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Abstract. Due to the catastrophic consequences of tsunamis,
early warnings need to be issued quickly in order to miti-
gate the hazard. Additionally, there is a need to represent the
uncertainty in the predictions of tsunami characteristics cor-
responding to the uncertain trigger features (e.g. either po-
sition, shape and speed of a landslide, or sea floor deforma-
tion associated with an earthquake). Unfortunately, computer
models are expensive to run. This leads to significant de-
lays in predictions and makes the uncertainty quantification
impractical. Statistical emulators run almost instantaneously
and may represent well the outputs of the computer model. In
this paper, we use the outer product emulator to build a fast
statistical surrogate of a landslide-generated tsunami com-
puter model. This Bayesian framework enables us to build
the emulator by combining prior knowledge of the computer
model properties with a few carefully chosen model evalu-
ations. The good performance of the emulator is validated
using the leave-one-out method.

1 Introduction

A tsunami is a series of powerful water waves generated
by earthquakes, volcanic eruptions, underwater landslides as
well as local landslides along the coast. Their main charac-
teristic is the high speed of propagation. As emphasized by
the recent tragic events in March 2011 in Japan and in De-
cember 2004 in Indonesia, tsunamis may be extremely catas-
trophic: they are able to destroy buildings, roads and gen-
erally the infrastructure is seriously affected. But the most
tragic part is that tsunamis can lead to the loss of human lives.
A deep knowledge of tsunamis is required in order to predict

the maximum runups and rundowns, and also to give early
warning notices to the regions that may be affected.

Since the most common sources for tsunamis are earth-
quakes, earthquake-generated tsunamis have been exten-
sively investigated. Landslide-generated tsunamis have been
much less studied and the existing knowledge about them
is more limited. They are characterised by relatively short
periods, compared to the earthquake-generated ones, result-
ing in stronger viscous damping. Hence, they do not travel
as long distances as the earthquake-generated tsunamis do.
Therefore, one of their characteristics is that their whole life
cycle takes place near the source. Nevertheless, they can
reach high amplitudes and can also become extremely harm-
ful (Synolakis et al., 2002; Tinti et al., 2008). The more chal-
lenging part in landslide-generated tsunami modelling results
from the fact that they are not instantaneously generated, as
the earthquake-generated tsunamis are, and their generation
depends strongly on how the shape of the sea floor changes
with time (Bardet et al., 2003). Wiegel(1955) performed the
first experiments on landslide-generated tsunamis, where a
sliding mass was moved down an incline. More recently, it
was observed byLiu et al.(2005) that larger wave maximum
elevations occur for subaerial compared to submerged slides.
Also, Panizzo et al.(2005) showed that the maximum wave
amplitude depends on both the duration of the underwater
motion and the front shape of the landslide. Studies about
tsunamis generated by a sliding mass on a plane beach have
also been performed byLynett and Liu(2005). The authors
have investigated the whole life cycle of the tsunami: initially
there is a high amplitude near the source, then the wave mo-
tion is predominantly near the shore, followed by edge waves
along the shoreline and no motion near the source.
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Sammarco and Renzi(2008) made an important contribu-
tion by developing an analytical three-dimensional model for
landslide-generated tsunamis based on the forced linear long-
wave equation of motion, considering a plane beach with a
constant slope. The inputs of the model are the initial posi-
tion, speed and spread ratio of the landslide and the output is
the sea free-surface elevation at specific times and locations.
By comparing available experimental data, they showed that
the model represents the overall behaviour of the wave with
acceptable accuracy. However, the predicted water eleva-
tions appear to be overestimated, which was attributed to ne-
glecting energy dissipation and dispersive effects.Renzi and
Sammarco(2012) extended the landslide-generated tsunami
model ofSammarco and Renzi(2008) to consider arbitrary
initial position, speed and spread ratio. Furthermore, land-
slides in their framework can have a shape other than Gaus-
sian. They investigated how these physical parameters and
the shape of the landslide affect the resulting wave elevation.
Renzi and Sammarco(2012) also analyzed the effect of the
continental platform on the wave elevation.

This paper presents a proof-of-concept case study for the
statistical analysis of a landslide-generated tsunami model,
by employing the analytical model constructed bySammarco
and Renzi(2008). The main strategy of the analysis is to
build a statistical emulator that accurately represents the an-
alytical model, which can be used for fast predictions, quan-
tification of uncertainties and sensitivity analysis. In Sect. 2,
a more detailed explanation of the statistical emulator is pre-
sented. Section 3 describes the concept of a special form
of emulator, named the outer product emulator. An analytic
description for the appropriate parameter selections and cal-
culations required to build it are also presented. Section 4 de-
scribes the concept of the experimental design and its imple-
mentation. Section 5 shows the application of the outer prod-
uct emulator and its validation for theSammarco and Renzi
(2008) analytical model. The resulting emulator is then used
for extremely efficient sensitivity and uncertainty analyses in
Sect. 6.

2 Statistical emulator

An emulator is a simple statistical model that approximates
a simulator, where a simulator is a deterministic input-output
computer model (analytical model, complex statistical – e.g.
stochastic – model, or most commonly a numerical solver
of a large system of equations such as PDEs). Given some
inputsx, the simulator output is given byy = f (x) and the
emulator is denoted bŷf (x), which indicates that it is an
approximation of the simulator. In most cases, running sim-
ulators is very time and resource consuming, so one can only
afford a limited number of runs. The use of emulators comes
as a solution to this problem, since emulators run almost in-
stantaneously. However, due to the fact that they are approx-
imations of the computer model, some error is introduced

by using them. So, emulators are recommended to be used
only in the case when the simulator is expensive to evaluate.
The error amount can be estimated since they can make prob-
abilistic predictions of the output that the simulator would
produce if it was exercised over certain regions of the input
space. Therefore, the main use of statistical emulators is for
fast predictions of the simulator output.

Analyses such as uncertainty and sensitivity analyses, as
well as calibration, require a large number of evaluations of
the expensive simulator and this means that they can become
impractical. An emulator can be built and used to make such
demanding analyses more efficiently. The uncertainty anal-
ysis provides us with knowledge of the distribution of the
simulator output. The sensitivity analysis investigates how
each of the inputs affect the output. Calibration consists of
fitting a model to the available observations by adjusting its
parameters (we are not considering calibration in this paper).

The emulator is created by employing a number of sim-
ulator evaluations. The error in its predictions is inversely
related to the number of simulator evaluations. Therefore, a
significantly large number of evaluations can make this error
negligible, but this is unusual due to the simulator computa-
tional complexity. Also, since the emulator represents a de-
terministic model, it is also a deterministic model where the
simulator has been exercised: it predicts perfectly, with zero
error, the output at points that have been used in the creation
of the emulator. At new points, the emulator gives a distribu-
tion for f (x) with mean valuef̂ (x) and standard deviation,
which represents the error in the prediction and hence how
close it is likely to be to the true simulator outputf (x).

Bayesian statistical analysis, through the emulators, can
be much more efficient than other methods to quantify uncer-
tainties, e.g. the standard Monte Carlo method, for which the
simulator must be running repeatedly. In a Bayesian analysis
we first build a representative emulator for the simulator and
then use it for further analysis.Oakley and O’Hagan(2002,
2004) andO’Hagan(2006) focused on a Bayesian approach
for uncertainty and sensitivity analysis. They concluded that
a Bayesian approach is more efficient than the Monte Carlo
method as it uses a significantly smaller number of model
runs. One can take advantage of this by running the model at
higher resolution.

The form of the emulator used in this analysis is the Gaus-
sian process (GP). A GP is an extension of the familiar
and popular Normal distribution, also called Gaussian. Nice
mathematical properties of the normal distribution carry over
to the GP and therefore the GP is the principal tool for cre-
ating an emulator, together with prior knowledge about the
simulator. It is worthy to say that the term “prior knowl-
edge” is used to indicate the initial beliefs about the simula-
tor before the use of the available data. An unknown func-
tion f (.) has a GP distribution, if for any set of input points
{x1, . . . ,xn}, the set of outputs{f (x1), . . . ,f (xn)} follows
a multivariate normal distribution. The simulator is repre-
sented by a GP distribution with mean functionm0(.) and
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covariance functionV0(., .), i.e.

f (.)|β,σ 2,B ∼ GP(m0(.),V0(., .)) (1)

where the symbol∼ stands for “is distributed as”. The mean
function is described by

m0(x) = g(x)T β, (2)

in which g(.) is the set of regression functions andβ is the
vector of the unknown coefficients. The functionsg(.) are
chosen to represent the main form of the actual simulator
f (.). The covariance function, which generates some addi-
tional variations as well as uncertainty, is given by

V0(x,x′) = σ 2C(x,x′
;B) (3)

where C(., .;B) is a correlation function whose shape is
known but with unknown correlation parametersB, also
called hyperparameters. A common choice forC(., .;B) is

C(x,x′
;B) = exp{−(x − x′)T B(x − x′)} (4)

whereB is a diagonal matrix of the so-called smoothing pa-
rametersbii . The inverse square roots of these parameters,
1/

√
bii , are known as the correlation length scales. Thebii

(or the correlation length scales) describe how rapidly the
output responds to changes in each input; the correlation
lengths scales give an indication of the distance in the input
space for which correlation between the simulator outputs is
either significant or negligible.

3 Outer product emulator

In the case where the simulator has multiple outputs, the cre-
ation of a surrogate model is more complicated. The simplest
approach is to build separate independent emulators for each
output. However, this method has a major drawback: it ig-
nores the correlations between the outputs.Rougier(2008)
proposed an approximate multivariate emulator, named the
outer product emulator (OPE), which creates one emulator
for all the outputs, simplifying the process by using separa-
ble functions in inputs and outputs.

Therefore, the main advantage of the OPE is that the build-
ing cost is significantly smaller compared to a general multi-
variate emulator. The construction and use of an OPE can be
fast, even in the case where many simulator evaluations and
a large number of outputs exist. This property of the OPE is
very important for the case investigated in this work. Indeed,
the wave shape is not oscillating periodically and hence the
frequency of the oscillation is not constant, so a large num-
ber of simulator evaluations is necessary. We have to run
the simulator at small time steps and hence a large number
of evaluations are collected to describe the outputs. This is
the primary reason why we decided to use the OPE for the
analysis.

Rougier et al.(2009) describe further this special form of
statistical emulation. The OPE has the form:

fi(r) =

ν∑
j=1

βjgj (r,si) + ε(r,si) (5)

wherefi(r) is theith simulator output at inputr, gj is the set
of regressors,βj are the unknown coefficients andε is the
residual. Additionally,si represents the output domain – e.g.
time, space – corresponding to theith simulator run.

In order to build an emulator, appropriate distributions for
β andε must be chosen. A convenient choice is the Normal
Inverse Gamma distribution that enables the use of conjugacy
(so posterior estimates can be computed explicitly without
resorting to Markov chain Monte Carlo as in more standard
fully Bayesian emulators), described by

β|τ,B ∼ N(m,τV ) (6)

ε|τ,B ∼ GP(0,τκλ(.)) (7)

τ |B ∼ IG(a,d) (8)

whereB = {m,V,a,d,κλ(.)} is the set of the hyperparame-
ters andκλ(.) is the covariance function of the residuals with
correlation lengthsλ. Also, N and IG denote the normal and
Inverse Gamma distribution, respectively. Summing up,

{β,ε} ∼ NIG(m,V,a,d) (9)

where the hyperparametersa and d denote the degrees of
freedom and the scale, respectively.

Furthermore, a choice for the appropriate regressiongj (.)

and covariance functions of the residualκλ(.) is needed.
There are two main characteristics that distinguish the OPE
from a standard multivariate emulator. The first is that the co-
variance function of the residuals is separated in inputsr and
outputss. This property can be represented by the equation

κλ(r,s,r
′, s′) = κr

λ(r,r ′) × κs
λ(s,s

′). (10)

The second characteristic is that the set of the regressor
functions,G, is the outer product of the set of regressors for

inputs,Gr 1
={gr

jr
(r)}

νr

jr=1, with the set of regressors for out-

puts,Gs 1
={gs

js
(s)}

νs

js=1, where the expressionα
1
=β indicates

that the termα is equal by definition to the termβ. There-
fore, the functionsgj are given bygj (r,s) = gr

jr
(r)⊗gs

js
(s),

where ⊗ is the outer product symbol andj = {1, . . . ,ν},
whereν = νr × νs .

3.1 Maximizing the marginal likelihood

In order to find the most accurate representation of the sim-
ulator, appropriate values for the correlation lengths and
other unknown parameters can be estimated by maximis-
ing the corresponding marginal likelihood (Rasmussen and
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Williams, 2006) before posterior distributions of emulated
simulator outputs are obtained. In the application described
in Sect. 5, this technique is used to obtain representative val-
ues for the four correlation lengths, one for each of the three
inputs and one for the output. Starting from the general equa-
tion of the emulator, that is

y = f (x) = h(x) + ε(x) = g(x)T β + ε(x)

= Q(x)β + ε(x), (11)

where

ε ∼ GP(0,τκλ), (12)

β ∼ N(0,τV ), (13)

we assume that the mean value of the unknown coefficients
is zero and also thatV can be defined asV = σ 2I , with the
common multiplier parameter to be described by

τ ∼ IG(a,d). (14)

Therefore, this reformulation of the prior distributions en-
tails that the regression functions multiplied by the unknown
coefficientsβ, i.e. the functionh(.), have a normal prior dis-
tribution given by

h|B ∼ N(0,τQV QT ). (15)

The likelihood function is described as follows:

y|h,B ∼ N(h,τκλ). (16)

The marginal likelihood can be obtained from the integral of
the likelihood times the prior, i.e.

p(y|B) =

∫
p(y|h,B)p(h|B)dh. (17)

Therefore, the marginal likelihood has a normal distribution
described by

y|B ∼ N(0,τκλ + τQV QT ). (18)

Consequently, the log marginal likelihood function is

3 = log(p(y)) = −
1

2
f T C−1f −

1

2
log|C| + constant (19)

whereC = τ
(
κλ + QV QT

)
. The derivative, with respect to

the correlation lengths, of the log marginal likelihood is given
by

∇3 =
1

2
f T C−1∂C

∂λ
C−1f −

1

2
tr(C−1∂C

∂λ
). (20)

In order to calculateC−1, the Cholesky decomposition is
used. Optimization methods are used to help us with the
maximization of the marginal likelihood function in order to
find correlation lengths.

3.2 Hyperparameters selection

The final step in the process of building the prior emula-
tor for the simulator is the selection of the hyperparameters
{m,V,a,d}. To determine adequate hyperparameters, the
simple approximation method presented byRougier et al.
(2009) is used. The idea is to average the simulator output
fi(r) over the inputsr and outputi, which means thatfi(r)

is replaced byf (x), and also to assume thatx has a uniform
distribution. Using the mean and variance of the simulator
output,f (x), the hyperparameters are estimated. Complet-
ing the selection of the hyperparameters yields the prior em-
ulator.

The prior emulator is combined with a sample of the sim-
ulator’s evaluations, called the training sample, giving the
posterior emulator. The resulting emulator gives a prediction
distribution for each point in the evaluation output domain.
These predictions are Student-t distributed with parameters
(mean, variance and degrees of freedom) that are calculated
according to the procedure explained inRougier(2008).

After building the emulator, the next step is to test how ac-
curately it represents the simulator. This process is called
validation and it is recommended to be performed before
making use of the emulator. We use the so-called “leave-
one-out” diagnostic (LOO): one evaluation is left out and
predicted using an emulator constructed from the rest of
the training data set. We repeat this for all the evaluations.
Therefore, the ability of the emulator to represent the simu-
lator can be quantified.

4 Experimental design

One of the most important steps in the analysis is the exper-
imental design. This is the process of finding a space filling
design that covers the input space sufficiently. Due to the fact
that the input points are selected strategically, the amount of
useful information passed to the emulator can be maximized.
Hence, the required number of simulator runs for an accu-
rate emulator can be reduced, resulting in a more efficient
procedure.

Many different experimental designs exist. The simplest
one is the regular grid, where equally spaced points are se-
lected for each parameter. However, even with the simplic-
ity of this design, some drawbacks exist by using it. The
most important one is its “collapsing” property, where mul-
tiple grid points have the same coordinate value when pro-
jected onto a parameter axis. This means that limited in-
formation is obtained from these points. For example, for
a three-dimensional input space, in order to obtainn distinct
evaluations for each of the three parameters, the total number
of required simulator runs isn3, which is highly inefficient.

The Latin hypercube design (LHD) is an experimental de-
sign that is constructed to avoid the “collapsing” property of
grids. The LH design selectsn different sample points from
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each of thek variablesX1, . . . ,Xk, using the following pro-
cess. First of all, the range of each variable is divided inton

equal probability and non-overlapping intervals. Then, one
value from each interval is selected randomly with respect to
the probability density of the interval. Then values obtained
for X1 are paired randomly with then values forX2. Thesen
resulting pairs are then combined randomly with then values
for X3, resulting inton triplets. The same process continues
until n k−tuplets are formed, which is the LH sample.

However, only a subset of LH designs are space-filling.
To ensure a space-filling input selection, we adopt the so-
called “maximin” Latin hypercube design. The specific de-
sign follows the same process as the LHD to choose the sam-
ple points, although it has an additional constraint that is to
maximise the minimum distance between the points. There-
fore, a maximum coverage of the input space is achieved.

Urban and Fricker(2010) made a comparison of the Latin
hypercube with the regular grid design for the multivariate
emulation. They report that the emulators built using the
LHD make significantly improved predictions relative to the
emulators created using a regular grid training sample. Fur-
thermore, they concluded that the LH emulators are more ac-
curate compared to the regular grid emulators in sensitivity
analysis of a single-parameter model.

5 Application to the SR tsunami model

5.1 Model description

In this section the methods described above are applied to
find an accurate statistical representation of the landslide-
generated tsunami analytical model ofSammarco and Renzi
(2008), abbreviated as the SR model. This model takes as in-
puts the initial positionx0, the speedu0 and also the spread
ratio or shapec of the landslide, where the “spread ratio”
is defined as the ratio of the landslide’s characteristic length
over the characteristic width. Figure1 illustrates this specific
analytical model set up.

All the coordinates, functions and parameters used in the
model are non-dimensional:

x =
x′

σ
, y =

y′

σ
, t =

√
gs

σ
t ′, ζ =

ζ ′

η
,

u0 =
1

√
σgs

u′

0, c =
σ

λ

(21)

where the primes denote dimensional values,σ is the land-
slide characteristic horizontal length,s is the beach slope,η
denotes the landslide maximum vertical thickness,ζ is the
the non-dimensional sea free-surface elevation,λ is the land-
slide characteristic width,t is the time andg is the accelera-
tion due to gravity.

When the landslide starts moving from the origin, which
is the position where the sea surface meets the sloping beach,
x0 is equal to zero. Also, negative values ofx0 indicate that

A. Sarri, S. Guillas, F. Dias: Statistical Emulation of a landslide-generated tsunami model 5

The Latin Hypercube design (LHD) is an experimental de-
sign that is constructed to avoid the “collapsing” property of
grids. The LH design selects n different sample points from
each of the k variables X1,...,Xk using the following pro-
cess. First of all, the range of each variable is divided into n
equal probability and non-overlapping intervals. Then, one
value from each interval is selected randomly with respect to
the probability density of the interval. The n values obtained
for X1 are paired randomly with the n values for X2. These
n resulting pairs are then combined randomly with the n val-
ues forX3 resulting into n triplets. The same process contin-
ues until n k−tuplets are formed, which is the LH sample.

However, only a subset of LH designs are space filling. To
ensure a space filling input selection, we adopt the so-called
“maximin” Latin Hypercube Design. The specific design
follows the same process as the LHD to choose the sample
points, although it has an additional constraint that is to max-
imise the minimum distance between the points. Therefore,
a maximum coverage of the input space is achieved.

Urban and Fricker (2010) made a comparison of the Latin
Hypercube with the regular grid design for the multivariate
emulation. They report that the emulators built using the
LHD make significantly improved predictions relative to the
emulators created using a regular grid training sample. Fur-
thermore, they concluded that the LH emulators are more ac-
curate compared to the regular grid emulators in sensitivity
analysis of a single-parameter model.

5 Application to the SR tsunami model

5.1 Model description

In this section the methods described above are applied to
find an accurate statistical representation of the landslide-
generated tsunami analytical model of Sammarco and Renzi
(2008), abbreviated as the SR model. This model takes as in-
puts the initial position x0, the speed u0 and also the spread
ratio or shape c of the landslide, where the “spread ratio”
is defined as the ratio of the landslide’s characteristic length
over the characteristic width. Figure 1 illustrates this specific
analytical model set up.

All the coordinates, functions and parameters used in the
model are non-dimensional:

x=
x′

σ
, y=

y′

σ
, t=

√
gs

σ
t′, ζ =

ζ ′

η
,

u0 =
1
√
σgs

u′0, c=
σ

λ

(21)

where the primes denote dimensional values, σ is the land-
slide characteristic horizontal length, s is the beach slope, η

denotes the landslide maximum vertical thickness, ζ is the
the non-dimensional sea free-surface elevation, λ is the land-
slide characteristic width, t is the time and g is the accelera-
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When the landslide starts moving from the origin, which is
the position where the sea surface meets the sloping beach,
x0 is equal to zero. Also, negative values of x0 indicate that
the landslide initiates from a subaerial position, whereas pos-
itive values of x0 indicate submerged slides. The output of
this model is the sea free-surface elevation of the wave at
given time and location. A plane beach with constant slope is
considered and it is important to notice that the landslide con-
tinues to move even after it falls into the water. This causes
the existence of high wave elevations even at large times.

u’0 z’

y’

x’O

Coastline

s

σ

η

Fig. 1: Sketch illustrating the landslide’s motion as consid-
ered in Sammarco and Renzi’s analytical model. The y′-axis
represents the shoreline, while the x′-axis is perpendicular to
it.

By considering this model, Sammarco and Renzi (2008)
came to the conclusion that the landslide generates a wave
field that is composed by two components, oscillatory and
evanescent. The life cycle of the wave can be visualized in
Fig. 2, where the sea free-surface elevation of the landslide-
generated tsunami wave is shown in polar coordinates at
times t= 0.5,1,1.5,2,2.5,3,5,10,20. The initial position of
the landslide is at the origin, the speed is equal to 1 and the
spread ratio of the landslide is equal to 2, which means that
the characteristic length is twice the size of the characteristic
width.

When the landslide occurs, it displaces water forward and
an elevation wave is generated, that propagates mostly in
the offshore direction. Also a depression wave occurs near
the origin (see Fig. 2a). Later on, the elevation wave
spreads along the shoreline, while the depression wave ex-
tends around the origin (see Figs 2b, 2c, 2d). At larger times,
a second elevation wave is generated at the origin and the de-
pression wave spreads out (see Figs 2f, 2g). Finally, at even
larger times, the wave motion is dominated by edge waves
propagating along the shoreline, with no motion around the
origin (see Fig. 2h, 2i). From this study, it is concluded that
the first generated waves are not those with the larger ampli-
tude. This indicates that in order to capture the maximum
elevation, the model has to be evaluated up to a significantly
large time t.

Fig. 1. Sketch illustrating the landslide’s motion as considered in
Sammarco and Renzi’s analytical model. They′-axis represents the
shoreline, while thex′-axis is perpendicular to it.

the landslide initiates from a subaerial position, whereas pos-
itive values ofx0 indicate submerged slides. The output of
this model is the sea free-surface elevation of the wave at a
given time and location. A plane beach with constant slope is
considered and it is important to notice that the landslide con-
tinues to move even after it falls into the water. This causes
the existence of high wave elevations even at large times.

By considering this model,Sammarco and Renzi(2008)
came to the conclusion that the landslide generates a wave
field that is composed of two components, oscillatory and
evanescent. The life cycle of the wave can be visualized in
Fig. 2, where the sea free-surface elevation of the landslide-
generated tsunami wave is shown in polar coordinates at
times t = 0.5,1,1.5,2,2.5,3,5,10,20. The initial position
of the landslide is at the origin, the speed is equal to 1 and
the spread ratio of the landslide is equal to 2, which means
that the characteristic length is twice the size of the charac-
teristic width.

When the landslide occurs, it displaces water forward and
an elevation wave is generated, which propagates mostly
in the offshore direction. Also, a depression wave occurs
near the origin (see Fig. 2a). Later on, the elevation wave
spreads along the shoreline, while the depression wave ex-
tends around the origin (see Fig. 2b, c, d). At larger times,
a second elevation wave is generated at the origin and the
depression wave spreads out (see Fig. f, g). Finally, at even
larger times, the wave motion is dominated by edge waves
propagating along the shoreline, with no motion around the
origin (see Fig. h, i). From this study, it is concluded that the
first generated waves are not those with the larger amplitude.
This indicates that, in order to capture the maximum eleva-
tion, the model has to be evaluated up to a significantly large
time t .

5.2 Training sample

In this work, a statistical emulator is constructed looking
at specific locations, meaning that its output is only time-
dependent. Specifically, seven locations along the shoreline
(x = 0) at y = 2,4,6,7,8,8.38 and 10 have been investi-
gated. The time domain is selected to be between 0 and 35.
Small time steps are required in order to have sufficient in-
formation to capture the wave shape with sufficient detail:
specifically,dt = 0.2 was chosen for the analysis.
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(d) t=2 (e) t=2.5 (f) t=3

(g) t=5 (h) t=10 (i) t=20

Fig. 2: Sea free-surface elevation of the landslide generated tsunami observed at different times with non-dimensional inputs
(x0,u0,c) = (0,1,2). The horizontal axis represents the shoreline and the vertical axis points to the offshore direction.

5.2 Training sample

In this work, a statistical emulator is constructed looking
at specific locations; meaning that its output is only time-
depended. Specifically, seven locations along the shoreline
(x= 0) at y= 2,4,6,7,8,8.38 and 10 have been investigated.
The time domain is selected to be between 0 and 35. Small
time steps are required in order to have sufficient information
to capture the wave shape with sufficient detail: specifically
dt= 0.2 was chosen for the analysis.

The first step of the analysis is the experimental design. Us-
ing the “maximin” Latin Hypercube design method, as de-
tailed in Section 4, forty points, (x0,u0,c), are chosen to
cover the three-dimensional parameter space. This is a com-
promise in order to have a significantly good coverage of
the design space as well as a significantly small computa-
tion cost. The input domain is chosen to be x0 ∈ [−3,1],
u0 ∈ [1,2] and c∈ [0.5,3].

The positions of the forty inputs in the parameter space are
shown in Fig. 3. The colour at each point indicates the
maximum sea free-surface elevation, for the location x= 0
and y = 8.38, i.e. along the shoreline and far away from
the source. The figure shows that the maximum wave el-
evation significantly depends on the landslide’s speed: the
larger the speed u0, the larger the maximum elevation. Fur-
thermore, it can be observed that the maximum wave eleva-
tion shows higher amplitudes when the landslide starts from a
subaerial close to the origin position and also when the land-
slide spread ratio is less than 2. However, the dependence
of the maximum elevation on the initial position and spread
ratio of the landslide is not as obvious as that on the speed.

For example consider points 13 and 25. They both represent
landslides characterised by high speed and spread ratio close
to one. However point 13 is a subaerial case while point 25 is
a submerged one. This yields a significant difference in the
maximum sea free-surface elevation, with the subaerial case
being much higher.

Fig. 2. Sea free-surface elevation of the landslide-generated tsunami observed at different times with non-dimensional inputs(x0,u0,c) =

(0,1,2). The horizontal axis represents the shoreline and the vertical axis points to the offshore direction.

The first step of the analysis is the experimental design.
Using the “maximin” Latin hypercube design method, as de-
tailed in Sect. 4, 40 points,(x0,u0,c), are chosen to cover
the three-dimensional parameter space. This is a compro-
mise in order to have a significantly good coverage of the de-
sign space, as well as a significantly small computation cost.
The input domain is chosen to bex0 ∈ [−3,1], u0 ∈ [1,2]

andc ∈ [0.5,3].

The positions of the 40 inputs in the parameter space are
shown in Fig.3. The colour at each point indicates the maxi-
mum sea free-surface elevation, for the locationx = 0 and
y = 8.38, i.e. along the shoreline and far away from the
source. The figure shows that the maximum wave eleva-
tion significantly depends on the landslide’s speed: the larger
the speedu0, the larger the maximum elevation. Further-
more, it can be observed that the maximum wave elevation
shows higher amplitudes when the landslide starts from a
subaerial close to the origin position and also when the land-
slide spread ratio is less than 2. However, the dependence
of the maximum elevation on the initial position and spread
ratio of the landslide is not as obvious as that on the speed.

For example, consider points 13 and 25. They both rep-
resent landslides characterised by high speed and a spread
ratio close to one. However, point 13 is a subaerial case,
while point 25 is a submerged one. This yields a significant

difference in the maximum sea free-surface elevation, with
the subaerial case being much higher.

The simulator’s evaluations for the other six locations
along the shore yield similar conclusions about the depen-
dency of the maximum sea free-surface elevation to the input
parameters.

5.3 OPE prior choices

The next step in the analysis involves the appropriate prior
choices for the regression and residuals covariance functions
for inputsr and outputss. In the case of the SR model,r is
equal to(x0,u0,c) ands is timet . The set of input regression

functions,Gr 1
={gr

1, . . . ,g
r
νr

}, whereνr is the number of input
regressors, consists of a combination of appropriate choices
of polynomials for each of the three input parameters. For
each input parameter, a linear and a quadratic polynomial,
plus a constant term, are chosen, resulting in a total of seven
input regressors. Since the simulator’s output variation with
respect tor is smooth, the use of higher order polynomials
is unnecessary, which would additionally increase the prior
uncertainty. The chosen polynomials are shifted into the
unit interval[0,1] and their coefficients are selected so that
the two functions for each input parameter are orthonormal
with a uniform weighting function. Combining all the input
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Fig. 3: Maximum sea free-surface elevation at the loca-
tion (x,y) = (0,8.38) for time between 0 and 35 for each
of the 40 design input points selected using the “maximin”
LHD method. Three quantities are varied: the landslide’s
speed, its initial location and its shape, that are given in non-
dimensional form as in Eq. (21).

The simulator’s evaluations for the other six locations along
the shore yields similar conclusions about the dependency of
the maximum sea free-surface elevation to the input parame-
ters.

5.3 OPE prior choices

The next step in the analysis involves the appropriate prior
choices for the regression and residuals covariance functions
for inputs r and outputs s. In the case of the SR model, r is
equal to (x0,u0,c) and s is time t. The set of input regression
functions,Gr∆={gr1,...,grνr

}, where νr is the number of input
regressors, consists of a combination of appropriate choices
of polynomials for each of the three input parameters. For
each input parameter, a linear and a quadratic polynomial,
plus a constant term, are chosen, resulting to a total of seven
input regressors. Since the simulator’s output variation with
respect to r is smooth, the use of higher order polynomials is
unnecessary, which would additionally increase the prior un-
certainty. The chosen polynomials are shifted into the unit in-
terval [0,1] and their coefficients are selected so that the two
functions for each input parameter are orthonormal with a
uniform weighting function. Combining all the inputs’ func-
tions, the set of chosen input regressors is the following:

Gr = {1,
√

3
(x0 +3)

4
,−3
√

5
(x0 +3)

4
+4
√

5(
x0 +3

4
)2,

√
3(u0−1),−3

√
5(u0−1)+4

√
5(u0−1)2,

√
3

(c−0.5)
2.5

,−3
√

5
(c−0.5)

2.5
+4
√

5(
c−0.5

2.5
)2} (22)

After choosing the regression functions for the inputs, we
need to make an appropriate choice for the regression func-
tions for the output, Gs∆={gs1,...,gsνs

}, where νs is the num-
ber of output regressors. Fourier terms are chosen of the form
sin( 2πt

T ) and cos( 2πt
T ), where T is the period of the oscilla-

tion, in addition to a constant term. However, since the sea
free-surface elevation waves do not oscillate with constant
period, this selection is challenging. To make this selection,
we consider the range of oscillating frequencies present in
the wave and using the LOO diagnostic method (explained
in more detail in Section 5.4), we choose the smallest set of
frequencies that give the most accurate predictions, since as
for the case of input regressors an unnecessary large number
of regressors is not desirable. The selected set of frequencies
is the following: { 1

6 ,
1
5 ,

1
4 ,

1
3 ,

1
2}. Therefore, the set of output

regression functions is given by

Gs = {1,sin(πt/3),cos(πt/3),sin(2πt/5),cos(2πt/5),
sin(πt/2),cos(πt/2),sin(2πt/3),cos(2πt/3),
sin(πt),cos(πt)} (23)

Fig. 3. Maximum sea free-surface elevation at the location(x,y) =

(0,8.38) for time between 0 and 35 for each of the 40 design input
points selected using the “maximin” LHD method. Three quantities
are varied: the landslide’s speed, its initial location and its shape,
which are given in a non-dimensional form as in Eq. (21).

functions, the set of chosen input regressors is the following:

Gr
= {1,

√
3
(x0 + 3)
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,−3

√
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√
5(
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4
)2,
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}.(22)

After choosing the regression functions for the inputs, we
need to make an appropriate choice for the regression func-

tions for the output,Gs 1
={gs

1, . . . ,g
s
νs

}, whereνs is the num-
ber of output regressors. Fourier terms are chosen of the form
sin(2πt

T
) and cos(2πt

T
), whereT is the period of the oscilla-

tion, in addition to a constant term. However, since the sea
free-surface elevation waves do not oscillate with constant
period, this selection is challenging. To make this selection,
we consider the range of oscillating frequencies present in
the wave and using the LOO diagnostic method (explained
in more detail in Sect. 5.4), we choose the smallest set of
frequencies that give the most accurate predictions, since for
the case of input regressors, an unnecessary large number of
regressors is not desirable. The selected set of frequencies
is the following: {1

6, 1
5, 1

4, 1
3, 1

2}. Therefore, the set of output
regression functions is given by

Gs
= {1,sin(πt/3),cos(πt/3),sin(2πt/5),cos(2πt/5),

sin(πt/2),cos(πt/2),sin(2πt/3),cos(2πt/3),

sin(πt),cos(πt)}. (23)

Power exponential functions are chosen for input and out-
put residuals covariance functions,κr andκs :

κr
= exp(−(

|x0 − x′

0|

λx

)3/2) × exp(−(
|u0 − u′

0|

λu

)3/2)

×exp(−(
|c − c′

|

λc

)3/2) (24)

and

κs
= exp(−(

|t1 − t2|

λt

)3/2) (25)

respectively, whereλx , λu, λc represent the correlation
lengths for inputs andλt denotes the output (i.e. time) cor-
relation length. The values of the correlation lengths can
be varied in order to adjust the fit of the emulator. The
correlation lengths are chosen by maximizing the marginal
likelihood. Sinceτ appears in the equation of the marginal
likelihood (19), in order for the process of maximizing the
marginal likelihood to be feasible,τ has been treated as a
constant and estimated by the process simultaneously with
the correlation lengths. The estimated value forτ is not
used further in the analysis sinceτ was considered as con-
stant only for practical purposes for this process and it is
everywhere else considered as a scalar variable, which is
described by an Inverse Gamma distribution. Furthermore,
note that the 3/2 exponent is chosen so that the covariance
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Fig. 4. Diagnostic plots for some of the input points looking at(x,y) = (0,8.38). Blue line is the simulator’s evaluation, red is the mean
value of the posterior distribution and dotted grey is the 95 % credible interval of the posterior distribution.

is smooth enough, but not too much, as the usual choice of
square power is infinitely smooth and hence may not be real-
istic for such a complex simulator.

The last step for the creation of the prior emulator for the
SR model is to make a choice for the values of the hyper-
parameters{m,V,a,d}. To do so we follow the method de-
scribed byRougier et al.(2009). We have already assumed
m = 0. The hyperparametera, which is equal to the number

of degrees of freedom, takes the value 3 in the case of the
SR model. Also, after the simple calculations recommended
by Rougier et al.(2009), it is concluded thatσ 2

= 0.257 and
d = 0.208. Hence,V can be easily obtained fromV = σ 2I .
By fixing these parameters, the creation of the prior emulator
is completed. Using the evaluations of the 40 selected design
points, the prior emulator is updated to obtain the posterior,
which is the statistical emulator. Evaluating the statistical

Nat. Hazards Earth Syst. Sci., 12, 2003–2018, 2012 www.nat-hazards-earth-syst-sci.net/12/2003/2012/



A. Sarri et al.: Statistical emulation of a landslide-generated tsunami model 201110 A. Sarri, S. Guillas, F. Dias: Statistical Emulation of a landslide-generated tsunami model

0 10 20 30 40

−
2

−
1

0
1

2

Time

F
re

e 
su

rf
ac

e 
el

ev
at

io
n

(x0,u0,c)=(−0.94, 1.82, 1.65)
mean posterior value
95% CI

(g) (x0,u0,c)= (−0.94,1.82,1.65) – point number 27

0 10 20 30 40

−
2

−
1

0
1

2

Time

F
re

e 
su

rf
ac

e 
el

ev
at

io
n

(x0,u0,c)=(−0.86, 1.67, 2.15)
mean value of the posterior
95% CI

(h) (x0,u0,c)= (−0.86,1.67,2.15) – point number 36

Fig. 4: Diagnostic plots for some of the input points looking
at (x,y) = (0,8.38). Blue line is the simulator’s evaluation,
red is the mean value of the posterior distribution and dotted
grey is the 95% credible interval of the posterior distribution.

The RMSE is given by the equation

RMSE=

√∑n
i=1(x̂i−xi)2

n
(27)

where xi and x̂i are the observed and predicted values at each
time step i, respectively, and n is the number of time steps.

Figures 6 and 7 display the MCIL and the RMSE versus
MED, respectively, for all the input points, looking at the
case of the location (x,y) = (0,8.38). We observe a positive
correlation between the MED and both the MCIL and the
RMSE. Therefore, this confirms that the distance separating
the points in space is a fundamental factor that affects the
predictive power of the emulator and hence this highlights
the importance of a good experimental design. This positive
correlation is also satisfied for the other locations examined.
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Fig. 5: Euclidean distance between each of the points and the
other 39 points in the three-dimensional parameter space.

In Fig. 8, the RMSE with respect to MCIL is presented for all
the 40 diagnostics for the seven locations along the shoreline
investigated, in order to compare the emulator’s performance
when applied to different locations. A combination of both

Fig. 4. Continued.

emulator at a given input point,(x0,u0,c), results in predic-
tions of the output’s distribution for all the points in the time
domain, in this case from 0 to 35, every 0.2 time step, i.e.
176 prediction distributions.

5.4 Emulator’s validation

After the creation of the emulator, the LOO validation
method is applied, resulting in 40 LOO diagnostic plots.
These diagnostics give information about the predictive
power, capabilities and shortcomings of the emulator, since
we can estimate the amount of the error induced by using
the emulator instead of the simulator. Some of the diagnostic
plots for the location(x,y) = (0,8.38) are shown in Fig.4.
Similar diagnostic plots are created for all the other locations
investigated. In general, the LOO diagnostics allow us to
conclude that, in most of the cases, the emulator predicts
very well the simulator evaluations, capturing both shape and
the maximum wave elevations (peaks). Additionally, almost
always the simulator’s evaluation line is within the 95 % pre-
diction credible interval (ideally, it should be within this in-
terval 95 % of the time).
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Fig. 4: Diagnostic plots for some of the input points looking
at (x,y) = (0,8.38). Blue line is the simulator’s evaluation,
red is the mean value of the posterior distribution and dotted
grey is the 95% credible interval of the posterior distribution.

The RMSE is given by the equation

RMSE=

√∑n
i=1(x̂i−xi)2

n
(27)

where xi and x̂i are the observed and predicted values at each
time step i, respectively, and n is the number of time steps.

Figures 6 and 7 display the MCIL and the RMSE versus
MED, respectively, for all the input points, looking at the
case of the location (x,y) = (0,8.38). We observe a positive
correlation between the MED and both the MCIL and the
RMSE. Therefore, this confirms that the distance separating
the points in space is a fundamental factor that affects the
predictive power of the emulator and hence this highlights
the importance of a good experimental design. This positive
correlation is also satisfied for the other locations examined.

−3 −2 −1 0 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 1

x
0

u 0

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 

 

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

−3 −2 −1 0 1
0.5

1

1.5

2

2.5

3

1

x
0

c

2

3 4

5

6

7

8

9

10

11

12
13

14

15
16

17

18

19

20
21

22

23

24

25

2627

28

29
30

31

32

33

34
35

36

37

38

39
40

 

 

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3

1

u
0

c

2

34

5

6

7

8

9

10

11

12
13

14

15
16

17

18

19

20
21

22

23

24

25

26 27

28

29
30

31

32

33

34
35

36

37

38

39
40

 

 

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Fig. 5: Euclidean distance between each of the points and the
other 39 points in the three-dimensional parameter space.

In Fig. 8, the RMSE with respect to MCIL is presented for all
the 40 diagnostics for the seven locations along the shoreline
investigated, in order to compare the emulator’s performance
when applied to different locations. A combination of both

Fig. 5. Euclidean distance between each of the points and the other
39 points in the three-dimensional parameter space.

However, on some of the diagnostic plots, the prediction
is not very accurate. One of the fundamental reasons affect-
ing the emulator performance is the position of the point,
at which we try to predict in the input space. Generally,
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(x,y) = (0,8.38), where the dotted line is the linear regres-
sion.

small RMSE and MCIL is desirable, indicating both small
error and small uncertainty in emulator’s predictions. The
figure clearly shows that the emulator performs similarly for
all the locations investigated. Therefore, the emulator can be
applied to different locations along the shoreline, resulting in
accurate enough representations of the simulator output. The
reasons that we have slightly better predictions at some loca-
tions compared to others is an area of further investigation.
Nevertheless, the location along the shoreline with y= 8.38
shows the worst results in this Figure. Therefore, the predic-
tions of the emulator for the other locations are better than
the ones given in Fig. 4. This reinforces the confidence we
have in our emulator.

6 Sensitivity and Uncertainty Analyses

In Section 5 we have presented the process to create a sta-
tistical emulator that can predict the simulator’s output with
sufficient accuracy, for a number of different locations along
the shoreline. Therefore, the emulator can be used in place
of the expensive-to-run simulator to efficiently perform anal-
yses that require a large number of evaluations, in order to
save time without sacrificing accuracy. In this Section, we
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Fig. 8: Root Mean Square Error vs. mean CI length. Differ-
ent types and colors represent different locations along the
shoreline.

demonstrate a sensitivity and uncertainty analyses using the
emulator.

6.1 Sensitivity analysis

The statistical emulator is used to carry out a sensitivity anal-
ysis of the model, where we investigate how sensitive is the
maximum wave elevation for t≤ 35 to changes in inputs.
Additionally, we examine whether the individual locations
along the shoreline present consistent sensitivity to inputs’
variation.

Fig. 9 displays the case for the location (x,y) = (0,8.38).
In each of the three plots, the maximum elevation is plotted
against the initial position x0, speed u0 and spread ratio c of
the landslide, respectively, with the other two input parame-
ters being kept constant. To ensure maximum emulator’s ac-
curacy and keep RMSE to the minimum, the input domain in
sensitivity analysis is chosen to be the subset of the whole do-
main where the mean Euclidean distance between the points
are small as presented in Fig. 5. Specifically, we consider
x0 ∈ [−2,0], u0 ∈ [1,2] and c∈ [0.5,2.5].

From Fig. 9a we can see an obvious relationship between the
landslide’s speed and the maximum elevation. Specifically,
a landslide with a larger u0 gives larger maximum sea free-
surface elevations. No strong dependency of the maximum
elevation on initial position and spread ratio can be observed.
Figure 9b highlights the positive relationship between u0 and
the maximum elevation, with the larger the u0, the larger the
maximum elevation. Finally, Fig. 9c shows that a landslide
initiating from a subaerial position shows larger maximum
sea free-surface elevations compared to a landslide starting
from the origin. So, a relationship between the x0 value and

Fig. 6. Mean Euclidean distance vs. mean 95 % credible interval
length for the location(x,y) = (0,8.38), where the dotted line is
the linear regression.
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sion.

small RMSE and MCIL is desirable, indicating both small
error and small uncertainty in emulator’s predictions. The
figure clearly shows that the emulator performs similarly for
all the locations investigated. Therefore, the emulator can be
applied to different locations along the shoreline, resulting in
accurate enough representations of the simulator output. The
reasons that we have slightly better predictions at some loca-
tions compared to others is an area of further investigation.
Nevertheless, the location along the shoreline with y= 8.38
shows the worst results in this Figure. Therefore, the predic-
tions of the emulator for the other locations are better than
the ones given in Fig. 4. This reinforces the confidence we
have in our emulator.

6 Sensitivity and Uncertainty Analyses

In Section 5 we have presented the process to create a sta-
tistical emulator that can predict the simulator’s output with
sufficient accuracy, for a number of different locations along
the shoreline. Therefore, the emulator can be used in place
of the expensive-to-run simulator to efficiently perform anal-
yses that require a large number of evaluations, in order to
save time without sacrificing accuracy. In this Section, we
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Fig. 8: Root Mean Square Error vs. mean CI length. Differ-
ent types and colors represent different locations along the
shoreline.

demonstrate a sensitivity and uncertainty analyses using the
emulator.

6.1 Sensitivity analysis

The statistical emulator is used to carry out a sensitivity anal-
ysis of the model, where we investigate how sensitive is the
maximum wave elevation for t≤ 35 to changes in inputs.
Additionally, we examine whether the individual locations
along the shoreline present consistent sensitivity to inputs’
variation.

Fig. 9 displays the case for the location (x,y) = (0,8.38).
In each of the three plots, the maximum elevation is plotted
against the initial position x0, speed u0 and spread ratio c of
the landslide, respectively, with the other two input parame-
ters being kept constant. To ensure maximum emulator’s ac-
curacy and keep RMSE to the minimum, the input domain in
sensitivity analysis is chosen to be the subset of the whole do-
main where the mean Euclidean distance between the points
are small as presented in Fig. 5. Specifically, we consider
x0 ∈ [−2,0], u0 ∈ [1,2] and c∈ [0.5,2.5].

From Fig. 9a we can see an obvious relationship between the
landslide’s speed and the maximum elevation. Specifically,
a landslide with a larger u0 gives larger maximum sea free-
surface elevations. No strong dependency of the maximum
elevation on initial position and spread ratio can be observed.
Figure 9b highlights the positive relationship between u0 and
the maximum elevation, with the larger the u0, the larger the
maximum elevation. Finally, Fig. 9c shows that a landslide
initiating from a subaerial position shows larger maximum
sea free-surface elevations compared to a landslide starting
from the origin. So, a relationship between the x0 value and

Fig. 7. Mean Euclidean distance vs. RMSE for the location(x,y) =

(0,8.38), where the dotted line is the linear regression.

it is expected to obtain more accurate predictions in the
cases where the points at which we try to predict are sur-
rounded closely by other design points, compared to the
cases where the points are located in a sparsely covered re-
gion, since more information can be obtained by the neigh-
bouring points. The behaviour at each point is significantly
linked to the behaviour at the points close to it and this in-
fluence decays rapidly with the distance separating the two
points. To quantify this, the Euclidean distances in the three-
dimensional input space between a point and the other 39
points are obtained. Then, the mean values of these distances
(MED) for each of the 40 input points are calculated:

MED =

∑39
i=1

√
(x1 − x2)2 + (u1 − u2)2 + (c1 − c2)2

39
. (26)
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Fig. 7: Mean Euclidean distance vs. RMSE for the location
(x,y) = (0,8.38), where the dotted line is the linear regres-
sion.

small RMSE and MCIL is desirable, indicating both small
error and small uncertainty in emulator’s predictions. The
figure clearly shows that the emulator performs similarly for
all the locations investigated. Therefore, the emulator can be
applied to different locations along the shoreline, resulting in
accurate enough representations of the simulator output. The
reasons that we have slightly better predictions at some loca-
tions compared to others is an area of further investigation.
Nevertheless, the location along the shoreline with y= 8.38
shows the worst results in this Figure. Therefore, the predic-
tions of the emulator for the other locations are better than
the ones given in Fig. 4. This reinforces the confidence we
have in our emulator.

6 Sensitivity and Uncertainty Analyses

In Section 5 we have presented the process to create a sta-
tistical emulator that can predict the simulator’s output with
sufficient accuracy, for a number of different locations along
the shoreline. Therefore, the emulator can be used in place
of the expensive-to-run simulator to efficiently perform anal-
yses that require a large number of evaluations, in order to
save time without sacrificing accuracy. In this Section, we
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Fig. 8: Root Mean Square Error vs. mean CI length. Differ-
ent types and colors represent different locations along the
shoreline.

demonstrate a sensitivity and uncertainty analyses using the
emulator.

6.1 Sensitivity analysis

The statistical emulator is used to carry out a sensitivity anal-
ysis of the model, where we investigate how sensitive is the
maximum wave elevation for t≤ 35 to changes in inputs.
Additionally, we examine whether the individual locations
along the shoreline present consistent sensitivity to inputs’
variation.

Fig. 9 displays the case for the location (x,y) = (0,8.38).
In each of the three plots, the maximum elevation is plotted
against the initial position x0, speed u0 and spread ratio c of
the landslide, respectively, with the other two input parame-
ters being kept constant. To ensure maximum emulator’s ac-
curacy and keep RMSE to the minimum, the input domain in
sensitivity analysis is chosen to be the subset of the whole do-
main where the mean Euclidean distance between the points
are small as presented in Fig. 5. Specifically, we consider
x0 ∈ [−2,0], u0 ∈ [1,2] and c∈ [0.5,2.5].

From Fig. 9a we can see an obvious relationship between the
landslide’s speed and the maximum elevation. Specifically,
a landslide with a larger u0 gives larger maximum sea free-
surface elevations. No strong dependency of the maximum
elevation on initial position and spread ratio can be observed.
Figure 9b highlights the positive relationship between u0 and
the maximum elevation, with the larger the u0, the larger the
maximum elevation. Finally, Fig. 9c shows that a landslide
initiating from a subaerial position shows larger maximum
sea free-surface elevations compared to a landslide starting
from the origin. So, a relationship between the x0 value and

Fig. 8. Root-mean-square error vs. mean CI length. Different types
and colours represent different locations along the shoreline.

Figure5 displays the mean Euclidean distances for all the
design input points. We can see that the points 8, 10, 12 and
25 show a large MED from the rest of the 39 points. Looking
at the LOO diagnostics of these four points in Figs. 4a, b, c,
and f, we can easily observe that the predictions are not very
accurate. However, the maximum wave elevation, which is
the most important measurement, is still satisfactory and al-
most everywhere the simulator evaluation lines are within the
95 % credible intervals. This indicates that, even for the de-
sign points that are isolated from the neighbouring points, the
emulator predictions are still usable.

On the other hand, points such as 19, 24, 27 and 36 are
affected significantly by the other points, separated by small
Euclidean distances from the rest of the 39 points in space.
Looking at the diagnostic plots of these points (Figs. 4d, e, g,
and h), it is obvious that the emulator does an excellent job
in prediction, since all the features of the wave are predicted
accurately by the emulator.

Two measures that can be used to quantify the emulator’s
accuracy are the mean credible interval length (MCIL) and
the root-mean-square error (RMSE) between the observed
and the predicted evaluations at each of the 40 input points.
The RMSE is given by the equation

RMSE=

√∑n
i=1(x̂i − xi)2

n
(27)

wherexi andx̂i are the observed and predicted values at each
time stepi, respectively andn is the number of time steps.

Figures6 and7 display the MCIL and the RMSE versus
MED, respectively, for all the input points, looking at the
case of the location(x,y) = (0,8.38). We observe a positive
correlation between the MED and both the MCIL and the
RMSE. Therefore, this confirms that the distance separating
the points in space is a fundamental factor that affects the
predictive power of the emulator and hence this highlights
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the importance of a good experimental design. This positive
correlation is also satisfied for the other locations examined.

In Fig. 8, the RMSE with respect to MCIL is presented for
all the 40 diagnostics for the seven locations along the shore-
line investigated, in order to compare the emulator’s perfor-
mance when applied to different locations. A combination
of both small RMSE and MCIL is desirable, indicating both
small error and small uncertainty in emulator’s predictions.
The figure clearly shows that the emulator performs similarly
for all the locations investigated. Therefore, the emulator can
be applied to different locations along the shoreline, result-
ing in accurate enough representations of the simulator out-
put. The reasons that we have slightly better predictions at
some locations compared to others is an area of further in-
vestigation. Nevertheless, the location along the shoreline
with y = 8.38 shows the worst results in this Figure. There-
fore, the predictions of the emulator for the other locations
are better than the ones given in Fig.4. This reinforces the
confidence we have in our emulator.

6 Sensitivity and uncertainty analyses

In Sect. 5 we have presented the process to create a statistical
emulator that can predict the simulator’s output with suffi-
cient accuracy for a number of different locations along the
shoreline. Therefore, the emulator can be used in place of
the expensive-to-run simulator to efficiently perform analy-
ses that require a large number of evaluations, in order to save
time without sacrificing accuracy. In this section, we demon-
strate sensitivity and uncertainty analyses using the emulator.

6.1 Sensitivity analysis

The statistical emulator is used to carry out a sensitivity anal-
ysis of the model, where we investigate how sensitive is
the maximum wave elevation fort ≤ 35 to changes in in-
puts. Additionally, we examine whether the individual lo-
cations along the shoreline present consistent sensitivity to
input variation.

Figure 9 displays the case for the location(x,y) =

(0,8.38). In each of the three plots, the maximum elevation
is plotted against the initial positionx0, speedu0 and spread
ratioc of the landslide, respectively, with the other two input
parameters being kept constant. To ensure maximum emu-
lator accuracy and keep RMSE to the minimum, the input
domain in sensitivity analysis is chosen to be the subset of
the whole domain, where the mean Euclidean distance be-
tween the points is small, as presented in Fig.5. Specifically,
we considerx0 ∈ [−2,0], u0 ∈ [1,2] andc ∈ [0.5,2.5].

From Fig. 9a we can see an obvious relationship between
the landslide’s speed and the maximum elevation. Specifi-
cally, a landslide with a largeru0 gives larger maximum sea
free-surface elevations. No strong dependency of the max-
imum elevation on initial position and spread ratio can be
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Fig. 9: Maximum sea free-surface elevation with respect to
(a) initial position, (b) speed and (c) shape, for the time in-
terval [0,35] and position (x,y) = (0,8.38).

the maximum elevation is indicated. Also, a landslide mov-
ing with a larger speed yields larger maximum elevations.
Moreover, we cannot say that the spread ratio is a significant
factor at the specific range investigated. The same conclu-
sions result by repeating the sensitivity analysis for the other
six locations. We could easily perform similar analyses in
which the output is another important aspect of the tsunami,
different from the maximum elevation.

A comparison of how sensitive is the maximum wave eleva-
tion at different locations to changes in the input parameters
is showed in Fig. 10, 11 and 12. Each of the figures illustrate
the change in maximum sea free-surface elevation with re-
spect to variations in one of the input parameters, keeping the
other two constant. We look at four different combinations
of the constant parameters. We conclude that the sensitivity
of maximum elevation is very similar for all the investigated
locations along the shoreline.
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(d)

Fig. 10: Maximum sea free-surface elevation with respect to
initial position for (a) (u0,c) = (1,0.5), (b) (u0,c) = (1,2.5),
(c) (u0,c) = (2,0.5) and (d) (u0,c) = (2,2.5), for the time
interval [0,35].

Overall, the conclusions reached by using the emulator are
the same as those obtained using the simulator as shown in
Fig. 3. However, the emulator has the fundamental advan-
tage that it is much faster compared to the simulator. There-
fore, it can be evaluated at a much larger number of inputs,
leading to higher resolution and smoother plots. Figure 9
plots required a large number of emulator evaluations, specif-
ically 2012. Importantly, the required emulator running time
is very short. A total time for this entire analysis for a specific
location was around 186.6 seconds on a Dual Core 3.06GHz

Fig. 9. Maximum sea free-surface elevation with respect to(a) ini-
tial position, (b) speed and(c) shape, for the time interval[0,35]
and position(x,y) = (0,8.38).

observed. Figure 9b highlights the positive relationship be-
tweenu0 and the maximum elevation, with the larger theu0,
the larger the maximum elevation. Finally, Fig. 9c shows
that a landslide initiating from a subaerial position shows
larger maximum sea free-surface elevations compared to a
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Fig. 9: Maximum sea free-surface elevation with respect to
(a) initial position, (b) speed and (c) shape, for the time in-
terval [0,35] and position (x,y) = (0,8.38).

the maximum elevation is indicated. Also, a landslide mov-
ing with a larger speed yields larger maximum elevations.
Moreover, we cannot say that the spread ratio is a significant
factor at the specific range investigated. The same conclu-
sions result by repeating the sensitivity analysis for the other
six locations. We could easily perform similar analyses in
which the output is another important aspect of the tsunami,
different from the maximum elevation.

A comparison of how sensitive is the maximum wave eleva-
tion at different locations to changes in the input parameters
is showed in Fig. 10, 11 and 12. Each of the figures illustrate
the change in maximum sea free-surface elevation with re-
spect to variations in one of the input parameters, keeping the
other two constant. We look at four different combinations
of the constant parameters. We conclude that the sensitivity
of maximum elevation is very similar for all the investigated
locations along the shoreline.
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Fig. 10: Maximum sea free-surface elevation with respect to
initial position for (a) (u0,c) = (1,0.5), (b) (u0,c) = (1,2.5),
(c) (u0,c) = (2,0.5) and (d) (u0,c) = (2,2.5), for the time
interval [0,35].

Overall, the conclusions reached by using the emulator are
the same as those obtained using the simulator as shown in
Fig. 3. However, the emulator has the fundamental advan-
tage that it is much faster compared to the simulator. There-
fore, it can be evaluated at a much larger number of inputs,
leading to higher resolution and smoother plots. Figure 9
plots required a large number of emulator evaluations, specif-
ically 2012. Importantly, the required emulator running time
is very short. A total time for this entire analysis for a specific
location was around 186.6 seconds on a Dual Core 3.06GHz

Fig. 10. Maximum sea free-surface elevation with respect to initial position for(a) (u0,c) = (1,0.5), (b) (u0,c) = (1,2.5), (c) (u0,c) =

(2,0.5) and(d) (u0,c) = (2,2.5), for the time interval[0,35].

landslide starting from the origin. So, a relationship between
thex0 value and the maximum elevation is indicated. Also, a
landslide moving with a larger speed yields larger maximum
elevations. Moreover, we cannot say that the spread ratio
is a significant factor at the specific range investigated. The
same conclusions result by repeating the sensitivity analysis
for the other six locations. We could easily perform similar
analyses in which the output is another important aspect of
the tsunami, different from the maximum elevation.

A comparison of how sensitive is the maximum wave el-
evation at different locations to changes in the input param-
eters is showed in Figs. 10, 11 and 12. Each of the figures
illustrate the change in maximum sea free-surface elevation
with respect to variations in one of the input parameters,
keeping the other two constant. We look at four different
combinations of the constant parameters. We conclude that
the sensitivity of maximum elevation is very similar for all
the investigated locations along the shoreline.

Overall, the conclusions reached by using the emulator are
the same as those obtained using the simulator, as shown in
Fig. 3. However, the emulator has the fundamental advantage

that it is much faster compared to the simulator. Therefore, it
can be evaluated at a much larger number of inputs, leading
to higher resolution and smoother plots. Figure 9 plots re-
quired a large number of emulator evaluations, specifically
2012. Importantly, the required emulator running time is
very short. The total time for this entire analysis for a spe-
cific location was around 186.6 s on a Dual Core 3.06 GHz
computer. Using a simulator to perform the same analysis
would take much longer, as a single run to reconstruct the
sea free-surface elevation time series up to time 35 with the
SR analytical model takes about 30 min.

6.2 Uncertainty analysis

Usually, the largest amount of uncertainty induced in simu-
lator evaluations comes from the high uncertainty of tsunami
trigger features. It is impossible to know exactly the initial
position, speed and spread ratio of the landslide that cause the
tsunami. Since, as we have shown, the emulator can provide
accurate enough predictions of the simulator’s outputs, an
uncertainty analysis is performed by employing the emulator
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Fig. 11: Maximum sea free-surface elevation with respect
to landslide’s speed for (a) (x0,c) = (−2,0.5), (b) (x0,c) =
(−2,2.5), (c) (x0,c) = (0,0.5) and (d) (x0,c) = (0,2.5), for
the time interval [0,35].

computer. Using a simulator to perform the same analysis
would take much longer, as a single run to reconstruct the
sea free-surface elevation time series up to time 35 with the
SR analytical model takes about 30 minutes.

6.2 Uncertainty Analysis

Usually the largest amount of uncertainty induced in simula-
tor evaluations comes from the high uncertainty of tsunami
trigger features. It is impossible to know exactly the initial
position, speed and spread ratio of the landslide that cause
the tsunami. Since, as we have shown, the emulator can pro-
vide accurate enough predictions of the simulator’s outputs,
an uncertainty analysis is performed by employing the emu-
lator in the place of the simulator. The uncertainty analysis
will give us the amount of uncertainty in the predictions that
is due to the uncertain inputs, as well as from the use of em-
ulator in place of the simulator. Usually experts have some
knowledge about the most likely distribution of the inputs.
Using these distributions, one can draw a number of random
input samples, that can be given to the emulator in order to
estimate the posterior distribution of key tsunamis features
(e.g. maximum elevation).

We assume that some collection of emergency management
experts (in landslides or in real-time remote sensing) come to
the conclusion that the inputs follow a beta distribution with
some skewness and that the input domain is the same as with
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Fig. 12: Maximum sea free-surface elevation with respect
to landslide’s spread ratio for (a) (x0,u0) = (−2,1), (b)
(x0,u0) = (−2,2), (c) (x0,u0) = (0,1) and (d) (x0,u0) =
(0,2), for the time interval [0,35].

the sensitivity analysis. The beta distribution is a flexible
distribution over a finite interval that can enable experts to
express their believes. The distributions of input parameters
are given by

x0∼Be(5,2) for x0 ∈ [−2,0] (28)

u0∼Be(2,5) for u0 ∈ [1,2] (29)

c∼Be(2,5) for c∈ [0.5,2.5] (30)

More specifically, the initial position of the landslide follows
a distribution that indicates that a starting position near the
origin is more likely. Both the speed and spread ratio distri-
butions are skewed to the left, in order to highlight landslide’s
speeds most likely close to one and characteristic length and
width of the landslide to be most likely of similar dimen-
sions.

For this analysis we draw one thousand random samples for
the inputs from the distributions given in (28), (29), (30),
resulting in the prior input distributions shown as histograms
in Fig. 13.

We run the emulator using the selected inputs and therefore,
we get one thousand predictions for the wave elevation at a
fixed position along the shoreline for times up to 35 at 0.2
intervals. From each of these time series, the maximum el-
evation and the mean CI length are estimated, resulting in
one thousand estimates for each one. The variation among
the thousand values are quantified using quantiles. The same

Fig. 11. Maximum sea free-surface elevation with respect to landslide’s speed for(a) (x0,c) = (−2,0.5), (b) (x0,c) = (−2,2.5),
(c) (x0,c) = (0,0.5) and(d) (x0,c) = (0,2.5), for the time interval[0,35].

in the place of the simulator. The uncertainty analysis will
give us the amount of uncertainty in the predictions that is
due to the uncertain inputs, as well as from the use of em-
ulator in place of the simulator. Usually experts have some
knowledge about the most likely distribution of the inputs.
Using these distributions, one can draw a number of random
input samples that can be given to the emulator in order to
estimate the posterior distribution of key tsunamis features
(e.g. maximum elevation).

We assume that some collection of emergency manage-
ment experts (in landslides or in real-time remote sensing)
come to the conclusion that the inputs follow a Beta distri-
bution with some skewness and that the input domain is the
same as with the sensitivity analysis. The Beta distribution
is a flexible distribution over a finite interval that can enable
experts to express their beliefs. The distributions of input
parameters are given by

x0 ∼ Be(5,2) for x0 ∈ [−2,0] (28)

u0 ∼ Be(2,5) for u0 ∈ [1,2] (29)

c ∼ Be(2,5) for c ∈ [0.5,2.5]. (30)

More specifically, the initial position of the landslide fol-
lows a distribution that indicates that a starting position near
the origin is more likely. Both the speed and spread ratio
distributions are skewed to the left, in order to highlight the
landslide’s speeds, which is most likely close to one and
characteristic length and width of the landslide most likely
of similar dimensions.

For this analysis we drew one thousand random samples
for the inputs from the distributions given in Eqs. (28), (29),
(30), resulting in the prior input distributions shown as his-
tograms in Fig.13.

We ran the emulator using the selected inputs and there-
fore, we got one thousand predictions for the wave eleva-
tion at a fixed position along the shoreline for times up to
35 at 0.2 intervals. From each of these time series, the max-
imum elevation and the mean CI length are estimated, re-
sulting in one thousand estimates for each one. The varia-
tion among the thousand values were quantified using quan-
tiles. The same process was repeated for all the examined
locations along the shoreline. The quantiles for the case of
(x,y) = (0,8.38) are summarized in Table1. The posterior
distribution of the maximum elevation is plotted in Fig.14.
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Fig. 11: Maximum sea free-surface elevation with respect
to landslide’s speed for (a) (x0,c) = (−2,0.5), (b) (x0,c) =
(−2,2.5), (c) (x0,c) = (0,0.5) and (d) (x0,c) = (0,2.5), for
the time interval [0,35].

computer. Using a simulator to perform the same analysis
would take much longer, as a single run to reconstruct the
sea free-surface elevation time series up to time 35 with the
SR analytical model takes about 30 minutes.

6.2 Uncertainty Analysis

Usually the largest amount of uncertainty induced in simula-
tor evaluations comes from the high uncertainty of tsunami
trigger features. It is impossible to know exactly the initial
position, speed and spread ratio of the landslide that cause
the tsunami. Since, as we have shown, the emulator can pro-
vide accurate enough predictions of the simulator’s outputs,
an uncertainty analysis is performed by employing the emu-
lator in the place of the simulator. The uncertainty analysis
will give us the amount of uncertainty in the predictions that
is due to the uncertain inputs, as well as from the use of em-
ulator in place of the simulator. Usually experts have some
knowledge about the most likely distribution of the inputs.
Using these distributions, one can draw a number of random
input samples, that can be given to the emulator in order to
estimate the posterior distribution of key tsunamis features
(e.g. maximum elevation).

We assume that some collection of emergency management
experts (in landslides or in real-time remote sensing) come to
the conclusion that the inputs follow a beta distribution with
some skewness and that the input domain is the same as with
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Fig. 12: Maximum sea free-surface elevation with respect
to landslide’s spread ratio for (a) (x0,u0) = (−2,1), (b)
(x0,u0) = (−2,2), (c) (x0,u0) = (0,1) and (d) (x0,u0) =
(0,2), for the time interval [0,35].

the sensitivity analysis. The beta distribution is a flexible
distribution over a finite interval that can enable experts to
express their believes. The distributions of input parameters
are given by

x0∼Be(5,2) for x0 ∈ [−2,0] (28)

u0∼Be(2,5) for u0 ∈ [1,2] (29)

c∼Be(2,5) for c∈ [0.5,2.5] (30)

More specifically, the initial position of the landslide follows
a distribution that indicates that a starting position near the
origin is more likely. Both the speed and spread ratio distri-
butions are skewed to the left, in order to highlight landslide’s
speeds most likely close to one and characteristic length and
width of the landslide to be most likely of similar dimen-
sions.

For this analysis we draw one thousand random samples for
the inputs from the distributions given in (28), (29), (30),
resulting in the prior input distributions shown as histograms
in Fig. 13.

We run the emulator using the selected inputs and therefore,
we get one thousand predictions for the wave elevation at a
fixed position along the shoreline for times up to 35 at 0.2
intervals. From each of these time series, the maximum el-
evation and the mean CI length are estimated, resulting in
one thousand estimates for each one. The variation among
the thousand values are quantified using quantiles. The same

Fig. 12. Maximum sea free-surface elevation with respect to landslide’s spread ratio for(a) (x0,u0) = (−2,1), (b) (x0,u0) = (−2,2),
(c) (x0,u0) = (0,1) and(d) (x0,u0) = (0,2), for the time interval[0,35].

Table 1. Maximum elevation and mean CI length percentiles for
the position(x,y) = (0,8.38).

1 % 5 % 50 % 95 % 99 %

maximum elevation 0.92 1.03 1.66 2.18 2.35
mean CI length 0.28 0.40 0.66 0.90 1.03

This information summarizes the expected tsunami wave el-
evation and the associated uncertainty in prediction.

Therefore, for a tsunami wave caused by the postulated
landslide features, we are 95 % confident that the resulting
tsunami wave will have maximum elevation less than 2.18,
and 99 % confident that it will be less than 2.35, looking at
a location along the shoreline and far away from the source
(y = 8.38). The same analysis can be performed similarly
for other locations along the shoreline. Again the ability
of the emulator to make predictions almost immediately is
highlighted in this case, since the total running time was
just 83.9 s for 1000 runs at each of the locations compared

to 30 min on the same computer for a single run of the SR
tsunami model.

7 Conclusions

A statistical emulator of the analytical landslide-generated
tsunami model developed bySammarco and Renzi(2008)
was obtained using the outer product emulator. This surro-
gate model was built using a combination of prior knowledge
about the simulator, appropriate choices of functions and pa-
rameters and a limited number of simulator evaluations. The
simulator is computationally expensive to evaluate, while the
emulator produces estimates almost instantaneously. How-
ever, since the emulator is an approximation of the simula-
tor, an additional error was induced in predictions. But this
amount of error can be estimated, since the predictions of the
emulator are given as statistical distributions, not just values.
Moreover, an accurate enough emulator represents the actual
model with an almost negligible error.
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process is repeated for all the examined locations along the
shoreline. The quantiles for the case of (x,y) = (0,8.38)
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maximum elevation is plotted in Fig. 14. This information
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and parameters and a limited number of simulator evalua-
tions. The simulator is computationally expensive to evalu-
ate, while the emulator produces estimates almost instanta-
neously. However, since the emulator is an approximation
of the simulator an additional error is induced in predictions.
But this amount of error can be estimated, since the predic-
tions of the emulator are given as statistical distributions, not
just values. Moreover, an accurate enough emulator repre-
sents the actual model with an almost negligible error.

The emulator can be used for sensitivity and uncertainty anal-
ysis of the simulator, since these analyses are almost im-
possible to perform using the simulator. We have demon-
strated these two analyses and the potential for reducing sig-
nificantly the computational time. Where the emulator re-
quires 83.9 seconds to get a thousand evaluations, the simu-
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bution of input points.

The emulator can be used for sensitivity and uncertainty
analysis of the simulator, since these analyses are almost im-
possible to perform using the simulator. We have demon-
strated these two analyses and the potential for reducing sig-
nificantly the computational time. Where the emulator re-
quires 83.9 s to get a thousand evaluations, the simulator re-
quires 30 min for a single evaluation. Therefore, in critical
situations where early warnings are necessary, an emulator
can be a lifesaver by providing accurate prediction in a very
short time.

There are several possible avenues for extensions of this
work. First, in this paper we only examined the wave mo-
tion at specific positions in space. To describe the space –
time variations of the tsunami wave using an emulator, one
needs to choose an enhanced formulation that includes spa-
tial correlations of the outputs. This is a logical step, but
requires statistical expertise. Secondly, the source (landslide
here) is still not realistic and prior expert knowledge could
be included in a more factual way in a case study. Finally,
more detailed simulations using more advanced physical-
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based models with a complex bathymetry need to be carried
out to provide better quantifications of the subsequent sea
free-surface elevations, as well as more accurate run-ups on
the shore with the help of a detailed orography.
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