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ABSTRACT 
In the analysis and design of functional clothing 
systems, it is helpful to quantify the effects of a 
system on a wearer’s physical performance 
capabilities. Toward this end, a clothing modeling 
framework for quantifying the mechanical 
interactions between a given clothing system design 
and a specific wearer performing defined physical 
tasks is proposed. The modeling framework consists 
of three interacting modules: (1) a macroscale fabric 
mechanics/dynamics model; (2) a collision detection 
and contact correction module; and (3) a human 
motion module. In the proposed framework, the 
macroscopic fabric model is based on a rigorous 
large deformation continuum-degenerated shell 
theory representation. Material models that capture 
the stress-strain behavior of different clothing fabrics 
are used in the continuum shell framework. The 
collision and contact module enforces the 
impenetrability constraint between the fabric and 
human body and computes the associated contact 
forces between the two. The human body is 
represented in the current framework as an 
assemblage of overlapping ellipsoids that undergo 
rigid body motions consistent with human motions 
while performing actions such as walking, running, 
or jumping. The transient rigid body motions of each 
ellipsoidal body segment in time are determined 
using motion capture technology. The integrated 
modeling framework is then exercised to quantify the 
resistance that the clothing exerts on the wearer 
during the specific activities under consideration. 
Current results from the framework are presented and 
its intended applications are discussed along with 
some of the key challenges remaining in clothing 
system modeling. 
 
INTRODUCTION 
Soldiers rely on clothing (a term used herein to 
include uniforms, body-armor systems, nuclear-
biological-chemical war-suits, space suits, etc.) for 
protection against adversities and threats such as cold 
weather, ballistic projectiles, radiation, chemicals, 
and biological agents. While clothing systems 

provide protection, it has been well established that 
they can also adversely impact human mobility and 
comfort in performing physical tasks. For example, if 
the clothing binds on the wearer’s joints, it can 
restrict motion or make the performance of necessary 
tasks much more difficult. Alternatively, if the 
clothing does not permit heat to be conducted or 
convected away from the body, the wearer can suffer 
heat-induced fatigue or stroke. A recent study by 
Rahmatalla et al. (2006) found that the stability of 
human motion can be significantly affected by 
clothing restrictions, which eventually causes wearers 
to change their strategies for accomplishing physical 
tasks.  
 
The design of functional clothing involves tradeoffs 
between protection from the adversities noted above 
and maintained human performance. To facilitate the 
design process, it is desirable for clothing system 
designers to have a modeling tool that can 
realistically evaluate different designs by quantifying 
the protection they afford and the impact that they 
have on human performance. To achieve this goal, it 
is necessary that the clothing be mathematically 
characterized and modeled in a way that permits 
interaction with digital human models. In this report, 
a clothing modeling framework for quantifying the 
mechanical interactions between a given clothing 
system design and a specific wearer performing 
defined physical tasks is proposed and described. The 
framework consists of three interacting components: 
(1) fabric mechanics/dynamics modeling; (2) 
collision detection and contact computation; and (3) 
digital human modeling. A nonlinear shell theory 
treatment based on continuum mechanics and 
dynamics is adopted to represent the fabrics. The 
collision and contact module enforces the 
impenetrability constraint between the clothing 
system and digital human models and computes the 
mutual contact forces between the two. While the 
clothing modeling framework will eventually be 
integrated with intelligent and autonomous digital 
human models, the human models described in this 
report are generated by treating the body as a system 
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of rigid ellipsoids whose dynamic motion is driven 
by motion capture data. Putting the entire framework 
together, the clothing is first draped onto the human 
model’s form. Then, as the human form goes through 
prescribed motions, the contact forces between the 
draped clothing and the model are computed. The 
contact forces between the wearer and the clothing 
are then integrated over space and time to quantify 
the resistance that the clothing exerts on the wearer 
during the specific activity considered.  
 
REVIEW 
As shear-flexible materials, clothing fabrics develop 
complex configurations with complicated wrinkling 
patterns when draped onto objects or the human 
body. It is a challenge to mathematically model 
clothing mechanics and to make sense of the apparent 
disorder in the fabric response to draping. In this 
section, some key preceding works on fabric 
modeling are briefly reviewed and classified. The 
preceding works on mathematical modeling of 
clothing fabrics essentially break down into two 
alternative frameworks: (1) particle-based methods in 
which the fabric is directly discretized into a system 
of springs and masses; and (2) surface-based methods 
in which the fabric is treated as an elastic continuum. 
 
Particle-Based Methods 
Particle-based methods treat fabrics as a discrete 
dynamic system composed of mass points or particles 
that interact through a system of interconnected 
membrane and bending springs. The coupled 
equations of motion for all of the “particles” are 
integrated in time using explicit and implicit 
algorithms. Simple as they are, such particle methods 
can generate visually realistic clothing animations 
and thus have been widely applied in computer 
graphics and movie-making. 
 
A representative work in particle methods is the 
mass-spring cloth model proposed in 1995 by Provot 
(1995) wherein the fabric is modeled as an array of 
mass particles inter-connected by linear springs of 
three different types: structural, shear, and flexion 
(Figure 1), which characterize the in-plane 
stretching, in-plane shear, and out-of-plane bending 
behaviors, respectively. Structural springs connect a 
particle with its direct neighbors along two 
perpendicular axes, which are usually aligned with 
warp and weft yarn fabric directions, while shear 
springs connect a particle with its neighbors in the 
diagonal directions. Flexion springs also act along the 
two perpendicular yarn axes but each connects every 
other particle. Cloth drape is solved by an explicit 
time integration of the system. Since the step size of 
the integrator is inversely related to the spring 

stiffnesses, compliant springs were used, which 
resulted in some unrealistic overstretching of the 
fabric model. To address this issue, Provot (1995) 
proposed a heuristic method to adjust particle 
positions to account for overstretched springs. An 
extension of the mass-spring model was proposed by 
Choi and Ko (2002), who considered fabric buckling 
and included it in the formulation of the bending 
springs. In their model, a bending spring is treated as 
a buckling column with both ends pinned, and a 
nonlinear force-compression relation was derived. 
 
 

 
 
Breen et al. (1994a, 1994b) incorporated 
experimental fabric mechanics results into their 
particle modeling framework that accounts for four 
different types of mechanical interactions between 
particles: (1) repulsion, (2) stretching, (3) bending, 
and (4) in-plane shear. Each type of particle 
interaction is governed using an independent 
nonlinear energy function. Draping configurations of 
fabrics were computed by minimizing the total 
potential energy of the whole system. The specific 
energy functions of bending and in-plane shear were 
based on experimental data obtained from Kawabata 
Evaluation System for Fabrics (KES-F) (Kawabata, 
1980). As the internal forces between particles are 
computed from the spatial derivatives of the energy 
functions, the model can be reformulated as a 
generalized mass-spring model with nonlinear 
internal forces. The particle-based models of 
Eberhardt et al. (1996) were similar to those of Breen 
et al. (1994a, 1994b) with the exception that the 
internal energy functions were differentiated 
symbolically, yielding Lagrangian equations of 
motion for each particle. The resulting differential 
equations were solved by a Runge-Kutta method with 
adaptive step-size control. The strain energy 
functions for bending and in-plane shear were based 
on experimental data, and fabric hysteresis was 
included by constructing piecewise linear 
approximation to experiment curves such as those in 
Figure 2. 
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Figure 1. The mass-spring cloth model of Provot (1995). 
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Figure 2. Schematic of different material responses of fabrics. 

 
 

The particle-based modeling works cited above and 
numerous other similar works not referenced here are 
notable for being able to create visually realistic and 
wrinkled draping configurations of clothing and 
fabrics. Relatively simple as they are, and yet able to 
capture the complicated draping configurations of 
fabrics, particle methods yield helpful insights on 
issues of fabric modeling. Nevertheless, particle-
based modeling of fabrics does have a major 
shortcoming, and this is that the fabric is directly 
discretized into a system of lumped masses and 
springs. In essence, the fabric is treated as a fish-net 
where the strings and their spacings do not 
correspond to the yarns that comprise the fabric. As 
the spatial “fish-net” discretization of a garment is 
refined, the masses and spring stiffnesses must be 
adjusted accordingly, and this is not necessarily a 
trivial matter when dealing with fabric patches of 
irregular shape and size. The vague physical meaning 
of spring stiffnesses in particle methods also makes it 
difficult to translate between fabric spring forces in 
such models and the actual stress level in the fabric 
being modeled. Ad-hoc assumptions can and have 
been made to answer these types of questions, but 
particle methods lack the rigor of continuum-based 
methods wherein the relation between forces in the 
fabric model and fabric stresses and strains is handled 
both rigorously and straightforwardly. 
 
Continuum Surface-Based Methods 
Unlike particle-based methods, surface-based 
methods take the local equilibrium of a continuum as 
the point of departure. Models are derived using well 
established computational techniques, such as 
approximation of spatial derivatives using finite 
difference methods, or approximation of the solution 
space using linearly independent nodal basis 

functions as in the finite element method. Continuum 
surface-based methods are generally more rigorous 
than particle-based methods, both mathematically 
and mechanically, since the relation between the 
continuum properties and forces/displacements in the 
discretized model is based on exact spatial 
integration. While continuum surface-based methods 
have a more rigorous foundation than particle-based 
methods, the implementation of continuum surface-
based methods is more involved. Furthermore, since 
continuum surface-based methods are continuously 
performing spatial integrations of stresses and strains, 
such methods are more computationally intensive 
than particle-based methods, which do not require 
any spatial integration at all. 
 
While particle-based methods have been more 
prevalent in mathematical clothing modeling over the 
past two decades, a number of works have utilized 
continuum surface methods. To create animations of 
deformable bodies in computer graphics, 
Terzopoulos et al. (1987) started with the local form 
of the Lagrangian equation of motion for a 
hyperelastic medium, which was then approximated 
over a regular mesh using finite difference operators. 
A set of second-order ordinary differential equations 
was obtained and solved by implicit time integration. 
This framework was extended by Terzopoulos and 
Fleischer (1988) to allow for inelastic material 
behaviors. This framework was later extended by 
Carignan et al. (1992) for cloth and garment 
simulation on virtual humans.  
 
In 1991, Collier et al. showed that fabric drape can be 
predicted using nonlinear shell finite element models. 
The draping of a circular piece of cotton plain-weave 
fabric was modeled with 4-node bilinear plate-shell 
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elements and the results were compared with 
experimental drape results (Chu et al., 1950; Cusick, 
1968). The fabric was modeled first with isotropic 
and then orthotropic linear elasticity by Collier et al. 
(1991), and it was discovered that orthotropic 
elasticity with very high shear compliance is more 
appropriate for plain-weave fabrics. Three input 
parameters were needed for the orthotropic model, 
the tensile moduli in the two yarn family directions, 
which were measured using KES-F system, and the 
Poisson’s ratio, for which literature values were used. 
An interesting effect reported was that the computed 
shape of the draped fabric was sensitive to the 
Poisson’s ratio. A number of similar studies were 
reported in the mid 1990s by Gan et al. (1995) and by 
Chen and Govindaraj (1995, 1996), who modeled the 
fabric with continuum degenerated shell elements. 
The constitutive relationship used to represent the 
fabric was orthotropic linear elasticity in which the 
Young’s moduli and the shear moduli were obtained 
by KES-F and the Poisson’s ratio was determined 
from tensile tests. Chen and Govindaraj (1995, 1996) 
found that the elastic fabric moduli obtained in the 
low strain range of Kawabata tests gave realistic 
drape configurations. 
 
Deviating from continuum degenerated shell 
elements, Eischen et al. (1996) modeled fabric 
draping with the geometrically exact resultant shell 
theory described by Simo and Fox (1989) and Simo 
et al. (1989, 1990). An isotropic elastic material 
model with a nonlinear moment/curvature 
relationship derived from the KES-F system was 
used. Quasi-static simulations of fabric drape and 
handling were performed and an arc-length 
controlled solution technique was utilized to treat 
instabilities due to fabric buckling. The contact 
between fabrics and rigid surfaces was considered 
and the non-penetration constraint enforced by a 
penalty method. 
 
Since the current work is aimed at accurate and 
physically realistic modeling of clothing interactions 
with the human body, the continuum surface 
approached is adopted for modeling clothing in this 
effort. As noted previously, such a framework is both 
mathematically and mechanically rigorous and 
provides a clear relationship between fabric stress-
strain relations and the forces/displacements in the 
discretized model. If the intent of this work were 
simply to generate somewhat realistic videos of 
clothing draped on animated virtual humans, then a 
particle-based fabric modeling approach would be 
adopted instead in favor of its relative simplicity and 
computational efficiency.  A continuum degenerated 
shell approach is taken so that material constitutive 

models capturing realistic stress-strain behaviors can 
be employed.  A continuum degenerated shell 
framework is very similar to a three-dimensional 
continuum mechanics framework in which stress-
strain constitutive models are employed with the 
exception that the special kinematics of a shell are 
enforced.  Alternatively, in resultant shell 
frameworks [Eischen et al (1996); Simo et al (1989, 
1990)] one uses constitutive models in terms of the 
shell resultants (i.e. moment-curvature relations). 
 
CLOTHING MODELING FRAMEWORK 
 
Fabric Modeling Module 
 
Nonlinear continuum degenerated shell finite 
element formulation. 
The governing continuum equations of motion in a 
Lagrangian description can be written as follows, 
using standard continuum mechanics notation 
(Eringen, 1981): 
 

000, Ω∈∀=+   ubP iiJJi X&&ρρ    (1) 

 
where  is the reference configuration and  is 
the first Piola-Kirchhoff stress tensor. If tractions 

0Ω JiP
0
it  

are applied to the system on , then 0 itΓ

 00
iJiJ tPn = thereon. Furthermore, if prescribed 

displacements are applied to the system on , then 0
uiΓ

 ii uu = thereon. Introducing a kinematically 
admissible variational displacement field uδ  on , 
the weak form corresponding to Eq. (1) is obtained as 

0Ω

 
∫ Ω−∫ Γ+∫ Ω=∫ Ω
ΩΓΩΩ 0

00
0

0
0

0
00

0
0, duudtudbudPu ii

it

iiiiJiJi &&ρδδρδδ  

(2) 
 
The left side of the preceding is the virtual work done 
by internal stresses, which is denoted asδ and it 
can be verified that 

intW , 

 
∫ Ω=∫ Ω=
ΩΩ 0

02
1

0
0 dSCdPFW IJIJJiiJ

int δδδ   (3) 

 
where  is the deformation gradient, 

 is the right-Cauchy-Green deformation 
tensor, and  is the 2nd Piola-Kirchhoff 
stress tensor, which is symmetric. 

Jiij xF ,=

kJF

=IJS

kIIJ FC =

1−
JkIk FP

 
The geometrical description of a shell, following 
Hughes (1987), has the initial global position vector 
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of a material point ( )ζηξ ,,  in a shell element that is 
defined by the following interpolation: 
 

∑+∑=
==

nen

A
AAA

nen

A
AA zNN

11

ˆ)X ) (),(),(),,( XX ζηξηξζηξ      (4

where in accordance with Figure 3, AX  is the ini

position vector of node  is the fiber director  

tial 

A; ˆ
AX 1

emanating from node A in the fiber direction; ( )ζAz  

is a thickness function; ( )ηξ ,AN  denotes a t
dimensional shape function associated with node A; 
and nen is the number of element nodes. At each 
node, a local fiber coordinate system 

wo-

( )f
A

f
A

f
A 321 ,, eee  

nd nodal rotations are specified with 
respect to the frame. In the initial configuration, f

A3e  

is chosen to coi e with the fiber direction AX̂  and 
the other two legs e constructed using the algorithm 
given by Hughes 987). The updated configuration 
of the shell is defined in a similar manner as 
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where Ax  and  denote the current nodal position 

er or

al quantities are 
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For finite deformation, these nod
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re 
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 the n lation and R  is an 
orthog  transformation describing a finite r ation 
of the dal fiber director. As Eq. (6) sugge s, the 
vector Ax̂ is obtained by rotating AX̂  by an angle 

ot
st

θ  
about an axis defined by unit vector n. According to 
Euler’s theorem, the rotation matrix in Eq. (6) can be 
written as 
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2 θΩθΩIθR
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with 
 

                                                 

 and 

1 To avoid confusion, the term “fiber director” is standard in shell 
mechanics and indicates the orientation of a material segment 
passing through the thickness of the shell.  It does not refer to fiber 
directions in the clothing fabrics being modeled herein.  Similarly, 
the “local fiber coordinate system” is also standard terminology in 
shell mechanics and does not refer in any way to fiber orientations 
in the clothing. 
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The fiber director tip, i.e., ˆˆ ˆA A A= −u x X is 
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which recovers the infinitesimal rotation case 
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f
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onsidering the shell kinematic relations of Eqs. (4) C
through (7), the shell configuration is a nonlinear 
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as the constituent yarn properties, the weave patterns, 
the geometry of yarn structures, and the interactions 
of interwoven yarns, affect the overall material 
properties of fabrics. As a result, the material 
properties of fabrics can be extremely complex. 
Nonlinearity, anisotropy, and hysteresis are generally 
observed. A typical load-stretch curve of a biaxial 
extension test of fabrics was shown in Figure 2a, 
which can usually be obtained by Kawabata 
Evaluation System for Fabrics (KES-F) (Kawabata, 
1980). The initial part of the curve is relatively 
compliant, and it corresponds to yarn decrimping, 
i.e., the curvatures of yarns decreasing as the yarns 
are being straightened by tension. Then the fabric 
shows a much stiffer response as the yarns are 
actually stretched after they have been straightened. 
In addition, since the numbers of yarns of the two 
families and their configurations are usually different, 
the tensile behaviors of the warp and weft directions 
differ and exhibit anisotropy. Fabrics also exhibit 
hysteresis. A load-deformation curve of a fabric 
bending test is sketched in Figure 2b, from which 
one may notice that energy is dissipated when the 
fabric is subjected to a loading and unloading loop. 
Similar behavior can also be observed in the in-plane 
shear test as shown in Figure 2c. The dissipative 
feature of fabric is due to  friction between and 
within yarns as well as viscoelastic characteristics of 
the fibers. From Figure 2c, one may also notice that 
fabrics become stiffer when the shear angles increase. 
This is due to a phenomenon called locking, where 
yarns jam against each other and further loading 
induces deformation of yarns’ cross sections.  
 
To capture the complex fabric behaviors, mesoscale 

sor 

models with a resolution where yarn interaction is 
visible are needed, and computational 
homogenization techniques such as Swan and Kosaka 
(1997) should be utilized. Currently, research on this 
multiscale fabric modeling is being actively pursued 
by the authors. In this work, however, hyperelastic 
constitutive models, which are based on some 
simplifying assumptions yet amenable to the shell 
formulation, are adopted. For hyperelastic materials, 
a strain energy function ( )Cψ  exists, and the second 
Piola-Kirchoff stress ten S and the associated 
tangent elasticity tensor D can be derived from it as 
follows:  
 

( )
C
CS

∂
∂

=
ψ2 ;

CC
D

∂∂
∂

=
ψ24    (11) 

 
he tangent elasticity tensor D relates the change of S T

to that of C as CDS dd :2
1= . Different definitions of 

the strain energy ( )Cψ  can model materials 

varying from isotropic elas ty to fiber-reinforced 
composites (Spencer, 1984). For problems involving 
large displacements/rotations yet small strains, the St. 
Venant model provides a good approximation. The 
model, which is a simple extension of linear 
elasticity, is as follows: 
 

 function 
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( )1 :
2

= −S D C I
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y assuming that under normal wearing conditions 

ost shell theories enforce the so-called vanishing 

B
the strains in fabrics are small and linear, the model is 
used as a placeholder for the constitutive model of 
the fabric modeling module. The St. Venant model 
can feature anisotropy and can be easily incorporated 
in the nonlinear shell formulation.  
 
M
normal stress condition, which requires that the 
normal stress component acting on a lamina surface 
vanishes. Enforcing the constraint for general 
material models can be a nontrivial endeavor (Swan 
and Cakmak, 1994), so a corotational lamina basis is 
usually constructed at each quadrature point so that 
one base vector, say 3

le , is always orthogonal to the 

other two, le and le s the shell deforms, and the 
Cauchy stress com nent 

3 3 0lσ =  is invoked to 
condense the material tangen i (Belytschko et 
al., 2000; Hughes, 1987). In this work, a similar 
approach is adopted but is formulated using a 
Lagrangian description. A lamina basis 

1 2 , a
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t modul
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I I =E is constructed at each quadrature 

eference configuration, and the 
vanishing normal stress condition is specified in 
terms of the 2nd Piola-Kirchhoff stress as 33 0lS
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fabrics, transverse ear is negligibl and the 
condition 033 =

lS  closely enforces the vanishing 
normal stress constraint. 
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With finite element interpolation in Eq. (5), the weak 
form of the equation of motion can be transformed 
into a system of discrete nonlinear equations at a 
given time [ ]Tt ,0∈  as 
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where and are the internal and external force 
vectors, respectively, arising from the left and right 
sides of Eq. (6) and the term  is the inertial 
force vector. Specific expressions for the internal and 
external force vectors acting on a node A in the 
model are given as follows: 

intf extf

aM ⋅

 
∫ Ω=
Ω0

0, dSFHf IJkJ
A

Ik
int
A χχ  

and 
 

∫ Γ+∫ Ω=
ΓΩ 0

0
0

0
00

it

i
A
ii

A
i

ext
A dtHdbHf χχχ ρ , ( )  (14) 5,,2,1 K=χ

 
For quasi-static problems, the inertial forces can be 
neglected, although in clothing system modeling, 
inclusion of such effects tends to increase the 
robustness of the framework. When clothing is 
modeled quasi-statically by neglecting inertial terms, 
buckling and wrinkling instabilities of the fabric 
create numerical instabilities. Although continuation 
techniques (Riks, 1972) can help carry the analysis 
through points of instability, the robustness of the 
method is still inadequate. Hence, it is generally best 
to solve the clothing modeling problems as dynamics 
problems since the mass matrix helps maintain a 
positive definite tangent operator and stabilizes the 
system. Newmark’s time-integration method 
(Hughes, 1987) is used to advance the solution in 
time.  
 
Within the Newmark integration method, both 
explicit and implicit time integration algorithms can 
be used with appropriate selection of the two 
integration parameters. The pros and cons of the 
implicit and explicit time-integration schemes have 
been well studied in the literature (Belytschko et al., 
2000), so their discussion here is not necessary. 
However, one observation is that when contact 
computation is included in fabric modeling, the time 
step size of an implicit solution scheme may need to 
be reduced in order to maintain an effective tangent 
operator, which sometimes makes an explicit 
integrator a better choice. Such a situation is 
analogous to automotive crash simulations where 
explicit solvers dominate. 
 
Collision Detection and Contact Computation 
Module 
This module enforces the impenetrability constraint 
between clothing and a human model and computes 
the mutual contact forces between the two. 
Considering a contact pair designated as a slave node 
and a master surface segment, the impenetrability 

constraint requires the slave node not to penetrate the 
master segment2. It is mathematically stated as 
 

( ) 0s mg = − − ⋅ ≤x x n%    (15) 
 
where sx  is the position of the slave node;  is the 

closest projection of 
mx%

sx  onto the master segment; 
and n is the outward normal to the master segment at 
the point . The normal contact traction on the 
slave node, 

mx%
Nt=t n , is compressive and the 

condition is written as 
 

0Nt ≥    (16) 
 
In addition, as the contact pressure vanishes when 

0g < , the following condition must hold: 
 

0Nt g =    (17) 

 
Eqs. (16) through (17) are usually called the Kuhn-
Tucker conditions of the impenetrability constraint. 
The constraint can be enforced by defining the 
contact pressure as a penalty on the penetration as 
 

N Nt ε= g    (18) 
 
where ( ) 2/•+•=•  is the Macauley bracket function 

and Nε  is a penalty parameter. The penalty 

formulation is exact only when Nε →∞ . A major 
problem with the penalty formulation is to choose an 
appropriate penalty parameter. If the parameter is too 
small, unacceptable penetration is allowed, and a 
large penalty parameter can adversely affect the 
solution procedure. Especially for an explicit solution 
algorithm, a large penalty significantly reduces the 
critical step size of the time integrator.  
 
The impenetrability constraint can alternatively be 
enforced using the Lagrange multiplier method 
(Carpenter et al., 1991; Belytschko and Neal, 1991), 
which treats contact tractions as independent 
variables, namely Lagrange multipliers N Nt λ= , 
and solves the equilibrium simultaneously with Eq. 
(15). The discrete form of the problem can be written 
as  
 

                                                 
2 Here, the nodes that comprise the clothing model are referred to 
as “slave nodes” and the polygons that comprise the body surface 
of the human model are the “master segments.” 
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0

i n t T e x t ⎫+ ⋅ + ⋅ =
⎬

⋅ = ⎭

f M a G λ f
G x

  (19) 

 
where  is a vector collecting all Lagrange 
multipliers 

λ
Nλ and G is a contact constraint matrix, 

which is derived from Eq. (15) for a given surface 
discretization. For a master surface segment defined 
by a quadrilateral as shown in Figure 4, the 
projection point is a bi-linear nodal interpolation as  
 

( ), 1 , 2 , . . . 4m A m AN A= =x x%%   (20) 
 
where ( , )A AN N ξ η= %% %  is the shape function 
evaluated at the natural coordinates of the projection 
point. The contact constraint matrix associated with 
the contact pair reads  
 

1 2 3 4

1 2 3 4

1 2 3

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

N N N N
N N N N

N N N

⎡−
⎢= −⎢ ⎥
⎢ ⎥−⎣ ⎦

G

% % % %

% % % %

% % %
4N

⎥

%

⎤ (21) 

 
and the nodal unknowns are 
 

{ }1 2 3 4

TT T T T T
s m m m m=x x x x x x  

 
It can be verified that ( )s m g⋅ = − − =G x x x n%

)

. Eq. 
(19b) essentially specifies that the slave node is 
projected to point ( ,ξ η% %  on the master segment.  
 
 

 
 

Figure 4. Schematics of impenetrability 
 
 
Eqs. (19) are solved simultaneously for the deformed 
configuration and the Lagrange multipliers. For 
implicit solution methods, as the contact constraint 
matrix G is unknown a priori, a trial-and-error 
procedure is needed to determine the actual active 
contact constraints. Given a trial configuration, G is 
constructed for penetrating nodes and Eqs. (19) are 
solved with the trial G. If a Lagrange multiplier turns 
negative, which indicates a tensile traction, the 

problem is resolved by deactivating the associated 
constraint. The procedure is iterated until the actual 
contact surface is determined. 
 
For explicit solution methods, however, the contact 
surface can be directly determined by the projection 
of the overlapped volume of the two bodies updated 
by uncoupled integration, and no iteration is needed. 
It was shown by Belytschko and Neal (1991) that in 
this case the Lagrange multipliers are directly 
determinable and will have the correct sign. A 
‘forward increment Lagrange multiplier’ method was 
proposed by Carpenter et al. (1991) based on central 
difference integration. In their approach, a predictor 
state is first constructed using central difference time 
integration on both bodies neglecting contact forces, 
and then the Lagrange multipliers that enforce the 
impenetrability constraint of the predictor state are 
solved. Consider a time step from n to n+1. The 
equations considered are  
 

( ) ( )
( ) ( )

*

* 1 0

Tin t n n e x t

n +

⎫⎡ ⎤+ ⋅ + ⋅ = ⎪⎣ ⎦ ⎬
⎪⋅ + = ⎭

f d M a G d λ f

G d d X

 (22) 

 
where  
 

( ) ( )2* 1 2e x t in t n n nt 1− −⎡ ⎤= Δ ⋅ − + −⎣ ⎦d M f f d d d  (23) 

 
is a displacement predictor constructed following 
standard central difference integration as 
 

( )
( )1 1

2
1 2n n n

t
+ −= − +

Δ
a d d d n

n

 

 
with ( )1n e x t i n t− ⎡ ⎤= ⋅ −⎣ ⎦a M f f d

( )*

cd

, which excludes 

the contribution from potential contact forces. A 
contact constraint matrix is thus constructed based on 
the predictor state, i.e., G d . Assume that a 

corrector  is introduced such that  
 
 

1 *n c+ = +d d d  with 

( ) ( ) ( )2 2 1 * Tc ct t − ⎡ ⎤= Δ =− Δ ⋅ ⋅⎣ ⎦d a M G d λ. (24) 

 
 
Eq. (22) yields 
 

( ) ( ) ( ) ( ) ( )
1

2 * 1 * * *T
t

−
−⎡ ⎤= Δ ⋅ +⎢ ⎥⎣ ⎦

λ G d M G d G d d X (25) 

 
 

3mx

1mx

sx

mx%

2mx

4mxn
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Substituting Eq. (25) into Eq. (24), the displacement 
, which satisfies the impenetrability condition, is 

obtained. 

1n+d

 
According to the development presented above, a key 
component for contact computation is to determine 
the contact pair, i.e., collision detection. Depending 
on the geometric representation, the expense of 
collision detection varies. For a general mesh-to-
mesh collision detection, the master segment 
(polygon) that contains each slave node needs to be 
identified and the projection point needs to be 
computed as well. Three sub-problems, namely a 
global “nearest neighbor” search, a local master 
segment identification, and a point projection, are 
involved (Benson and Hallquist, 1990; Hallquist et 
al., 1985). A brute force search for nearest neighbors 
has a complexity of , provided that each 
mesh has N nodes. If the relative sliding of the 
contact parts is small, locality can be utilized to 
reduce the expense by lowering the number of 
searching candidates. However, such a technique is 
not applicable to a highly distorted surface, such as a 
wrinkling cloth, as the locality assumption is broken. 
In addition, the local search for the master segment 
containing a given slave node also takes a large 
amount of computation time. For these reasons, 
efficient contact detection algorithms still remain a 
challenging research topic and are being actively 
pursued, especially in the computer science 
community. A noticeable work has been reported by 
Govindaraju et al. (2005), where collision between 
complex deformable objects can be identified with 
interactive rates by utilizing special data structures 
and graphics hardware. 

2(O N )

 
In this work, a collision detection algorithm based on 
implicit surfaces is  adopted for simplicity with the 
understanding that a more sophisticated and general 
mesh-to-mesh collision detection component, such as 
that of  Govindaraju et al. (2005), will be substituted 
in later. An implicit surface is defined as the set of 
points in three-dimensional space that satisfy a  scalar 
function .  In mathematical terms 

ℑ

( ) 0f =x

{ }.
cx

3r

0) ==ℑ x

21 ,ˆ,ˆ ee 21 ,, rr

(|3ℜ∈ xf

3ê

 As an example, an 

ellipsoid with centroid , orientation vectors 
, and radii  has the implicit surface  

 

( )
( )[ ]

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=−∑
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ ⋅−
=ℜ∈=ℑ

=
01

ˆ
|

3

1 2

2

3

i i

i
c

r
f

exx
xx  (26) 

 

A specific point y on the clothing model is 
determined to have penetrated the implicit surface ℑ  
when 0)( <yf  . The penetrating point must then be 
returned to the nearest point on the implicit surface 
ℑ .  When the human body surface is modeled as an 
assemblage of ellipsoids (Figure 5b), the 
computational cost for collision detection is 
minimized. Nevertheless, the ellipsoidal human 
surface model is only a gross representation and 
serves as a placeholder for higher-fidelity polygonal 
surface meshes of the human body (Swan, 2007) that 
will use efficient mesh-to-mesh collision detection. 
 
To simplify the clothing modeling computations, the 
ellipsoids are treated as rigid with their motions fully 
prescribed and thus independent of the clothing 
interaction. With the body motions fully prescribed 
the analysis problem is thus reduced to solving for 
the clothing model’s response to a set of captured 
motions.  For each time step of the clothing modeling 
problem, a kinematic predictor is constructed based 
on Eq. (23). Eq. (22b) essentially projects a 
penetrating slave node back onto the master surface. 
With an ellipsoidal surface, this can be done by 
finding the intersection of the gradient at the 
penetrating position with the surface. The corrector 
displacement  is thus determined and the 
Lagrange multiplier can then be obtained by inverting 
Eq. (24). It can also be assumed that since the 
kinematics description of the ellipsoidal surface is 
available, the post impact kinematics state of a 
penetrating slave node can be interpolated from that 
of the master surface based on non-resilient impact 
response. The assumption basically specifies that the 
clothing moves with the human body surface. 

cd

 
Human motion module 
The human model is grossly represented by an 
assemblage of rigid ellipsoids the kinematics of 
which are driven by human motion capture data.   
The human motions utilized in Section 4.2 were 
captured with an eight-camera Vicon® Motion 
Capture system that collects digital images at a rate 
of 200 frames per second.  The human subject on 
whom the motion capture is performed wears a black 
lycra suit with reflective plastic marker beads 
attached.  As the human subject performs a physical 
activity, the system’s cameras collect digital 
photographs.  The processor of the motion capture 
system then uses the digital images and triangulation 
to calculate the location of each marker to a precision 
of approximately 1mm at the instant of each captured 
frame.  From the locations of the markers, the 
location time histories of joint centers (knees, hips, 
angles, etc) are then constructed. 
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As each ellipsoid is treated as a rigid entity, the space 
it occupies at any instant in time is determined by the 
location of the centroid as well as the orientation and 
radii of the ellipsoid. This information is obtained 
from the location history of two joint centers that are 
diametrically opposed points  and , and the 
location history of an auxiliary marker position M 
(Fig. 5a). The centroid and the orientation basis of 
the ellipsoid at any instant in time are then 
constructed as follows: 

1J 2J

 
 

centroid: ( 212
1 JJx +=c )   (27a) 

 
orientation:  

( ) ( )[ ]
( ) ( )[ ] 213
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Figure 5. Representation of the human body with an assemblage of 
rigidly translating, rotating, and overlapping ellipsoids 
 
RESULTS 
Based on the proposed computational framework, the 
mechanical interactions between clothing and a 
wearer can be quantified. A general procedure is as 
follows: Given wearer’s motions, the contact 
tractions between clothing and human body surfaces 

are solved and the stresses and the strains in clothing 
fabrics are determined as well. These mechanical 
quantities are then related to certain predefined 
restriction measures, such as joint torque or energy 
expenditure, to quantify the effect of clothing on the 
wearer for the given motion. Currently the motion is 
prescribed and is assumed to be independent of the 
clothing restrictions. 
 
In the following section, some examples are 
presented to illustrate the methodology. The 
restriction measure adopted here is the torque exerted 
by clothing on a given joint. It is computed as 
follows.  
 

( )i i
i A J∈

= − ×∑τ x J λ    (28) 

 
where  is the position of a clothing node;  is the 
nodal contact force vector acting on the human body; 
J denotes the instantaneous coordinates of the joint 
center; and AJ is the set of nodes that contribute to 
the torque on the joint J under consideration. The 
composition of AJ needs further study to determine 
which portions of the clothing exert meaningful 
torque on each joint. A schematic about the joint 
torque computation is given in Figure 6. 

ix iλ

 

 
 
Figure 6. Computation of torques exerted by the clothing about the 

joint centers 
 
Arm-Sleeve Interaction Study 
In this example, the interaction between an arm 
represented by two rigid ellipsoids and a cotton 
sleeve is studied. The forearm ellipsoid has radii 
( ) while the upper arm 
ellipsoid has radii  ( ).  The 
motion considered is to flex the forearm about the 
elbow joint while keeping the upper arm fixed. The 
torque exerted by the sleeve about the elbow joint is 
calculated. The sleeve is modeled as a cylindrical 
tube with length 

mr mrr 3 20.0,06.021 ===

r1 mr mr 3 15.0,06.02 ===

0 . 5L m= , radius 0 . 0 6R m= , 
and thickness 1t m m= . Boundary conditions are 
specified to restrain the motion of fabric nodes 
around the shoulder. The upper- and fore-arms are 
modeled as two ellipsoids, one fixed in space and the 
other rotating about the elbow joint with a constant 

iλ
ix

τ

J

1J

2J

M

cx

2ê

1ê

3ê
 
(a) re-constructing the motion of each ellipsoid using 
motion capture data that records for each ellipsoid the 
position histories of points J1, J2, and M 

(b) a lower-body walking model 
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angular velocity. The total rotation angle is 57° 
before severe clothing self-contact occurs and the 
computations are stopped.  
 
A plain-weave cotton fabric at low tensile stresses 
(less than 1 MPa) tends to have a very small Young’s 
modulus due to the crimp in the yarns and is denoted 
here as “crimped cotton.”  At higher tensile stresses 
as the yarns become taut, the Young’s modulus of the 
fabric increases dramatically and approaches the 
product of the cotton fiber modulus (7.9 GPa) and the 
volume fraction of fibers running in the direction of 
interest.  When modeling crimped cotton fabric a 
very low Young’s modulus  is 
employed in the warp and weft directions, while a 
low shear modulus G=0.1 MPa is selected to capture 
the high shear compliance of the fabric. If it is 
assumed that the cotton fiber volume fraction in the 
fabric is roughly 30 %, then a suitable approximation 
for the mass density of the fabric would be 30% that 
of cotton fibers.  Accordingly a nominal mass density 
of the plain-weave cotton fabric has been selected as 
436 kg/m3.   For plain-weave cotton at stresses above 
about 10 MPa, the yarns become taut and we refer to 
the fabric as “de-crimped.” A representative Young’s 
modulus of 350 MPa is employed in the warp and 
weft directions for de-crimped cotton, which is 
roughly 4.4% of the fiber modulus.  The shear 
stiffness and mass density of the fabric are assumed 
to remain unchanged. 

1 . 2E M P= a

 
To model friction between the clothing and the body, 
simple Coulomb friction with a constant coefficient 
of friction μ  is employed.  It is acknowledged that 
such a treatment of friction is highly simplistic and 
only begins to capture the rich complexity of 
frictional interactions that occur between clothing 
and the human body surface.  Due to the uncertainty 
in the coefficient of friction between clothing and 
skin of the body, values within the range of 

 are employed in this study. [ 5.0,1.0  ∈μ ]
 
Convergence study. 
The convergence behavior of the model in terms of 
mesh refinement is investigated. Four models of 
crimped cotton sleeves and friction coefficient 

1.0=μ with varying mesh densities (Figure 7) are 
constructed and then resistance torque versus rotation 
angle curves are computed (Figure 8). It is found that 
the curves deviate slightly but follow  a similar trend 
of reduced resistance with increasing refinement. A 
comparison of the computed deformations (Figure 9) 
shows that finer meshes capture local fabric buckling 
(wrinkling), which may not occur on the coarser 
meshes. The finding of increasing localized fabric 

wrinkling with increasing mesh refinement indicates  
potential instability of the system. The same 
convergence study was conducted with a higher 
friction coefficient 0 .5μ = , and a more defined 
convergence behavior of the resistance torque is 
observed (Figure 10). As shown in the deformed 
configurations (Figure 11), higher friction between 
the arm and the sleeve prevents the sleeve from 
falling down onto the elbow joint and thus reduces 
the amount of wrinkling that occurs at the elbow. 
Comparison of Figures 8 and 10 indicates that 
clothing resistance torques increase very significantly 
with higher friction between the arm and sleeve. 
 
Friction. 
The friction between clothing and human body 
surface is an important factor affecting the interaction 
of the two. For a crimped cotton sleeve model with a 
well-refined mesh, the low friction case ( 0 .1μ = ) is 
compared with a high friction case ( 0 .5μ = ). It is 
found once again that in the low friction case the 
sleeve slips down as the forearm rotates upward. 
Alternatively, in the high friction case, the sleeve 
does not slide down the forearm. Snapshots of the 
sleeve deformation for both the low and high friction 
cases are shown in Figure 13 at two elbow flexion 
angles, and . It is noted once 
again that higher friction between the arm and sleeve 
translates to higher clothing resistance torque as 
indicated in Figure 13.  

3 7α = o 5 7α =

0 .07

o

 
Effect of Fit. 
To briefly study the effect of clothing fit on 
resistance, the radius of the sleeve tube is increased 
from R=0.06m to R m=  while the dimensions 
of the ellipsoidal arms remain the same.  The 
computed resisting torque exerted by the looser-
fitting sleeve (Figure 15) is significantly less than 
that of the tighter-fitting sleeve for elbow flexion 
angles greater than 20°. 
 
 
Effect of Fabric Thickness. 
Fabric thickness is another factor that can affect 
clothing-wearer interaction. A thicker fabric has 
greater mass and larger stiffnesses.  Membrane 
stiffnesses increase in proportion to the fabric 
thickness, while the bending stiffnesses increase in 
proportion to the thickness cubed.  Here, the 
thickness of the sleeve fabric is doubled to 2t m m=  
and the joint torque is compared with the original 
case where 1t m m= . All other properties remain the 
same, and a surface friction coefficient µ =0.5 is 
assumed. The computed torque resistance of the 
thicker fabric is roughly double that of the thinner 



fabric, which indicates that membrane rather than 
bending behavior of the sleeve is dominant.  

 

Mesh I: 10x13 elements Mesh II: 15x20 elements 

Mesh III: 20x26 elements Mesh IV: 30x39 elements 
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Figure 7. Sleeve models of increasing mesh refinement for convergence study 
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Figure 8. Computed clothing resistance torques about the elbow joint for a crimped cotton sleeve with varying mesh refinement; the Coulomb 
friction coefficient between arm and sleeve was 0 .1μ = . 
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Figure 9. Illustration of localized clothing wrinkling in the elbow joint with increasing mesh refinement (Low Friction 0 .1μ = ); meshes are 
shown at elbow flexion angle α=37° 
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Figure 10. Computed clothing resistance torques about the elbow joint for a crimped cotton sleeve with varying mesh refinement; Coulomb 
friction coefficient between arm and sleeve was 0 . 5μ =  

 
 

 
 
 
Figure 11. Local buckling is less sensitive to mesh refinement for higher arm-sleeve friction coefficient 0.5μ = . Meshes are shown at elbow 
flexion angle α=37°. 
 
 

 
 
 
Figure 12. Sleeve deformations for crimped cotton fabric and different friction coefficients 
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Figure 13. Clothing joint resistance torque exerted for different surface friction coefficients 
 
 

 

 
 
Figure 14. Deformed configurations of sleeves with different sleeve radii. 
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Figure 15. Computed resisting torques exerted by sleeves with different radii; the sleeve is compliant crimped cotton, and the skin friction 
coefficient is µ=0.5 
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Figure 16. Comparison of crimped cotton sleeve torque resistances with different fabric thicknesses. 
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Effect of Fabric Material Properties. 
The last variation of the arm-sleeve problem 
examined here focuses on the effect of fabric material 
properties. Three sets of material properties are 
examined, roughly corresponding to (I) a crimped 
cotton sleeve of thickness 1mm; (II) a taut de-
crimped cotton fabric of thickness 1mm; and (III) a 
de-crimped plain-weave Kevlar fabric of thickness 
1mm. 
 
Set I:    and ; 
Set II:  

1 .2E M P=
3 5 0

a 34 3 6 /K g mρ =
E M P a=

7 .2
 and ; 

Set III:  

34 3 6 /K g mρ =
E G P a=  and . 37 0 0 /K g mρ =

 
The shear compliance of fabrics significantly affects 
their drapeability. For all of the three material 
assumptions considered here, the shear stiffness of 
the fabric in each case is taken as 1/200th of the 
Young’s modulus in the yarn directions. Low surface 
friction µ =0.1 is assumed for all of the computations. 
The computed resistance torques for the three 
different sleeve materials are presented in Figure 17. 
A stiff response is observed for both material sets II 
and III, and then a compliant response follows after 
the rotation angle reaches about 15 . By tracking the 
deformation of the sleeve, it is found that before 
reaching an elbow flexion angle α=15  the sleeve 
response is governed by bending; after that, the 
sleeve literally slides down along the forearm. As 
would be expected, it is also observed that the 
resistance torque exerted by each sleeve is roughly 
proportional to the stiffness of the material. 

o

o

 

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60

Rot. Angle (Deg)

1.2MPa, 436Kg/m^3

350MPa,436Kg/m^3

7.2Gpa,700Kg/m^3

 
 
Figure 17. Comparison of sleeve torque resistance for types of 
fabrics. 
 
 
 
 
 

Interaction of Pants with Walking/Stepping Legs 
In this problem, a human subject walked four strides, 
with the third involving stepping over an obstacle 
0.5m in height. The motion of this human was 
captured with an array of eight infrared VICON 
cameras, and the motions were then mapped onto the 
assemblage of ellipsoids (Figure 5b) to make them 
walk. A pair of pants was then placed onto the human 
model (Figure 18) in the following sequence: (a) the 
feet of the human model were removed; (b) the pants 
of the human model were pulled up over the legs and 
pelvis; (c) the feet of the human model were then 
restored; and (d) the effect of a belt was created by 
tensioning the fabric at the waistline. With the 
garment on the human model, a simulation of the 
interaction between the pants and the lower body 
walking and crossing the obstacle was then 
undertaken (Figure 19). Two sets of pants were 
modeled, both made of compliant, crimped cotton. 
The first pair had a thickness of 1mm while the 
second had a thickness of 2mm. 
 
The resistance that the pants models exert on the legs 
as they undergo their fully prescribed motions was 
calculated by taking the contact forces exerted by the 
clothing on the legs at each instant of the simulations 
and computing their instantaneous moment 
magnitude about the knees.  Such computations are 
shown in Figure 20 for two pairs of cotton pants 
which are identical except for the fabric thickness.  
Not surprisingly, the thicker pants exert greater 
resistance torques than do the pants with the thinner 
fabric.  The computed torques about the right knee 
are due strictly to the pants at the knee level and 
below.  Contributions of the upper pant legs to the 
resistance have been neglected here.  Videos of these 
“walking pants” simulations are available at Swan 
(2007). 
 
 

 
 
 
Figure 18. Sequence for the human model to don a pair of pants. 
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Figure 19. Simulation of pants interacting with lower body striding and then stepping over an obstacle.  Numbers below each figure indicate the 
frame number of the simulation (c.f. Fig. 20) 
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Figure 20. Computed resistance torques exerted by two pairs of 
cotton pants of different fabric thicknesses about the right knee 
 
DISCUSSION and CONCLUSIONS 
A modeling framework has been presented for 
quantifying the resistance a given clothing system 
design will exert on a human model of a specified 
anthropometry performing a specific task, with the 
associated kinematics measured via motion capture. 
In the current framework, the anthropometry of the 
human is modeled rather approximately using rigid 
ellipsoidal segments.  Usage of more realistic 
polygonal body-surface models (Swan, 2007) based 
on laser body scans of human subjects can and will 
be used in subsequent applications of this framework. 
 
In the current examples, the motion of the human 
model is fully prescribed. It is realized that if the 
clothing system exerts significant resistance on the 
wearer tasked to perform a certain task, the wearer 
might actually change the strategy for accomplishing 
the task to reduce clothing resistance. Although such 
effects are not captured in the current framework, this 
is one of the key objectives of our research effort: to 

develop autonomous digital human models that can 
indeed adapt to the resistance they experience. 
 
Two alternative macroscale fabric modeling 
techniques have been implemented and tested in our 
clothing modeling framework: The first is a particle-
based method that begins with a discrete treatment of 
the fabric as a system of springs and masses. By 
experimenting with the spring stiffnesses and masses 
in such a modeling framework, simulations of 
clothing that appear visually realistic can be 
achieved. However, if the objective of the modeling 
is to realistically quantify the mechanical resistance 
that the clothing exerts on the wearer, visual realism 
alone will not be sufficient. For this reason, the 
continuum degenerated shell formulation 
implemented and tested in the current framework is 
somewhat more attractive to the authors. Specifically, 
one can insert realistic constitutive material models 
for fabrics and/or body armor segments into the 
continuum shell framework, thereby increasing the 
likelihood of calculating more realistic mechanical 
resistance parameters. Indeed, mechanical realism is 
paramount in a clothing modeling framework used in 
designing protective systems for defense and security 
applications. Due to the relative simplicity of the 
spring-mass particle method used herein, it might be 
especially useful to get the clothing system properly 
positioned on or donned by the digital human model. 
However, when the real activity of vital interest is 
performed, the framework can then switch over to the 
more realistic continuum shell treatment of the 
clothing. 
 
The results presented herein are intended to be 
demonstrative rather than definitive in nature to 
illustrate the nature of the clothing modeling 
framework.   In the current framework, clothing 
forces and torques exerted on a human model can be 
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quantified for different fabric types and garment fits.  
It follows that standard measures of clothing 
resistance, which can be computed within 
mathematical modeling frameworks such as that 
presented here, should be given careful consideration.  
Clearly, the net mechanical energy dissipated by 
clothing would be one good measure, but other 
measures could also be helpful. 
 
Within a mathematical modeling framework for 
functional clothing, one of the key challenges that 
remains to be addressed in a satisfactory manner is 
that of realistically modeling the fabric response 
characteristics in a way that captures the nonlinearity, 
anisotropy, and mechanical hysteresis of most 
functional clothing fabrics.  
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