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Abstract. Oceanic rocks in the Ankara Mélange along
the Izmir–Ankara–Erzincan suture zone (IAESZ) in north-
central Anatolia include locally coherent ophiolite com-
plexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic
plateau volcanic units with pelagic and reefal lime-
stones (96.6± 1.8 Ma), metamorphic rocks with ages
of 256.9± 8.0 Ma, 187.4± 3.7 Ma, 158.4± 4.2 Ma, and
83.5± 1.2 Ma indicating northern Tethys during the late Pa-
leozoic through Cretaceous, and subalkaline to alkaline vol-
canic and plutonic rocks of an island arc origin (∼ 67–
63 Ma). All but the arc rocks occur in a shale–graywacke
and/or serpentinite matrix, and are deformed by south-
vergent thrust faults and folds that developed in the middle
to late Eocene due to continental collisions in the region.
Ophiolitic volcanic rocks have mid-ocean ridge (MORB)
and island arc tholeiite (IAT) affinities showing moderate
to significant large ion lithophile elements (LILE) enrich-
ment and depletion in Nb, Hf, Ti, Y and Yb, which indi-
cate the influence of subduction-derived fluids in their melt
evolution. Seamount/oceanic plateau basalts show ocean is-
land basalt (OIB) affinities. The arc-related volcanic rocks,
lamprophyric dikes and syenodioritic plutons exhibit high-
K shoshonitic to medium- to high-K calc-alkaline composi-
tions with strong enrichment in LILE, rare earth elements
(REE) and Pb, and initialεNd values between+1.3 and
+1.7. Subalkaline arc volcanic units occur in the northern
part of the mélange, whereas the younger alkaline volcanic
rocks and intrusions (lamprophyre dikes and syenodioritic
plutons) in the southern part. The late Permian, Early to
Late Jurassic, and Late Cretaceous amphibole-epidote schist,
epidote-actinolite, epidote-chlorite and epidote-glaucophane
schists represent the metamorphic units formed in a sub-

duction channel in the northern Neotethys. The Middle
to Upper Triassic neritic limestones spatially associated
with the seamount volcanic rocks indicate that the north-
ern Neotethys was an open ocean with its MORB-type
oceanic lithosphere by the early Triassic (or earlier). The
latest Cretaceous–early Paleocene island arc volcanic, dike
and plutonic rocks with subalkaline to alkaline geochemi-
cal affinities represent intraoceanic magmatism that devel-
oped on and across the subduction–accretion complex above
a N-dipping, southward-rolling subducted lithospheric slab
within the northern Neotethys. The Ankara Mélange thus ex-
hibits the record of∼ 120–130 million years of oceanic mag-
matism in geological history of the northern Neotethys.

1 Introduction

In the circum-Mediterranean mountain chains belonging
to the Alpine-Himalayan system, subduction-related tec-
tonic mélanges during pre-collisional stages are described,
but they generally are overprinted by arc–continent and
continent–continent collisions (Festa et al., 2010 and refer-
ences therein). In northern Turkey, the 2600-km-long IAESZ
extends from west to east, connecting the Vardar suture in
the west and the Sevan-Akera suture zone in the east. The
ophiolitic mélanges and ophiolite slabs are observed along
this zone. At the central part of IAESZ, in the vicinity of
Ankara, Kırıkkale, Çankırıand Çorum, the Ankara Mélange,
first described by Bailey and McCallien (1950), is a well-
known subduction–accretion type mélange of the world.
They defined metamorphic, limestone and ophiolitic rock
blocks in era age from Paleozoic to Mesozoic in the mélange.
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Fig. 1. Simplified ophiolite map of Turkey showing the distribution of the suture zones and some of the major tectonic entities in Turkey
(from MTA, 2001). Pontide tectonic belt including the Sakarya Continent. The inset box refers to the map area in Fig. 2.

In previous works, three major tectonic units are identified
in the Ankara Mélange from the northwest to the south-
east. These are metamorphic block mélange, limestone block
mélange and ophiolitic mélange (Norman, 1984; Akyürek
et al., 1984; Koçyĭgit, 1991; Tüysüz et al., 1995; Tankut
et al., 1998). The metamorphic block mélange contains a
chaotic mixture of variably metamorphosed sedimentary,
basic–ultrabasic, and pyroclastic rocks in age from Permian
to Triassic while the limestone block mélange consists of
neritic to pelagic limestone blocks in age ranging from Per-
mian through Albian in a shale–graywacke matrix. The ophi-
olitic mélange includes several kilometer-size thrust sheets
of mantle peridotite, oceanic basic crustal rock, and blocks
of serpentinite, massive to pillow basaltic lava flows, radio-
larite, chert and neritic–pelagic limestone in pelitic and/or
serpentinite matrix (Norman, 1984; Akyürek et al., 1984;
Koçyiğit, 1991; Tüysüz et al., 1995). Tankut et al. (1998)
emphasized that the ophiolitic mélange unit of the Ankara
Mélange is represented by two major mappable coherent
units – ophiolitic fragments and volcanic seamounts. They
determined that the N-MORB character of the Neotethyan
oceanic crust along with its seamounts was overprinted by
a chemical signature related to subduction zone processes
and associated magmatism prior to their incorporation into
the subduction–accretion mélange. Göncüoğlu et al. (2001)
proved that the ocean floor generation in the Izmir–Ankara
oceanic branch started in early late Carnian from the radio-
larian fauna in the blocks of basalt–radiolarite association.
Tekin and Göncüŏglu (2007) have presented the radiolar-
ian fauna giving late Ladinian to early middle Carnian from
the ribbon cherts within the Bornova Flysch zone, western
part of IAESZ. Çelik et al. (2011) reported the amphibolites
in the ophiolitic mélange near Çankırı giving dates between
177.08± 0.96 Ma and 166.9± 1.1 Ma from amphibole ages.
In the eastern part of the investigated area, the isotropic gab-
bros of Refahiye (Erzincan) ophiolite with MORB-like to
island arc tholeiite (IAT) typical geochemical signatures of

SSZ oceanic crust give uranium-lead (U-Pb) zircon age of
183± 1 Ma (Uysal et al., 2013).

In this study, we mapped the ophiolitic rocks, the
megablocks and/or thrust sheets of seamount and metamor-
phic rocks in the Ankara Mélange, central part of IAESZ,
and the products of island arc magmatism. Also, we doc-
ument the internal structure of the Ankara Mélange along
the IAESZ in north-central Anatolia, and present new geo-
chemical and geochronological data from various magmatic
rock assemblages that make up distinct tectonic units in this
mélange. Our geochemical data and interpretations indicate
that all units within the Ankara Mélange are intraoceanic in
origin and appear to have formed during the seafloor spread-
ing, seamount volcanism and island arc magmatism stages of
the northern Neotethys. We also present new Pb, Sr, Nd iso-
topic compositional data and radiometric data belonging to
both magmatic arc rocks and basic rocks from the Ankara
Mélange. Thus, the Ankara Mélange displays a complete
record of∼ 120–130 m yr−1 of intraoceanic magmatism that
took place prior to the continental collisional events in Ana-
tolia in the Eocene.

2 Regional geology

The IAESZ forms the tectonic boundary between the Pon-
tide tectonic belt that includes the Sakarya Continent, which
represents the southern margin of Eurasia in the north, and
the Anatolide–Tauride block that includes the Central Ana-
tolian Crystalline Complex (CACC) in the south. The suture
zone is marked by ophiolite units, ophiolitic mélanges, and
seamount fragments. The Sakarya Continent in the Pontides
represents the southern margin of Eurasia (Figs. 1 and 2).
Carboniferous (330–310 Ma), high-grade metamorphic rocks
(gneiss, migmatite, amphibolite and marble), currently ex-
posed in the Kazdăg, Sö̆güt, Devrekani, and Pulur massifs
(from west to east), make up the continental basement of
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Fig. 2. Geological map of the Çankırı–Çorum area along the IAESZ in north-central Turkey (modified after Uğuz et al., 2002). NAF: north
Anatolian fault.

the Sakarya Continent (Duru et al., 2004; Okay et al., 2006;
Nzegge et al., 2006; Topuz et al., 2007). These metamorphic
basement rocks are intruded by the Carboniferous (295 Ma)
granitoids (Çŏgulu et al., 1965; Delaloye and Bingöl, 2000).
The Triassic Karakaya Complex, representing a subduction–
accretion complex, tectonically overlies the crystalline base-
ment units (Tekeli, 1981). It includes the Lower Karakaya,
which comprises metabasite, marble and phyllite rocks, and
the Upper Karakaya consisting mainly of unmetamorphosed
clastic and basic volcanic rocks with blocks of Carboniferous
and Permian neritic limestones (Bingöl et al., 1975; Okay et
al., 2002; Okay and Göncüoğlu, 2004).

The CACC consists mainly of Paleozoic–Mesozoic meta-
morphic massifs (Kırşehir, Akdağ, and Nĭgde massifs) and
Cretaceous–Paleocene granitoids (Fig. 2). The metamor-
phic massifs comprise metacarbonate, metapelite and am-
phibolite gneiss rocks that are the products of varied pres-

sure / temperature (P/T) conditions of metamorphism (Whit-
ney and Dilek, 1998). The Late Cretaceous granitoids and
the Eocene–upper Miocene volcanic rocks crosscut and over-
lie (respectively) the crystalline basement units of the CACC
(Güleç, 1994; Boztŭg, 2000; Kadıŏglu et al., 2003, 2006;
İlbeyli et al., 2004). The Late Cretaceous plutons are com-
posed of granite, monzonite and syenite supersuites with
ages of 77.7± 0.3 Ma, 70± 1.0 Ma and 69.8± 0.3 Ma, re-
spectively (Kadıŏglu et al., 2006). They display a chem-
ical progression from high-K calc-alkaline and high-K
shoshonitic to alkaline compositions, representing the devel-
opment of within-plate magmatism across the CACC with
time (Kadıŏglu et al., 2006).

www.solid-earth.net/5/77/2014/ Solid Earth, 5, 77–108, 2014
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Fig. 3a.Geological map of the Kalecik area, east of Ankara, showing the distribution of the ophiolitic, turbiditic and island arc rock units in
the Ankara Mélange in north-central Turkey.

3 Internal structure and tectonic units of the Ankara
Mélange

The most important component of the IAESZ in its cen-
tral segment in northern Anatolia is the Ankara Mélange,
extending from Ankara in the west to Çorum in the east
(Fig. 2). The Ankara Mélange is a well-known subduction–
accretion complex (Bailey and McCallien, 1950, 1953), con-
sisting of blocks of Paleozoic limestone and metamorphic
rocks, Jurassic–Cretaceous ophiolitic units, and Jurassic–
Cretaceous seamount volcanic assemblages in a shale–
graywacke and/or serpentinite matrix (Figs. 3a, b and 4; Nor-
man, 1984; Akyürek et al., 1984; Koçyiğit, 1991; Tüysüz et
al., 1995; Tankut et al., 1998; Dilek and Thy, 2006; Danger-
field et al., 2011).

Megablocks and imbricated thrust sheets of oceanic rocks
occur as mappable units enveloped in a pelitic (clayey, sandy-
silty), serpentinite or volcanic matrix within the Ankara
Mélange (Fig. 5). In some of these blocks or thrust sheets the
mafic–ultramafic rock units and the associated sedimentary
rocks make up coherent ophiolite complexes (e.g., the El-
divan ophiolite) (Figs. 6 and 7), representing the Neotethyan
oceanic lithosphere. Plagiogranite dikes intruding the ser-
pentinized peridotites near Eldivan (Çankırı) revealed U–
Pb zircon ages of 179 Ma (Dilek and Thy, 2006), indicat-
ing that part of the Neotethyan oceanic crust preserved in
the mélange is as old as the Early Jurassic. The radiolar-
ian fauna in the chert blocks have yielded late Carnian–mid-
Norian, and Middle Jurassic to Middle Cretaceous ages (Sar-
ifakioglu et al., 2011). However, the whole-rock40Ar/39Ar

Solid Earth, 5, 77–108, 2014 www.solid-earth.net/5/77/2014/



E. Sarifakioglu et al.: Evolution of the Ankara Mélange 81

Fig. 3b. The generalized tectonostratigraphic columnar section
showing the igneous pseudostratigraphy and internal structure of
the Eldivan ophiolite, the Ankara Mélange and the island arc mag-
matic rocks, their tectonic basement, and sedimentary cover.

dating of basaltic pillow lava from an ophiolitic thrust sheet
farther south in the Ankara Mélange has revealed an age
of 80.3± 7.6 Ma, indicating that Late Cretaceous oceanic
crustal rocks also exist within the mélange (Table 1).

The Cenomanian–Santonian flyschoidal sedimentary
rocks with pebblestone, sandstone, mudstone and clayey
limestone with interbedded chert layers unconformably
rest on the ophiolitic rocks (Figs. 3a and 4). However,
Kimmeridgian–Hauterivian flyschoidal sedimentary rocks
cover the ophiolitic pillow lavas farther south in the Ankara
Mélange (Sarifakioglu et al., unpublished data). The upper
Santonian–Maastrichtian, thin- to medium-layered clayey
to sandy limestone and volcanic detrital rocks rest uncon-
formably on these flyschoidal sedimentary and ophiolitic
rocks around Yapraklı (Çankırı) and Laloğlu (Çorum),
and represent the forearc basin strata (Figs. 6 and 7). The
ophiolitic, flyschoidal and forearc basin rocks are imbricated
along south-directed thrust faults (Sarifakioglu et al., 2011).

Blocks (kilometer sized) of alkaline volcanic and pyro-
clastic rocks, debris flow deposits, and coarse-grained reefal
limestones representing seamount and/or oceanic plateau
fragments also occur in the Ankara Mélange (Fig. 8). We
have obtained Middle–Upper Triassic and Cretaceous bios-
tratigraphic ages from the reefal limestones overlying the
seamount volcanic units, and40Ar/39Ar whole-rock ages of
96.6± 1.8 Ma from the alkaline pillow lavas that are strati-
graphically associated with the pink-colored pelagic lime-
stones (Sarifakioglu et al., 2011). Rojay et al. (2004) ob-
tained the late Barremian–early Aptian biostratigraphic ages
from the reefal limestones resting on the pillow lavas with
ocean island basalt (OIB) geochemical affinities. Blocks of
these neritic carbonates and the underlying alkaline pillow
lavas are also embedded in a turbiditic sequence consisting
of chert and volcanic rock clasts in a fine-grained sandstone
matrix. Volcanic debris flow deposits also occur within the
turbiditic sequence.

In addition to the blocks of ophiolitic, seamount and
oceanic plateau rocks, the Ankara Mélange also contains
blocks of metamorphic rocks, mainly epidote-glaucophane,
epidote-chlorite, and epidote-actinolite schists (Fig. 6). The
geochemical fingerprinting of these rocks suggests that their
protoliths were made of seamount volcanics and ophiolitic
basic rocks and related sediments. Detailed descriptions and
documentation of these metamorphic rocks will be presented
elsewhere. We interpret these metamorphic rocks to have
formed in an intraoceanic subduction zone. The40Ar/39Ar
dating of the epidote-glaucophane, epidote-chlorite and
epidote-actinolite schists revealed the cooling ages of
83.5± 1.2 Ma, 158.4± 4.2 Ma, and 187.4± 3.7 Ma, respec-
tively, whereas phyllite, actinolite schists and amphibole-
epidote schists yielded 119.8± 3.3 Ma, 177.4± 5.8 Ma,
256.9± 8.0 Ma, respectively (Tables 2 and 3).

Overlying the Ankara Mélange tectonically or uncon-
formably are volcanic and volcaniclastic rocks of an island
arc origin (Figs. 9 and 10). Nearly 20 km north of Kale-
cik, subalkaline to alkaline volcanic rocks (Dönmez et al.,
2009), intercalated with clayey and sandy limestone, cal-
careous sandstone, pebblestone, sandstone and shale, over-
lie the Ankara Mélange units and the flyschoidal sedimen-
tary rocks (Hakyemez et al., 1986; Rojay and Süzen, 1997).
The volcanic rocks are locally overlain by the Upper Cre-
taceous reefal limestones and sandstones containing rudist
fossils (Fig. 10a and b). Both pillowed and massive lava
flows with cooling joints occur (Figs. 9c and 10d); the mas-
sive lava flows contain centimeter-sized augite and leucite
phenocrysts. Mafic dikes locally crosscut the volcaniclastic
rocks of the arc sequence (Fig. 9d). The40Ar/39Ar whole-
rock dating of an arc-related pillow lava has yielded an age
of 67.8± 4.9 Ma (Table 4a).

Lamprophyre dikes and a syenodiorite pluton of an is-
land arc origin are intruded into the ophiolitic and seamount
rocks and the mélange matrix along the Kızılırmak River
near and east of Kalecik (Fig. 11). The brownish-grey
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Fig. 4.Geological map of the northern part of the Kalecik area (modified after Hakyemez et al., 1986).

colored lamprophyric dikes continue along-strike for 200
to 1000 m, and are displaced by local thrust faults. The
40Ar/39Ar whole-rock dating and the40Ar–39Ar biotite age
from the lamprophyric dikes revealed ages of 67.2± 1.2 Ma
and 63.6± 1.2 Ma, respectively (Table 4b and c).

We have also obtained an40Ar/39Ar biotite age of
75.9± 1.3 Ma from a syenodioritic pluton, approximately
1 km in diameter, indicating that the arc magmatism started
as early as the Campanian and that it progressed with alka-
line volcanism and dike emplacement throughout the Maas-
trichtian and early Paleocene (Table 4d). Andesitic lavas and
volcaniclastic and pyroclastic rocks are intercalated with the
Upper Cretaceous–lower Paleocene turbiditic rocks in the re-
gion. These turbiditic and flyschoidal rocks contain volcanic
pebbles in the lower stratigraphic levels and grade upwards
into sandstone and shale. The Paleocene rocks (Dizilitaslar
Formation) are conformably overlain by the lower to middle

Eocene sandstone, shale, clayey limestone and marl units that
collectively make up the Mahmutlar Formation (Akyürek et
al., 1984). All these Paleogene sedimentary rocks were de-
formed by south-vergent thrust faults and folds, indicating
that they underwent N–S directed contractional deformation
in the middle to late Eocene.

4 Petrography

In this section we describe the primary and secondary min-
eral assemblages and the textures of the main litholog-
ical types associated with the Neotethyan oceanic crust,
seamount volcanic units, and island arc assemblages (e.g.,
volcanic rocks, lamprophyre dikes and syenodiorite plutons)
that we investigated in the study area.

Solid Earth, 5, 77–108, 2014 www.solid-earth.net/5/77/2014/
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Table 1. Whole-rock40Ar/39Ar age data for a basaltic rock sample (YK-11) from the youngest SSZ ophiolite in the Ankara Mélange,
Turkey.

Sample YK-11 (whole rock): basalt,J = 0.004426±0.000051
T ◦C 40Ar cc(STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 20.81× 10−9 29.6 0.1 0.0418 0.0029 0.479 0.011 0.0620 0.0049 1.72 40.5 88.0 11.0
600 9.45× 10−9 22.5 0.1 0.0364 0.0037 0.584 0.011 0.0438 0.0033 2.10 64.8 74.4 7.6
700 12.18× 10−9 79.8 0.6 0.0733 0.0129 0.627 0.036 0.2306 0.0075 2.26 73.6 90.6 16.5
800 9.18× 10−9 184.7 9.4 0.1457 0.0530 0.751 0.145 0.5966 0.0347 2.70 76.5 65.7 38.7
1000 9.00× 10−9 58.5 0.7 0.0714 0.0153 1.630 0.046 0.1440 0.0125 5.87 85.3 123.2 27.4
1130 8.12× 10−9 32.0 0.2 0.0332 0.0070 1.131 0.019 0.0811 0.0055 4.07 100.0 62.9 12.6
Age spectrum: the sample yielded age spectrum with well-behaved plateau, characterized by 73.6 % of39Ar, age value of 80.3± 7.6 Ma.
On the inverse isochron plot, points form linear regression characterized by age value of 75.8±7.4 and (40Ar/36Ar)0 = 300±8.
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Fig. 5. View of the Ankara Mélange and the Karakaya Complex
(Sakarya Continent). Key to lettering: AOM= Ankara Mélange,
β = basalt, KC= Karakaya Complex, ms= mudstone, pg= pla-
giogranite, sp= serpentinized peridotites.

4.1 Basalt

The seamount-related alkaline basaltic rocks consist mainly
of plagioclase (55–60 %) and clinopyroxene (approximately
40 %), displaying an intergranular texture (Fig. 12a). Some of
the basalt samples contain olivine phenocrysts (about 15 %),

ranging in size from 0.2 mm to 2 mm. Clinopyroxene grains
(titanaugites) are partially altered into chlorite, olivine to ser-
pentine and iddingsite, and plagioclase to sericite and chlo-
rite. Apatite and opaque minerals (Fe-Ti oxides) occur as ac-
cessory minerals. Amygdals are filled with secondary car-
bonate and chlorite minerals.

Tholeiitic basaltic rocks of the Neotethyan oceanic crust
comprise microlitic plagioclase and clinopyroxene crystals
in a fine-grained texture (Fig. 12b). They are partially
or completely spilitized, with plagioclase replaced by al-
bite, sericite, chlorite and epidote (saussuritization), whereas
clinopyroxene replaced by actinolite (uralitization) and chlo-
rite. The glassy material in the matrix is transformed into
chlorite. Leucoxene and opaque minerals are present as ac-
cessories. Vesicles in the basaltic lavas are filled by sec-
ondary carbonate and chlorite.

The island arc basaltic rocks consist mainly of plagioclase
(about 55 %) and clinopyroxene (45 %) crystals in the por-
phyritic textures with chloritized glassy and microcrystalline
groundmass. Clinopyroxene (diopside) grains range in size
from 0.2 mm to 2 mm in length (Fig. 12c and d), and locally
display twinning. The plagioclases are partly altered to chlo-
rite and carbonate minerals. Accessory minerals are made
of fine crystalline Fe-Ti oxides. Basaltic andesites contain
plagioclase, clinopyroxene, minor olivine and biotite within
porphyritic and glomeroporphyritic textures (Fig. 12e). Fer-
romagnesian minerals are locally 1.5 cm-long. Fe-Ti oxide
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Table 2a.Whole-rock40Ar/39Ar age data for an epidote-glaucophane schist rock from a metamorphic block in the Ankara Mélange, Turkey.

Sample YK-6: epidote-glaucophane schist,J = 0.004420±0.000051
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 35.70× 10−9 48.05 0.1 0.0463 0.003 1.5385 0.0082 0.1299 0.002 5.54 6.4 75.4 4.6
600 32.83× 10−9 18.75 0.02 0.0257 0.0005 1.221 0.0031 0.0274 0.0012 4.4 21.5 83.1 2.9
700 38.21× 10−9 17.65 0.01 0.0255 0.0007 0.5962 0.0014 0.0229 0.0006 2.15 40.1 84.7 1.7
800 40.74× 10−9 19.89 0.02 0.0236 0.001 1.3996 0.0017 0.027 0.0008 5.04 57.8 92.7 2.1
900 21.78× 10−9 19.32 0.03 0.0277 0.0008 10.821 0.0144 0.0325 0.0012 38.96 67.5 75.8 2.9
1000 16.15× 10−9 14.81 0.03 0.0253 0.0016 12.5237 0.0228 0.0168 0.0017 45.09 76.9 76.8 4
1130 35.36× 10−9 13.2 0.01 0.0244 0.0004 9.9743 0.0097 0.0145 0.0009 35.91 100 69.8 2.2
Age spectrum: the sample yielded age spectrum with two three-steps plateaus, characterized accordingly by 40.1 % of39Ar, age value of
83.5±1.7 Ma and 42.2 % of39Ar, age value of 72.2±2.2 Ma. On the inverse isochron plot, points form two linear regressions characterized
by age value of 87.8±2.5 and (40Ar/36Ar)0 = 285±5, respectively. The presence of two age plateaus evidence to isotope heterogeneity of YK 6.
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T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 35.70 x 10-9 48.05 0.1 0.0463 0.003 1.5385 0.0082 0.1299 0.002 5.54 6.4 75.4 4.6 

600 32.83 x 10-9 18.75 0.02 0.0257 0.0005 1.221 0.0031 0.0274 0.0012 4.4 21.5 83.1 2.9 

700 38.21 x 10-9 17.65 0.01 0.0255 0.0007 0.5962 0.0014 0.0229 0.0006 2.15 40.1 84.7 1.7 

800 40.74 x 10-9 19.89 0.02 0.0236 0.001 1.3996 0.0017 0.027 0.0008 5.04 57.8 92.7 2.1 

900 21.78 x 10-9 19.32 0.03 0.0277 0.0008 10.821 0.0144 0.0325 0.0012 38.96 67.5 75.8 2.9 

1000 16.15 x 10-9 14.81 0.03 0.0253 0.0016 12.5237 0.0228 0.0168 0.0017 45.09 76.9 76.8 4 

1130 35.36 x 10-9 13.2 0.01 0.0244 0.0004 9.9743 0.0097 0.0145 0.0009 35.91 100 69.8 2.2 

Age Spectrum: The sample yielded age spectrum with two 3 steps plateaus, characterized accordingly by 40.1% of 39Ar, Age value of 83.5 ± 
1.7 Ma and 42.2 % of 39Ar, Age value of 72.2 ± 2.2 Ma. On the Inverse Isochrone Plot points form two linear regression characterized by age 

value of 87.8 ± 2.5 and (40Ar/36Ar)0 = 285 ± 5. The presence of two age plateaus evidence to isotope heterogeneity of YK 6. 

 

Table 2b.Whole-rock40Ar/39Ar age data for an epidote-chlorite schist rock from a metamorphic block in the Ankara Mélange, Turkey.

Sample YK-7: epidote-chlorite schist,J = 0.004121±0.000044
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 33.53× 10−9 57.6 0.2 0.051 0.0027 4.4795 0.0134 0.1488 0.0027 16.13 16.1 98.8 5.7
600 31.15× 10−9 38.4 0.1 0.0304 0.0018 3.5391 0.0081 0.0525 0.0019 12.74 38.7 162.5 4.2
700 42.75× 10−9 44.5 0.1 0.0355 0.0018 5.4612 0.0142 0.0761 0.0023 19.66 65.3 156.8 4.9
800 19.66× 10−9 31 0.1 0.0271 0.0028 1.8875 0.0089 0.0323 0.0027 6.8 82.9 153.1 5.8
900 12.92× 10−9 50.5 0.4 0.0507 0.0062 3.436 0.0365 0.1139 0.0087 12.37 90 121 17.9
1000 6.24× 10−9 60.7 1 0.0518 0.0203 11.168 0.1806 0.1419 0.0162 40.2 92.8 134.7 32.7
1130 22.81× 10−9 88.4 0.5 0.0743 0.0064 56.2813 0.3389 0.2421 0.0062 202.61 100 121.4 12.4
Age spectrum: the sample yielded age spectrum with three-steps plateau, characterized by 66.7 % of39Ar, age value of 158.4±4.2 Ma. On the
inverse isochron plot, points form linear regression characterized by age value of 166.9±5.9 and (40Ar/36Ar)0 = 272±8.
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Table 2b. Whole-rock 40Ar/39Ar age data for an epidote-chlorite schist rock from a metamorphic block in the Ankara Mélange, Turkey. 960 

Sample: YK-7: epidote-chlorite schist, J=0.004121±0.000044    

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 33.53 x 10-9 57.6 0.2 0.051 0.0027 4.4795 0.0134 0.1488 0.0027 16.13 16.1 98.8 5.7 

600 31.15 x 10-9 38.4 0.1 0.0304 0.0018 3.5391 0.0081 0.0525 0.0019 12.74 38.7 162.5 4.2 

700 42.75 x 10-9 44.5 0.1 0.0355 0.0018 5.4612 0.0142 0.0761 0.0023 19.66 65.3 156.8 4.9 

800 19.66 x 10-9 31 0.1 0.0271 0.0028 1.8875 0.0089 0.0323 0.0027 6.8 82.9 153.1 5.8 

900 12.92 x 10-9 50.5 0.4 0.0507 0.0062 3.436 0.0365 0.1139 0.0087 12.37 90 121 17.9 

1000 6.24 x 10-9 60.7 1 0.0518 0.0203 11.168 0.1806 0.1419 0.0162 40.2 92.8 134.7 32.7 

1130 22.81 x 10-9 88.4 0.5 0.0743 0.0064 56.2813 0.3389 0.2421 0.0062 202.61 100 121.4 12.4 

Age Spectrum: The sample yielded age spectrum with 3 steps plateau, characterized by 66.7% of 39Ar, Age value of 158.4 ± 4.2 Ma. On the 
Inverse Isochrone Plot points form linear regression characterized by age value of 166.9 ± 5.9 and (40Ar/36Ar)0 = 272 ± 8. 
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Table 2c.Whole-rock40Ar/39Ar age data for an epidote-actinolite schist rock from a metamorphic block in the Ankara Mélange, Turkey.

Sample YK-1: epidote-actinolite schist,J = 0.004428±0.000051
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 28.20× 10−9 195.111 1.614 0.1185 0.0072 8.7082 0.0754 0.5725 0.0095 31.35 4.1 196.1 17.7
600 35.22× 10−9 109.08 0.736 0.0809 0.0035 12.8319 0.0878 0.2835 0.007 46.19 13.2 191.6 14.5
700 46.14× 10−9 52.526 0.083 0.0345 0.0021 5.2249 0.0101 0.0848 0.0016 18.81 38.1 207 4
800 22.10× 10−9 43.305 0.132 0.032 0.0025 3.3143 0.0128 0.0652 0.003 11.93 52.5 182.5 6.8
900 28.97× 10−9 56.607 0.158 0.0384 0.0023 16.1294 0.0458 0.1083 0.0028 58.07 67 186.6 6.3
1000 30.80× 10−9 41.871 0.112 0.0328 0.0018 21.4028 0.0573 0.0558 0.0027 77.05 87.8 192.1 6
1130 30.24× 10−9 69.813 0.261 0.0523 0.0025 34.5698 0.1292 0.1345 0.0038 124.45 100 225.6 8.2
Age spectrum: the sample yielded age spectrum with three-steps plateau, characterized by 50 % of39Ar, age value of 187.4±3.7 Ma. On the
inverse isochron plot, one can observe linear regression characterized by age value of 166.1±12.3.
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Table 2c. Whole-rock 40Ar/39Ar age data for an epidote-actinolite schist rock from a metamorphic block in the Ankara Mélange, Turkey. 962 

Sample: YK-1: epidote-actinolite schist, J=0.004428±0.000051 

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 28.20 x 10-9 195.111 1.614 0.1185 0.0072 8.7082 0.0754 0.5725 0.0095 31.35 4.1 196.1 17.7 

600 35.22 x 10-9 109.08 0.736 0.0809 0.0035 12.8319 0.0878 0.2835 0.007 46.19 13.2 191.6 14.5 

700 46.14 x 10-9 52.526 0.083 0.0345 0.0021 5.2249 0.0101 0.0848 0.0016 18.81 38.1 207 4 

800 22.10 x 10-9 43.305 0.132 0.032 0.0025 3.3143 0.0128 0.0652 0.003 11.93 52.5 182.5 6.8 

900 28.97 x 10-9 56.607 0.158 0.0384 0.0023 16.1294 0.0458 0.1083 0.0028 58.07 67 186.6 6.3 

1000 30.80 x 10-9 41.871 0.112 0.0328 0.0018 21.4028 0.0573 0.0558 0.0027 77.05 87.8 192.1 6 

1130 30.24 x 10-9 69.813 0.261 0.0523 0.0025 34.5698 0.1292 0.1345 0.0038 124.45 100 225.6 8.2 

Age Spectrum: The sample yielded age spectrum with 3 steps plateau, characterized by 50% of 39Ar, Age value of 187.4 ± 3.7 Ma. On the 
Inverse Isochrone Plot one can observe linear regression characterized by age value of 166.1 ± 12.3. 
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Fig. 6. Simplified geological map of the Yapraklı–Çankırı area, showing the distribution of the∼ 180 Ma Neotethyan ophiolitic units, ophi-
olitic mélange and island arc rocks.
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Fig. 7.Geological map of the Laloglu (Çorum) area, showing the Neotethyan Eldivan ophiolite and the island arc rock units.

Table 3.Whole-rock K/Ar age data from metamorphic rock blocks in the Ankara Mélange, Turkey.

Sample no. Rock %K 40Ar/36Ar 40Arrad, nlg−1 % 40Arair error Age, Ma

CE.981 Phyllite 1.68 883.2 7.932 33.5 4.5 119.8±3.3
CE.228 Actinolite schist 0.36 347.8 2.558 85.1 0.6 177.4±5.8
CE.976 Amphibole-epidote schist 0.22 405.9 2.316 72.9 1.3 256.9±8.0

minerals are accessories. The groundmass consists of pla-
gioclase microlites, and chloritized and/or devitrified glass.
Basaltic lavas include vesicles filled by secondary carbonate,
chlorite, and zeolite.

4.2 Basanite

The ultrabasic volcanic rocks consist of clinopyroxene, pla-
gioclase and minor olivine occurring as euhedral and sub-
hedral grains in a hyalomicrolitic, porphyritic texture. Pla-
gioclase forms microlites or microphenocrysts, and is com-
monly altered to clay minerals. Clinopyroxene is mainly
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Table 4a.Whole-rock40Ar/39Ar age data for an island arc basaltic rock (sample no. YK-4) in the Ankara Mélange, Turkey.

Sample YK-4 (whole rock): basalt,J = 0.004353±0.000050
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 44.60× 10−9 168.69 0.97 0.1269 0.007 7.5932 0.0458 0.539 0.0065 27.34 6.9 72.4 12.8
600 14.83× 10−9 32.9 0.17 0.0413 0.0033 10.1845 0.0528 0.0795 0.0051 36.66 18.7 72.4 11.4
700 13.82× 10−9 26.82 0.1 0.0333 0.0048 4.2753 0.017 0.0621 0.0036 15.39 32.2 65.2 8
800 24.70× 10−9 26.65 0.08 0.0331 0.0022 1.935 0.0067 0.0635 0.0029 6.97 56.5 60.8 6.6
900 18.59× 10−9 18.29 0.04 0.021 0.0013 1.3887 0.0051 0.0299 0.0022 5 83.1 72.8 4.9
1000 7.83× 10−9 31.49 0.17 0.0381 0.0053 1.4804 0.0211 0.0611 0.0055 5.33 89.7 102.6 12.1
1130 11.68× 10−9 29.58 0.12 0.0279 0.0033 3.5167 0.016 0.054 0.0041 12.66 100 104 9.2
Age spectrum: the sample yielded age spectrum with three-steps plateau, characterized by 64.4 % of39Ar, age value of 67.8±4.9 Ma. On the
inverse isochron plot, points form linear regression characterized by age value of 68.1±4.4 and (40Ar/36Ar)0 = 296.1±3.5.

54 

 

Table 4a. Whole-rock 40Ar/39Ar age data for an island-arc basaltic rock (Sample No. YK-4) in the Ankara Mélange, Turkey. 967 

Sample: YK-4 (whole rock): Basalt, J=0.004353±0.000050 

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 44.60 x 10-9 168.69 0.97 0.1269 0.007 7.5932 0.0458 0.539 0.0065 27.34 6.9 72.4 12.8 

600 14.83 x 10-9 32.9 0.17 0.0413 0.0033 10.1845 0.0528 0.0795 0.0051 36.66 18.7 72.4 11.4 

700 13.82 x 10-9 26.82 0.1 0.0333 0.0048 4.2753 0.017 0.0621 0.0036 15.39 32.2 65.2 8 

800 24.70 x 10-9 26.65 0.08 0.0331 0.0022 1.935 0.0067 0.0635 0.0029 6.97 56.5 60.8 6.6 

900 18.59 x 10-9 18.29 0.04 0.021 0.0013 1.3887 0.0051 0.0299 0.0022 5 83.1 72.8 4.9 

1000 7.83 x 10-9 31.49 0.17 0.0381 0.0053 1.4804 0.0211 0.0611 0.0055 5.33 89.7 102.6 12.1 

1130 11.68 x 10-9 29.58 0.12 0.0279 0.0033 3.5167 0.016 0.054 0.0041 12.66 100 104 9.2 

Age Spectrum: The sample yielded age spectrum with 3 steps plateau, characterized by 64.4% of 39Ar, Age value of 67.8 ± 4.9 Ma. On the 
Inverse Isochrone Plot points form linear regression characterized by age value of 68.1 ± 4.4 and (40Ar/36Ar)0 = 296.1 ± 3.5. 
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Table 4b.40Ar/39Ar biotite age data for a lamprophyre dike (Sample No. YK-19) from the island arc unit in the Ankara Mélange, Turkey.

Sample YK-19 (biotite): lamprophyre,J = 0.007143±0.000133
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 3.9× 10−9 92.802 0.0393 0.015480 0.004274 0.61970 0.05770 0.028643 0.001314 22.30 0.6 10.50 5.0
625 7.7× 10−9 83.584 0.0116 0.015744 0.001217 0.31455 0.01480 0.015871 0.001284 1.13 2.0 46.7 4.80
750 37.9× 10−9 69.914 0.0044 0.013301 0.000117 0.05874 0.00360 0.008418 0.000210 0.21 10.40 57.1 1.30
850 45.7× 10−9 64.526 0.0017 0.013498 0.000076 0.04725 0.00102 0.004948 0.000237 0.17 21.20 63.2 1.40
950 51.6× 10−9 65.506 0.0033 0.013393 0.000248 0.08738 0.00394 0.004805 0.000142 0.31 33.3 64.9 1.30
1050 112.6× 10−9 62.462 0.0035 0.013738 0.000060 0.07037 0.00091 0.004305 0.000083 0.25 61.0 63.0 1.20
1130 156.9× 10−9 61.778 0.0020 0.013593 0.000030 0.07395 0.00067 0.003986 0.000051 0.27 100.0 63.3 1.20
Age spectrum: the sample yielded age spectrum with four-steps plateau characterized by 89.6 % of39Ar, age value of 63.6±1.2 Ma. On the
inverse isochron plot, plateau points form linear trend, characterized by age value of 57.5±4.1 Ma, MSWD= 1.5.
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Table 4b. 40Ar/39Ar biotite age data for a lamprophyre dike (Sample No. YK-19) from the island-arc unit in the Ankara Mélange, Turkey. 969 

Sample: YK-19 (biotite): Lamprophyre, J=0.007143 ± 0.000133 

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 3.9 x 10-9 92.802 0.0393 0.015480 0.004274 0.61970 0.05770 0.028643 0.001314 22.30 0.6 10.50 5.0 

625 7.7 x 10-9 83.584 0.0116 0.015744 0.001217 0.31455 0.01480 0.015871 0.001284 1.13 2.0 46.7 4.80 

750 37.9 x 10-9 69.914 0.0044 0.013301 0.000117 0.05874 0.00360 0.008418 0.000210 0.21 10.40 57.1 1.30 

850 45.7 x 10-9 64.526 0.0017 0.013498 0.000076 0.04725 0.00102 0.004948 0.000237 0.17 21.20 63.2 1.40 

950 51.6 x 10-9 65.506 0.0033 0.013393 0.000248 0.08738 0.00394 0.004805 0.000142 0.31 33.3 64.9 1.30 

1050 112.6 x 10-9 62.462 0.0035 0.013738 0.000060 0.07037 0.00091 0.004305 0.000083 0.25 61.0 63.0 1.20 

1130 156.9 x 10-9 61.778 0.0020 0.013593 0.000030 0.07395 0.00067 0.003986 0.000051 0.27 100.0 63.3 1.20 

Age Spectrum: The sample yielded age spectrum with four steps Plateau characterized by 89.6% of 39Ar, Age value of 63.6 ± 1.2 Ma. On the 
Inverse Isochrone Plot plateau points form linear trend, characterized by age value of 57.5 ± 4.1 Ma, MSWD = 1.5 
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Table 4c. Whole-rock40Ar/39Ar age data for a lamprophyre dike (sample no. YK-20) from the island arc unit in the Ankara Mélange,
Turkey.

Sample YK-20 (whole rock): lamprophyre,J = 0.007258±0.000137
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

550 114.7× 10−9 48.724 0.0048 0.014063 0.000040 0.28860 0.00023 0.004714 0.000071 1.04 16.20 45.0 0.9
625 78.3× 10−9 71.168 0.0064 0.014657 0.000137 128.516 0.00083 0.006715 0.000045 4.63 23.70 66.0 1.20
700 73.1× 10−9 63.482 0.0041 0.014148 0.000062 115.422 0.00187 0.003713 0.000142 4.16 31.70 67.5 1.40
775 85.2× 10−9 62.554 0.0032 0.013660 0.000068 0.51460 0.00080 0.003174 0.000096 1.85 41.0 68.3 1.30
850 68.1× 10−9 59.659 0.0028 0.013744 0.000112 0.19993 0.00023 0.004958 0.000090 0.72 48.9 58.0 1.10
950 54.6× 10−9 58.431 0.0024 0.014092 0.000162 0.29838 0.00075 0.004897 0.000152 1.07 55.3 56.7 1.20
1050 210.7× 10−9 50.825 0.0020 0.013886 0.000024 0.61827 0.00022 0.005145 0.000055 2.23 83.8 46.0 0.9
1130 121.2× 10−9 51.432 0.0013 0.014028 0.000073 144.061 0.00118 0.005433 0.000056 5.19 100.0 45.7 0.9
Age spectrum: the sample yielded complex age spectrum with noticeable hump after low temperature step containing three-steps intermediate
plateau followed by high temperature two-steps intermediate plateau. Intermediate plateaus are characterized accordingly by 24.8 % of39Ar, age
value of 67.2±1.2 Ma and 44.7 % of39Ar, age value of 45.9±0.9 Ma.
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Table 4c. Whole-rock 40Ar/39Ar age data for a lamprophyre dike (Sample No. YK-20) from the island-arc unit in the Ankara Mélange, Turkey. 972 

Sample: YK-20 (whole rock): Lamprophyre, J=0.007258 ± 0.000137 

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

550 114.7 x 10-9 48.724 0.0048 0.014063 0.000040 0.28860 0.00023 0.004714 0.000071 1.04 16.20 45.0 0.9 

625 78.3 x 10-9 71.168 0.0064 0.014657 0.000137 128.516 0.00083 0.006715 0.000045 4.63 23.70 66.0 1.20 

700 73.1 x 10-9 63.482 0.0041 0.014148 0.000062 115.422 0.00187 0.003713 0.000142 4.16 31.70 67.5 1.40 

775 85.2 x 10-9 62.554 0.0032 0.013660 0.000068 0.51460 0.00080 0.003174 0.000096 1.85 41.0 68.3 1.30 

850 68.1 x 10-9 59.659 0.0028 0.013744 0.000112 0.19993 0.00023 0.004958 0.000090 0.72 48.9 58.0 1.10 

950 54.6 x 10-9 58.431 0.0024 0.014092 0.000162 0.29838 0.00075 0.004897 0.000152 1.07 55.3 56.7 1.20 

1050 210.7 x 10-9 50.825 0.0020 0.013886 0.000024 0.61827 0.00022 0.005145 0.000055 2.23 83.8 46.0 0.9 

1130 121.2 x 10-9 51.432 0.0013 0.014028 0.000073 144.061 0.00118 0.005433 0.000056 5.19 100.0 45.7 0.9 

Age Spectrum: The sample yielded complex age spectrum with noticeable hump after low temperature step containing three steps intermediate 
plateau followed by high temperature two steps intermediate Plateau. Intermediate plateaus are characterized accordingly by 24.8% of 

39
Ar, Age value 

of 67.2 ± 1.2 Ma and 44.7% of 
39

Ar, Age value of 45.9 ± 0.9 Ma. 

 

Table 4d.40Ar/39Ar biotite age data for a syenodiorite plutonic rock (sample no. YK-438) from the island arc unit in the Ankara Mélange,
Turkey.

Sample YK-438 (biotite): syenodiorite,J = 0.004553±0.000054
T ◦C 40Ar cc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K

∑39Ar Age (Ma) ±1σ

(%) ±1σ

500 10.2× 10−9 61.084 0.0090 0.01989 0.00107 0.7800 0.0026 0.01226 0.00144 2.81 9.0 20.30 3.46
600 14.4× 10−9 82.535 0.0136 0.01627 0.00075 15.022 0.0075 0.00992 0.00159 5.41 18.4 43.20 3.79
700 17.3× 10−9 121.050 0.0098 0.00960 0.00130 21.617 0.0064 0.01488 0.00069 7.78 26.1 62.22 1.78
800 25.9× 10−9 128.671 0.0263 0.01743 0.00152 0.9964 0.0146 0.00617 0.00198 3.59 37.0 88.51 4.68
900 39.8× 10−9 126.457 0.0087 0.01645 0.00019 0.8052 0.0025 0.00343 0.00027 2.9 53.9 93.11 1.25
1000 48.8× 10−9 126.405 0.0147 0.01668 0.00067 0.4739 0.0055 0.00371 0.00111 1.71 74.8 92.41 2.77
1130 52.0× 10−9 111.241 0.0102 0.01900 0.00068 21.389 0.0021 0.00361 0.00065 7.7 100.0 80.77 1.78
Age spectrum: the sample yielded age spectrum with three-steps plateau characterized by 48.6 % of39Ar, age value of 92.7±1.2 Ma. On the
inverse isochron plot, points do not form linear regression.
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Table 4d. 40Ar/39Ar biotite age data for a syeno-diorite plutonic rock (Sample No. YK-438) from the island-arc unit in the Ankara Mélange, Turkey. 973 

Sample: YK-438 (biotite): Syeno-diorite, J=0.004553 ± 0.000054 

T°C 40Arcc (STP) 40Ar/39Ar ±1σ 38Ar/39Ar ±1σ 37Ar/39Ar ±1σ 36Ar/39Ar ±1σ Ca/K 
∑39Ar 
(%) 

Age (Ma) 
±1σ ±1σ 

500 10.2 x 10-9 61.084 0.0090 0.01989 0.00107 0.7800 0.0026 0.01226 0.00144 2.81 9.0 20.30 3.46 

600 14.4 x 10-9 82.535 0.0136 0.01627 0.00075 15.022 0.0075 0.00992 0.00159 5.41 18.4 43.20 3.79 

700 17.3 x 10-9 121.050 0.0098 0.00960 0.00130 21.617 0.0064 0.01488 0.00069 7.78 26.1 62.22 1.78 

800 25.9 x 10-9 128.671 0.0263 0.01743 0.00152 0.9964 0.0146 0.00617 0.00198 3.59 37.0 88.51 4.68 

900 39.8 x 10-9 126.457 0.0087 0.01645 0.00019 0.8052 0.0025 0.00343 0.00027 2.9 53.9 93.11 1.25 

1000 48.8 x 10-9 126.405 0.0147 0.01668 0.00067 0.4739 0.0055 0.00371 0.00111 1.71 74.8 92.41 2.77 

1130 52.0 x 10-9 111.241 0.0102 0.01900 0.00068 21.389 0.0021 0.00361 0.00065 7.7 100.0 80.77 1.78 

Age Spectrum: The sample yielded age spectrum with three steps plateau characterized by 48.6 % of 39Ar, Age value of 92.7 ± 1.2 Ma. On the 
Inverse Isochrone Plot points don’t form linear regression. 
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Fig. 8. (a) Neritic limestone covering the seamount volcanic-
volcaniclastic rocks in the Ankara Mélange.(b) Seamount pillow
lavas in the Ankara Mélange. NL= neritic limestone.

augite, and displays zoning and twinning. Olivine is sur-
rounded by a groundmass that is made entirely of serpen-
tine minerals. Small analcime crystals occur as a replace-
ment of leucite between plagioclase and clinopyroxene crys-
tals within the groundmass.

4.3 Tephrite

This fine-grained basaltic rock comprises clinopyroxene
(augite), leucite, rare olivine and black mica (phlogopite)
crystals within a hyalomicrolitic or porphyritic texture. Pla-
gioclase microlites, ultra fine-grained clinopyroxene, phlo-
gopite, leucite and glassy material form the groundmass,
whereas clinopyroxene and leucite occur as euhedral to
subhedral microphenocrysts. The leucite contents in the
leucite tephrite rock are up to∼ 25 % (Fig. 12d). Small, an-
hedral or subhedral opaque minerals are found as accessory
minerals.

Some tephrites display characteristic features of phono-
litic tephrite with feldspar crystals (plagioclase> K-feldspar)
and mafic minerals (phlogopite, hornblende) in a microcrys-
talline porphyritic texture. Plagioclase is partially altered to
sericite and chlorite, whereas sanidine is partially altered
to sericite and clay minerals. Leucite occurs as subhedral
grains, is mostly altered to sanidine microlites, zeolite and
clay minerals, and is surrounded by small phlogopite flakes.
Euhedral apatite crystals and anhedral opaque minerals (Fe-
Ti oxides) are present as accessories.

4.4 Lamprophyre

These alkaline dike rocks consist mainly of small prismatic
clinopyroxene (diopside), phlogopite, minor hornblende, and
leucite pseudomorphs embedded in a groundmass composed
of feldspars (orthoclase> plagioclase), analcime crystals and
glassy material (Fig. 12f and g). Both plagioclase and ortho-
clase are partly or completely altered to carbonate, clay and
zeolite minerals; phlogopite is replaced by chlorite along its
rims. Small, interstitial apatite laths are enclosed in the ortho-
clase crystals. In addition, euhedral prismatic apatite crystals
up to 0.7 mm in length are also present in the groundmass.
Opaque minerals occur as accessory crystals.

Lamprophyres are classified according to their mineralog-
ical composition (Rock, 1987). The lamprophyre dikes in the
investigated area were considered as they are minette by their
defined mineralogical composition.

4.5 Syenodiorite

The main minerals in this intrusive rock include feldspar
(plagioclase≥ orthoclase), clinopyroxene, hornblende and
biotite (Fig. 12h). Subhedral to anhedral plagioclase crys-
tals form a granular texture; some large orthoclase crystals
(∼ 2.5 cm) locally give the rock a porphyry texture. Plagio-
clase grains (An28–An48) are locally surrounded by ortho-
clase. K–feldspar grains display a perthitic texture. Subhe-
dral to anhedral clinopyroxene (diopside), hornblende and
biotite crystals show partial chloritization. Subhedral horn-
blende crystals have opacite rims around them as a result of
metasomatism during their reaction with melt (Plechov et al.,
2008). The subhedral prismatic apatite and anhedral granular
opaque minerals are present as accessories.

5 Analytical methods

We analyzed fifty-one (51) rock samples for major, trace, and
rare-earth element chemistry at ACME Analytical Laborato-
ries Ltd. (Canada). Inductively coupled plasma optical emis-
sion spectrometry has been used for major-element analysis,
and inductively coupled plasma mass spectrometry has been
used for the analysis of both trace elements and rare earth el-
ements (REE). The results of these analyses are presented in
Tables 5, 6, 7, 8 and 9.
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Fig. 9. (a)Limestone–volcanic sandstone intercalation in the island arc sequence.(b) A mafic dike (island arc origin) crosscutting the pelagic
limestone rocks.(c) Alkaline basaltic rocks with columnar joint structures.(d) Arc volcaniclastic rocks intruded by basaltic to andesitic dikes.

Fig. 10. (a)Upper Cretaceous reefal limestone with rudist fossils unconformably overlying the arc volcanic rocks.(b) Reefal limestone
underlain by volcanic sandstone.(c) Alkaline pillow lavas overlain by volcanic sandstone-pebblestone.(d) Alkaline pillow lavas with radial
joint structures. All rocks in(a) through(d) represent the island arc units, as MAV = magmatic arc volcanics; MAVC = magmatic arc
volcaniclastites.
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Table 5.Major, trace element and REE data for a select group of volcanic and dike rocks from the Neotethyan ophiolitic units in the Ankara
Mélange (first nine samples from Tankut et al., 1998).

Sample BM1 BM3 BM5 95GK4 95GK6 95GKE4 96GKE51 96GKE57 96GKE58B CE.07 CE.08
no.
Rock basalt basaltic basalt dolerite dolerite dolerite dolerite dolerite dolerite basalt basalt
type andesite

Oxide, wt %
SiO2 50.53 51.34 50.47 51.08 49.45 51.53 48.93 50.45 47.08 55.50 54.94
TiO2 1.12 0.26 1.13 1.66 1.68 1.82 0.67 1.74 1.55 0.82 0.81
Al2O3 15.96 17.16 15.93 13.45 13.52 12.53 11.00 12.97 11.18 18.43 18.66
Fe2O3 10.01 6.80 9.99 11.91 13.23 12.69 9.07 12.31 12.21 8.12 8.47
MnO 0.14 0.12 0.14 0.23 0.22 0.23 0.18 0.23 0.22 0.60 0.63
MgO 6.32 8.17 5.89 7.04 6.41 6.67 10.54 6.30 8.67 3.54 3.81
CaO 4.88 11.07 5.33 9.18 10.91 7.93 15.30 8.66 13.11 1.27 1.17
Na2O 3.31 2.30 3.34 3.79 2.89 3.89 0.43 3.41 1.22 7.62 7.50
K2O 0.28 0.28 0.29 0.34 0.36 0.39 0.07 0.37 0.12 0.17 0.19
P2O5 0.13 0.07 0.12 0.17 0.21 0.22 0.06 0.21 0.23 0.09 0.10
LOI 6.81 2.05 6.94 1.2 1.04 0.85 3.12 1.69 3.06 3.70 3.50

Total 99.49 99.62 99.57 100.05 99.92 99.75 99.35 98.34 98.65 99.85 99.84

Trace, ppm
Cr 53.00 166.00 36.00 70.00 84.00 130.00 624.00 134.00 103.00 27.40 20.55
Ni 10.00 101.00 8.00 21.00 25.00 48.00 91.00 59.00 37.00 13.20 11.70
Co 27.90 26.10
Sc 35 38 32 41 35 45
Rb 11.00 9.00 12.00 4.00 4.00 5.00 2.00 7.00 0.00 2.10 2.40
Ba 242.00 270.00 60.00 503.00 188.00 22.00 185.00 52.00 130.00 110.00
Sr 441.00 100.00 420.00 174.00 510.00 402.00 24.00 208.00 71.00 472.80 494.80
Cs 0.64 24.94 3.91 0.40 0.50
Th 0.47 0.60 0.44 0.00 1.00 3.00 2.00 4.00 3.00 0.60 0.60
U 0.21 0.26 0.29 0.14 0.28 0.28 0.30 0.30
Nb 3.00 2.60 4.00 3.70 5.70 4.00 1.30 3.40 4.80 1.30 1.40
Ta 0.00 0.00 0.00 0.24 0.29 0.25 0.15 0.18 0.29 0.10 0.10
Zr 96.00 21.00 98.00 101.00 126.00 119.00 39.00 91.00 113.00 37.90 43.60
Hf 1.70 0.30 2.20 2.77 3.10 3.14 1.16 2.64 3.13 1.40 1.40
Y 25.00 7.00 25.00 37.00 40.00 41.00 18.00 39.00 39.00 14.50 15.50
V 288 363 383 378 273 462 337 202.00 190.00
Pb 1 1 3 5.9 5.3

REE, ppm
La 3.90 2.90 4.30 7.42 9.25 9.17 3.03 8.19 9.66 4.00 2.90
Ce 10.70 3.70 8.20 16.67 20.29 19.96 6.18 17.66 21.46 8.30 6.90
Pr 2.31 2.81 2.73 0.83 2.43 2.90 1.31 1.05
Nd 5.70 2.20 6.90 11.64 13.66 13.37 4.44 12.10 14.01 5.90 5.90
Sm 2.90 0.50 3.00 4.07 4.64 4.71 1.67 4.41 4.75 1.71 1.53
Eu 0.90 0.18 1.00 1.43 1.59 1.29 0.70 1.42 1.52 0.49 0.46
Gd 5.14 5.71 5.73 2.31 5.85 6.04 2.08 2.00
Tb 0.60 0.15 0.70 1.02 1.13 1.13 0.46 1.10 1.13 0.41 0.40
Dy 6.78 7.42 7.42 3.12 7.39 7.34 2.54 2.59
Ho 1.47 1.60 1.63 0.70 1.62 1.58 0.57 0.61
Er 4.30 4.59 4.78 2.03 4.58 4.39 1.77 1.84
Tm 0.61 0.65 0.68 0.30 0.67 0.65 0.29 0.31
Yb 3.10 0.96 2.90 3.71 3.94 4.18 1.89 4.09 3.90 1.80 1.90
Lu 0.49 0.16 0.50 0.58 0.63 0.65 0.30 0.63 0.61 0.28 0.32

40Ar/39Ar age dating was done at the Geochronology and
Isotopic Geochemistry Laboratory of Activation Laborato-
ries Ltd. (Actlabs), Ancaster, Ontario, Canada. We obtained
40Ar/39Ar ages of biotite separates from two samples of the
arc rocks. In addition, whole rock fractions of six rock sam-
ples were analyzed. The samples wrapped in Al foil were
loaded into an evacuated and sealed quartz vial with K and
Ca salts and packets of LP-6 biotite interspersed with the

samples to be used as a flux monitor. The samples were ir-
radiated in the nuclear reactor for 48 h. The flux monitors
were placed between every two samples, thereby allowing
precise determination of the flux gradients within the tube.
After the flux monitors were run, J values (n×10−10 cc STP)
were then calculated for each sample, using the measured
flux gradient. LP-6 biotite has an assumed age of 128.1 Ma.
The neutron gradient did not exceeded 0.5 % on sample size.
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Fig. 11.Lamprophyric dikes crosscutting various lithological units
in the Ankara Mélange.

The Ar isotope composition was measured in a Micromass
5400 static mass spectrometer. 1200◦C blank of40Ar did00
not exceedn × 10−10 cc STP.

Argon was extracted from the sample system as degassing
at ∼ 100◦C during two days in a double vacuum furnace at
1700◦C. Argon concentration was determined using isotope
dilution with 38Ar spike, which was introduced into the sam-
ple system prior to each extraction. The obtained pure Ar was
introduced into a customer-built magnetic sector mass spec-
trometer (Reinolds type) with a Varian CH5 magnet. Mea-
surement of Ar isotope ratios was corrected for mass dis-
crimination and atmospheric argon, assuming that36Ar was
only from the air. After each analysis, the extraction tem-
perature was elevated to 1800◦C for a few minutes. Then,
Aliquot of each sample was weighted into a graphite crucible
with lithium metaborate/tetraborate flux and fussed using an
LECO induction furnace for K analysis. The fusion bead was
dissolved with acid. Standards, blanks and sample were ana-
lyzed using a Thermo Jarrell Ash Enviro II ICP Spectrome-
ter.

The Sr, Nd, and Pb isotopic compositions of six samples
from the alkaline lamprophyric dikes were determined at the
ACT Analytical Laboratories Ltd., Canada (Table 9). The
Sr isotope analysis was performed with a Triton multicol-
lector mass spectrometer in static mode. The weighted aver-
age of 15 SRM 987 Sr standard runs yielded 0.710258± 9
(2 s) for 87Sr/86Sr. Sm and Nd were separated by extrac-
tion chromatography on hexyl di-ethyl hydrogen phosphate-
covered Teflon powder. The analysis was performed using
a Triton multicollector mass spectrometer in static mode.
143Nd/144Nd ratios were relative to the value of 0.511860
for the La Jolla standard. Pb was separated using the ion ex-
change technique with Bio-Rad 1× 8. Pb isotope composi-
tions were analyzed using a Finnigan MAT261 multicollector
mass spectrometer. The measured Pb isotope ratios were cor-
rected for mass fractionation calculated from replicate mea-
surements of Pb isotope composition in the National Bu-
reau of Standards–SRM 982. External reproducibility of lead
isotope ratios –206Pb/204Pb = 0.1 %, 207Pb/204Pb = 0.1 %,
208Pb/204Pb = 0.2 % – on the 2σ level has been demonstrated
through multiple analyses of US Geological Survey basalt
standard BCR-1.

6 Geochemistry

We report below on the geochemistry of the representative
samples of oceanic basaltic rocks in the Ankara Mélange, as
well as the lamprophyric dikes, a syenodioritic pluton, and
alkaline lavas that crosscut and/or cover the blocks of vol-
canic and volcaniclastic rocks, serpentinite, radiolarian chert,
and shale in the Ankara Mélange.
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Fig. 12.Photomicrographs of(a) a seamount alkaline basalt sample.(b) Doleritic dike rock of the 180 Ma Neotethyan oceanic crust.(c) Island
arc alkaline basalt sample in cross-polarized light.(d) Island arc alkaline basalt sample in plane-polarized light.(e) Island arc basaltic andesite
dike, showing a glomeroporphyritic texture.(f) Lamprophyric dike rock with small prismatic cpx (diopside) in a feldspar+ phlogopite
groundmass (plane-polarized light).(g) Lamprophyric dike rock with small prismatic cpx (diopside and phlogopite).(h) Syenodioritic pluton
rock with plagioclase (altered to clay minerals) and biotite+ hornblende and minor cpx (cross-polarized light).
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Fig. 13.Geochemical classification of ophiolitic and seamount volcanic rocks.(a) Total alkali vs. SiO2 diagram (Le Bas et al., 1986).(b)
AFM diagram (Irvine and Baragar, 1971).(c) Ti–Zr–Y discrimination diagram (Pearce and Cann, 1973).(d) Ti–V diagram (Shervais, 1982).
(e)N-MORB normalized multielement diagrams of the most representative samples (normalization values from Sun and McDonough, 1989).
Key to lettering: A= andesite, B= basalt, BA= basaltic andesite, BS= basanite, BTA= basaltic trachyandesite, D= dacite, F= foidite,
PC= picrobasalt, PH= phonolite, PHTP= phonotephrite, TPPH= tephriphonolite, R= rhyolite, T= trachyte, TA= trachyandesite, TB
= trachybasalt, TD= trachydacite, TP= tephrite. IB= alkali–subalkali subdivision from Irvine and Baragar (1971).

6.1 Oceanic basaltic rocks

The Na2O+K2O values of basaltic blocks of the Neotethyan
oceanic crust range from 1 wt % to 4.28 wt %, with the K2O
values much lower than those of Na2O (Table 5). The Na en-
hancement of two samples (CE.07, CE.08) may be a result of
spilitization caused by low-grade hydrothermal ocean floor
metamorphism. Similarly, the total alkali values from the
seamount volcanic blocks vary between 4.72 and 8.14 wt %,
with the Na2O values (3.78–6.79 wt %) much higher than
that of oceanic crust (Table 6).

On the total alkali vs. silica (TAS) diagram the tholeiitic–
calcalkaline volcanic and isolated dike rocks from the
Tethyan oceanic crust fall in the field of basalt and
basaltic andesite, whereas the samples of seamount alka-
line rocks plot in the basanite, tephrite (SiO2 = 39.77−

46.36 wt %), trachyte (SiO2 = 68.47 wt %), trachybasalt
(SiO2 = 50.15 wt %) and foidite (SiO2 = 39.77 wt %) fields
(Fig. 13a and b). The oceanic basalt samples have lower
TiO2 values (0.26–1.74 wt %) in comparison to the alkaline,
seamount volcanic rocks (1.64–2.46 wt %), except for a vol-
canic sample with tholeiitic OIB (Ocean–Island basalt) char-
acteristics. On a Ti–Zr–Y discrimination diagram (Pearce
and Cann, 1973), the oceanic basalt samples plot in the
MORB (mid–ocean ridge basalt) and island arc tholeiite
(IAT) fields, whereas the seamount volcanic rocks generally
fall in the within–plate alkali basalt field (except a trachyte
sample; Fig. 13c). On a Ti–V diagram (Shervais, 1982),
the samples of oceanic basaltic rocks mostly plot in the
MORB field (Ti/V = 22.6–28.9), whereas four samples have
island arc tholeiite to boninitic affinities (Ti/V= 5.4–25.55)
(Fig. 13d). The samples of silica–undersaturated, seamount
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Fig. 14.Geochemical classification of island arc rocks.(a) Total alkali vs. SiO2 diagram (Le Bas et al., 1986).(b) TAS diagram (Cox et al.,
1979) for syenodioritic pluton rocks.(c) Alk–MgO–FeOt diagram (Irvine and Baragar, 1971) of the subalkaline arc volcanic units (Dönmez
et al., 2009, and this study).(d) K2O vs. SiO2 diagram (Peccerillo and Taylor, 1976).(e) Th vs. Co diagram (Hastie et al., 2007).(f) Ce/Yb
vs. Ta/Yb diagram (Pearce, 1982).

volcanic rocks display an OIB–character with high Ti/V ra-
tios (62.6–261.2).

The N-MORB normalized multielement diagrams of the
representative samples of basalts of oceanic crust and
seamount volcanic rocks are shown in Fig. 13e. Basaltic
samples of both MORB and SSZ (suprasubduction zone)
affinities show enrichment in their LILE (the large ion
lithophile elements: Rb, Ba, K, Sr, Cs, Th) contents. The
HFSE (high field strength elements: Nb, Ta, Zr, Hf, Ti,
Y) and REE (rare earth elements) contents of the MORB-
type basaltic rocks display a slight increase, whereas the
SSZ–related basaltic rocks (four samples) exhibit depletion
in HFSE and REE. The LILE, HFSE, LREE (light–REE)
contents of the seamount volcanic rocks are extremely en-
riched relative to the HREE (heavy–REE) values. Also,
the Th/Yb (2.8–5.6) and Nb/Yb (27.6–54.8) values of the
seamount volcanic rocks are high in comparison to those
of the Neotethyan oceanic basalt samples (Th/Yb= 0.2–1.1;
Nb/Yb= 0.7–2.7). However, the alkaline lava samples have
the ratios of Nb/Y> 1.5 and Zr/Nb<6 that are typical for
within–plate basalts (Edwards et al., 1991). The seamount

volcanic rocks have Nb/Y ratios of 2.3–3.1 and Zr/Nb ratios
of 3.1–4.1, indicating OIB–like geochemical characteristics,
whereas the oceanic crust basalt samples have Nb/Y (0.1–
0.4) and Zr/Nb (8.1–32) values.

6.2 Island arc rocks

A small syenodiorite pluton, a suite of volcanic rocks, and
lamprophyric dikes in the Kalecik (Ankara) area collectively
represent the products of island arc magmatism. These arc
rocks mostly plot in the alkaline field on a TAS diagram
(Fig. 14a and b).The alkaline rock samples with medium
to high Al2O3 contents (10–19 wt %) represent both silica-
saturated and silica-undersaturated rock units (Tables, 7, 8
and 9). The lamprophyric dikes have picrobasalt, trachy-
basalt, trachyandesite, tephrite and phonotephrite compo-
sitions, whereas the volcanic rocks display basalt, basan-
ite, tephrite, leucite tephrite and foidite compositions. The
samples from small alkaline intrusions fall into the syen-
odiorite field in the TAS diagram (Fig. 14b; Cox et al.,
1979). The Late Cretaceous–early Paleocene volcanic rocks
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Fig. 15.Major oxides and trace elements vs. MgO variation diagrams for various alkaline island arc units.

(andesite, dacite, rhyolite), found nearly 60 km SW of Kale-
cik, show subalkaline (tholeiitic and calc-alkaline) composi-
tions, except for a few trachybasalt and trachyandesite sam-
ples (Fig. 14a, c and d; Dönmez et al., 2009).

The alkaline volcanic rocks mostly display high–K
shoshonitic compositions in the K2O vs. SiO2 diagram
(Fig. 14d; Peccerillo and Taylor, 1976). Some volcanic and
dike rocks also plot in the fields of medium- to high-K,
calc-alkaline series. Although some alkaline volcanic rocks
show medium-K calc-alkaline characteristics as a result of
hydrothermal alteration (LOI/loss on ignition> 2 wt %), they
have high-K shoshonitic affinity since the leucite bearing,
silica-undersaturated alkaline rocks experienced analcimiza-
tion, resulting in low K2O values in favor of Na2O values. On
the Hastie et al. (2007) and Pearce (1982) diagrams, which
utilize the immobile elements and the ratios of immobile el-
ements (Th vs. Co, and Ce/Yb vs. Ta/Yb), the arc-related

plutonic, volcanic and dike rocks generally display high-
K (K2O/Na2O= 1.5–3.4) and shoshonitic characteristics
(Fig. 14e and f). However, seven samples from the volcanic
rocks and lamprophyre dikes contain high K2O/Na2O ratios
(18.16–24.52), showing ultrapotassic (K2O/Na2O> 3) char-
acteristics.

When plotted on MgO vs. major element diagrams, the an-
alyzed samples mainly exhibit negative correlations, except
on the Fe2O3 and TiO2 plots, which show positive correla-
tions (Fig. 15). Based on the MgO vs. trace element varia-
tion diagrams (Fig. 15), Co shows a positive trend while Ba,
Rb, Sr, Th and Zr all exhibit negative trends. These major-
and trace-element trends can be explained by fractionation
of clinopyroxene, feldspar, black mica (biotite, phlogopite),
Fe-Ti oxides and apatite. However, the scatter in Fig. 15 may
also be caused by the alteration of the arc rocks and/or the
involvement of subducted sediments in their melt regime.
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Fig. 16. (a)A/CNK, molar Al2O3/(CaO+Na2O+K2O) vs. A/NK, molar Al2O3/(Na2O+K2O) diagram (Shand, 1927).(b, c) trace element
discrimination diagrams (Nb–Y and Rb vs. Y+Nb) for syenodioritic pluton rocks (fields from Pearce et al., 1984; VAG= volcanic arc
granites, WPG= within-plate granites, ORG= ocean ridge granites. SYN-COLG= syn-collisional granites.(d) Ti–Zr–Y diagram.(e)Ti–V
diagram.(f) TiO2 vs. Al2O3 diagram.(g) Y vs. Zr diagram.(h) Th/Yb vs. Nb/Yb diagram (fields after Pearce and Cann, 1973; Shervais,
1982; Muller et al., 1992; Pearce, 2008).

The rock samples from the small syenodiorite pluton with
metaluminous characteristics plot in the VAG (volcanic arc
granites) field (Fig. 16a, b and c). The Ti–Zr–Y and Ti–
V diagrams (Pearce and Cann, 1973; Shervais, 1982) show
that the alkaline basic samples and the subalkaline volcanic
rocks (Dönmez et al., 2009) from the southwestern part of

the study area all plot in the arc field (Figs. 16d and e, respec-
tively), whereas the TiO2–Al2O3 and Y–Zr diagrams (Muller
et al., 1992) show that these samples fall into the arc field
(Fig. 16f and g, respectively). The analyzed alkaline rocks
display shoshonitic characteristics in the Th/Yb vs. Nb/Yb
diagram (Pearce, 2008), and their Hf/Th ratios are rather low,
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Table 6.Major, trace element and REE data for a select group of seamount volcanic rocks from the Ankara Mélange.

Sample no. 2007KM327 DM19 KM24 KM27 KM28 KM121 KM126 CM38
Rock type foidite trachybasalt basanite basanite trachyte tephrite tephrite basanite

Oxide, wt %
SiO2 39.77 50.15 41.08 44.55 68.47 46.36 44.83 44.26
TiO2 2.16 2.46 1.64 2.17 0.61 2.10 2.46 2.15
Al2O3 15.84 15.90 13.21 15.83 15.16 16.70 15.78 15.75
Fe2O3 11.67 9.10 7.75 10.41 3.17 12.04 12.27 10.54
MnO 0.33 0.19 0.12 0.16 0.04 0.18 0.18 0.30
MgO 8.10 3.43 3.91 4.91 0.54 3.12 3.93 9.48
CaO 13.95 5.64 13.78 7.8 1.48 8.59 9.60 4.63
Na2O 0.57 4.74 5.25 4.15 6.79 4.18 3.78 3.98
K2O 1.56 1.91 0.45 2.1 1.35 1.81 1.78 0.74
P2O5 0.51 0.77 0.464 0.653 0.484 0.89 0.84 0.68
LOI 5.3 5.5 11.8 7.1 1.7 3.8 4.3 7.1

Total 99.81 99.77 99.46 99.84 99.77 99.73 99.72 99.61

Trace, ppm
Cr 342.45 13.70 232.87 198.62 13.70 13.70 20.55 219.17
Ni 128.00 21 113 106 20 20 20 130.70
Co 40.10 24.3 30.6 36.4 2.2 26.10 32.50 39.30
Sc 25.00 15 18 20 3 5 7 21
Rb 26.80 39.8 7.7 43.5 33.4 18.7 18.1 13.50
Ba 280 135 151 251 379 426 401 371.00
Sr 223.30 368.6 529.6 588.4 294.3 577.9 547.0 740.00
Cs 0.20 1.00 0.1 1.00 0.7 0.10 0.10 0.30
Th 5.90 7.6 4.9 5.8 10.5 8.8 8.0 6.30
U 1.40 1.6 1.5 1.2 1.4 1.9 1.6 1.60
Nb 55.40 74.5 47.2 60.5 96 88.3 82.0 62.40
Ta 3.00 4.5 2.8 3.6 6 5.1 5.2 3.70
Zr 200.40 291.3 187.2 240 389.5 273.4 257.0 252.10
Hf 4.90 6.9 4.6 6.2 10.2 5.7 5.9 6.50
Y 22.70 24.3 20.6 25 34 29.2 29.0 25.60
V 207 136 157 199 14 90 117 168
Pb 4 1.5 5.6 4.9 7.2 5 7.9 1.8

REE, ppm
La 37.00 54.4 33 43.4 60.7 63.4 61.1 42.30
Ce 73.00 122.0 64.8 83.5 114.7 128.8 122.9 84.90
Pr 8.80 13.61 7.8 9.71 14.25 13.73 13.57 9.87
Nd 34.30 54.0 29.1 37.3 49 50.7 51.0 39.90
Sm 6.11 9.76 5.21 6.56 8.05 9.06 9.04 6.64
Eu 2.03 3.17 1.74 2.11 2.19 2.84 2.99 2.16
Gd 5.78 8.46 4.65 5.81 6.67 8.33 8.33 6.21
Tb 0.88 1.17 0.76 0.93 1.15 1.18 1.21 0.93
Dy 4.49 5.56 4.01 4.89 6.34 5.88 5.90 4.72
Ho 0.82 0.87 0.76 0.93 1.21 1.07 1.06 0.91
Er 2.11 1.94 2 2.48 3.42 2.72 2.63 2.68
Tm 0.33 0.25 0.29 0.36 0.51 0.36 0.36 0.38
Yb 1.85 1.36 1.71 2.07 3.27 2.18 2.17 2.10
Lu 0.28 0.17 0.25 0.31 0.47 0.30 0.30 0.33

ranging from 0.11 to 0.57, consistent with their shoshonitic
affinity. The island arc tholeiitic (IAT) basaltic rocks have
Hf/Th > 3, whereas the calc-alkaline volcanic rocks have
Hf/Th < 3 (Wood, 1980). Their Th enrichment and increased
Th/Yb ratios along the mantle metasomatism trend indicate
the influence of subduction-derived fluids in their magma
source (Fig. 16h; Pearce, 2008). The samples derived from

the blocks of N-MORB-, SSZ- and OIB-like oceanic basalts
in the Ankara Mélange typically plot within the MORB–OIB
mantle array (Fig. 16h).

The primitive mantle-normalized, multielement diagrams
of the representative samples from the high-K shoshonitic
arc rocks around Kalecik (Ankara), Yapraklı(Çankırı) and
Laloğlu (Çorum) are plotted in Fig. 17a. The trace element
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Table 7.Major, trace element and REE data for a select group of island arc volcanic and syenodiorite rocks from the Ankara Mélange.

Sample no. 04.NAM 05.NAM 06.NAM DM35 DM 36 DM37 CE960 08CM01 08CM07 KM54
Rock type syeno- syeno- syeno- tephrite tephrite foidite basanite leucite Basanite Basanite

diorite diorite diorite Tephrite

Oxide, wt %
SiO2 50.31 49.35 49.11 41.65 41.86 39.81 42.41 48.29 45.00 46.34
TiO2 0.59 0.61 0.62 0.76 0.74 0.70 0.89 0.67 0.79 0.93
Al2O3 18.69 18.75 18.39 15.90 15.55 12.84 16.89 18.21 14.57 14.36
Fe2O3 8.45 8.77 8.42 10.82 9.31 8.90 12.38 9.15 11.21 11.03
MnO 0.17 0.19 0.19 0.15 0.15 0.14 0.25 0.25 0.21 0.18
MgO 2.25 2.45 2.39 7.23 7.35 10.81 7.5 4.23 6.28 6.33
CaO 6.38 7.14 6.82 3.51 4.08 5.36 11.17 7.91 12.22 9.64
Na2O 2.68 2.57 2.35 0.57 0.46 0.21 2.48 3.78 2.56 2.79
K2O 5.32 5.07 5.68 5.99 6.15 5.15 0.62 2.91 2.15 3.09
P2O5 0.48 0.49 0.49 0.44 0.41 0.24 0.42 0.46 0.33 0.44
LOI 4.30 4.20 5.10 12.7 13.6 15.4 4.7 3.7 4.2 4.5

Total 99.61 99.58 99.63 99.69 99.68 99.61 99.71 99.56 99.52 99.67

Trace, ppm
Cr 47.94 82.19 47.94 13.70 20.55 342.45 21 14.00 130.00 61.64
Ni 20 20 20 23 41 156 43 5.00 24.50 39.00
Co 20.60 22.80 20.70 25.7 28.0 38.4 43.1 24.80 37.10 36.20
Sc 11 11 11 20 21 37 30 20.00 48.00 39.00
Rb 140.2 138.5 148.2 184.1 172.6 162.6 18.3 52.50 29.40 195.80
Ba 1685 1557 1520 783 739 887 577 1883 1051 840
Sr 845.2 915.3 759.4 257.5 331.3 362.2 563.5 742.60 779.80 934.80
Cs 1.1 2.1 3.5 6 4.5 3.4 0.9 3.10 1.20 1.50
Th 11.9 13.9 11.1 10.1 10.3 7.5 4.7 18.00 5.90 5.30
U 3.2 3.1 3.0 3.3 3.7 1.8 1.5 2.40 1.70 2.20
Nb 8.9 9.4 7.6 9.1 8.7 4.2 4 12.30 5.10 3.40
Ta 0.4 0.4 0.3 0.3 0.4 0.1 0.3 0.50 0.20 0.20
Zr 76.1 86.0 72.9 72.8 74.4 49.2 68.9 87.80 57.70 75.20
Hf 1.6 2.2 2.0 2.0 1.7 1.4 2 2.50 1.60 2.00
Y 23.6 23.0 20.3 14.8 16.5 12.5 21.4 20.90 18.70 22.00
V 169 182 166 279 275 260 339 273 301 302
Pb 4 21.8 24.9 3.9 7.4 6.1 5.2 7.3 5.5 9

REE, ppm
La 33.7 36.6 31.9 26.0 25.7 18.8 20 36.70 20.70 18.40
Ce 60.0 63.7 55.4 53.2 53.5 37.7 42.6 66.70 40.00 41.90
Pr 6.72 7.12 6.20 5.85 5.63 3.93 5.52 7.87 4.89 5.51
Nd 25.3 25.7 24.9 23.0 22.5 15.7 25 32.80 20.70 22.90
Sm 4.91 4.88 4.41 4.42 4.29 3.21 5.27 5.81 4.18 5.12
Eu 1.32 1.31 1.24 1.18 1.21 0.91 1.57 1.53 1.33 1.47
Gd 4.70 4.51 4.18 3.89 4.02 3.21 5.12 5.23 4.31 5.17
Tb 0.70 0.71 0.64 0.57 0.60 0.47 0.79 0.76 0.66 0.80
Dy 3.89 4.11 3.73 2.83 3.28 2.52 4.03 3.88 3.54 4.34
Ho 0.72 0.75 0.67 0.56 0.60 0.46 0.76 0.73 0.69 0.81
Er 2.02 2.14 1.92 1.60 1.61 1.24 2.07 2.05 2.00 2.14
Tm 0.30 0.30 0.28 0.21 0.23 0.17 0.32 0.28 0.29 0.34
Yb 2.16 2.05 1.89 1.49 1.47 1.10 1.82 1.84 1.65 1.94
Lu 0.28 0.33 0.25 0.22 0.23 0.16 0.28 0.27 0.26 0.30
Mg# 35 36 36 57 61 71 55 48 53 53
KO/NaO 1.99 1.97 2.42 10.51 13.37 24.52 0.25 0.77 0.84 1.11

patterns of all the analyzed alkaline rocks display strong en-
richment of the LILE, LREE and also Pb, U in comparison to
HFSE (Nb, Ta, Zr, Hf, Ti, Y), which show negative anomalies
indicating subduction zone influence (Kempton et al., 1991).
The high Ba/Ta (> 450) and Ba/Nb (> 28) ratios are char-
acteristic features of subduction-related magmas (Fitton et

al., 1988). The very high ratios of Ba/Ta (383–5255), Ba/Nb
(64–538), and relatively high Zr/Nb (5–22), Th/Yb (2–14),
Zr/Y (3–7) and La/Yb (9–36) have been attributed to a man-
tle source, which was enriched by a subduction component
(Frey et al., 1978; Fitton et al., 1988; Maury et al., 1992;
Schiano et al., 1995). However, some of the lamprophyre
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Table 8.Major, trace element and REE data for a select group of island arc volcanic rocks from the Ankara Mélange.

Sample no. CE.962 CE.964 CS.07 CS.11 CE.96 CE.98 CS.99 MS.34 MS.35 MS.36 COR.6 COR.7 COR.9 COR.10
Rock type basanite basanite basanite basanite basalt basalt basalt basanite basanite basaltic- basanite trachy- trachy- basanite

trachyandesite basalt basalt

Oxide, wt %
SiO2 42.28 42.78 44.35 42.69 51.27 48.78 48.28 44.49 44.56 54.26 44.13 48.08 46.26 42.86
TiO2 0.88 0.9 0.78 0.82 0.78 1.74 1.71 1.00 0.92 0.50 0.84 0.84 0.85 0.93
Al2O3 16.57 16.84 16.10 16.55 15.91 14.85 14.89 17.60 15.63 17.93 17.26 17.21 18.47 17.03
Fe2O3 12.07 12.26 11.44 11.98 9.57 12.69 12.69 9.35 10.31 6.34 9.40 10.17 9.49 10.21
MnO 0.27 0.24 0.21 0.20 0.14 0.20 0.20 0.16 0.19 0.14 0.18 0.19 0.16 0.20
MgO 8 7.37 7.67 6.68 6.44 5.78 5.72 6.82 8.84 2.44 7.21 4.22 4.13 4.74
CaO 10.83 10.42 10.47 9.48 7.64 8.26 8.54 9.17 9.84 5.97 8.84 6.9 8.19 13.37
Na2O 2.7 2.47 3.29 3.88 4.73 3.84 3.48 2.09 2.15 3.75 2.89 4.32 2.35 1.28
K2O 0.73 1.57 0.51 1.06 0.12 0.59 0.75 2.39 2.33 4.10 2.82 2.51 3.01 2.41
P2O5 0.38 0.43 0.33 0.39 0.06 0.18 0.16 0.31 0.31 0.27 0.39 0.46 0.34 0.44
LOI 5 4.3 4.5 6.0 3.1 2.7 3.1 6.2 4.5 4 5.6 4.6 6.4 6.1

Total 99.71 99.58 99.65 99.69 99.81 99.57 99.47 99.64 99.61 99.67 99.56 99.48 99.67 99.62
Mg# 57 54 57 52 57 47 47 59 63 43 60 45 46 48

Trace, ppm
Cr 21 14 68 14 14 41 41 21 82 14 55 14 27 41
Ni 29 37 31.00 19.70 20.40 18.60 18.00 12.20 23.00 5.10 16.7 1.9 15.1 17.5
Co 44.5 43.7 44.10 43.40 31.80 40.10 40.70 33.20 40.60 14.70 32.4 26.5 24.1 40.2
Sc 32 31 41 34 35 37 37 34 49 11 31 15 26 33
Rb 46.5 65.1 11.00 42.50 3.20 8.30 10.00 58.50 55.70 129.20 67.7 38.3 92.4 59.3
Ba 636 2044 596.00 613.00 36.00 882.00 1437.00 796.00 700.00 1225.00 885 2166 902 877
Sr 497.4 620.5 471.90 321.40 43.40 1129.10 1385.20 497.00 460.50 546.70 966.6 875.8 579.5 660.2
Cs 1.3 1 2.90 1.50 32.70 0.70 0.40 2.90 2.70 3.70 4.4 2.1 2.8 2.5
Th 3.8 4.3 3.70 3.90 0.30 0.90 0.90 12.70 11.00 22.90 14.3 12.1 14.3 15.8
U 1 1.2 1.50 1.10 0.10 0.20 0.30 3.20 2.90 5.70 3.6 3 3.1 4.1
Nb 3.1 3.8 4.90 5.40 4.70 7.40 7.10 7.40 6.30 10.30 5.9 6.3 6.4 5.9
Ta 0.2 0.3 2.40 1.60 3.30 3.50 3.90 0.90 1.00 1.50 0.3 0.3 0.4 0.3
Zr 63.3 65 50.60 55.20 46.10 107.30 104.80 110.90 106.30 175.80 126.4 94.4 108.3 113.3
Hf 2.2 1.9 1.50 1.60 1.50 2.90 2.90 2.90 2.90 4.10 3.1 2.6 2.6 2.3
Y 19.6 20.7 18.20 19.80 20.30 34.00 34.10 25.80 24.80 27.10 25.3 24.3 20.4 23.8
V 357 357 365 339 335 379 385 364.00 401.00 157.00 292 282 280 388
Pb 3.6 4.8 5.40 8.30 0.7 0.4 0.6 8.9 8.9 7 13.4 17.5 13.1 18.8

REE, ppm
La 17.3 17.6 14.90 16.80 3.00 8.40 8.30 37.60 33.30 60.20 43.1 36.2 41.1 43.8
Ce 37.6 39.5 31.60 35.20 7.70 20.90 20.40 73.30 67.00 109.70 90.9 74.4 82.0 92.2
Pr 5.16 5.27 4.16 4.63 1.10 2.90 2.84 8.63 8.13 11.97 9.92 8.46 8.73 9.80
Nd 22.7 23 17.60 20.10 5.20 14.50 13.70 34.50 32.80 43.60 35.3 34.6 31.1 34.8
Sm 4.99 5.22 4.14 4.70 1.86 3.92 3.95 6.88 6.66 7.35 7.23 6.81 5.85 6.93
Eu 1.51 1.53 1.27 1.38 0.74 1.26 1.43 1.94 1.80 1.87 1.96 1.86 1.55 1.79
Gd 4.87 4.94 3.97 4.36 2.49 5.00 5.13 6.21 5.88 5.83 6.42 6 5.30 6.23
Tb 0.72 0.73 0.63 0.70 0.52 0.96 0.97 0.95 0.92 0.90 0.94 0.92 0.76 0.89
Dy 3.92 4.06 3.23 3.47 3.17 5.54 5.76 4.85 4.66 4.68 4.80 4.83 3.66 4.48
Ho 0.71 0.75 0.63 0.68 0.70 1.23 1.23 0.96 0.86 0.91 0.89 0.88 0.76 0.84
Er 1.88 1.96 1.75 1.79 2.17 3.59 3.50 2.46 2.35 2.58 2.44 2.62 2.06 2.28
Tm 0.3 0.31 0.25 0.29 0.33 0.55 0.56 0.39 0.36 0.42 0.35 0.36 0.30 0.34
Yb 1.78 1.78 1.56 1.67 2.11 3.35 3.34 2.38 2.23 2.67 2.27 2.33 1.86 2.19
Lu 0.27 0.27 0.24 0.25 0.33 0.52 0.51 0.36 0.33 0.42 0.35 0.36 0.29 0.33
K2O/Na2O 0.27 0.64 0.16 0.27 0.03 0.15 0.22 1.14 1.08 1.09 0.98 0.58 1.28 1.88

dike samples (DM.2, DM.6, DM.8, DM.9, DM.10) contain
La/Yb ratios of 30, indicating highly undersaturated magmas
for their origin. Also, the alkaline rocks with Mg number
Mg#< 61, except for one sample (Mg#= 71), [MgO/MgO
× 0.8 + FeO total)], imply that none of these shoshonitic
rocks represents primary mantle-derived subduction-related
magmas. However, their chondrite-normalized REE patterns
(Fig. 17b) show LREE enrichment, flat HREE (La/Smn =

2.18−5.71; Gd/Lun = 1.69−4.14; La/Lun = 6.57−24.72),
and minor negative Eu anomalies (Eu/Eu∗

= 0.77–0.95).
These geochemical characteristics are compatible with those
defining subduction-related, arc volcanic assemblages (Tat-

sumi et al., 1986; Kelemen et al., 1993; Hawkesworth et al.,
1993; Pearce and Peate, 1995).

The high-K shoshonitic lamprophyric dikes are character-
ized by intermediate143Nd/144Nd (0.512674–0.512690) and
87Sr/86Sr (0.704697–0.704892) isotopic compositions. The
initial εNd values range from+1.3 to+1.7, whereas the mod-
ernεNd values vary between+0.7 and+1.0 indicating a rel-
atively enriched mantle source. Their Pb isotope ratios range
from 19.332 to 19.939 for206Pb/204Pb, 15.655 to 15.691 for
207Pb/204Pb, and 39.192 to 39.612 for208Pb/204Pb. The high
206Pb/204Pb, and relatively high143Nd/144Nd and87Sr/86Sr
ratios seem to be compatible with a mantle source that
is enriched by slab-derived fluids and/or subducted pelagic
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Table 9.Major, trace element and REE data for a select group of lamprophyric dike rocks from the Ankara Mélange.

Sample no. DM2 DM3 DM4 DM5 DM5A DM6 DM7 DM7A DM8 DM9 DM10 DM17 CE1206 CE1207 CE2 CE1210 25BM11
Rock type tephrite tephrite tephrite tephrite tephrite trachy- phono- tephrite trachy- phono phono tephrite picro- picro- picro- trachy- trachy

basalt tephrite basalt tephrite tephrite basalt basalt basalt basalt andesite

Oxide, wt %
SiO2 45.25 43.02 47.41 45.84 46.23 48.59 50.29 50.49 49.34 47.48 47.02 46.45 41.94 47.34 44.89 51.33 58.15
TiO2 0.69 0.76 0.58 0.64 0.66 0.73 0.62 0.62 0.70 0.73 0.74 0.78 1.12 0.83 1.26 1.24 0.43
Al2O3 11.20 10.93 15.79 16.98 17.00 10.34 14.94 14.73 12.10 14.37 14.66 11.40 12.91 15.66 13.36 15.62 17.43
Fe2O3 11.16 12.10 9.54 10.86 11.03 11.46 10.85 10.72 10.92 11.07 11.13 12.59 10.8 9.79 11.12 7.33 5.81
MnO 0.23 0.22 0.23 0.21 0.21 0.22 0.20 0.18 0.21 0.24 0.23 0.22 0.2 0.21 0.22 0.08 0.14
MgO 5.41 4.98 2.90 4.66 4.87 6.02 4.02 4.13 4.49 3.43 3.50 5.09 7.71 4.02 8.23 5.991.88
CaO 14.50 15.89 12.25 10.25 9.57 13.68 7.30 7.53 13.50 8.44 8.53 12.26 16.47 9.11 14.37 8.22 4.04
Na2O 0.67 0.28 0.36 1.63 1.68 0.56 2.84 2.78 1.96 2.64 2.95 1.58 1.62 2.97 1.70 3.95 5.56
K2O 5.47 5.54 6.96 4.67 4.99 5.73 5.53 5.50 4.11 6.34 5.82 5.40 0.72 4.5 1.01 1.85 4.32
P2O5 0.89 0.80 0.45 0.44 0.40 1.08 0.96 0.93 0.89 0.78 0.78 0.90 0.49 0.64 0.55 0.75 0.29
LOI 4 4.9 2.9 3.4 3.0 1.1 2.0 1.9 1.3 3.7 3.9 2.8 5.8 4.6 2.9 3.4 1.6

Total 99.5 99.46 99.42 99.61 99.60 99.49 99.53 99.53 99.52 99.27 99.28 99.48 99.78 99.67 99.64 99.76 99.64

Trace, ppm
Cr 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 89 21 82 158 68
Ni 20 20 20 20 20 20 20 20 20 20 20 20 48 28 67 86 45
Co 33.0 39.4 26.9 34.8 34.5 37.9 34.1 33.8 32.2 28.5 28.9 41.2 35.5 24.2 39.7 24.9 12.50
Sc 30 34 10 25 27 45 24 25 30 21 22 36 41 22 39 19 7
Rb 51.4 52.6 94.6 76.9 81.5 46.9 65.0 67.7 29.7 47.3 43.1 50.0 20.8 75.5 13.8 29.9 76.5
Ba 1861 1881 2899 1224 1228 1760 1183 1233 1846 3229 3172 2019 180 1109 257 475 1456
Sr 697.0 864.1 762.5 701.6 811.3 823.9 1483.3 1401.6 758.9 1287.1 1335.2 790.0 1073 1116 805.4 1006 679.1
Cs 0.1 0.1 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.4 0.4 0.1 0.3 0.6 0.1 0.2 0.1
Th 24.4 14.0 19.7 8.9 9.1 21.9 14.2 14.4 23.1 34.6 33.6 13.2 7.3 14.9 6.9 5.4 25.0
U 6.0 5.6 7.4 2.9 3.1 5.4 7.1 6.9 6.0 10.1 10.5 5.1 2.4 4.9 2.5 1.0 6.9
Nb 18.3 22.7 18.4 7.8 7.9 17.0 13.7 13.9 18.6 34.1 33.9 21.7 9.7 13.1 15.1 7.4 10.7
Ta 0.6 0.7 0.7 0.3 0.3 0.7 0.5 0.5 0.6 1.1 1.2 0.7 0.6 0.9 1.0 1 0.6
Zr 111.4 111.2 117.3 65.0 62.3 103.2 95.1 93.8 112.6 188.1 186.3 101.6 92.9 163.5 111.9 121.9 199.7
Hf 2.8 2.9 2.8 1.6 1.4 2.7 2.5 2.3 2.8 4.7 4.4 2.6 2.5 4.1 2.8 3.1 4.3
Y 23.7 24.5 22.1 16.2 15.1 24.4 21.5 20.4 24.8 34.2 34.4 23.7 21.9 34.8 24.7 16.9 28.9
V 305 403 405 307 299 329 262 269 347 329 329 370 300 245 330 162 116
Pb 32.3 17.0 11.1 16.8 15.5 14.8 9.6 8.8 9.4 12.6 11.3 20.2 2.3 6.6 0.9 1.30 33.9
Mg# 49 45 38 46 47 51 42 43 45 38 38 44 59 45 59 62 39
KO/NaO 8.16 19.79 19.33 2.87 2.97 10.23 1.95 1.98 2.10 2.40 1.97 3.42 0.44 1.52 0.59 0.47 0.78

REE, ppm
La 60.0 41.8 49.5 26.4 25.0 56.6 32.2 30.7 58.4 83.6 81.2 41.4 26.3 43.2 29.3 33.3 69.2
Ce 120.4 87.4 97.8 52.4 49.7 115.9 69.8 67.3 119.6 159.0 156.7 86.5 53.1 88.9 58.1 70.7 124.9
Pr 13.07 9.79 10.41 5.75 5.52 13.12 7.99 7.71 13.19 16.87 16.92 9.76 6.83 10.9 7.52 8.76 13.24
Nd 49.9 39.3 38.7 22.2 22.3 53.9 32.7 32.0 51.5 63.2 63.9 39.6 28.2 42.5 29.8 33.1 46.9
Sm 9.36 8.07 7.17 4.49 4.29 9.83 6.15 5.93 9.48 11.52 11.64 7.84 5.98 8.52 6.96 5.67 7.82
Eu 2.26 2.02 1.86 1.20 1.14 2.35 1.53 1.50 2.27 2.84 2.88 2.00 1.72 2.49 1.98 1.59 1.93
Gd 7.94 7.09 6.23 4.01 3.88 8.37 5.32 5.22 7.97 10.04 10.03 7.19 5.68 8.09 6.36 4.56 6.22
Tb 1.04 0.97 0.88 0.59 0.56 1.07 0.77 0.76 1.07 1.36 1.36 0.95 0.86 1.21 0.93 0.67 0.90
Dy 4.95 4.71 4.31 2.95 2.97 4.94 3.94 3.91 4.88 6.88 6.66 4.72 4.06 6.33 4.68 3.28 4.98
Ho 0.82 0.82 0.73 0.55 0.55 0.79 0.74 0.73 0.84 1.16 1.19 0.80 0.79 1.2 0.81 0.61 0.91
Er 2.05 2.12 2.00 1.50 1.45 2.10 1.96 1.94 2.08 3.08 3.02 2.10 2.09 3.27 2.30 1.64 2.63
Tm 0.29 0.29 0.27 0.22 0.21 0.28 0.29 0.27 0.29 0.43 0.44 0.30 0.32 0.52 0.33 0.25 0.42
Yb 1.65 1.79 1.83 1.41 1.33 1.69 1.74 1.76 1.69 2.67 2.80 1.73 1.76 2.94 1.89 1.47 2.66
Lu 0.25 0.27 0.26 0.21 0.20 0.25 0.27 0.26 0.25 0.41 0.41 0.26 0.27 0.46 0.27 0.22 0.43
87Sr/86Sr 0.704786 0.704892 0.704697 0.704720 0.704797 0.704820
143Nd/144Nd 0.512681 0.512686 0.512690 0.512682 0.512680 0.512674
206Pb/204Pb 19.540 19.332 19.939 19.604 19.594 19.418
207Pb/204Pb 15.662 15.655 15.691 15.675 15.659 15.664
208Pb/204Pb 39.376 39.192 39.612 39.536 39.407 39.297

sediments. Rock (1977; 1984) described shoshonitic lampro-
phyres (minette, kersantite, vogesite, spessartite) as mildly
potassic alkaline rocks (Na< K; SiO2 =∼ 53 wt %), indicat-
ing their magma source to be hybrids between basic magma
and granitic residua or crustal sediments. Also, alkaline lam-
prophyres (camptonite, monchiquite, sannaite) with mantle-
type87Sr/86Sr ratios derived from a lamprophyre magma by
hydrous crystallization of basaltic magma (Rock, 1977).

7 Discussion

7.1 Source characteristics

The subduction–accretion complex represented by the
Ankara Mélange contains blocks of oceanic lithosphere,
showing geochemical affinities ranging from MORB to IAT

and calc-alkaline. The SSZ-type ophiolite assemblages in
the melange display both IAT-like and boninitic geochemical
signatures. The ophiolitic units with an IAT-like chemistry
are the manifestation of partial melting of the upper mantle
peridotites, which were modified by incompatible element-
enriched hydrous fluids (or melt) released from the subduct-
ing Tethyan oceanic slab. The ophiolitic units with MORB-
like signatures represent the products of a depleted mantle
source. Some of the samples with MORB-like chemistry plot
within or near the IAT field (Figs.13c and 16h), indicating
that their magmas were influenced by subduction-derived
fluids. These ophiolitic rocks are the oldest units, as con-
strained by the volcanic stratigraphy and crosscutting rela-
tionships. Some doleritic dikes and basaltic rocks in the ophi-
olites show boninitic affinities, consistent with their forma-
tion in a forearc setting (Dilek and Furnes, 2011; Sarifakioglu
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Fig. 17. (a)Primitive mantle-normalized multielement diagrams for
the high-K shoshonitic arc rocks (normalization values from Sun
and McDonough, 1989).(b) Chondrite-normalized REE patterns of
the same rocks (normalization values from Sun and McDonough,
1989).

et al., 2011). Collectively, the ophiolitic units in the Ankara
Mélange display a geochemical progression that is typical of
the development of forearc oceanic crust in the early stages
of subduction-induced magmatism, as also documented from
other Tethyan ophiolites (Dilek and Furnes, 2009, 2011;
Dilek and Thy, 2009; Pearce and Robinson, 2010; Saccani
et al., 2011; Moghadam et al., 2013).

Seamount volcanic rocks occurring in the Ankara Mélange
have OIB-like geochemical features, showing tholeiitic to al-
kaline affinities (Fig. 13e) with enrichment in incompatible
elements and LREEs. The tholeiitic OIB affinity of some
of the seamount volcanic rocks may have resulted from the
interaction of plume-derived melts with MORB-type melts
near a seafloor spreading system. The depletion of the OIB-
type volcanic rocks in immobile elements (especially Ti) sug-
gests mixing of the plume-derived and MORB-type melts
during seamount evolution.

The high-K alkaline rocks exhibit LILE and HFSE
enrichments and negative Nb, Ta, Hf, Zr, Ti anoma-
lies, indicating strong subduction influence in their melt
evolution (Fig. 17a). The high ratios of LILE/HFSE
(Ba/Nb= 64–538; Ba/Ta= 383–5255; Rb/Nb= ∼ 2–20),
LREE/HFSE (La/Nb= 1.8–7.2; La/Ta= 48–188; La/Smn
∼ 4), LILE/LREE (Th/La= 0.16–0.49) and Zr/Nb (5–22),

and the large negative Nb–Ta anomaly in the multielement
diagrams all point to a melt source affected by subduction-
generated fluids and/or crustally contaminated magmas. The
observed high Ba/Nb (64–538), La/Yb (9–36), Sr/Nd (14–
45) and Ce/Yb (20–73) ratios, and low Nb/U (2–7), Ba/La
(20.02–59.83), U/Th (0.13–0.50) and Ce/Pb (∼ 2–20) ratio
values indicate that the mantle melt source may have been
modified by some melts derived from relatively incompati-
ble element-rich, subducted pelagic and/or terrigenous sedi-
ments. In contrast, the high Ce/Pb (25+5) and Nb/U (47+10)
ratios observed in the OIB-type seamount volcanic rocks in-
dicate that the magmas of these rocks were not modified by
subducted sediments (Hoffman et al., 1986).

Enrichments in Cs, Rb, Ba, Th, U, K, La, Ce and Pb of the
alkaline rocks suggest that their melt source was modified by
subducted slab material (mainly fluids, and pelagic and/or
terrigenous sediments). Slab-derived fluids helped to form
hydrous and K-rich minerals, such as amphibole, apatite
and phlogopite with high Rb/Sr (0.04–0.71) and K/Ti (3.77–
16.62) ratios relative to MORB- and OIB-like magmas, and
resulted in a positive correlation between Ba/Nb and La/Nb
ratios (Fig. 18a). Also, the high La (18.4–69.2 ppm) contents
and La/Yb ratios (9.5–34.6) reflect that the high-K magmas
may have been produced by small degrees of partial melting
of a subduction-metasomatized mantle source (Fig. 18b).

As illustrated in the143Nd/144Nd vs. 87Sr/86Sr diagram
(Fig. 19a), six lamprophyre samples plot on the mantle ar-
ray, defining a subduction component during the evolution
of their magmas. We also show in this diagram, for com-
parison, the Late Cretaceous–early Tertiary volcanic rocks
from the southern part of central Anatolia and the eastern
Pontides, and the Cenozoic volcanic units in western Anato-
lia (Alpaslan et al., 2004; 2006; Eyüboğlu, 2010; Altunkay-
nak and Dilek, 2006 and references therein). The relatively
high Pb (up to 34 ppm in some samples) and87Sr/86Sr con-
tents, as well as the Rb/Sr ratios (0.02–0.71) of the lampro-
phyre rocks, all indicate the effects of subducted oceanic
sediments added to the mantle melt source (Pearce and
Peate, 1995). In the206Pb/204Pb vs.208Pb/204Pb,206Pb/204Pb
vs. 207Pb/204Pb,87Sr/86Sr vs.206Pb/204Pb and143Nd/144Nd
vs. 206Pb/204Pb variation diagrams, the data points lie above
the Northern Hemisphere reference line (NHRL), and the ra-
diogenic isotope data fall close to the fields of MORB, en-
riched lithospheric mantle source (EMII) and oceanic sedi-
ments. These features collectively suggest that the magmas
of the lamprophyre rocks were derived from a MORB-like
mantle source that was enriched by subducted terrigenous
and carbonate sediments (Fig. 19b–e). However, the post-
collisional Late Cretaceous–early Tertiary volcanic rocks in
the Ulukışla basin in the southern part of central Anato-
lia have higher87Sr/86Sr and lower143Nd/144Nd ratios than
those of the lamprophyres in the Ankara Mélange, indicat-
ing an EMII with recycled, continent-derived material. The
Late Cretaceous high-K volcanic rocks representing active
continental margin arc units in the eastern Pontides with
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Fig. 18. (a)Ba/Nb vs. La/Nb diagram for the high-K island arc rocks. The data for N-MORB, OIB and PM are from Sun and McDonough
(1989). (b) La/Yb vs. La diagram for the island arc rock units, illustrating the effects of partial melting and fractionation in their melt
evolution.

low 87Sr/86Sr reflect a mantle source enriched by continen-
tal crustal rocks. The143Nd/144Nd, 87Sr/86Sr, 206Pb/204Pb,
208Pb/204Pb and207Pb/204Pb values reflecting subduction en-
richment and crustal contamination of the source of the post-
collisional, middle Eocene volcanic units in central Anato-
lia and the Tertiary volcanic suites in western Anatolia have
been explained by slab breakoff-induced asthenospheric up-
welling and associated partial melting of the orogenic litho-
spheric mantle (Alpaslan et al., 2004, 2006; Altunkaynak
and Dilek, 2006, 2013; Dilek and Altunkaynak, 2007; Ke-
skin et al., 2008; Gündŏgdu-Atakay, 2009; Sarifakioglu et
al., 2013).

The depletion of HFSE with respect to LREE enrichment,
and high LILE/HFSE and radiogenic isotope ratios suggest
that the high-K shoshonitic rocks are likely to have formed
by small degrees of partial melting of a lithospheric mantle
modified by slab-derived hydrous fluids.

7.2 Tectonic model

The Ankara Mélange displays a heterogeneous structural ar-
chitecture containing oceanic and crustal rocks with differ-
ent internal structure, stratigraphy and geochemical compo-
sitions. The oldest ophiolitic rocks in the Ankara Mélange
appear to have formed in a SSZ setting within the northern
Tethys around 180 Ma (Dilek and Thy, 2006; Sarifakioglu et
al., 2011). The∼ 80 Ma (80.3± 7.6 Ma) ophiolitic rocks in
the same mélange also indicate that oceanic crust formation
in the northern Tethys was still in operation in the Late Cre-
taceous (Table 1).

We obtained Middle–Upper Triassic biostratigraphic age
data from the neritic limestones that are spatially associ-
ated with the seamount volcanic rocks, indicating that an
oceanic lithosphere of the Late Triassic and older ages
must have existed in this ocean to make up the substra-
tum of the seamounts. Thus, we know that the northern
branch of Neotethys was already a wide-open ocean with its
MORB-type oceanic lithosphere between the Pontide block

to the north and the Anatolide–Tauride micro-continent to the
south in the Early Triassic (or even before). The ophiolitic
mélange units in the Kırıkkale–Ankara–Çankırı–Çorum area
are unconformably overlain by basal volcanic conglomerates
of an arc origin. The overlying volcano-sedimentary units
contain clayey- and sandy-limestone, limey sandstone, and
sandstone–claystone alternating with volcaniclastic rocks.
These rock types and their internal stratigraphy suggest
their deposition in a frontal arc–forearc basin. The clayey-
limestones are intruded by dikes and sills and have late San-
tonian and Campanian–Maastrichtian ages based on their
fossil contents (Sarifakioglu, unpublished data). The radio-
metric age data from an alkaline basaltic rock (YK.4) and a
syenodiorite intrusion (YK.438) give ages of 67.8± 4.9 Ma
and 75.9± 1.3 Ma, respectively (Table 4a and d), constrain-
ing the timing of intraoceanic arc magmatism at the latest
Cretaceous.

In general, subalkaline (tholeiitic and calc-alkaline) vol-
canic arc rocks occur in the northern part of the study area,
whereas the younger alkaline volcanic and plutonic rocks
are in the south. We interpret this spatial and temporal re-
lationship to have resulted from a southward progression of
the arc magmatism from subalkaline to alkaline affinities
through time due to arc rifting above the southward retreating
Tethyan subduction system (Fig. 20). We therefore think that
the arc-related late alkaline dikes and plutons were emplaced
on and across the evolving subduction–accretion complex
above the north-dipping, southward-rolling Tethyan slab.

The high-K and shoshonitic Eocene dikes and lavas in
the Ankara Mélange formed from melts derived from partial
melting of the metasomatized arc mantle that was triggered
by the influx of slab breakoff-induced asthenospheric flow.
This slab breakoff was a result of an arc–continent (Central
Anatolian Crystalline Complex – CACC) collision, followed
by the continent–continent collision (Sakarya and CACC) in
the early to middle Eocene.
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Fig. 19. Isotope variation diagrams for the Upper Cretaceous–lower Paleocene high-K island arc rocks.(a) 143Nd/144Nd vs. 87Sr/86Sr
diagram.(b) 206Pb/204Pb vs.208Pb/204Pb diagram.(c) 206Pb/204Pb vs.207Pb/204Pb diagram.(d) 87Sr/86Sr vs.206Pb/204Pb diagram.(e)
143Nd/144Nd vs.206Pb/204Pb diagram. Compositional fields for the upper and lower crust, MORB (mid-ocean ridge basalt), HIMU (enriched
mantle in U and Th relative to Pb), OIB (ocean island basalt), EMI (enriched mantle I) and EMII (enriched mantle II) are from Zindler and
Hart (1986). The field for oceanic islands is from White (1985). NHRL= Northern Hemisphere reference line.

8 Conclusions

1. Blocks of Middle–Late Triassic seamount and
upper Permian metamorphic rocks occurring in
the Ankara Mélange represent an intraoceanic
subduction–accretion complex that developed in the
northern Neotethys during the late Paleozoic through
Cretaceous.

2. Thrust sheets and/or megablocks containing SSZ ophi-
olite units with Liassic and Cretaceous ages were

incorporated into this subduction–accretion complex
during the early Late Cretaceous.

3. The Late Cretaceous tholeiitic to calc-alkaline vol-
canic rocks are the products of an intraoceanic is-
land arc system. The tholeiitic and calc-alkaline arc
rocks show enrichment in incompatible elements due
to the influence of slab-derived fluids. The shoshonitic
arc rocks representing the latest stage of island arc
magmatism were produced by partial melting of a
subduction-enriched mantle source.
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Fig. 20.Sequential tectonic diagrams depicting the intraoceanic magmatic evolution of the Ankara Mélange in the northern Neotethys during
the Jurassic through Paleocene.(A) Suprasubduction zone generation of the oldest Neotethyan oceanic crust (∼ 180 Ma) in the upper plate
of a north-dipping intraoceanic subduction zone, and seamount construction (SM1 and SM2) in the down-going oceanic plate. High-grade
metamorphic rock blocks and turbiditic sandstone–mudstone sequences in the Ankara Mélange formed in the subduction channel (blue)
and then the accretionary prism formed.(B) Accretion of seamount-1 (SM1) into the accretionary complex and related deformation in the
subduction–accretion system.(C) Slab rollback and associated extension and SSZ oceanic crust formation (∼ 85–80 Ma) in the upper plate,
accretion of seamount-2 (SM2) into the accretionary complex, and the lateral growth and deformation in the subduction–accretion system.
(D) Island arc construction and magmatism on and across the preexisting SSZ oceanic lithosphere and the subduction–accretion complex
(i.e., Ankara Mélange units). With continued slab retreat, arc magmatism shifts southward, following the migrating trench, and becomes
more alkaline in time, producing lamprophyric and syenodioritic intrusions. See text for further explanation.
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Sunu, O., Soysal, T., Dağer, Z., Çatal, E., Sözeri, B., Yıldırım,
H. and Hakyemez, Y.: Fundamental geological characteristics of
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basin, Nigde Province, Central Anatolia, Turkey, J. Asian Earth
Sci., 27, 613–627, 2006.
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