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  ARTIFICIAL NEURAL NETWORK MODEL WITH 
THE PARAMETER TUNING ASSISTED BY A 
DIFFERENTIAL EVOLUTION TECHNIQUE: 
THE STUDY OF THE HOLD UP OF THE 
SLURRY FLOW IN A PIPELINE 

This paper describes a robust hybrid artificial neural network (ANN) methodo-
logy which can offer a superior performance for the important process engine-
ering problems. The method incorporates a hybrid artificial neural network and 
differential evolution technique (ANN-DE) for the efficient tuning of ANN meta 
parameters. The algorithm has been applied for the prediction of the hold up of 
the solid liquid slurry flow. A comparison with selected correlations in the lite-
rature showed that the developed ANN correlation noticeably improved the 
prediction of hold up over a wide range of operating conditions, physical pro-
perties, and pipe diameters. 
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In the last decade, artificial neural networks 
(ANNs) have emerged as attractive tools for nonlinear 
process modeling especially in situations where the 
development of phenomenological or conventional re-
gression models becomes impractical or cumbersome. 
ANN is a computer modeling approach that learns from 
examples through iterations without requiring a prior 
knowledge of the relationships of process parameters 
and is, consequently, capable of adapting to a chang-
ing environment. It is also capable of dealing with un-
certainties, noisy data, and non-linear relationships [1]. 

ANN modeling has been known as “effortless 
computation” and readily used extensively due to their 
model-free approximation capabilities of complex de-
cision-making processes. The advantages of an ANN-
-based model are: (i) it can be constructed solely from 
the historic process input-output data (example set), 
(ii) detailed knowledge of the process phenomenology 
is unnecessary for the model development, (iii) a pro-
perly trained model possesses an excellent generali-
zation ability owing to which it can accurately predict 
outputs for a new input data set and (iv) even multiple 
input-multiple output (MIMO) nonlinear relationships 
can be approximated simultaneously and easily [1]. 
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Owing to their several attractive characteristics, ANNs 
have been widely used in chemical engineering appli-
cations such as steady state and dynamic process 
modeling, process identification, yield maximization, 
nonlinear control, and fault detection and diagnosis 
(see, e.g. [2-5]). 

The most widely utilized ANN paradigm is the 
multi-layered perceptron (MLP) that approximates non-
linear relationships existing between an input set of 
data (causal process variables) and the correspond-
ing output (dependent variables) data set. A three-lay-
er MLP with a single intermediate (hidden) layer hous-
ing a sufficiently large number of nodes (also termed 
neurons or processing elements) can approximate 
(map) any nonlinear computable function to an arbi-
trary degree of accuracy. It learns the approximation 
through a numerical procedure called “network train-
ing” wherein network parameters (weights) are adjust-
ted iteratively so that the network, in response to the 
input patterns in an example set, accurately produces 
the corresponding outputs. There are a number of al-
gorithms [1] — each possessing certain positive cha-
racteristics — to train an MLP network, e.g. the most 
popular error-back-propagation (EBP), Quickprop and 
Resilient Back-propagation (RPROP) [6]. The training 
of an ANN involves minimizing a nonlinear error func-
tion (e.g., root-mean-squared-error, RMSE) that may 
possess several local minima. Thus, it becomes ne-
cessary to employ a heuristic procedure involving mul-
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tiple training runs to obtain an optimal ANN model 
parameters (weights) of which correspond to the glo-
bal or the deepest local minimum of the error function. 
The building of a back-propagation network involved 
the specification of the number of hidden layers and 
the number of neurons in each hidden layer. In addi-
tion, several parameters including the learning rule, 
the transfer function, the learning coefficient ratio, the 
random number seed, the error minimization algo-
rithm, and the number of learning cycles had to be 
specified [2]. 

The existing software implementations of ANN 
regression usually treat these ANN meta-parameters 
as user-defined inputs. For a non-expert user it is a 
very difficult task to choose these parameters as he 
has no prior knowledge of these parameters for his 
data. In such a situation, users normally rely on a 
trial-and-error method. Such an approach, apart from 
consuming the enormous time, may not really obtain 
the best possible performance. 

This study is motivated by a growing popularity 
of ANN for the process modeling and regression pro-
blems. However, many ANN regression application 
studies are performed by “expert” users having good 
understanding of ANN methodology. Since the quality 
of ANN models depends on a proper setting of ANN 
architecture and ANN meta-parameters, the main is-
sue for practitioners trying to apply ANN regression is 
how to set these parameter values (to ensure good ge-
neralization performance) for a given data set. Non- 
-expert users face difficulty to find the optimum ANN 
architecture and are confused about how to choose 
the ANN meta parameters. Whereas the existing sour-
ces [1,7-9] on ANN regression give some recom-
mendations on the appropriate setting of ANN para-
meters, there is clearly no consensus and plenty of 
contradictory opinions. Also, there are a lot of ANN 
algorithms available in literature [1] with their respect-
tive advantages. Some algorithms require less com-
putation time and computer storage requirement; some 
others have a more accurate prediction capability. It is 
difficult for a non-expert user to choose the best (ro-
bust, accurate and fast) algorithm for his case. The 
present paper addresses this issue and develops a 
new hybrid procedure to find the optimum ANN archi-
tecture and tune the ANN parameters and thus relieve 
the “non-expert” users. 

Basically, the setting of the optimum ANN archi-
tecture and tuning of ANN meta parameters can be 
viewed mathematically as an optimization problem 
where test set errors (generalization error) have to be 
minimized. In the recent years, Differential Evolution 
(DEs) that are the members of the stochastic opti-

mization formalisms have been used with a great suc-
cess in solving problems involving very large search 
spaces. The DEs were originally developed as the 
genetic engineering models mimicking the population 
evolution in natural systems. Specifically, DE like a 
genetic algorithm (GA) enforces the “survival-of-the- 
fittest” and “genetic propagation of characteristics” prin-
ciples of the biological evolution for searching the so-
lution space of an optimization problem. DE has been 
used to design several complex digital filters [10] and 
to design fuzzy logic controllers [11]. DE can also be 
used for parameter estimations, e.g. Babu and Sastry 
[12] used DE for the estimation of the effective heat 
transfer parameters in trickle-bed reactors using ra-
dial temperature profile measurements. They conclu-
ded that DE takes less computational time to con-
verge compared to the existing techniques without 
compromising with the accuracy of the parameter es-
timates. 

In this paper, we present a hybrid ANN-DE ap-
proach, which not only relieves the user from choos-
ing these meta-parameters but also finds out the op-
timum values of these parameters to minimize the ge-
neralization error. The strategy (henceforth referred to 
as “ANN-DE”) uses an ANN as the nonlinear process 
modeling paradigm, and the DE for optimizing the 
meta–parameters of the ANN model so that an im-
proved prediction performance is realized. In the pre-
sent work, we illustrate the ANN-DE approach by ap-
plying it for predicting the hold up of the solid-liquid 
flow. 

ARTIFICIAL NEURAL NETWORK (ANN) MODELING 

Neural networks are computer algorithms inspi-
red by the way the information is processed in the 
nervous system. An ANN is a massively parallel-dis-
tributed processor that has a natural propensity for 
storing experimental knowledge and making it avai-
lable. An important difference between neural net-
works and standard Information Technology (IT) so-
lutions is their ability to learn (Baughman and Liu, 
1995). This learning property has yielded a new ge-
neration of algorithms. An ANN paradigm is compo-
sed of a large number of highly interconnected pro-
cessing elements, analogous to biological neurons 
that are tied together with weighted connections that 
are analogous to synapses. Learning in biological sys-
tems involves adjustments to the synaptic connec-
tions between the neurons. This is true for ANNs as 
well. Learning typically occurs through training or ex-
posure to a true set of input/output data where the 
training algorithm iteratively adjusts the connection 
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weights. These connection weights represent the know-
ledge necessary to solve a specific problem. 

Network architecture 

The MLP network used in the model develop-
ment is depicted in Fig. 1. As shown, the network 
usually consists of three layers of nodes. The layers 
described as input, hidden and output layers, com-
prise N, L and K number of processing nodes, res-
pectively. Each node in the input (hidden) layer is lin-
ked to all the nodes in the hidden (output) layer using 
weighted connections. In addition to the N and L num-
ber of input and hidden nodes, the MLP architecture 
also houses a bias node (with fixed output of +1) in its 
input and hidden layers; the bias nodes are also con-
nected to all the nodes in the subsequent layer and 
they provide additional adjustable parameters (weights) 
for the model fitting. The number of nodes (N) in the 
MLP network input layer is equal to the number of 
inputs in the process whereas the number of output 
nodes (K) equals the number of the process outputs. 
However, the number of hidden nodes (L) is an ad-
justable parameter magnitude of which is determined 
by issues, such as the desired approximation and 
generalization capabilities of the network model. 

Training 

Training a network consists of an iterative pro-
cess in which the network is given the desired inputs 
along with the correct outputs for those inputs. It then 
seeks to alter its weights to try and produce the cor-

rect output (within a reasonable error margin). If it suc-
ceeds, it has learned the training set and is ready to 
perform upon previously unseen data. If it fails to pro-
duce the correct output it re-reads the input and again 
tries to produce the correct output. The weights are 
slightly adjusted during each iteration through the train-
ing set (known as a training cycle) until the appro-
priate weights have been established. Depending upon 
the complexity of the task to be learned, many thou-
sands of training cycles may be needed for the net-
work to correctly identify the training set. Once the 
output is correct the weights can be used with the 
same network on unseen data to examine how well it 
performs. 

Back propagation algorithm (BPA) 

The back propagation algorithm modifies net-
work weights to minimize the mean squared error bet-
ween the desired and the actual outputs of the net-
work. Back propagation uses supervised learning in 
which the network is trained using data for which the 
input, as well as desired outputs, is known (Baugh-
man and Liu, 1995). Once trained, the network weights 
are frozen and can be used to compute the output 
values for the new input samples. 

The feed forward process involves presenting 
the input data to input layer neurons that pass the 
input values onto the first hidden layer. Each of the 
hidden layer nodes computes a weighted sum of its 
input and passes the sum through its activation func-
tion and presents the result to the output layer. The 

 

Fig 1. A schematic diagram of artificial neural network and architecture of the feed forward network with one hidden layer. 
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goal is to find a set of weights that minimize the mean 
squared error. A typical back propagation algorithm 
can be given as follows: 

The MLP network is a nonlinear function-map-
ping device that determines the K dimensional non-
linear function vector f, where f: X → Y. Here, X is a 
set of N-dimensional input vectors (X = {xp}; p = 1,2, 
…,P and x = [x1,x2,…,xn,…,xN]T), and Y is the set of 
corresponding K-dimensional output vectors (Y = {yp}; 
p = 1,2,…,P where y = [y1,y2,…,yk,…,yK]T). The precise 
form of f is determined by: (i) network topology, (ii) 
choice of the activation function used for computing 
outputs of the hidden and output nodes and (iii) net-
work weight matrices WH and WO (they refer to the 
weights between input and hidden nodes, and hidden 
and output nodes, respectively). Thus, the nonlinear 
mapping can be expressed as: 

y = y(x,W) (1) 

where, W = {WH,WO}. This equation suggests that y is 
a function of x, which is parametrized by W. It is now 
possible to write the closed-form expression of the in-
put-output relationship approximated by the three-lay-
ered MLP as: 
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where yk refers to the kth network output; 1
~f  and 2

~f  
denote the nonlinear activation functions; 0

lkw  refers 
to the weight between lth hidden node and kth output 
node; 0

nlw  is the weight between nth input and lth 
hidden node, and xn represents the nth network input. 

Note that in Eq. (2) the bias node is indexed as 
the zeroth node in the respective layer. In order that 
an MLP network approximates the nonlinear relation-
ship existing between the process inputs and outputs, 
it needs to be trained in a manner such that a pre-
specified error function is minimized. In essence, the 
MLP-training procedure aims at obtaining an optimal 
set (W) of the network weight matrices WH and WO, 
which minimize an error function. The commonly em-
ployed error function is the average absolute relative 
error (AARE) defined as: 
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The most widely used formalism for the AARE 
minimization is the error-back-propagation (EBP) al-
gorithm utilizing a gradient-descent technique known 
as the generalized delta rule (GDR) (Baughman and 
Liu, 1995). In the EBP methodology, the weight matrix 
set, W, is initially randomized. Thereafter, an input 

vector from the training set is applied to the network’s 
input nodes and the outputs of the hidden and output 
nodes are computed. The outputs are computed as 
follows. First the weighted-sum of all the node-spe-
cific inputs is evaluated, which is then transformed 
using a nonlinear activation function, such as the lo-
gistic sigmoid. The outputs from the output nodes are 
then compared with their target values and the differ-
rence is used to compute the AARE defined in Eq. 
(3). Upon AARE-computation, the weight matrices WH 
and WO are updated using the GDR framework. This 
procedure, when repeated with the remaining input 
patterns in the training set, completes one network 
training iteration. For the AARE minimization, several 
training iterations are usually necessary. 

Generalizability 

Neural learning is considered successful only if 
the system can perform well on test data on which the 
system has not been trained. This capability of a net-
work is called generalizability. Given a large network, 
it is possible that repeated training iterations success-
sively improve the performance of the network on the 
training data, e.g. by “memorizing” training samples, 
but the resulting network may perform poorly on the 
test data (unseen data). This phenomenon is called 
“overtraining”. The proposed solution is to constantly 
monitor the performance of the network on the test 
data. Hecht-Nielsen [13] proposes that the weight 
should be adjusted only on the basis of the training 
set, but the error should be monitored on the test set. 
Here we apply the same strategy: training continues 
as long as the error on the test set continues to de-
crease and is terminated if the error on the test set in-
creases. Training may thus be halted even if the net-
work performance on the training set continues to 
improve. 

Tuning parameters of ANN 

It is well known that ANN generalization perfor-
mance (estimation accuracy) depends on a good set-
ting of meta-parameters listed below. 

1. No of nodes in hidden layer: the number of 
nodes in hidden layer has a profound effect on ANN 
performance. Too few nodes could not learn the rela-
tionship in data properly and too large number of no-
des increases the network complexity and execution 
time. From literature, it is found that the optimal num-
ber of nodes in a hidden layer is normally calculated 
by the trial and error method. Such an approach, 
apart from consuming enormous time, may not really 
obtain the best possible performance. 

2. The activation functions in the input layer: 
each hidden node and output node applies the acti-
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vation function to its net input. Five types of the 
activation function, reported in literature and used in 
this work, are shown in Table 1 and Fig. 2. 

Table 1. Different activation function 

Case 
Name of activation 

function 
Equationa 

1 Log sigmoid function 
(logsig) ))exp(1(

1

neti
Yi

−+
=  

2 Tan hyperbolic 
function (tansig) 

Yi = tanh(neti) 

3 Linear function 
(purelin) 

Yi = (neti) 

4 Radial basis function 
(radbas) 

Yi = exp[-(neti)2] 

5 Triangular basis 
function (tribas) 

Yi = 1 - abs(neti) if 1)(1 ≤≤− neti ;
otherwise, Yi = 0 

aYi is the output from node I, neti is the input to the node i = ΣWiXi 

There is no consensus in literature on which 
type of the activation function is to be used and it de-
pends on the type of input training data and the case 
under investigation. For a new user it is difficult to 
choose the activation function for his data as he has 
no guidelines on what to choose. Multilayer networks 
typically use sigmoid transfer functions in the hidden 
layers. Sigmoid functions are characterized by the 
fact that their slope must approach zero, as the input 
gets larger. This causes a problem when using the 
steepest descent to train a multilayer network with 
sigmoid functions, since the gradient can have a very 
small magnitude; and therefore, it causes small chan-
ges in the weights and biases, even though the weights 
and biases are far from their optimal values. 

3. The activation function of the output layer: the 
same remarks of the input activation are applicable 
for it. 

4. The learning rate: the performance of the back 
propagation algorithm can be improved if we estimate 
the optimal learning rate. For a new user choosing the 
optimal learning rate is very difficult. The learning rate 
is multiplied with the negative of the gradient to deter-
mine the changes to the weights and biases. The lar-
ger the learning rate, the bigger the step. If the learn-
ing rate is made too large, the algorithm becomes 
unstable. If the learning rate is set too small, the algo-
rithm takes a long time to converge. 

Apart from the above 4 parameters, the ANN 
performance also depends upon the training algo-
rithm used for back propagation. Over the years, dif-
ferent researchers have developed many ANN train-
ing algorithms to reduce the execution time and com-
puter storage requirements. There are several diffe-
rent back propagation training algorithms published in 
literature. Fig. 3 shows some of those algorithms 
used in the present study. They have a variety of dif-
ferent computation and storage requirements, and no 
algorithm is best suited to all locations. The basic dif-
ferences between these algorithms are how they handle 
the weight up-gradation in Eqs. (1) and (2) to reduce 
error and how they modify the learning rate (η) to re-
duce the convergence time. 

Most of the available ANN software applications 
require the above four parameters from user. Other-
wise, in absence of user input, the software automati-
cally calculated the above parameters on trial and er-
ror basis. This needs a long execution time to explore 
all the combinations of the above parameters to really 

 

 

Fig. 2. Structure of different activation function. 
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find the best possible solutions. In the present paper 
we use a differential evolution technique to find out 
the optimum solution. 

DIFFERENTIAL EVOLUTION (DE): AT A GLANCE 

Having developed an ANN-based process mo-
del, a DE algorithm is used to optimize the N- dimen-
sional input space of the ANN model. Conventionally, 
various deterministic gradient-based methods are used 
for performing optimization of the phenomenological 
models. Most of these methods require that the objec-
tive function should simultaneously satisfy the smooth-
ness, continuity, and differentiability criteria. Although 
the nonlinear relationships approximated by an ANN 
model can be expressed in the form of generic clos-
ed-form expressions, the objective function(s) derived 
thereby cannot be guaranteed to satisfy the smooth-
ness criteria. Thus, the gradient-based methods can-
not be efficiently used for optimizing the input space 
of an ANN model and, therefore, it becomes neces-
sary to explore alternative optimization formalisms, 
which are lenient towards the form of the objective 
function. 

In the recent years, Differential Evolution (DE) 
that are members of the stochastic optimization for-
malisms have been used with a great success in sol-
ving problems involving very large search spaces. 
The DEs were originally developed as the genetic 
engineering models mimicking the population evo-
lution in natural systems. Specifically, DE like genetic 
algorithm (GA) enforce the “survival-of-the-fittest” and 
“genetic propagation of characteristics” principles of 
biological evolution for searching the solution space 
of an optimization problem. The principal features pos-
sessed by the DEs are: (i) they require only scalar 
values and not the second- and/or first-order deriva-
tives of the objective function, (ii) the capability to 
handle nonlinear and noisy objective functions, (iii) 
they perform global search and thus are more likely to 
arrive at or near the global optimum and (iv) DEs do 
not impose pre-conditions, such as smoothness, dif-

ferentiability and continuity, on the form of the object-
tive function. 

Differential Evolution (DE), an improved version 
of GA, is an exceptionally simple evolution strategy 
that is significantly faster and robust at numerical op-
timization and is more likely to find a function’s true 
global optimum. Unlike simple GA that uses a binary 
coding for representing problem parameters, DE uses 
real coding of floating point numbers. The mutation 
operator here is the addition instead of bit-wise flip-
ping used in GA. And DE uses non-uniform crossover 
and tournament selection operators to create new so-
lution strings. Among the DEs advantages are its sim-
ple structure, ease of use, speed and robustness. It 
can be used for optimizing functions with real variab-
les and many local optima. 

This paper demonstrates a successful applica-
tion of DE to the practical optimization problem. As 
already stated, DE in principle is similar to GA. So, as 
in GA, we use a population of points in our search for 
the optimum. The population size is denoted by NP. 
The dimension of each vector is denoted by D. The 
main operation is the NP number of competitions that 
are to be carried out to decide the next generation. 

To start with, we have a population of NP vec-
tors within the range of the objective function. We se-
lect one of these NP vectors as our target vector. We 
then randomly select two vectors from the population 
and find the difference between them (vector sub-
traction). This difference is multiplied by a factor F 
(specified at the start) and added to the third ran-
domly selected vector. The result is called the noisy 
random vector. Subsequently, the crossover is perfor-
med between the target vector and noisy random 
vector to produce the trial vector. Then, a competition 
between the trial vector and target vector is perfor-
med and the winner is replaced into the population. 
The same procedure is carried out NP times to decide 
the next generation of vectors. This sequence is con-
tinued till some convergence criterion is met. This sum-
marizes the basic procedure carried out in differential 

 

Fig. 3. Different ANN algorithms published in various literatures. 
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evolution. The details of this procedure are described 
below. 

Steps performed in DE 

Assume that the objective function is of D di-
mensions and that it has to be optimized. The weight-
ing constants F and the crossover constant CR are 
specified. 

Step 1. Generate NP random vectors as the ini-
tial population: generate (NP×D) random numbers 
and linearize the range between 0 and 1 to cover the 
entire range of the function. From these (NP×D) num-
bers, generate NP random vectors, each of dimen-
sion D, by mapping the random numbers over the 
range of the function. 

Step 2. Choose a target vector from the popu-
lation of size NP: first generate a random number be-
tween 0 and 1. From the value of the random number 
decide which population member is to be selected as 
the target vector (Xi) (a linear mapping rule can be 
used). 

Step 3. Choose two vectors from the population 
at random and find the weighted difference: Generate 
two random numbers. Decide which two population 
members are to be selected (Xa,Xb). Find the vector 
difference between the two vectors (Xa - Xb). Multiply 
this difference by F to obtain the weighted difference. 

Weighted difference = F (Xa - Xb) 

Step 4. Find the noisy random vector: generate 
a random number. Choose the third random vector 
from the population (Xc). Add this vector to the weight-
ed difference to obtain the noisy random vector (X’c). 

Step 5. Perform the crossover between Xi and 
X’c to find Xt, the trial vector: generate D random 
numbers. For each of the D dimensions, if the random 
number is greater than CR, copy from Xi into the trial 
vector; if the random number is less than CR, copy 
the value from X’c into the trial vector. 

Step 6. Calculate the cost of the trial vector and 
the target vector: for a minimization problem, calcu-
late the function value directly and this is the cost. For 
a maximization problem, transform the objective func-
tion f(x) using the rule F(x) = 1/[1 + f(x)] and calculate 
the value of the cost. Alternatively, directly calculate 
the value of f(x) and this yields the profit. In case the 
cost is calculated, the vector that yields the lower cost 
replaces the population member in the initial popula-
tion. In case the profit is calculated, the vector with 
the greater profit replaces the population member in 
the initial population. 

Steps 1–6 are continued till some stopping cri-
terion is met. This may be of two kinds. One may be 
some convergence criterion that states that the error 

in the minimum or maximum between two previous 
generations should be less than some specified va-
lue. The other may be an upper bound on the number 
of generations. The stopping criterion may be a com-
bination of the two. Either way, once the stopping 
criterion is met, the computations are terminated. 

Choosing DE key parameters NP, F, and CR is 
seldom difficult and some general guidelines are avai-
lable. Normally, NP ought to be about 5 to 10 times 
the number of parameters in a vector. As for F, it lies 
in the range 0.4 to 1.0. Initially, F = 0.5 can be tried 
and then F and/or NP is increased if the population 
converges prematurely. A good first choice for CR is 
0.1, but in general CR should be as large as possible 
(Price and Storn, 1997). 

DE has already been successfully applied for 
solving several complex problems and is now being 
identified as a potential source for the accurate and 
faster optimization. 

DE-BASED OPTIMIZATION OF ANN MODELS 

There are different measures by which ANN per-
formance is assessed, the validation and leave-one- 
-out error estimates being the most commonly used 
one. Here, we divide the total available data as train-
ing data (75% of data) and test data (25% data chosen 
randomly). While ANN algorithm was trained on the 
training data but the ANN performance is estimated 
on the test data. 

The statistical analysis of ANN prediction is based 
on the following performance criteria: 

1. The average absolute relative error (AARE) 
on the test data should be minimum: 
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ANN learning is considered successful only if 
the system can perform well on the test data on which 
the system has not been trained. The above five para-
meters of ANN are optimized by DE algorithm stated 
below. 
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The objective function and the optimal problem 
of ANN model of the present study are represented as: 

Minimize AARE(X) on test set: 

X ∈ {x1,x2,x3,x4,x5} 

where x1 = number of nodes in hidden layer {1,2, 
…,100}, x2 = input layer activation function {1,2,3,4,5} 
(correspond to five activation function in Table 1), 
x3 = output layer activation function {1,2,3,4,5} (cor-
respond to five activation function in Table 1), x4 = 
= learning rate {0 to 5}, x5 = training algorithm 
{1,2,…,8} (correspond to eight training algorithm as per 
Fig. 3). 

The objective function is minimization of ave-
rage absolute relative error (AARE) on the test set 
and X is a solution string representing a design con-
figuration of ANN architecture. The best topology of 
ANN architecture should have lowest AARE, the low-
est standard deviation of error and the highest corre-
lation coefficient. The design variable x1 takes any 
integer values for the number of nodes in the range of 
1 to 100, x2 represents the input layer activation func-

tion taking any values in the range of 1 to 5 corres-
ponding to five activation function in Table 1. X3 
represents the output layer activation function taking 
any values in the range of 1 to 5 corresponding to five 
activation function in table 1. X4 represents learning 
rates and can take any value between 0 to 5. The 
variable x5 takes eight values of the training algorithm 
which corresponds to eight ANN training algorithm in 
Fig. 3. 

The total number of design combinations with 
these variables is 100×5×5×5×8 = 100000. This means 
that if an exhaustive search is to be performed it will 
take at the maximum 1000000 function evaluations 
before arriving at the global minimum AARE for the 
test set ( assuming 5 trials for arriving at the optimum 
learning rate). So, the strategy which takes few func-
tion evaluations is the best one. Considering the mini-
mization of AARE as the objective function, a differ-
rential evolution technique is applied to find the opti-
mum design configuration of ANN model. The metho-
dology adopted is shown in Fig. 4. 

 

Fig. 4. Schematic for hybrid ANN-DE algorithm implementation. 
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A matlab program was made by combining the 
matlab neural network toolbox and a differential evo-
lution algorithm. This matlab program was used through-
out the project. 

CASE STUDY: PREDICTION OF HOLD UP IN 
SOLID-LIQUID SLURRY FLOW 

The hybrid ANN-DE algorithm has been applied 
for the prediction of the hold up of the solid-liquid 
slurry flow. The hold up case study was chosen as a 
phenomenological model that is not available for it and 
very few published correlations are available to pre-
dict the hold up in slurry pipelines. 

Background and importance of hold up 

The transportation of slurries through a pipeline 
is common in solid handling, mineral, hydrocarbon 
and petrochemical industries as the use of the pipe-
line ensures a dust free environment, demands subs-
tantially less space, makes the full automation pos-
sible and requires less operating staff. On the other 
hand, higher operational pressures and considerable 
demands are needed for the high quality of the pump-
ing equipment and control system. Due to cut throat 
global competition, process industries are now forced 
to reduce the power consumption of the slurry trans-
port to remain competitive in the world market. A slur-
ry pipeline design requires the pressure drop predict-
tion which in turn depends on the hold up. This case 
study develops a hybrid ANN-DE technique to mini-
mize the power consumption in the slurry transport in 
a long pipeline by predicting the hold up accurately. 

Hold up 

To understand the hold up phenomena it is very 
important to know the different flow regimes of the 
slurry flow. There are four main flow regimes in a ho-
rizontal pipeline flow (Fig. 5) [14]. These are: 

1. flow with a stationary bed; 
2. flow with a moving bed and saltation (with or 

without suspension); 
3. heterogeneous mixture with all solids in sus-

pension; 
4. Pseudo homogeneous or homogeneous mix-

tures with all solids in suspension. 
The tendency that the solid particles have to 

settle under the influence of gravity has a significant 
effect on the behavior of the slurry that is transported 
in a horizontal pipeline. The settling tendency leads to 
a significant gradation in the concentration of solids in 
the slurry. The concentration of solids is higher in the 
lower sections of the horizontal pipe. The extent of 
the accumulation of solids in the lower section de-
pends strongly on the velocity of the slurry in the pi-
peline. The higher the velocity, the higher the turbu-
lence level and the greater the ability of the carrier 
fluid to keep the particles in suspension. It is the up-
ward motion of eddy currents transverse to the main 
direction of the slurry flow that is responsible for main-
taining the particles in suspension. At very high turbu-
lence levels the suspension is almost homogeneous 
with very good dispersion of the solids while at low 
turbulence levels the particles settle towards the floor 
of the channel and can in fact remain in contact with 
the flow and are transported as a sliding bed under 
the influence of the pressure gradient in the fluid. Be-
tween these two extremes of behavior, two other 
more or less clearly defined flow regimes can be iden-
tified. When the turbulence level is not high to prevent 
any deposition of particles on the floor of the channel, 
the flow regime is described as being a heterogene-
ous suspension. As the velocity of the slurry is redu-
ced further, a distinct mode of transport known as sal-
tation develops. In the saltation regimes, there is a vi-
sible layer of particles on the floor of the channel and 
these are being continually picked up by turbulent ed-
dies and dropped to the floor again further down the 
pipeline. 

The solids therefore spend some of their time on 
the floor and the rest in the suspension in the flowing 

 

Fig. 5. Schematic of flow regimes in terms of velocity versus volumetric concentration [15]. 
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fluid. Under saltation conditions, the concentration of 
solids is strongly non-uniform. 

The previous section describes how different 
layers of solids move at different speeds from the bot-
tom, having coarser particles, to the finer particles at 
the top layer in the horizontal pipe. Hold-ups are due 
to the velocity slip of layers of particles of larger sizes, 
particularly in the moving bed flow pattern. 

Newitt [15] conducted speed measurements of a 
slurry mixture in a horizontal pipe. In the case of light 
plexiglas pipe, zircon or fine sand did not result in 
local slip; particles and water moved at the same 
speed. However, for coarse sand and gravel, they ob-
served asymmetric suspension and a sliding bed. They 
also observed that in the upper layers of the horizon-
tal pipe, the concentrations of larger particles were 
the same as for finer solids, but were marked by dif-
ferences in the magnitude of the discharge rate of the 
lower layers. 

Thus, in the solid-liquid multiphase flow, the se-
parate phases move at different average velocities 
and the in-situ concentrations are not same as the 
concentrations in which the phases are introduced or 
removed from the system. The variation of in-situ con-
centrations from the supply concentrations is referred 
to as hold up phenomenon. The hold up effect is 
measured by the hold up ratio, given by the ratio of 
the average in-situ concentration and mean discharge 
concentration [16]: 
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In the homogeneous suspension flow regime, it 
is common to assume that hold up is negligible and 
therefore in-situ and the input concentrations are con-
sidered identical. This is not practically correct but is a 
suitable approximation in many cases. Hold up has 
been clearly observed, especially in the flow regimes 
involving bed formation. For coarse particles, the dif-
ference in fluid and particle mean velocities are quite 
appreciable and this difference is referred to as the 
slip velocity. It is probable that a large contribution to 
the apparent slip velocity is due to the fluid flowing at 
high velocity through the portion of low solids concen-
tration in the pipe. Obviously the hold up plays an im-
portant role in the failure of many empirical correla-
tions in predicting a head loss in flow regimes involve-
ing bed formation. 

To facilitate the reduction of power consumption 
in the slurry transport, there is a need for a model that 
can predict the hold up and slurry pressure drop over 
a wide range of operating conditions, physical proper-
ties and particle size distributions. A successful pre-
dictive model with the sound understanding of the 
fundamentals of the particle laden turbulent flow (Fig. 
6), including all significant interactions, has not yet 
been fully developed till today as seen from various 
literatures [17-20]. Despite poor understanding of the 
solid liquid slurry flow, different researchers at differ-
rent point of time try to predict the hold up and came 
up with few correlations [16,19,20]. Table 7 listed two 
major correlations available in literature to predict the 
hold up. To test the suitability of different correlations 
we have collected 800 experimental hold up data 
from open literature spanning over the years 1973 to 
2002. The majority of data (for earlier works from 1973 

 

Fig. 6. Plot of transitional mixture velocity with pressure drop. 



S. K. LAHIRI and K. C. GHANTA: ARTIFICIAL NEURAL NETWORK MODEL… CI&CEQ 15 (2) 103−117 (2009) 

 

 113

to 1987 [21-24]) was listed and summarized in PhD 
thesis of Hsu [16]. Rest of the data was collected from 
Govier and Aziz [19] and Kaushal and Tomita [20]. 

For all of the above empirical equations, when 
exposed to these collected hold up data for different 
systems, it was found that they predicted the hold up 
above 25% error on an average (refer Table 7). This 
may be due to the fact that empirical equations deri-
ved for the coal water slurry flow may be not fitted 
well for the sand water slurry and vice versa. One of 
the motivations of the present work is to develop a 
general hold up correlation which will reduce this pre-
diction error. 

To facilitate the optimization of power consump-
tion in the slurry transport, the accurate prediction of 
hold up is very crucial. Once one can accurately pre-
dict the hold up, the slurry velocity can be maintained 
to reduce this hold up to minimize the pressure drop 
and power consumption. The industry needs quick and 
easily implement able solutions. The model derived 
from the first principle is no doubt the best solution. 
But in the scenario where the basic principles of the 
hold up model for accounting all the interactions for 
slurry flow are absent, the numerical model may be 
promising to give some quick, easy solutions for slur-
ry hold up prediction. 

This paper presents a systematic approach 
using robust hybrid ANN-DE techniques to build a 
hold up correlation from available experimental data. 
This correlation has been derived from a broad expe-
rimental data bank collected from the open literature 
(800 measurements covering a wide range of pipe di-
mensions, operating conditions and physical properties). 

Development of the artificial neural network based 
correlation 

The development of the ANN-based correlation 
was started with the collection of a large databank. 
The next step was to perform an artificial neural net-
work, and to validate it statistically. 

Collection of data 

As mentioned earlier, over the years resear-
chers have simply quantified the hold up of the slurry 
flow in a pipeline. In this work, about 800 experimen-
tal points have been collected from 7 sources of open 
literature spanning the years 1973-2002. The data 
were screened for incompleteness, redundancies and 
evident inaccuracies. This wide range of database in-
cludes experimental information from different physic-
cal systems to develop a unified correlation for the 
hold up. Table 2 indicates the wide range of the col-
lected databank for the hold up. 

Table 2. System and parameter studied [16,19,20-24]; slurry 
system: coal water, copper ore water, sand water, gypsum wa-
ter, glass propanol and gravel water 

Parameter Value 

Pipe diameter, m 
Particle diameter, μm 
Liquid density, kg/m3 

Solids’ density, kg/m3 

Liquid viscosity, mPa s 
Velocity, m/s 
Solids concentration (volume fraction) 
Max. packing conc. (volume fraction) 
Pressure drop, Pa/m 

0.04–0.495 
38.3–13000 
1000–1250 

1370 – 2844 
0.12–4 

1.05–4.81 
0.0372–0.333 

0.58–0.8 

99.9–4727.7 

Identification of input parameters 

After the extensive literature survey, all physical 
parameters that influence the hold up are put in a so-
called “wish-list”. Based on different combinations of 
inputs, a trial and error method was used to finalize 
the input set which gives a reasonable low prediction 
error (AARE) when exposed to artificial neural network. 

Based on the above analysis, the input variables 
such as pipe diameter, particle diameter, solids con-
centration, solid and liquid density and viscosity of 
flowing medium have been finalized to predict the 
hold up in a slurry pipeline. Table 3 shows some typi-
cal data used for artificial neural network. 

RESULTS AND DISCUSSION 

Prediction performance of hybrid ANN-DE model 

As the magnitude of inputs and outputs greatly 
differ from each other, they are normalized in -1 to +1 
scale. 75% of total dataset was chosen randomly for 
training and the rest 25% was selected for validation 
and testing. 

Nine parameters were identified as input (Table 
3) for ANN and the hold up is put as a target. These 
data were then exposed to a hybrid ANN-DE model 
described above. After optimization of five ANN para-
meters described above, the model output was sum-
marized in Table 4. Out of all the possibilities, Flet-
cher Reeves update algorithm with six nodes in a hid-
den layer and a log sigmoidal and linear function in 
the input and output layer has emerged as the best 
solution (with the lowest AARE and σ along with the 
highest correlation coefficient, R) for the present case. 
The low AARE (2.5%) may be considered as an ex-
cellent prediction performance considering the poor 
understanding of the slurry flow phenomena and a 
large databank for training comprising various sys-
tems. The parity plot of the experimental and pre-
dicted hold up is shown in Figure 7 as a goodness of 
the hybrid ANN-DE performance. 
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Table 3. Typical input and output data for ANN training 

Input parameters Output 

Pipe 
diameter 

cm 

Particle 
diameter 

μm 

Liquid 
density 
g/cm3 

Solids 
density 
g/cm3 

Liquid 
viscosity

cp 

Max. packing 
concentration 

(volume fraction)

Velocity
m/s 

Solids 
concentration 

(volume fraction) 

Pressure 
drop 
Pa/m 

Hold up ratio

5.26 38.3 1 2.33 1.00 0.69 1.11 0.1070 294.1 1.001 

5.26 38.3 1 2.33 1.00 0.69 3.01 0.1070 1651.3 1.000 

5.26 38.3 1 2.33 1.00 0.69 4.81 0.1070 3822.9 1.000 

5.26 38.3 1 2.33 1.00 0.69 1.33 0.3060 542.9 1.000 

5.26 38.3 1 2.33 1.00 0.69 3.12 0.3060 2352.6 1.000 

5.26 38.3 1 2.33 1.00 0.69 4.70 0.3060 4727.7 1.000 

20.85 190.0 1 1.37 1.14 0.78 2.59 0.3260 266.5 1.002 

20.85 190.0 1 1.37 1.14 0.78 2.34 0.3270 226.3 1.003 

20.85 190.0 1 1.37 1.14 0.78 2.01 0.3330 177.3 1.007 

20.85 190.0 1 1.37 1.14 0.78 1.78 0.3270 147.0 1.030 

20.85 190.0 1 1.37 1.14 0.78 1.59 0.3230 123.4 1.048 

20.85 190.0 1 1.37 1.14 0.78 1.37 0.3270 99.9 1.064 

5.15 165.0 1 2.65 1.00 0.58 1.66 0.0741 666.2 1.133 

5.15 165.0 1 2.65 1.00 0.58 3.78 0.0897 2449.2 1.026 

5.15 165.0 1 2.65 1.00 0.58 1.66 0.1694 901.3 1.104 

5.15 165.0 1 2.65 1.00 0.58 4.17 0.1886 3428.9 1.002 

5.15 165.0 1 2.65 1.00 0.58 1.66 0.2669 1136.4 1.049 

5.15 165.0 1 2.65 1.00 0.58 4.33 0.2860 4408.1 1.000 

26.30 165.0 1 2.65 1.00 0.58 2.90 0.0932 261.6 1.105 

26.30 165.0 1 2.65 1.00 0.58 3.50 0.0921 334.1 1.086 

26.30 165.0 1 2.65 1.00 0.58 2.90 0.1759 305.7 1.080 

26.30 165.0 1 2.65 1.00 0.58 3.50 0.1726 382.1 1.066 

26.30 165.0 1 2.65 1.00 0.58 2.90 0.2586 355.6 1.044 

26.30 165.0 1 2.65 1.00 0.58 3.50 0.2597 453.6 1.032 

26.30 165.0 1 2.65 1.00 0.58 2.90 0.3292 414.4 1.036 

26.30 165.0 1 2.65 1.00 0.58 3.50 0.3241 526.1 1.043 

49.50 165.0 1 2.65 1.00 0.58 3.16 0.0943 143.0 1.103 

49.50 165.0 1 2.65 1.00 0.58 3.76 0.0923 186.1 1.083 

49.50 165.0 1 2.65 1.00 0.58 3.07 0.1727 157.7 1.083 

49.50 165.0 1 2.65 1.00 0.58 3.76 0.1726 210.6 1.066 

49.50 165.0 1 2.65 1.00 0.58 3.16 0.2617 193.0 1.043 

49.50 165.0 1 2.65 1.00 0.58 3.76 0.2602 254.7 1.034 

15.85 190.0 1 2.65 1.30 0.58 2.50 0.1365 475.2 1.099 

15.85 190.0 1 2.65 1.30 0.58 2.50 0.2899 630.9 1.035 

15.85 190.0 1 2.65 0.12 0.58 3.00 0.1267 648.9 1.184 

15.85 190.0 1 2.65 0.12 0.58 2.90 0.2775 866.7 1.081 

5.07 520.0 1 2.65 1.00 0.7 1.90 0.0925 1175.6 1.310 

5.07 520.0 1 2.65 1.00 0.7 2.00 0.2057 1763.4 1.202 

4.00 580.0 1.25 2.27 4.00 0.65 2.88 0.1610 3926.0 1.056 

4.00 580.0 1.25 2.27 4.00 0.65 2.70 0.1412 3580.0 1.133 

4.00 580.0 1.25 2.27 4.00 0.65 2.01 0.1020 2217.0 1.177 

4.00 580.0 1.25 2.27 4.00 0.65 1.05 0.0612 845.0 1.307 

26.30 13000.0 1 2.65 1.00 0.8 3.20 0.0372 842.5 2.420 

26.30 13000.0 1 2.65 1.00 0.8 4.00 0.0440 989.5 2.045 

 
The weight, bias and final equations to calculate 

the hold up for any solid liquid slurry flow in pipelines 
are summarized in Table 5. After predicting the hold  

up accurately, the slurry velocity can be maintained to 
reduce this hold up to minimize the pressure drop and 
power consumption. 
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Table 4. Prediction error by hybrid ANN-DE based model 

Parameter 
Prediction performance by ANN 

Training Testing 

AARE 0.024 0.025 

Sigma 0.028 0.030 

R 
Optimum number of nodes 
Input activation function 
Output activation function 
Optimum learning rate 
Best training algorithm 

0.985 
6 

Log sigmoidal function  
Linear 
0.045 

Fletcher–Reeves update 

0.980 

 
Fig. 7. Experimental vs. predicted hold up for Marquard Levenburg algorithm. 

Table 5. Set of equations and fitting parameters for neural network correlations (i = 7, j = 8, k = 1) 

Wi,j 1 2 3 4 5 6 

1 0.5471 -0.1887 0.0812 -0.1319 -0.0427 0.2064 

2 -0.3640 -0.4401 0.1656 0.9680 0.2904 0.1854 

3 0.9943 2.3325 -2.6623 -4.2112 -1.6937 0.9411 

4 -0.1299 0.5851 0.2368 -0.6478 1.0155 -0.5753 

5 -0.7460 -0.7184 -0.5126 0.3785 -0.6674 -0.7037 

6 -1.1726 1.2875 -1.7379 1.1721 -1.6191 -0.1233 

7 2.7968 -0.3366 -2.5890 2.4545 3.2347 -3.9557 

8 1.8683 -0.3992 3.2420 0.1343 2.2240 -0.5547 

9 -1.4972 -2.5752 -2.3393 -2.4976 -1.7759 0.3350 

10 -3.0206 2.4845 -2.3495 -1.7999 3.1200 4.4585 

 
Wj,k 1 2 3 4 5 6 7 

1 -0.8403 -2.1097 2.8565 0.1720 1.0012 -0.1895 0.9710 
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Comparison of hybrid ANN-DE model with 
ANN model 

In a separate study, we exposed the same da-
taset to ANN algorithm only (without the DE algo-
rithm) and tried to optimize different parameters bas-
ed on the exhaustive search. We found out that it was 
not possible to reach the best solutions starting from 
arbitrary initial conditions. The optimum choice of the 

learning rate is especially very difficult to arrive at 
after starting with some discrete value. Many times 
the solutions got stuck up in sub optimal local minima. 
These experiments justified the use of a hybrid tech-
nique for ANN parameter tuning. The best prediction 
after the exhaustive search along with ANN parame-
ters was summarized in Table 6. From the Table, it is 
clear that even after 100000 runs, the ANN algorithm 
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is unable to locate the global minima and the time of 
execution is 4 h in Pentium 4 processor. On the other 
hand, the hybrid ANN-DE technique is able to locate 
the global minima with 2000 runs within 1 h. The pre-
diction accuracy is also much better. Moreover, it re-
lieves the non-expert users to choose the different pa-
rameters and find optimum ANN meta parameters 
with a good accuracy. 

Table 6. Comparison of the performance of ANN-DE hybrid mo-
del vs. ANN model 

Parameter 
Prediction performance 

by hybrid ANN-DE 
model 

Prediction 
performance by 
ANN model only 

AARE 0.025 0.030 

Sigma 0.030 0.035 

R 0.980 0.979 

Execution time, h 1 4 

Comparison with other published correlations 

All the 800 experimental data collected from 
open literature were also exposed to different formu-
las and correlations for the hold up available in open 
literature and AARE were calculated for each of them 
(Table 7). From Table 7, it is evident that the predict-
tion error of the hold up has reduced considerably in 
the present work. 

Table 7. Performance of different correlations to predict the hold up 

Sl no. Author AARE, % 

1 Gillies [18] 25.46 

2 Hsu [16] 22.01 

3 Present work 2.5 

CONCLUSION 

ANN regression methodology with a robust pa-
rameter tuning procedure has been described in this 
work. The method employs a hybrid ANN-DE ap-
proach for minimizing the generalization error. Supe-
rior prediction performances were obtained for the 
case study of the hold up and a comparison with se-
lected correlations in the literature showed that the 
developed ANN correlation noticeably improved the 
prediction of the hold up over a wide range of ope-
rating conditions, physical properties, and pipe dia-
meters. The proposed hybrid technique (ANN-DE) 
also relieves the non-expert users to choose the meta 
parameters of ANN algorithm for his case study and 
finds out the optimum value of these meta parameters 
on its own. The results indicate that the ANN based 
technique with the DE based parameter(s) tuning ap-
proach described in this work can yield an excellent 
generalization and can be advantageously employed 

for a large class of regression problems encountered 
in process engineering. 

Nomenclature 

AARE - Average absolute relative error  
R - Cross-correlation coefficient  
σ - Standard deviation of error 

O
lkw - Weight between lth hidden node and kth output 

node 
H
nlw - Weight between nth input and lth hidden node 

Xn - nth network input 
yk - kth network output 

1
~f , 2

~f - Nonlinear activation functions 
cins – In situ solid concentration 
cdis - Discharge solid concentration. 
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