡ 5

C−1
sst

R⊥(AA)
dsst. Now, the expressions (8) for the SST-

related normal matrix and the corresponding right-hand side
vector can be written as

Nsst = AS
T Csst

−1AS − AS
T Csst

−1A‖

S = AS
T Csst

−1A⊥

S

ysst = AS
T Csst

−1dsst − AS
T Csst

−1d‖

sst = AS
T Csst

−1d⊥
sst.(17)

The idea of the back-substitution at the level of the design
matrix is to replace in these equations the full matrixAST

with its projection onto the spaceR⊥(AA):

Nsst = (A⊥

S )T Csst
−1A⊥

S
ysst = (A⊥

S )T Csst
−1d⊥

sst. (18)

This can be done with impunity because, by definition,

(A‖

S)
T

Csst
−1A⊥

S = 0

(A‖

S)T Csst
−1d⊥

sst = 0. (19)

On the other hand, in practical computations the equalities
(19) would not hold exactly due to a limited machine accu-
racy. As long as elements of the matrixA‖

S are orders of
magnitude larger than elements of the matrixA⊥

S , such ”mi-
nor” errors may noticeably influence the computations if the
traditional back-substitution is followed. Back-substitution

at the level of the design matrix allows one to avoid the loss
of accuracy.

It is worth adding that the noise in SST data has been as-
sumed so far in our studies to be white, so thatCsst = σ 2

sst I ,
whereσsst is the accuracy of SST-data.

2.5 Solving the system of normal equations by means of
the conjugate gradient method

We have also implemented an alternative approach to solve
the system of normal equations: the method of conjugate gra-
dients with pre-conditioning (PCCG) (Hestenes and Stiefel,
1952; Bertsekas, 1982). At each iteration of this method,
one should apply the normal matrixN to a certain vectorq.
Importantly, this operation can be done without an explicit
computation of the normal matrix. Instead, a sequence of
matrix-to-vector multiplication can be carried out as follows:

Nq = AG
T (Csgg

−1(AGq))+ ÂT
S(Csst

−1(ÂSq))+αRq.(20)

The most time-consuming operations here are multiplica-
tions of the design matrixAG and of the transposed design
matrix AGT to vectors. The number of PCCG iterations
is, however, usually much smaller than the number of un-
knowns. Hence can expect that the PCCG method would
work anyway faster than any method based on the explicit
computation of the full normal matrix.

Importantly, a fast convergence of the PCCG method can
only be achieved when a suitable pre-conditioner (i.e. a good
approximation to the normal matrix) is used. At each PCCG
iteration, a system of linear equations has to be solved with
the pre-conditioner as the system matrix. In our algorithm,
the pre-conditionerN(pc) is built similarly to the normal ma-
trix itself:

N(pc)
= N(pc)

sgg + Nsst + αR. (21)

One can see from Eq. (21) that the computation of the pre-
conditioner differs from that of the true normal matrix only in
the part related to the SGG data. More specifically, the matrix
N(pc)

sgg is computed analytically, as a block-diagonal approx-
imation of the SGG-related normal matrix (Colombo, 1986;
Ditmar and Klees, 2002). Thus, the time-consuming compu-
tation of the true SGG-related normal matrix is avoided.

3 Computational experiments

3.1 Stand-alone inversion of SST data

The first goal of our simulations was to reveal typical inac-
curacies in recovering the Earth’s gravity field model from
the SST data alone. A set of satellite positions was gener-
ated with the GEODYN software according to the following
scenario:

– Model of the Earth’s gravity field used to compute the
”true” orbit: EGM96 (Lemoine et al., 1998) truncated
at degree and order 80;
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Fig. 1. Geoid height errors after the
stand-alone inversion of noise-free SST
data. The rms error is equal to 3.6 cm;
the maximum error reaches 24 cm.
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Fig. 2. Geoid height errors after the
stand-alone inversion of noisy SST data
without a regularization. The rms error
is equal to 111 cm; the maximum error
reaches 534 cm.

– Reference model of the Earth gravity field: JGM-3 (Ta-
pley et al., 1996);

– Observation period: 10 days;

– Sampling rate: 15 sec;

– ”True orbit parameters: near-repeat, mean inclination
96.59◦, elevation above the equator 246± 7 km.

In order to reduce the orbit discrepancies, the reference or-
bit was split into 10 one-day arcs, so that 10 unknown initial
state vectors were included as additional parameters into the
functional model. The maximum degree and order in the in-
version was set to 80, i.e. consistently with the ”true model”
definition.

First of all, noise-free satellite positions have been consid-
ered. The system of normal equations was built explicitly
and solved by means of the Cholesky method; regularization
was not applied. The obtained gravity field model is shown
in terms of geoid height errors in Fig. 1. In order to quantify

the quality of the model obtained, we have calculated the rms
and the maximum (in the absolute sense) geoid height errors
in the interval of latitudes±80◦, so that the polar areas not
cover by measurements are excluded. It turned out that the
rms error is equal to 3.6 cm, whereas the maximum error
reaches 24 cm. Thus, in spite of the absence of noise, the
result of the inversion is not perfect. Most probably, the er-
rors are caused by insufficiently small orbit discrepancies, so
that the non-linearity of the problem cannot be fully ignored.
In order to get rid of these errors, we should have applied an
iterative improvement procedure. However, we leave a close
investigation of these errors beyond the scope of our numer-
ical study because they are much less than those caused by
anticipated data inaccuracies.

To demonstrate the influence of data inaccuracies, an ar-
tificial quasi-random white noise of a modest amplitude, 1
cm, was added to the satellite positions. Then, the data
were inverted in the same way as in the previous case (i.e.
without a regularization). The model obtained proved to be
very erroneous (Fig. 2). In order to suppress the influence of
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Fig. 3. Geoid height errors after the
stand-alone inversion of noisy SST data
with the optimal regularization. The
rms error is equal to 46 cm; the maxi-
mum error reaches 396 cm.
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the noise, we have repeated the computations with the first-
order Tikhonov regularization applied (Tikhonov and Ars-
enin, 1977; Ditmar and Klees, 2002). But even the optimal
selection of the regularization parameter allowed us to im-
prove the model accuracy only about two times (Fig. 3).

3.2 Stand-alone inversion of SGG data

The second goal of our simulations was to demonstrate the
influence of noise in SGG data, when these data are inverted
in the stand-alone mode. In order to simulate a set of SGG
data, we used the same 10-day “true” orbit that has been al-
ready presented above. The choice of the “true” and of the
reference gravity field was also the same as in the previous
examples. Other parameters of the simulation were as fol-
lows:

– Considered components of the SGG tensor: XX, YY,
and ZZ;

– Sampling rate: 1 sec;

– Noise model: A realistic noise SQRT-PSD (square root
of the power spectral density) from the report (ESA,

2000) (Fig. 4) was exploited to generate noise realiza-
tions.

The simulated SGG data were inverted into a model of the
Earth’s gravity field; as before, the maximum degree and or-
der was set to 80. Regularization in this case was not applied;
the system of normal equations was solved with the PCCG
method. One can see that the model obtained this way is also
characterized by significant inaccuracies (see Fig. 5).

3.3 Joint inversion

Finally, the above-presented sets of SST and SGG-data were
inverted jointly. The normal equations were solved with (i)
the Cholesky method based on the explicit building the nor-
mal matrix, and (ii) the PCCG method. As we expected, the
PCCG method turned out to be much faster. On the SGI Ori-
gin 3800 super-computer with 30 processing elements, the
computations according to the PCCG method took only 1.5
hours including 0.5 hour for input/output operations (mostly,
reading the SST-related design matrix from external files).
The explicit computation of the normal matrix and the in-
version based on the Cholesky method took about 12 hours.
The models obtained with both methods are identical; one of
them is shown in Fig. 6. As expected, the joint inversion of
SST and SGG data leads to a much higher accuracy than the
stand-alone inversion of each data set.

4 Discussion and conclusions

The simulations performed allow one to understand better the
power of a joint inversion of SST and SGG data. A stand-
alone inversion of SST data cannot reproduce the Earth’s
gravity field accurately even in case of a modest trunca-
tion degree (namely, 80); this inference is also consistent
with previous publications (e.g. Visser et al., 2001). The
geoid height errors are characterized by a noticeable high-
frequency pattern, where anomalies are extended in the East-
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Fig. 5. Geoid height errors after the
stand-alone inversion of noisy SGG
data. The rms error is equal to 24 cm;
the maximum error reaches 64 cm.
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Fig. 6. Geoid height errors after the
joint inversion of noisy SST and noisy
SGG data. The rms error is equal to 0.3
cm; the maximum error reaches 1.4 cm.

West direction (Figs. 2, 3). This pattern can be explained by
the fact that the Earth’s gravity field, according to Newton’s
second law, manifests itself in satellite accelerations. In or-
der to convert the accelerations into satellite positions, one
should perform the double integration, which is a smooth-
ing operation. Thus, by observing the satellite trajectory, we
cannot percept fast along-track variations of the gravity field.
Once the satellite orbit is polar, it is just these East-West vari-
ations which cause the observed error pattern.

SGG data alone lead to significant errors in the Earth’s
gravity field model, too. The behavior of the errors is, how-
ever, different: they show up, mostly, as a low-frequency pat-
tern (Fig. 5). Such a behavior is dictated by the strong noise
in SGG data at lowest frequencies (Fig. 4).

The joint inversion of SST and SGG data leads to results of
much higher accuracy than any stand-alone inversion. This
is because the joint inversion does not suffer from a lack of
information like a stand-alone inversion: it takes the low-
frequency information from SST data and the medium-to-
high-frequency information from SGG data. What is cru-

cial for a success of the joint inversion is a proper weight-
ing of the data. Particularly, applying a proper filter to the
SGG data in the course of inversion. Thanks to this filtering,
the erroneous low-frequency contents in SGG data is down-
weighted. Thus, the result obtained is much better than the
one which could be produced, e.g. by “mixing” results ob-
tained with stand-alone inversion procedures.

It is worth noticing that we have been able to apply a
proper weighting because we assumed that the stochastic
properties of SGG and SST data are known. In practice, this
may not be the case. Then, it might be necessary to apply a
procedure for determination of the noise properties from the
data themselves. (cf. Kusche, 2003).
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