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A RETRACT PRINCIPLE ON DISCRETE TIME SCALES

Abstract. In this paper we discuss asymptotic behavior of solutions of a class of scalar
discrete equations on discrete real time scales. A powerful tool for the investigation of
various qualitative problems in the theory of ordinary differential equations as well as delayed
differential equations is the retraction method. The development of this method is discussed
in the case of the equation mentioned above. Conditions for the existence of a solution with
its graph remaining in a predefined set are formulated. Examples are given to illustrate the
results obtained.
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1. INTRODUCTION

We use the following notation: for integers s, q, s ≤ q, we define Zq
s := {s, s+1, . . . , q},

where s = −∞ or q = ∞ are admitted, too. Throughout this paper, using notation
Zq

s (perhaps with another couple of integers), we always suppose s ≤ q. Moreover, in
this paper we suppose that a time scale T is an arbitrary increasing sequence of real
numbers, i.e., T := {tn} with tn ∈ R, n ∈ Z∞0 and tn < tn+1 for any n ∈ Z∞0 .

A powerful tool for the investigation of various problems in the field of ordinary
differential equations as well as delayed differential equations is the retraction method
(so-called Ważewski’s method) described, e.g., in [6, 8] for ordinary differential equa-
tions and in [7] for delayed functional differential equations. In this paper we shall
give, in the case of one scalar discrete equation, a construction in which the idea of
retraction principle is used. The results obtained can be useful in the investigation of
asymptotic behavior of solutions of indicated discrete equations.

Let us consider the scalar discrete equation

u(tn+1) = f(tn, u(tn)), (1)
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where a mapping f : T × R → R is continuous with respect to its second argument.
The used scale T is a special case of a so-called real time scale which is defined as an
arbitrary nonempty closed subset of the real line [1, 5].

We consider initial problem (1), (2), where

u(ts) = us ∈ R, (2)

s ∈ Z∞0 is fixed and ts ∈ T. The existence and uniqueness of a solution of initial
problem (1), (2) on {tq} ⊂ T, q ∈ Z∞s is obvious. The solution of initial problem (1),
(2) is an infinite sequence of numbers

{u(ts) = us, u(ts+1), u(ts+2), . . . , u(ts+k), . . . }

such that equality (1) holds for each n ∈ Z∞s . Moreover, due to the continuity of the
function f with respect to its second argument, initial problem (1), (2) continuously
depends on initial data. We define a set ω ⊂ T× R as

ω := {(t, u) : t ∈ T, b(t) < u < c(t)},

where b, c are real functions defined on T and such that b(tn) < c(tn), for each
n ∈ Z∞0 . The closure ω is defined as

ω := {(t, u) : t ∈ T, b(t) ≤ u ≤ c(t)}

and the boundary ∂ω as

∂ω := {(t, u) : t ∈ T, u = b(t) or u = c(t)}.

Our aim is to establish sufficient conditions for the right-hand side of equation (1) in
order to guarantee the existence of a solution u = u(tn) defined on the discrete real
time scale T such that (tn, u(tn)) ∈ ω for each n ∈ Z∞0 . Results obtained significantly
generalize (in the scalar case) some results given in [3, 4], where investigation of this
problem have been performed under supposition that the independent variable varies
within the set N(a) := {a, a + 1, . . . } with a nonnegative integer a. Obviously, N(a)
is a partial case of the general discrete time scale T and therefore these results are
not applicable in the case of arbitrary discrete time scale. In Section 4 we apply our
results to the investigation of asymptotic behavior of solutions of a discrete equation
on the general discrete time scale. Moreover, we give illustration of the result obtained
with the aid of two different discrete time scales.

2. PRELIMINARIES

We divide the boundary ∂ω into B1 ⊂ T× R and B2 ⊂ T× R, where

B1 := {(t, u) : t ∈ T, u = b(t)},
B2 := {(t, u) : t ∈ T, u = c(t)}.
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Farther, on T× R, let us define the signed lower and upper distances

U1(t, u) := u− b(t),
U2(t, u) := u− c(t).

Definition 1. For (t, u) = (tn, b(tn)) ∈ B1, the full difference

∆U1(t, u) := f(tn, b(tn))− b(tn+1)

is defined as the signed lower distance to B1 of the result f(t, u) of the n-th step of (1)
emanating from u = b(t).

Definition 2. The point (t, u) ∈ B1 is called a point of strict egress for the set ω
with respect to (1) if

∆U1(t, u) < 0.

By analogy we define the following notions:

Definition 3. For (t, u) = (tn, c(tn)) ∈ B2, the full difference

∆U2(t, u) := f(tn, c(tn))− c(tn+1)

is defined as the signed upper distance to B2 of the result f(t, u) of the n-th step of
(1) emanating from u = c(t).

Definition 4. The point (t, u) ∈ B2 is called a point strict egress for the set ω with
respect to (1) if

∆U2(t, u) > 0.

Remark 1. The geometrical sense of the notion of a point of strict egress is evident.
Namely, if a point

(t, u) = (tn, b(tn)) ∈ B1, n ∈ Z∞0
is a point of strict egress for the set ω with respect to (1), then the consequent point

(tn+1, f(tn, b(tn))) 6∈ ω.

Similarly, if
(t, u) = (tn, c(tn)) ∈ B2, n ∈ Z∞0

is a point of strict egress for the set ω with respect to (1), then

(tn+1, f(tn, c(tn))) 6∈ ω.

The point (tn, u) ∈ B1 ∪B2 is a point of strict egress for the set ω with respect to (1)
if and only if

f(tn, u)− b(tn+1) < 0
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in the case of (tn, u) ∈ B1 and

f(tn, u)− c(tn+1) > 0

in the case of (tn, u) ∈ B2.

Now we recall the notion of a retraction and a retract (see, e.g., [6]).

Definition 5. If A ⊂ B are subsets in a topological space and π : B → A is a
continuous mapping from B onto A such that π(p) = p for every p ∈ A, then π is
called a retraction of B onto A. When there exists a retraction of B onto A, A is
called a retract of B.

3. EXISTENCE THEOREM

The proof of the following theorem uses the retract idea. Namely, simplifying the
matter, supposing that the statement of the theorem is not valid, we prove that there
exists a retraction of a segment [α, β] with α < β onto the two-point set {α, β}. It
is well known that such a retraction cannot exist because such a retractive behavior
is incompatible with continuity. This statement is a partial case of a more general
result – the boundary of k-dimensional ball is not its retract (cf. e.g. [2]).

Theorem 1. Let us suppose that f(w, u) is defined on T × R and it is continuous
with respect to its second argument. If, moreover,

f(tn, b(tn))− b(tn+1) < 0, (3)
f(tn, c(tn))− c(tn+1) > 0 (4)

for any n ∈ Z∞0 , then there exists a value u∗ ∈ (b(t0), c(t0)) such that the initial
problem

u(t0) = u∗, (5)

defines a solution u = u∗(tn) of equation (1) satisfying

b(tn) < u∗(tn) < c(tn) (6)

for every n ∈ Z∞0 .

Proof. Let us suppose that a value u∗ satisfying the inequality b(t0) < u∗ < c(t0) and
generating the solution

u = u∗(tn), u(t0) = u∗

which satisfies (6) for any n ∈ Z∞0 does not exist. This means that for any û such
that

b(t0) < û < c(t0)

there exists n̂ ∈ Z∞1 such that, for the corresponding solution u = û(tn) of initial
problem û(t0) = û, there is (tn̂, û(tn̂)) 6∈ ω, while

(tl, û(tl)) ∈ ω, l = 0, 1, . . . , n̂− 1.
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Since, in view of inequalities (3), (4) and Remark 1, each point (w, u) ∈ B1 ∪ B2 is
the point of strict egress for the set ω with respect to (1), we can also conclude the
following. For any u0 such that

b(t0) ≤ u0 ≤ c(t0)

there exists a real number n0 ∈ Z∞1 such that, for the corresponding solution u =
u0(tn) of the initial problem u0(t0) = u0 there is

(tn0 , u
0(tn0)) 6∈ ω, (7)

(tn0−1, u
0(tn0−1)) ∈ ω (8)

and, if n0 − 2 ≥ 0,
(tl, u0(tl)) ∈ ω, l = 0, 1, . . . , n0 − 2. (9)

This is also a consequence of the above underlying indirect assumption. Obviously, if
u0 = b(t0) or if u0 = c(t0), then n0 = 1.

In this situation we prove that there is a retraction of the set [b(t0), c(t0)] onto
the two-point set {b(t0), c(t0)}. (See Definition 5 with B = [b(t0), c(t0)] and A =
{b(t0), c(t0)}.) In other words, in this situation a continuous mapping of a closed
interval onto its boundary would exist. This gives a contradiction.

In the following part of the proof, the required retraction is constructed. Let us
define auxiliary mappings P1, P2 and P3:

P1 : (t0, u0) → (tn0 , u
0(tn0)),

where the value n0 was defined above by (7) – (9);

P2 : (tn0 , u
0(tn0)) →

{
(tn0 , c(tn0)) if u0(tn0) > c(tn0),
(tn0 , b(tn0)) if u0(tn0) < b(tn0),

and for (tn0 , ũ) ∈ ∂ω

P3 : (tn0 , ũ) →
{

(t0, c(t0)) if ũ = c(tn0),
(t0, b(t0)) if ũ = b(tn0).

We will show that the composite mapping

P : (t0, u0) → {(t0, b(t0)), (t0, c(t0))},

where
P := P3 ◦ P2 ◦ P1,

is continuous with respect to the second coordinate of the point (t0, u0). Let us
underline that, in view of the construction of mapping P, two result points are possible
only, namely, either P (t0, u0) = (t0, c(t0)) or P (t0, u0) = (t0, b(t0)).

We consider the first possibility, i.e., P (t0, u0) = (t0, c(t0)). Then

P1(t0, u0) = (tn0 , u
0(tn0)), (tn0 , u

0(tn0)) 6∈ ω and u0(tn0) > c(tn0).
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We remark that in view of the construction, the value u0(tn0) continuously depends
on u0. Therefore, the continuity of the mapping P1 is a consequence of the property
of the continuous dependence of an initial problem on its initial data. For small
perturbations ∆0 of u0. such that (t0, u0 + ∆0) ∈ ω, in view of the properties of
mappings P2, P3, we get

P (t0, u0 + ∆0) = (t0, c(t0)),

i.e., the composite mapping P is continuous in the case considered.
We proceed in the case when P (t0, u0) = (t0, b(t0)) analogously.
Thus the continuity of P has been proven if b(t0) ≤ u0 ≤ c(t0). Hence the required

retraction is realized by P, because the mapping

[b(t0), c(t0)]
P−→ {b(t0), c(t0)}

is continuous and

{b(t0)}
P−→ {b(t0)},

{c(t0)}
P−→ {c(t0)},

i.e., the points {b(t0)}, {c(t0)} are stationary.
This is by above mentioned fact impossible. Our supposition is false and there

exists initial problem (5) such that the corresponding solution u = u∗(tn) satisfies
inequalities (6) for every n ∈ Z∞0 . The theorem is proved.

Theorem 1 can be generalized in the following way. As it easy follows from
its proof, the assumptions with respect to the function f(t, u) were used for values
(t, u) ∈ ω only, although they were supposed to be valid on T×R. Therefore, we can
reformulate this theorem. In view of the facts mentioned just before, we may omit
the proof.

Theorem 2. Let us suppose that f is defined on ω with values in R and it is continu-
ous with respect to its second argument. If, moreover, each point (t, u) ∈ B1 ∪B2 is a
point of strict egress for the set ω with respect to (1), then there exists initial problem
(5) with u∗ ∈ (b(t0), c(t0)) such that the corresponding solution u = u∗(tn) satisfies
inequalities (6) for every n ∈ Z∞0 .

4. APPLICATIONS

Let T be the time scale referred to above. We suppose t0 > 0. In this section, we apply
Theorem 1 to the investigation of the asymptotic behavior of a particular solution of
the equation

u(tn+1) = u(tn)− a(tn, u(tn))
tntn+1

, (10)
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where a : T× R → R is a given function. Let us note that equation (10) with

a(tn) := tn+1 − tn

has a solution

u = u∗p(tn) =
1
tn

, n ∈ Z∞0 .

Our main purpose is to give sufficient conditions on a for equation (10) to have a
solution u = up which is in a sense close to u∗p. In particular, we are interested when

up(tn) ∼ u∗p(tn) =
1
tn

(11)

as n → ∞. At first we give general conditions for such behavior in the case of the
discrete time scale T. Then we will specify these conditions in the case of some
concrete time scales.

Theorem 3. Let there exist functions b∗ : T× R → R and c∗ : T× R → R such that
for every n ∈ Z∞0 inequalities

b∗(tn) + c∗(tn) > 0, (12)

tn+2(tn+1 − tn − a(tn, b(tn))) < b∗(tn)tn+2 − b∗(tn+1)tn, (13)

tn+2(tn+1 − tn − a(tn, c(tn))) > c∗(tn+1)tn − c∗(tn)tn+2 (14)

hold. Then there exists a solution u = up of equation (10) such that the inequalities

1
tn
− b∗(tn)

tntn+1
< up(tn) <

1
tn

+
c∗(tn)
tntn+1

(15)

hold for every n ∈ Z∞0 .

Proof. In the case considered we have

f(tn, u) = u− a(tn, u)
tntn+1

.

We put

b(tn) :=
1
tn
− b∗(tn)

tntn+1
, c(tn) :=

1
tn

+
c∗(tn)
tntn+1

, (16)

where n ∈ Z∞0 . Due to (12), the inequality b(tn) < c(tn) holds for any n ∈ Z∞0 .
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Then, due to (13)

f(tn, b(tn))− b(tn+1) =
1

tntn+1tn+2
×

× [tn+1tn+2 − b∗(tn)tn+2 − a(tn, b(tn))tn+2 − tntn+2 + b∗(tn+1)tn] =

=
1

tntn+1tn+2
×

[
(tn+2(tn+1 − tn − a(tn, b(tn))))−

− (b∗(tn)tn+2 − b∗(tn+1)tn)
]

< 0

and inequalities (3) hold for every n ∈ Z∞0 . Moreover, due to (14),

f(tn, c(tn))− c(tn+1) =
1

tntn+1tn+2
×

× [tn+1tn+2 + c∗(tn)tn+2 − a(tn, c(tn))tn+2 − tntn+2 − c∗(tn+1)tn] =

=
1

tntn+1tn+2
×

[
(tn+2(tn+1 − tn − a(tn, c(tn))))+

+ (c∗(tn)tn+2 − c∗(tn+1)tn)
]

> 0

and inequalities (4) hold for every n ∈ Z∞0 as well. All conditions of Theorem 1 are
satisfied. Then inequalities (6) turn into inequalities (15).

Remark 2. Let the assumptions of Theorem 3 be valid and, moreover,

lim
n→∞

b∗(tn)
tn+1

= lim
n→∞

c∗(tn)
tn+1

= 0. (17)

Then, obviously, relation (11) holds.

Example 1. We consider equation (10) with tn := n + 1 and

a(tn, u(tn)) := tn+1 − tn − (tn+2)−1 ,

i.e., the equation

u(n + 2) = u(n + 1)− 1
(n + 1)(n + 2)

+
1

(n + 1)(n + 2)(n + 3)
, (18)

where n ∈ Z∞0 . Inequalities (12)–(14) are valid, e.g., for the choice b∗ ≡ 1, c∗ ≡ 0 and,
in accordance with (15), there exists a solution up(tn) = up(n + 1) of equation (18)
such that the inequalities

1
n + 1

− 1
(n + 1)(n + 2)

< up(n + 1) <
1

n + 1

hold for every n ∈ Z∞0 . Moreover, since relations (17) hold, there is

up(n + 1) ∼ 1
n + 1

as n →∞.
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As it can be verified easily, the same statements are valid, e.g., for the nonlinear
equation

u(n + 2) = u(n + 1)− 1
(n + 1)(n + 2)

+
1 + | cos u(n + 1)|

2(n + 1)(n + 2)(n + 3)
,

where n ∈ Z∞0 , which is a special case of equation (10) with

a(tn, u(tn)) := tn+1 − tn −
(1 + | cos u(tn)|)

2tn+2
.

Example 2. We consider equation (10) with tn := qn, where q = const, q > 1 and

a(tn, u(tn)) := tn+1 − tn + (tn)−1 ,

i.e., the equation

u(qn+1) = u(qn)− 1
qn

+
1

qn+1
− 1

q3n+1
, (19)

n ∈ Z∞0 . Inequalities (12)–(14) are valid, e.g., for

b∗ ≡ 0, c∗ = const, c∗ >
q2

q2 − 1
.

In accordance with (15), there exists a solution up(tn) = up(qn) of equation (19) such
that the inequalities

1
qn

< up(qn) <
1
qn

+
c∗

q2n+1
(20)

hold for every n ∈ Z∞0 . Moreover, since relations (17) hold, there is

up(qn) ∼ 1
qn

as n → ∞. As it can be verified easily, the same statements are valid, e.g., for the
nonlinear equation

u(qn+1) = u(qn)− 1
qn

+
1

qn+1
− 1

2q2n+1(q3n+1 + u4(qn))
,

where n ∈ Z∞0 which is a special case of equation (10) with

a(tn, u(tn)) := tn+1 − tn +
1

2(t3n · q + u4(tn))
.

We give (Fig. 1) a visualization of the situation described in Example 2. Corre-
sponding functions b and c, defined by (16), are in this case given by the relations

b(tn) =
1
qn

, c(tn) =
1
qn

+
c∗

q2n+1
.

We put q = 1, 5 and choose c∗ = 2. Then we have (see (20))

1
1, 5n

< up(1, 5n) <
1

1, 5n
+

4
3 · 1, 52n

(21)

for n = 0, 1, . . . .
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The visualization is performed for n = 0, 1, . . . , 5 on Figure 1. The graph of the
solution up satisfying (21) lies in the hatched domain.

-
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Fig. 1. Asymptotic behavior of solution – Example 2
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