
Server-side Statistics Scripting in PHP

Jan de Leeuw
UCLA Statistics

June 22, 1997

1 Introduction

On the UCLA Statistics WWW server there are a large number of demos and
calculators that can be used in statistics teaching and research. Some of these
demos require substantial amounts of computation, others mainly use graph-
ics. These calculators and demos are implemented in various different ways,
reflecting developments in WWW based computing.
As usual, one of the main choices is between doing the work on the client-side

(i.e. in the browser) or on the server-side (i.e. on our WWW server). Obvi-
ously, client-side computation puts fewer demands on the server. On the other
hand, it requires that the client downloads Java applets, or installs plug-ins
and/or helpers. If JavaScript is used, client-side computations will generally be
slow. We also have to assume that the client is installed properly, and has the
required capabilities. Requiring too much on the client-side has caused brows-
ing machines such as Netscape Communicator to grow beyond all reasonable
bounds, both in size and RAM requirements. Moreover requiring Java and
JavaScript rules out such excellent browsers as Lynx or Emacs W3.
For server-side computing, we can configure the server and its resources

ourselves, and we need not worry about browser capabilities and configuration.
Nothing needs to be downloaded, except the usual HTML pages and graphics.
In the same way as on the client side, there is a scripting solution, where code
is interpreted, or a object-code solution using compiled code. For the server-
side scripting, we use embedded languages, such as PHP/FI. The scripts in the
HTML pages are interpreted by a CGI program, and the output of the CGI
program is send to the clients. Of course the CGI program is compiled, but
the statistics procedures will usually be interpreted, because PHP/FI does not
have the appropriate functions in its scripting language. This will tend to be
slow, because embedded languages do not deal efficiently with loops and similar
constructs.
Thus a first step towards greater efficiency is to compile the necessary prim-

itives into the PHP/FI executable. This is easy to do, because the API is
quite simple. In the extensions below, we have added the complete ranlib and
dcdflib to PHP, plus some additional useful functions. The source code for

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26835841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

these extensions, plus Solaris binaries for libranlib.a and libdcdf.a can be
obtained from our server.
Interpreting a PHP script, even with our new primitives, still requires start-

ing up a CGI process for each page that is read. Again, this can be improved
upon. We could use FastCGI to keep the CGI process around on a permanent
basis. Instead, we have chosen a more direct method. PHP can be compiled
as an Apache module, i.e. it can be compiled into the Apache HTTPD server
binary. This means that PHP scripts are interpreted by the WWW server,
which is always around, and which will fork additional children if necessary. No
CGI processes need to be started. The PHP install process creates a libphp.a
and mod_php.c in the Apache source directories, which can be used to build
an enhanced server. This has the additional advantage of security, because all
security features of the server can be used, and none of the pitfalls of using CGI
or Java apply.
Using PHP, in combination with the WWW server, also has some disad-

vantages. Although we can make simple static plots, using the gd library, we
cannot use any dynamics, and interaction between the user and the page is
somewhat limited. Java, or scripts using a client-side Xlisp-Stat as a helper,
are more flexible in this respect. As a consequence, the UCLA Statistics pages
still use a combined approach, with server-side PHP and CGI and client-side
Xlisp-Stat and Java/JavaScript. Sometime this year, server-side Java scripting
will become available, and then it seems advisable to switch as much of the code
as possible to the server-side.

2 Scripting in PHP

We shall not give an extensive introduction to PHP/FI scripting here. For this
we refer to the PHP/FI manual, and to the examples below. Basically, the
scripting language is a simple subset of C, with additional support built-in for
generation of GIF pictures using the gd library, and support for various database
engines such as mSQL.
One useful thing to know about PHP/FI scripting is that in PHP/FI vari-

ables are overloaded. Thus each variable has three values, the variable as a long
integer, the variable as a double, and the variable as a string. Thus running the
following code fragment

<?

$a = 0.999;

$b = 1;

$c = "melon";

Echo intval($a); Echo "
";

Echo doubleval($a); Echo "
";

Echo strval($a); Echo "
";

Echo intval($b); Echo "
";

Echo doubleval($b); Echo "
";

Echo strval($b); Echo "
";

2

Echo intval($c); Echo "
";

Echo doubleval($c); Echo "
";

Echo strval($c); Echo "
";

>

produces

0

0.9990000000

0.999

1

1.0000000000

1

0

0.0000000000

melon

This overloading makes it more or less unnecessary to specify the types of argu-
ments that functions in PHP/FI require. In the description of the function we
indicate the types we had in mind, which correspond with what the C routines
expect. Generally, both cdflib and ranlib work with doubles, even degrees-
of-freedom parameters and number of trials or successes can be doubles.

3 dcdflib

ccdflib is an excellent library for computation of cumulative distribution func-
tions and their inverses. It is written by Brown, Lovato, and Russell [2]. We
use the double precision version, written in ANSI-C. Since all functions use the
double precision value of the arguments, and return a variable whose double
precision value we are interested in, there is no need to indicate types.

3.1 FCdf

If FFdfn,dfd(f) = p then

FCdf (f, dfn, dfd, 1) =⇒ p
FCdf (p, dfn, dfd, 2) =⇒ f
FCdf (p, f, dfd, 3) =⇒ dfn
FCdf (p, f, dfn, 4) =⇒ dfd

3.2 BetaCdf

If Fbetaa,b (x) = p then

BetaCdf (x, a, b, 1) =⇒ p
BetaCdf (p, a, b, 2) =⇒ x
BetaCdf (p, x, b, 3) =⇒ a
BetaCdf (p, x, a, 4) =⇒ b

3

3.3 Chi2Cdf

If Fchi2df (x) = p then

Chi2Cdf (x, df, 1) =⇒ p
Chi2Cdf (p, df, 2) =⇒ x
Chi2Cdf (p, x, 3) =⇒ df

3.4 GammaCdf

If Fgammashape,scale(x) = p then

GammaCdf (x, scale, shape, 1) =⇒ p
GammaCdf (p, scale, shape, 2) =⇒ x
GammaCdf (p, x, shape, 3) =⇒ scale
GammaCdf (p, x, scale, 4) =⇒ shape

3.5 NormalCdf

If Fnormalµ,σ (x) = p then

NormalCdf (x, mean, sd, 1) =⇒ p
NormalCdf (p, mean, sd, 2) =⇒ x
NormalCdf (p, x, sd, 3) =⇒ mean
NormalCdf (p, x, mean, 4) =⇒ sd

3.6 StudentCdf

If Fstudentdf (t) = p then

StudentCdf (t, df, 1) =⇒ p
StudentCdf (p, df, 2) =⇒ t
StudentCdf (p, t, 3) =⇒ df

3.7 PoissonCdf

If Fpoissonxlam (x) = p then

PoissonCdf (x, xlam, 1) =⇒ p
PoissonCdf (p, xlam, 2) =⇒ x
PoissonCdf (p, x, 3) =⇒ xlam

3.8 BinomialCdf

If Fbinompr,xn (sn) = p then

4

BinomialCdf (sn, xn, pr, 1) =⇒ p
BinomialCdf (p, xn, pr, 2) =⇒ sn
BinomialCdf (p, sn, pr, 3) =⇒ xn
BinomialCdf (p, sn, xn, 4) =⇒ pr

3.9 NegBinomialCdf

If Fnegbinompr,xn (sn) = p then

NegBinomialCdf (sn, xn, pr, 1) =⇒ p
NegBinomialCdf (p, xn, pr, 2) =⇒ sn
NegBinomialCdf (p, sn, pr, 3) =⇒ xn
NegBinomialCdf (p, sn, xn, 4) =⇒ pr

3.10 NonCentralFCdf

If FFdfn,dfd,pnonc(f) = p then

NonCentralFCdf (f, dfn, dfd, pnonc, 1) =⇒ p
NonCentralFCdf (p, dfn, dfd, pnonc, 2) =⇒ f
NonCentralFCdf (p, f, dfd, pnonc, 3) =⇒ dfn
NonCentralFCdf (p, f, dfn, pnonc, 4) =⇒ dfd
NonCentralFCdf (p, f, dfn, dfd, 5) =⇒ pnonc

3.11 NonCentralChi2Cdf

If Fchi2df,pnonc(x) = p then

NonCentralChi2Cdf (x, df, pnonc, 1) =⇒ p
NonCentralChi2Cdf (p, df, pnonc, 2) =⇒ x
NonCentralChi2Cdf (p, x, pnonc, 3) =⇒ df
NonCentralChi2Cdf (p, x, df, 4) =⇒ pnonc

4 ranlib

ranlib was also written by Brown and Lovato [1].
Observe that PHP/FI already has some random number support through

the usual Rand(), Srand((int) x), and getRandMax() functions. Here Rand
returns a random integer between 0 and RANDMAX, Srand seeds the random num-
ber generator, and getRandMax returns RANDMAX. We add more sophisticated
generators, more control, and generators for the same families of probability
distributions in cdflib.

5

4.1 RanF

Ranf() =⇒ x

Ranf does not take any arguments, and returns a random floating point
number in the open interval (0, 1).

4.2 PhrTsd

PhrTsd(phrase) =⇒ seeds

PhrTsd takes a phrase an argument and returns a string of two concatenated
seeds, separated by a space.

4.3 GetSeed

GetSeed() =⇒ seeds

GetSeed takes no argument and returns a string of the two concatenated
current seeds, separated by a space.

4.4 SetAll

SetAll(seed1, seed2) =⇒ .

SetAll initializes all generators using the seeds in the argument.

4.5 Shuffle

Shuffle((array) a)

Shuffle randomly permutes an array (it is a PHP/FI interface to the genprm
function in ranlib).

4.6 GenF

GenF(dfn, dfd) =⇒ f

GenF generates a random deviate from an F distribution with dfn and dfd
degrees of freedom.

6

4.7 GenGam

GenGam(a, r) =⇒ x

GenGam generates a random deviate from an gamma distribution with loca-
tion parameters a and shape parameter r.

4.8 GenNCh

GenNCh(df, xnonc) =⇒ x

GenNch generates a random deviate from a noncentral chi-square distribution
with df degrees of freedom and noncentrality parameter xnonc.

4.9 GenNF

GenNF(dfn, dfd, xnonc) =⇒ x

GenNF generates a random deviate from a noncentral F distribution with
dfn and dfd degrees of freedom and noncentrality parameter xnonc.

4.10 GenNor

GenNor(av, sd) =⇒ x

GenNor generates a random deviate from a normal distribution with mean
av and standard deviation sd.

4.11 GenUnf

GenUnf(low, high) =⇒ x

GenUnf generates a random deviate from a uniform distribution between low
(exclusive) and high (exclusive).

4.12 GenBet

GenBet(aa, bb) =⇒ x

GenBet generates a random deviate from a beta distribution with parameters
aa and bb. (exclusive).

7

4.13 GenChi

GenChi(df) =⇒ x

GenCh generates a random deviate from a chi-square distribution with df
degrees of freedom.

4.14 GenExp

GenExp(av) =⇒ x

GenExp generates a random deviate from an exponential distribution with
mean av.

4.15 IgnLgi

IgnLgi() =⇒ x

GenExp generates a random integer, from the uniform distribution over
1, . . . , 2147483562.

4.16 IgnUin

IgnUin(low, high) =⇒ x

IgnUin generates a random integer, from the uniform distribution over
low. . . high.

4.17 IgnBin

IgnBin(n, pp) =⇒ s

IgnBin generates a random deviate from a binomial distribution with n trials
and probability of success pp.

4.18 IgnNbn

IgnNbn(n, pp) =⇒ s

IgnBin generates a random deviate from a negative binomial distribution
with n trials and probability of success pp.

8

4.19 IgnPoi

IgnPoi(mu) =⇒ x

IgnPoi generates a random deviate from a Poisson distribution with mean
ave.

5 density

This section contains functions to compute the most important probability den-
sity functions and probability mass functions.

5.1 NormalDens

NormalDens(x, ave, stdv) =⇒ y

NormalDens computes the ordinate of the normal density with mean ave and
standard deviation stdv at x.

5.2 Chi2Dens

Chi2Dens(x, dfr) =⇒ y

Chi2Dens computes the ordinate of the chi-square density with dfr degrees
of freedom at x.

5.3 TDens

TDens(x, dfr) =⇒ y

TDens computes the ordinate of the student t density with dfr degrees of
freedom at x.

5.4 FDens

FDens(x, shape, scale) =⇒ y

FDens computes the ordinate of the F density with degrees of freedom dfr1
and dfr2 at x.

9

5.5 BetaDens

BetaDens(x, a, b) =⇒ y

BetaDens computes the ordinate of the beta density with parameters a and
b at x.

5.6 GammaDens

GammaDens(x, shape, scale) =⇒ y

GammaDens computes the ordinate of the gamma density with parameters
shape and scale at x.

5.7 BinomialPmf

BinomialPmf(x, N, pi) =⇒ p

BinomialPmf computes the probability mass of the binomial with parameters
N and pi at x.

5.8 PoissonPmf

PoissonPmf(x, lambda) =⇒ p

PoissonPmf computes the probability mass of the Poisson with parameter
lambda at x.

5.9 NegBinomialPmf

NegBinomialPmf(x, N, pi) =⇒ p

NegBinomialPmf computes the probability mass of the negative binomial
with parameters N and pi at x.

5.10 HypergeometricPmf

HypergeometricPmf(n, m, N, M) =⇒ p

HypergeometricPmf computes the probability mass of the hypergeometric
with parameters N and M at n and m.

10

6 statistics

This section contains some auxilary functions useful in statistical computing.

6.1 PowerSum

PowerSum(a, s) =⇒ x

PowerSum takes an array a and a number s and computes the sum of the
s− th powers of the elements of a.

6.2 InnerProduct

InnerProduct(a, b) =⇒ x

PowerSum computes the inner product of arrays a and b.

6.3 Independent t

Independent_t(a, b) =⇒ x

Independent t computes the two-sample t-statistic for arrays a and b.

6.4 Paired t

Paired_t(a, b) =⇒ x

Paired t computes the paired t-statistic for arrays a and b.

6.5 Correlation

Correlation(a, b) =⇒ x

Correlation computes the correlation of arrays a and b.

6.6 Factorial

Factorial(k) =⇒ n

Factorial computes the factorial of k.

11

6.7 BinomialCoefficient

BinomialCoefficient(k, n) =⇒ b

BinomialCoefficient computes the binomial coefficient C(n, k).

7 statplot

Additional plotting routines useful for statistics.

7.1 ScatterPlot

ScatterPlot(im, x, y, sl, sr, fcolor, bcolor, lcolor, connect)

ScatterPlot takes an image im created by the PHP/IP interface to gd, two
arrays x and y of coordinates, two spikes sl and sl a foreground, a background
color, and a flood color (0 for black, 1 for white, 2 for red, 3 for green, 4 for
blue), and a parameter indicating wether or not we connect successive points (0
for no, 1 for yes, 2 for spikes). The area between sl and sb is flooded using the
flood color.

7.2 Histogram

Histogram()

Histogram blabla

8 Examples

8.1 Normal Calculator

This is a relatively simple example of a “sticky form” implementing the normal
cdf calculator. The PHP source is in the code directory.

8.2 t-test

The t-test calculator uses Independent t, Paired t, StudentCdf, and Shuffle.
Again the PHP source is in the code directory.

12

References

[1] Barry W. Brown and James Lovato: RANLIB.C. Library of C Routines
for Random Number Generation. Department of Biomathematics, M.D.
Anderson Cancer Center, University of Texas, Houston.

[2] Barry W. Brown, James Lovato and Kathy Russell: DCDFLIB. Library of
C Routines for Cumulative Distribution Functions, Inverses, and Other Pa-
rameters. Department of Biomathematics, M.D. Anderson Cancer Center,
University of Texas, Houston.

13

