Journal of Statistical Software

January 2005, Volume 12, Issue 4. http:/ /www.jstatsoft.org/

A Software Tool for the Exponential Power
Distribution: The normalp package

Angelo M. Mineo Mariantonietta Ruggieri
Universita di Palermo Universita di Palermo

Abstract

In this paper we present the normalp package, a package for the statistical environment
R that has a set of tools for dealing with the exponential power distribution. In this
package there are functions to compute the density function, the distribution function
and the quantiles from an exponential power distribution and to generate pseudo-random
numbers from the same distribution. Moreover, methods concerning the estimation of the
distribution parameters are described and implemented. It is also possible to estimate
linear regression models when we assume the random errors distributed according to an
exponential power distribution. A set of functions is designed to perform simulation
studies to see the suitability of the estimators used. Some examples of use of this package
are provided.
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1. Introduction

The Exponential Power Distribution (EPD) can be considered a general distribution for ran-
dom errors. In statistical inference the usual hypothesis on random errors is that they are
distributed as a normal distribution, but often this hypothesis is not suitable to the study of
natural phenomena. Usually, in literature two alternative approaches are used. The first is
related to the outliers theory and deals with robust methods, that are often disputable. The
second approach looks for suitable distributional models more general than the gaussian one;
in this paper we consider the latter approach.

The first formulation of the Exponential Power Distribution could be ascribed Subbotin
(1923). Subbotin, starting from these two axioms:

1. The probability of a random error ¢ depends only on the absolute value of the error
itself and can be expressed by a function ¢(¢) having continuous first derivative almost
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everywhere;

2. The most likely value of a quantity, of which direct measurements are known, must not
depend on the used unit of measure;

obtained a probability distribution with density function:
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with —o0 < € < H400,h > 0 and m > 1; this distribution is also known as General Error
Distribution (GED).

The second axiom considered by Subbotin is the same of the second axiom used by Gauss
to derive the usual normal error distribution; the first axiom used by Subbotin is more gen-
eral: indeed, Gauss considers that the arithmetic mean represents the best way to combine
observations, instead of the condition on the first derivative of the function ¢(¢) used by
Subbotin.

2. The exponential power distribution

Following the procedure introduced by Pearson (1895), Lunetta (1963) derived a different
parametrization of the exponential power distribution by solving the differential equation:
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that gives the probability density function:
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with —oo <z < 400, —00 < pu < +00, 0 > 0 and p > 0.
This distribution, called also by Vianelli (1963) normal distribution of order p (this explains
the name of the package described in the following paragraphs), is characterized by three
parameters:
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the location parameter,
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the scale parameter and p the shape parameter. The last parameter determines the shape of
the curve; in this way, it is linked to the thickness of the tails, and thus to the kurtosis, of the
distribution. In fact, by changing the shape parameter p, the exponential power distribution
describes both leptokurtic (0 < p < 2) and platikurtic (p > 2) distributions; in particular, we
obtain the Laplace distribution for p = 1, the normal distribution for p = 2 and the Uniform
distribution for p — oco. A recent review about this distribution family has been produced
by Chiodi (2000). In previous papers, Chiodi (1986, 1995) presented some procedures for the
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generation of pseudo-random numbers from a standardized exponential power distribution,
i.e. an EPD with 4 = 0 and 0, = 1. These procedures, based on a generalization of the
well-known Box-Muller method (1958) for generating normal pseudo-random numbers, or on
acceptance-rejection rules, are, of course, very useful in simulation studies, concerning the
behavior of estimators under departures from normality. Other procedures for generating
pseudo-random numbers from this distribution have been presented by Johnson (1979) and
Tadikamalla (1980), among others.

Finally, we have to note that, although with a different parametrization, the exponential
power distribution is dealt by Bayesian inference too, when there is the problem to specify a
suitable a priori distribution (see, among others, Box and Tiao 1992, Choy and Smith 1997
and Achcar De Araujo Pereira 1999). A bivariate exponential power distribution has been
introduced by De Simone (1968) and Taguchi (1978), while a multivariate formulation of this
distribution can be found in Fang, Kotz, and Ng (1989) and Krzanowski and Marriott (1994).

3. Estimation of the exponential power distribution parameters

By assuming that the shape parameter p is known, the location and scale parameters could
be easily obtained by using the maximum likelihood estimation method. The estimate of
the shape parameter p is an open problem, so far. Anyway several procedures have been
proposed, some of which are very interesting. In literature, the main proposals are based
on the maximum likelihood estimation method or on methods based on the computation
of kurtosis indices. The derivation of the maximum likelihood estimators does not bring,
formally, many problems; on the other hand, the maximum likelihood estimators have suitable
properties, at least asymptotically, but in this case, i.e. in the case of the estimation of the
shape parameter p, we could meet with computational difficulties by using numerical methods
to solve the obtained equation. A new approach, to estimate the location and scale parameter
of this distribution based on a genetic algorithm, has been recently proposed by Vitrano and
Baragona (2004), but it does not present substantial improvements in comparison with others
numerical methods based on the direct evaluation of the likelihood function.

The problem of estimating the linear regression parameters when we have random errors
distributed according to an exponential power distribution has been treated by Zeckhauser
and Thompson (1970) and A.M. Mineo (1995).

3.1. Estimation of the location and scale parameters

Let’s assume to have a sample of n i.i.d. observations drawn from (1), then the likelihood
function is:
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and the log-likelihood function is:
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By deriving the log-likelihood function with respect to p and o, and by equalizing the obtained
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expressions to zero, we have the following equations:
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The equation (4) does not have, in general, an explicit solution and is solved by means of
numerical methods, while from (5) we get the maximum likelihood estimator of oy,:
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Vianelli (1963) called &, power deviation of order p; it can be seen as a variability index that
generalizes the standard deviation.
Chiodi shows (1988b) that the maximum likelihood estimator of y is unbiased, with asymp-
totic variance given by:
X L(1/p) p**2 ,
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while Lunetta (1966), when p is known, obtains the sampling distribution of 6:
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i.e. a Gamma distribution with A = n/(po}), c = n/p, E(65) = ob, var(6}) = (p- agp)/n.
If 41 is unknown, these results are only asymptotically unbiased, while ¢} is biased for small
samples. An unbiased estimator, when p is known and [ is the maximum likelihood estimator

of u, is given by Chiodi:
Y |z —p P

9
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that provides also its asymptotic sampling distribution, i.e. the Gamma distribution (8) but
with c =n/p —1/2.
A paper where are showed some procedures to test hypothesis on homoskedasticity when sam-
ples are drawn from an exponential power distribution has been presented by Chiodi (1988a),
as well.
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p

Finally, Chiodi (1994) uses saddle point approximations to obtain asymptotic sampling dis-
tributions of the maximum likelihood estimators for the exponential power distribution pa-
rameters. The sampling distributions, obtained in this way, work well even for small samples,
for example n = 5.

Moreover, we can compute the Fisher information matrix on p and o, (Agro 1995):
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Then, the parameters i and o, are orthogonal, according to the Fisher’s information matrix:
for the estimation of the parameters, this fact makes possible the use of the conditional profile
log likelihood that has better properties than the ordinary profile log likelihood (Cox and Reid
1987).

By inverting the information matrix, we obtain the asymptotic matrix of variance of the
maximum likelihood estimators (fi, 6p):
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that for p=1 and p=2 becomes, respectively, the asymptotic matrix of variance for the maxi-
mum likelihood estimators of the Laplace and the Gauss distribution parameters.

3.2. Estimation of the shape parameter p

The methods presented in literature are based on the likelihood function and on indices of
kurtosis. In particular, a comparison among different approaches, i.e. the whole log-likelihood,
the profile log-likelihood (Barndorff-Nielsen 1988) and the conditional profile log-likelihood
(Cox and Reid 1987), proposed by Agro (1999), and an index of kurtosis, proposed by A.M.
Mineo (1994), has been made by A.M. Mineo (2003b). In this paper, according to a simulation
study, it seems that the best method is the one based on the index of kurtosis, while generally
the whole log-likelihood approach works better than those based on the profile log-likelihood
and the conditional profile log-likelihood. Indeed, the method based on the index of kurtosis
VI (see the formula 15) gives estimates of p that seem less biased and more efficient than
the estimates obtained by using the three methods based on the log likelihood function. In
some way, these results are expected, given the link between the shape parameter p and the
kurtosis (cfr. 3.2.2).

Estimation of p by means of the maximum likelthood method

If we want to determine the maximum likelihood estimator of the shape parameter p, the
equation that we obtain by deriving the log-likelihood function (3) is:
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where U(.) is the digamma function, that is the first derivative of the logarithm of the gamma
function.
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The equation (13) can be solved by using numerical methods. Moreover, Agro (1992) uses
this method showing that it does not work well for small samples, even though it provides
good results for samples of size greater than 50 — 100.

In a following paper, Agro (1995) computes the inverse of the Fisher information matrix that
defines the asymptotic matrix of variance of the maximum likelihood estimators (fi, 6p,p):
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where W/(.) is the trigamma function, that is the second derivative of the logarithm of the
gamma function. From this matrix we can see how the shape parameter p is orthogonal to
the location parameter i, but is not orthogonal to the scale parameter o,,.

Capobianco (2000) observes how the asymptotic variance of the scale parameter estimator is
larger than the asymptotic variance of the same estimator obtained for the Gaussian or the
Laplace distribution. This is an expected result, since the Gaussian and the Laplace distribu-
tion are exponential power distributions when p = 1 and p = 2, respectively; if we substitute
these values in the expression of the asymptotic variance, we obtain the same results. The
apparent loss of efficiency is just due to the need of estimating p.

Estimation of p by means of indices of kurtosis

These estimation procedures take into account the relationship between the shape parameter
p and the kurtosis. The usually used indices of kurtosis are:

#a _ T(A/P)T(5/p)
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is the absolute moment of grade r. The index 3,, called generalized index of kurtosis, has been
proposed by Lunetta (1963) and gives for p = 2 the Pearson’s index of kurtosis fs.
The estimators of the indices of kurtosis above described are given by:
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where M is the arithmetic mean. A first solution to this problem has been given by Lunetta
(1967), which observed how the kurtosis indices could be used for estimating p.

Afterwards, A. Mineo (1980) proposed the solution of an equation based on a suitable combi-
nation of sampling indices of kurtosis. Again, A. Mineo (1986) shows by simulation studies the
lower efficiency of some well-known robust estimators, compared to the maximum likelihood
estimator of the location parameter u. In the same paper, the author estimates p by using
an inverse interpolation procedure. In a following paper, A. Mineo (1989), by implementing
an iterative procedure, obtains estimators for a simple linear regression model with errors
distributed as a normal distribution of order p and an estimate of p by solving the equation:

n n 2
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that derives from the theoretical value of the generalized index of kurtosis 3,. In this formula,
M, is an estimate of the location parameter i, obtained by solving the equation (4): this is
necessary to make possible the iterative process of estimation of all the three parameters p,
op and p.

An estimation method based on the index of kurtosis VI has been proposed by A.M. Mineo
(1994), by comparing the theoretical value and the empirical value computed on the sample.
The index VI has been preferred to (3, because it is less affected by extreme values on
data, in order to obtain better estimates, even when small samples (n < 50) are considered.
Moreover, the equation (23), obtained from f3,, has not been considered since its expression
is more difficult computationally. The validity of the proposed procedure has been provided
by simulation studies. Actually, the obtained results seem to be very interesting and better
than the ones obtained by methods based on the likelihood function (A.M. Mineo, 2003b).

4. The normalp package

The normalp package (A.M. Mineo, 2003a) is an R (R Development Core Team 2004) package
containing a collection of tools related to the exponential power distribution. The imple-
mented functions generalize some commands already available in the base package, related
to observations distributed as a normal distribution. Moreover, useful commands deal with
estimation problems for linear regression models when the random errors are drawn from an

exponential power distribution. The normalp package is available on the Comprehensive R
Archive Network (CRAN?).

4.1. Computation of the exponential power distribution

The normalp package has four functions, dnormp (), pnormp(), gnormp() and rnormp(), to
compute the typical quantities of a probability distribution, i.e.:

'URL: http://CRAN.R-project.org/.
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dnormp (), that gives the density function of an exponential power distribution;

pnormp (), that gives the probability function of an exponential power distribution;

gnormp (), that gives the quantiles of an exponential power distribution;

rnormp (), that generates a vector of n pseudo-random numbers from an exponential
power distribution.

The use of these functions is the following:

dnormp(x, mu = 0, sigmap = 1, p = 2, log = FALSE)}

with arguments

X vector of quantiles;

mu vector of location parameters;

sigmap vector of scale parameters;

P shape parameter;

log logical; if TRUE the density is given as a log(density).

pnormp(q, mu = O, sigmap = 1, p = 2, lower.tail = TRUE, log.pr = FALSE)

with arguments

q vector of quantiles;

mu vector of location parameters;

sigmap vector of scale parameters;

P shape parameter;

lower.tail logical; if FALSE gives P[X > z], otherwise (default) gives P[X < zJ;
log.pr logical; if TRUE probabilities pr are given as log(pr).

gnormp(pr, mu = 0, sigmap = 1, p = 2, lower.tail = TRUE, log.pr = FALSE)

with arguments

pr vector of probabilities;

mu vector of location parameters;

sigmap vector of scale parameters;

p shape parameter;

lower.tail logical; if FALSE gives P[X > z], otherwise (default) gives P[X < zJ;
log.pr logical; if TRUE probabilities pr are given as log(pr).

rnormp(n, mu = 0, sigmap = 1, p = 2, method = "def")

with arguments

n vector of observations;

mu vector of location parameters;
sigmap vector of scale parameters;

p shape parameter;

method if set to chiodi it uses an algorithm based on a generalization of the
Marsaglia (1964) formula, suggested by Chiodi (1986), otherwise it uses a faster
method based on the relationship linking an exponential power distribution and
a Gamma distribution (Lunetta 1963).
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4.2. Graphical functions

Besides the above described functions, some useful graphical functions have been imple-
mented. In particular, these functions are:

e graphnp(), that visualizes from one to five different exponential power distributions,
each one plotted with a different color;

e qqnormp (), that gives an exponential power distribution Q-Q plot;

e gqlinep(), that sketches a line through the first and the third quartile in an exponential
power distribution Q-Q plot;

Then, the functions qgnormp() and qqlinep() allow to check graphically if a vector of ob-
servations can be considered drawn from an exponential power distribution.

The use of these functions is, respectively:

graphnp(p = c(1, 2, 3, 4, 5), mu = 0, sigmap = 1,
title="Exponential power distributions")

with arguments

o) vector of p values. It has to contain at most five elements. If one or more
values of p are > 50, the plot will give an uniform distribution;
mu value of the location parameter;

sigmap value of the scale parameter;
title  the plot title.

qqnormp(y, ylim, p = 2, main = "Exponential power distribution Q-Q plot",

xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles", ...)
qqlinep(y, p = 2, ...)
with arguments
v vector of observations;
P shape parameter;
main, xlab, ylab plot labels;
ylim,... graphical parameters.

4.3. Functions to estimate the exponential power distribution parameters
Another set of functions is related to the estimation of the parameters of an exponential power

distribution. In particular, we have the following functions:

e estimatep(), that estimates the shape parameter p from a vector of observations by
means of the index of kurtosis VI (A.M. Mineo, 1994);

e paramp(), that estimates the location parameter ;1 and the scale parameter o, by means
of the maximum likelihood method, by considering the two cases when p is known
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and when p is unknown; in the latter case, an estimate of p is obtained from the
estimatep() function; this function returns a list of elements: the arithmetic mean,
the standard deviation, the estimated values of location, scale and shape parameters of
an exponential power distribution. Moreover, if the message iter=1 prints out, then
problems on convergence have arisen in the computation;

kurtosis(), that computes the theoretical and the empirical values of the kurtosis
indices VI, 32 and (3,;

simul .mp(), that performs a Monte Carlo simulation to verify the behavior of the
estimators of the parameters p, o, and p, behavior that can be seen graphically by
using the function plot.simul.mp(), that returns an histogram for each set of the
estimates produced by simul.mp(). The function simul.mp() returns a list containing
the following components

— dat: a matrix m x 5 reporting the result of paramp() for each sample;

— table: a matrix 2 x 5 of the means and the variances of the five estimator values.

The use of these functions is described below:

estimatep(x, mu = 0, p = 2, method = c("inverse", "direct"))

with arguments

X
mu

p

vector of observations;
the location parameter;
starting value of the shape parameter;

method the user can choose an inverse interpolation (faster) or a

direct solution of the equation VI = VI.

paramp(x, p = NULL, ...)

with arguments

X vector of observations;
P if specified, the algorithm does not use an estimate of p, but
the specified value;
other arguments passed to or from other methods.
kurtosis(x, p = 3, value = "parameter")

with arguments

X

p

a sample of observations; if it is not specified, theoretical indices are computed;
the shape parameter;

value if set to parameter, the value specified in p is used, otherwise

an estimate of p is computed and estimates of the three indices are given.

simul .mp(n, m, mu = O, sigmap = 1, p = 2)
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with arguments

n sample size;

m number of samples;

mu the location parameter;
sigmap the scale parameter;

P the shape parameter.

plot.simul .mp(x, ...)

with arguments
e a simul.mp object, i.e. a result of simul.mpQ);
further arguments passed to or from other methods.

4.4. Functions to deal with linear regression problems

The normalp package contains also a set of functions to fit linear regression models, when ran-
dom errors are distributed according to an exponential power distribution. The implemented
functions are:

e 1mp() that evaluates the coefficients of the linear regression model by means of the
maximum likelihood method, either when p is known, or when p is unknown (A.M.
Mineo, 1995); in the latter case an estimate of p is obtained from estimatep(). The
lmp () function returns a list containing the following components:

— coefficients: the coefficient estimates;

— residuals: the residuals;

— fitted.values: the fitted values;

— rank: the numeric rank of the fitted linear model,;

— df .residual: the residual degrees of freedom computed as in 1m();
— call: the matched call;

— terms: the terms object used;

— p: the p estimate computed on residuals;

— knp: a logical parameter used by summary ();

— model: the model frame used;

— iter: its value is 1 if difficulties on convergence arise.
e plot.1lmp() that performs an analysis of residuals by returning a set of plots:

— a plot of residuals against fitted values;
— a Normal Q-Q plot;
— an Exponential Power Distribution Q-Q plot;

a Scale-Location plot.

11
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e summary.lmp() that produces a list of summary statistics related to the fitted linear
model given by 1mp(); among them, the power deviation of order p computed on resid-

uals: )
Sp:lzef]p (24)

where ¢ is the number of the estimated regression coefficients if p is known, otherwise
is the number of the estimated regression coefficients plus 1.

e simul.lmp() that allows to verify the behavior of the regression parameter estimators
and the estimators of o, and p by means of a Monte Carlo simulation study. This func-
tion returns a list containing a matrix reporting the result of 1mp () for all the samples
and a matrix of means and variances of the m estimates for each related parameter.
The regressors are drawn from an Uniform distribution.

e summary.simul.lmp() that summarizes the results of simul.lmp

e plot.simul.lmp() returns a histogram for each set of the estimates computed by
simul.lmp ().

The use of these functions is the following (it is very similar to that of 1m() and related
functions of the stats package):
lmp(formula, data = list(), p = NULL)

with arguments
formula the model to be fitted;

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment;
P the shape parameter. It is estimated if is not specified.
plot.lmp(x, ...)

with arguments
X is a 1lmp object, i.e. a result of 1mp();
are further arguments passed to or from other methods.

summary.lmp(object, ...)

with arguments
object a lmp object, i.e. a result of 1lmp();
further arguments passed to or from other methods.

simul.lmp(n, m, q, data, int = 0, sigmap = 1, p = 2,
lp = FALSE)
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with arguments

n sample size;

m number of samples;

q number of regressors;

data a vector of coefficients;

int the intercept value;

sigmap the scale parameter;

P the shape parameter;

1p if FALSE p is estimated, otherwise the specified value of p is considered.
summary.simul.lmp(x, ...)

with arguments
X a simul.lmp object, i.e. a result of simul.lmp(Q);
further arguments passed to or from other methods.

plot.simul.lmp(x, ...)

with arguments
X a simul.lmp object, i.e. a result of simul.lmpQ);
further arguments passed to or from other methods.

5. Some examples of use

In this section different examples of use of the normalp package will be showed. All the exam-
ples have only the purpose to show some possible ways of use of the implemented functions.

5.1. Dealing with an exponential power distribution

Let’s compute the density for a x value with mu = 0, sigmap = 1 andp = 1.5:

R> dnormp(2, p = 1.5)

[1] 0.06413529

Let’s compute the distribution function for a q value withmu = 1, sigmap = 2andp = 1.5:
R> pnormp(0.7, mu = 1, sigmap = 2, p = 1.5)

[1] 0.4375686

Let’s compute the quantile for a probability value pr = 0.3 with mu = 3, sigmap = 2 and p
= 1.5

R> gnormp (0.3, mu = 3, sigmap = 2, p = 1.5)

[1] 1.956552
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In the following example, we generate a random sample of size n = 10 from an exponential
power distribution with mu = 2, sigmap = 3and p = 1.5:

R> rnormp(10, 2, 3, 1.5)

[1] 4.0685043 3.3570330 3.6317871 -0.9743280 3.3015496 1.2702016
[7] 2.6252958 9.5512745 3.1040467 0.8221423

With the following command, we plot five different distributions with p=1, 2, 3, 4, 50 (the
last one will be the uniform distribution):

R> graphnp(c(1 : 4, 50))

(see Figure 1)

Exponential Power Distributions
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Figure 1: Exponential power distributions.

and an exponential power distribution Q-Q plot for a sample of size n = 100:

R> x <- rnormp(100, p = 3)
R> qgnormp(x, p = 3)
R> qqlinep(x, p = 3)

(see Figure 2)

5.2. Estimating the exponential power distribution parameters

Let’s estimate the shape parameter p from a vector of observations:

R> x <- rnormp(100, 1, 2, 4)
R> p <- estimatep(x, 1, 2)
R>p
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Exponential power distribution Q-Q plot
p=3
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Figure 2: Exponential power distribution Q-Q plot for a sample of size n = 100.

[1] 3.255839

Let’s estimate p, 0, and p from a vector of observations:

R> x <- rnormp(100, 1, 2, 3)
R> parameters <- paramp (x)
R> parameters

Mean Mp Sd Sp P
0.8752648 1.1033518 1.8194269 2.3706584 4.5758560

15

Let’s compute the values of theoretical and empirical indices of kurtosis, with p known or

estimated:

R> kurtosis(p = 2)

VI B2 Bp
1.253314 3.000000 3.000000

R> kurtosis(x, p = 2, value = "parameter")

VI B2 Bp
1.199764 2.513143 2.513143

R> kurtosis(x)

VI B2 Bp
1.200588 2.501471 4.019306
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Let’s perform a simulation plan for m = 100 samples of size n = 30, with mu =

1, p = 3, by showing the histogram for each set of estimates:

R> sim <- simul.mp(30, 100, p = 3)
R> sim

Mean Mp Sd Sp P
Mean -0.02374401 -0.02288745 0.84925812 0.93616566 3.264425
Variance 0.02009107 0.02643337 0.01095461 0.05394765 8.107726
Number of samples with a difficult convergence: 1

R> par(mfrow = c(3, 2))
R> plot(sim)
R> par(mfrow = c(1, 1))

(see Figure 3)
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Figure 3: Histograms of the estimates obtained by simul.mp().

0, sigmap =

5.3. Fitting a linear regression model with random errors distributed ac-

cording to an exponential power distribution

In this subsection we consider an example that has only the purpose to show the use of
the implemented functions to fit a linear regression model when we have to assume that the
random errors are distributed according to an exponential power distribution. Let’s consider
the following data set taken from Levine, Krehbiel, and Berenson (2000); this data set reports
the profits at the box office in million of dollars (Gross) and the number of sold home videos
in thousands (Videos) for a sample of 30 movies; the idea is that the number of sold home

videos is related to the profits at the box office:
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R> dataset <- read.table("movie.txt", header = TRUE)
R> dataset

Gross Videos

1.10 57.18
.13 26.17
.18 92.79
.25 61.60
.44 46.50
.53 85.06
.53 103.52
.69 30.88
.74 49.29
77 24.14
.42 115.31
.34 87.04
.70 128.45
.43 126.64
.59 107.28
.36 190.80
.89 121.57
.66 183.30
.35 204.72
.55 112.47
.91 162.95
.25 109.20
.13 280.79
.62 229.51
.09 277.68
.73 226.73
.55 365.14
.62 218.64
.70 286.31
.51 254.58
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R> attach(dataset)
R> res.lmp <- lmp(Videos ~ Gross)
R> res.lmp

Call:
lmp(formula = Videos ~ Gross)

Coefficients:
(Intercept) Gross
77.411 4.368

Let’s report a summary of the main results with a plot showing the two straight lines derived
by using the OLS methods and the 1mp() method:
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R> summary(res.lmp)

Call:
lmp(formula = Videos ~ Gross)

Residuals:
Min 1Q Median 3Q Max
-78.43 -36.83 -3.35 27.03 102.34

Coefficients:
(Intercept) Gross
77.411 4.368

Estimate of p
2.388677

Power deviation of order p: 50.95
R> plot(Videos ~ Gross)
R> abline(1m(Videos ~ Gross))

R> abline(res.lmp, col = "red")

(see Figure 4)
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Figure 4: Plot of the linear regression models.

Let’s perform an analysis of residuals:
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R> par(mfrow = c(2, 2))
R> plot(res.lmp)

(see Figure 5)
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Figure 5: Residuals plots obtained by the function plot.lmp().

Let’s perform a simulation plan for m = 100 samples of size n = 20 for a linear regression
model with only one regressor, by showing the histogram for each set of estimates:

R> sim <- simul.lmp(20, 100, 1, 1.5, 1, 1, 3)
R> sim

(intercept) x1 Sp p
Mean 0.9734609 1.527420 0.92207680 3.735001
Variance  0.1947046 0.715167 0.03944582 10.998811
Number of samples with a difficult convergence: 1

R> summary (sim)

Results:

(intercept) x1 Sp P
Mean 0.9734609 1.527420 0.92207680 3.735001
Variance 0.1947046 0.715167 0.03944582 10.998811
Coefficients:
(intercept) x1

1.0 1.5



20 A Software Tool for the Exponential Power Distribution

Formula:

y +x1

Number of samples:

100

Value of p:

3

Number of samples with problems on convergence
1

R> par(mfrow = c(2, 2))
R> plot(sim)

(see Figure 6)
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Figure 6: Histograms of the estimates produced by simul.lmp().

6. Conclusions

In this paper, we have described some results obtained on the Exponential Power Distribution
and implemented in a package, normalp, that is a contributed package of the statistical
environment R. The implemented functions concern essentially estimation problems for linear
regression models, besides some graphical commands that generalize graphical tools already
implemented in the package graphs of R, related to observations distributed as a normal
distribution. At the end of the paper, several examples of use have been showed. People that
are used to working with R can find very easy the syntax of the functions implemented in this
package. We think that this package could be very useful for anyone has to treat with this
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kind of probability distribution. Our intention is to work more on this package to improve its
flexibility.
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