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Abstract. Recent multi-spacecraft studies of solar wind dis- 1  Introduction
continuity crossings using the timing (boundary plane tri-
angulation) method gave boundary parameter estimates thdthe analysis of discontinuities in space plasmas has received
are significantly different from those of the well-established a lot of attention since the beginning of the space age. In
single-spacecraft minimum variance analysis (MVA) tech-the case of a planar discontinuity moving at constant veloc-
nique. A large survey of directional discontinuities in Cluster ity, its orientation can be estimated from magnetic field mea-
data turned out to be particularly inconsistent in the sensesurements using thainimum variance analysis (MVAgch-
that multi-point timing analyses did not identify any rota- nique Sonnerup and CahjllL967 Sonnerup and Scheible
tional discontinuities (RDs) whereas the MVA results of the 1998 based on the conservation law for magnetic flux. The
individual spacecraft suggested that RDs form the majorityMVA framework can also be applied to electric field mea-
of events. To make multi-spacecraft studies of discontinu-surements or plasma data if other conservation laws are
ity crossings more conclusive, the present report addressassed (e.gSonnerup et al2008, and it further allows to take
the accuracy of the timing approach to boundary parameteinto account physical or geometrical constraints.
estimation. Our error analysis is based on the reciprocal vec- Applications of the MVA technique to solar wind discon-
tor formalism and takes into account uncertainties both intinuities were recently challenged in a comprehensive study
crossing times and in the spacecraft positions. A rigorouspased on data from ESAs Cluster satellitgétter et al.
error estimation scheme is presented for the general case @004 Knetter 2005. Such multi-spacecraft missions of-
correlated crossing time errors and arbitrary spacecraft confer an independent road to boundary parameter estimation
figurations. Crossing time error covariances are determinedhrough a crossing time analysis that effectively yields a
through cross correlation analyses of the residuals. The prinpoundary plane triangulation technique or, in brief, the so-
cipal influence of the spacecraft array geometry on the accucalledtiming method T. Knetter and colleagues found that
racy of the timing method is illustrated using error formulas the discontinuity normal vectors obtained with the timing ap-
for the simplified case of mutually uncorrelated and identical proach differ from the MVA normals. Furthermore, the MVA
errors at different spacecraft. The full error analysis proce-normals at the individual spacecraft are often mutually in-
dure is demonstrated for a solar wind discontinuity as ob-consistent even though previously used quality criteria such
served by the Cluster FGM instrument. as the intermediate-to-minimum eigenvalue ratio were met.
The discrepancy became less pronounced when important

Keywords. Interplanetary physics (Discontinuities; Inter- quality thresholds like the required eigenvalue ratio and/or

planetary magnetic fields; Instruments and techniques) theT change ip magnetic field direction across the disconti-
nuity were raised, and then the results turned out to be also

more consistent with the timing normals.

The discrepancy of discontinuity normal vector estimates
using the two principal methods has crucial implications on
the physical interpretation of the measurements. In accor-
dance with previous single-spacecraft studies of solar wind

Correspondence tal. Vogt discontinuities (e.gTsurutani and Smiti979 Neugebauer
BY (i.vogt@jacobs-university.de) et al, 1984 Lepping and Behannorl98§ Soding et al,

Published by Copernicus Publications on behalf of the European Geosciences Union.



https://core.ac.uk/display/26822636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/

2240 J. Vogt et al.: Accuracy of multi-point boundary crossing time analysis

2001, Knetter's MVA results gave significant normal mag- sion with four spacecraft, we focus ¢r=4 but consider the
netic field component®,, for a large fraction of the solar more general case where possible. Relative position vectors
wind directional discontinuities (DDs), and hence put themare written in the formr,g =rg —r. If the origin of our co-
into the category of rotational discontinuities (RDs). The ordinate system coincides with the mean position (mesocen-
timing analysis, on the other hand, led to consistently smaliter)r.. = (1/S) >, r, of the spacecraft array, then obviously
Bn’s so that the DDs were either considered to be tangentiak, = 0 and the reference frame is callewesocentricSpace-
discontinuities (TDs) or could not be clearly classifighét- craft position vectors in a mesocentric frame are denoted as
ter et al, 2004 Knetter, 2009. The inconsistencies in the r.,, hence}_,r., = 0. The so-callegosition tensois de-
relative distributions of RDs and TDs based on different dis-fined through
continuity analysis methods had been noted already earlier T
in a study ofHorbury et al.(2001) using data from Geotail, R*= Zr*“r*a : @)
IMP 8, and Wind. The state of the problem was summarized *
by Neugebaue(2006 who also reexamined a large number Throughout this paper, we assume that the number of space-
of solar wind discontinuities observed by the ISEE 3 space-<raft is at least four, and that they form a three-dimensional
craft with inconclusive results, and discussed possible physeonfiguration that does not degenerate into a plane or a line.
ical mechanisms. Then the position tensd®, is a hon-singular matrix\ogt

The discrepancy in the distributions of boundary orienta-€t al, 2008, and its inverse is theeciprocal tensordefined
tions obtained with different methods, and the resulting am-through
biguity in RD/TD classification may, for brevity, be termed T
discontinuity analysis inconsistencyin 2009, a team has Q:Zq"‘q“
formed at the International Space Science Institute in Bern ¢
to investigate the problem in detail. The present paper adwhere the(generalized) reciprocal vectoese given by
dresses one of the main team objectives, namely, the coné "R Y =15 3)
struction of a rigorous error analysis scheme for the timing”® — * " * = = 700
method. Numerical experiments on this issue were carriedNote the identity
out byZhou et al(2009. The purpose of our study is a fully
analytical treatment of the problem. We start by introduc-! =Y _da7s = Y _raqy - 4
ing the reciprocal vector formalism in Segt.In Sect.3, we @ ¢
show how the main variants of the multi-point timing method In the cases = 4, the vectorg, coincide with the reciprocal
all allow to write the boundary slowness vector as a linearvectors of the spacecraft tetranedron defined through
combination of crossing times and reciprocal vectors. The ey
error analysis in Sectt starts from the slowness vector for- o, = — ¥ ~"P* (5)
mula to quantify the mean square errors in boundary orien- rpa (rpy X7p3)

tation and speed in terms of the spacecraft configuration, thechanteur 1998 where(a, 8, v, ») must be a cyclic permu-

estimated parameters, and the uncertainties in crossing timagtion of (1,2,3,4). In this case the symb! is used for the
and spacecraft positions. The crossing time uncertainty iseciprocal tensor, i.e.

studied further in Secb. In Sect.6, the complete chain of

boundary parameter estimation and error analysis is demorK = Zkakl . (6)
strated using Cluster FGM measurements across a solar wind ¢

discontinuity. We conclude in Sect.by summarizing the  Useful algebraic identities fof = 4 are

important steps of the error analysis procedure.

&)

ka'(rﬂ_ry)zaaﬁ_fsays (7
k =4 L 8
2 Reciprocal vectors in multi-spacecraft analysis a Txp = Oup — 4 (®)

whereé,g denotes the Kronecker delta symbol.
Reciprocal vectors can also be defined for three-spacecraft
configurations, se¥ogt et al.(2009.

To facilitate the use of vectors in the definition of dyads and
for the purpose of matrix multiplication, we adopt the no-
tation conventions described, e.g. Raschmann and Daly
(1998: vectorsa,b,c,... are always understood as column
vectors. They can be turned into row vectors by means of3  Boundary parameter estimation from crossing data
transposition denoted by the supersciipe.g.a’. The hat
symbol© indicates unit vectors, matrices are typeset in up-The problem of computing boundary parameters from the
right bold, and denotes the identity matrix. crossing times and the positions of a multi-spacecraft ar-
The positions of the spacecraft are given Ry (¢ = ray has been studied by a number of authors @Buylaga
1,...,5). Since we are mainly interested in the Cluster mis-and Ness1969 Russell et al. 1983 Dunlop et al, 1988
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Mottez and Chanteurl994 Schwartz 1998 Dunlop and  The restrictionr # p may be dropped by setting, =0, and

Woodward 1998 Harvey, 1998 Soucek et a).2004 Haa-  then

land et al, 2004 Vogt et al, 2008 Zhou et al, 2009. In

its simplest and most popular form, the underlying model as/” = Zkatﬂm : (13)

sumes a planar structure that varies only in the direction of *

the boundary unit normal vectarand propagates at a speed 3.2 Using all available relative crossing data

V alongn relative to the spacecraft array. The model param-

etersn andV are conveniently combined into thundary =~ We can incorporate all available crossing data into the bound-

slowness vector ary analysis by assigning the role of reference spacecraft to
each one of them in turn, then compute slowness vector es-

9) timatesm , using Eq. 12), and, finally, average the results
to obtainm = (1/4)>_ ,m,). The result can be easily rear-

The vectorm can then be determined from a set of lin- ranged to yield:

ear equations where the crossing times constitute the known

data, and the spacecraft position vectors form the coefficient _ Z k, } Z e

o 4 P

<|=>

m—=

matrix that has to be inverted. There are essentially thred"

variants of this procedure using (a) relative crossing data

with respect to one reference spacecraft (Rgssell et a. ~ wherer,, =0 as before. This form is completely equivalent
1983 Knetter et al. 2004, (b) all relative crossing data that to the least-squares result obtainedHgrvey (199§ for a

are available (e.gSoucek et a).2004 Zhou et al, 2009, symmetrical treatment of relative crossing data. Using our
or (c) absolute crossing times and spacecraft positions (e.grotation, his Eq. (12.13) translates to

Haaland et a).2004. To facilitate the comparison of these

(14)

three options, we only consider four-spacecraft configura-,, _ }R;lii%arﬂa

tions and make use of algebraic identities for the tetrahedral 8 aip=1

reciprocal vectork, (¢ =1,2,3,4). Note that options (b) 4 4

and (c) can be easily generalized to configurations with more _ }ZZ’ R (15)
than four spacecraft by means of the generalized reciprocal 80[:1p:1 pete e

vectorsq.

SinceR; r 4 =R e —R;Iry, =ky —k,, we get
3.1 Crossing data relative to one reference spacecraft
4 4

1 1.4 4
To uniquely determine the three-component slowness vectof? = g szpaka 38 szpakp ) (16)

m, knowledge of three relative position vectors, and the a=1p=1 a=1p=1

corresponding differenceg, =ty —1, in crossing imes areé - anq withy,,,, = —t,, the least-squares formula can be written
sufficient. Here the subscriptdenotes the reference space- i, the form of Eq. L4).

craft, andx # p. The three conditions are ths,, =r o 12

which can be divided by the spe&dto obtain 3.3 Absolute crossing times

lpa = Tpa M . (10) If a boundary crossing is unambiguously identified in the
Since any subset of three reciprocal vectopsform a ba- data of all spacecraft without reference to another, e.g. as

sis of three-dimensional space, the slowness vector can b@e ce_nter time OT ajumpin one Ya“‘?"?'e* or through cprrela-

expressed in the form = Y, . Cpsks. The symbol tion with a prescribed model profile, it is more appropriate to
0 . o Lo ;

Zﬂ(#p) indicates summation over all indicessexcept for think in terms of absolute crossing timgsrather than their

B =p. To determine the three coefficients,,, we insert relative cour?terpgrts. We insey =l —1Ip into Eq. 14)
this ansatz into Eq10) to obtain and use the identity ", k, =0 to obtain the formula

fpa =Tpa " M=TFpy* Z Copkp = Z CopTpa kg m=Zk0,ta ) (17)
B(#p) B(#0) “
— Z Cop (e —85p) = Cpa (11)  The result holds for arbitrary time offsets.
B(Z0) The following version of Eq.X7) was derived byChanteur

_ _ (1998 from spatial interpolation theory, as well as biar-
where the identityks - r ,o =8« —dp, has been used. The yey (1998 andVogt et al.(2008 through a least squares ap-

slowness vector is thus given by proach:
m= %" katpa - 12)  m= kuts - (18)
a(#p) o

www.ann-geophys.net/29/2239/2011/ Ann. Geophys., 29, 2322011
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Here t, =ty — t,, and the mean crossing timg = in crossing times and the positional inaccuracies are given
(1/43 " ,t, was chosen as a reference point to center then the form of error covariance matrices. The crossing time
time axis. It is straightforward to show that the linear com- errors are quantified further in Sebt.
bination of relative crossing times in Ed.4) is equal to the
respective absolute crossing time in the time frame centered.1 Analysis framework and general error formulas
atr, as(1/4 toa =tya-

T*he ((:a/se) %‘pagaacczerated planar discontinuity was Con'_l'he quality of boundary parameter estimation suffers from

sidered byChanteu(1998, see Sect. 14.5.2 of that publica- inaccuracies in crossing times and spacecraft positions. The
tion. ’ problem was addressed, e.g. Bunlop and Woodward

(1998; Knetter(2009; Zhou et al.(2009. Analytical error

formulas were derived by &ard Chanteur for the absolute

crossing times approach in various contexts (Elganteur

In all variants of the boundary triangulation approach dis-1998 200Q 2003 Cornilleau-Wehrlin et a). 2003 Vogt

cussed above, the slowness veatois given in terms of the €t al, 2.008., and a partial summary of Chanteur’s results.was

crossing times and the reciprocal vectors. It is important to@/SO given in the PhD thesis &hetter(2009. The analysis

note that the latter have to be computed from the relative@Sts on Eq.17) which is repeated here for convenience:

crossing position vecto;s'.e. f_rom rog =rg(tg) —ro(ta). m— Zkata

Here the spacecraft trajectories(r) andrg(¢) have to be ~

evaluated at the (absolute) crossing timgandtg, respec- _ o ) )

tively. This means that the set of relative crossing times alone>iNce EQ. {4) exhibits the same structure with being re-

is not sufficient to determine the solution uniquely but must placed by the expressidril/4) Zp toa |, the line of reason-

be supplemented by at least one absolute time datum such @sg can in principle be applied also to this case.

the crossing time of one reference spacecraft. With only mild assumptions on error correlations,
The discussion in the following Seetshows that the rel-  Chanteur arrived at the following formula for the unit nor-

ative crossing times which directly enter the slowness vec-mal covariance matrix

tor formulas should be known very precisely to yield accu-

rate boundary parameter estimatesitltienotes a reference <5ﬁ3ﬁT> =v? (' —ﬁﬁT) <5m5mT) (' —ﬁflT) (19)

value for the error in relative crossing times, then the addi- .

tional absolute datum required for obtaining the crossing po-2nd wrote the error in boundary spedn the form

sitions can tolerate an uncertaity that is somewhat larger 2 4AT T\ A

thandz. The resulting positional inaccuracies are of the or- <(8V) >= Vin (5'"5'” >" ; (20)

derni-u,p8t’ whereu,g are the relative spacecratft velocities,

corresponding to timing uncertainti@s uqgt’/ V. For the

Cluster missionsi -uq5/V is a very small quantity (of the T\ _ T

order of 1073 or Iess).ﬂThis means that as longsasandst’ <5m5m > - ;Xﬁ:(at”‘ g kaky

are of the same order, we can disregard the contribution of

3.4 Comments on implementation

see Egs. (4.33) and (4.34)Vogt et al.(2008. Here

the uncertainty in the additional absolute crossing time in the +D 0 tatp <3ka 5k£> ; (21)
following error analysis. @ B

If, however, instead of the actua}I crogsing position vectors|sy 8k£> — Zkl<5r5rT> kpk, k7 . (22)
an instantaneous spacecraft configuration is used to comput ” v

the reciprocal vectors, another source of error comes into

play that can no longer be neglected. Such a procedure yieldand (6rsr'), denotes the positional error covariance for

additional timing inaccuracies of the ordér uqgtus/ V. spacecraft number. For the Cluster mission, the positional

Since the relative crossing timegs can be several orders error covariance matrices are available through the Cluster

of magnitude larger than their errogs, the instantaneous Active Archive Molpp and Sieg2010.

configuration approximation may introduce significant inac- If ¢ is an arbitrary unit vector perpendicular g then

curacies and thus should be avoided. éT((Sﬁ(SﬁT)é is a quadratic measure of the angular uncertainty
of n in the plane spanned by the two vecténda. If small
compared to unity, this measure can be associated with the

4 Error analysis and array geometry opening half angle (ire-direction) of an elliptical cone of
uncertainty for the boundary unit normal vector:

In this section we present the first part of the error analysis

scheme for the timing approach to boundary parameter estisg = 56 (¢) = /éT(sﬁgﬁT)é

mation. We give formulas for the errors in boundary orien-

tation and speed, and assume that the primary uncertainties = V,/éT<8m8mT)é: VCi1+Co (23)

Ann. Geophys., 29, 2232252 2011 www.ann-geophys.net/29/2239/2011/
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where then
CL= Z(azaszﬁ)(é.ka)(é.kﬂ), (24) <8m8mT>= 5124 (6r)? o 29)
B V2
P T T Ao 2 . - . - -
C2= ;m <5r5r )ym(e ky)” @5) positional inaccuracies can be ignored, the term in square

brackets reduces t@)2. In the remainder of the present
The formulas {9)—(25) in this subsection provide the gen- Section this approximation is employed to study the influence
eral framework for a rigorous error analysis of the timing Of tetrahedron geometry on boundary parameter estimation
method. They give the uncertainties in boundary orientationdccuracy. To recover the complete formulas with the effects
and speed in terms of the error covariance matrices of cross?f positional inaccuracies included, one may replace

ing times and spacecraft positions. For illustrating purposes,
we proceed with order-of-magnitude estimates and simplifi-6: — /(3t)2 +mT(3r5rT)m (30)
cations that allow to highlight the influence of the spacecraft

configuration and the boundary parameters on the overall ac2"

curacy. 8t =/ (81)2+(8r)2/ V2. (31)

4.2 Primary errors and relative importance

4.3 Influence of the spacecraft array geometry

The error termCy is controlled by uncertainties in cross-

. . : - o The error formulas for the simplified case are
ing time estimates, and; originates from positional un-

certainties (note that the errors in relf':mve position vectors <, _ o /5TK s ’ 32)
matter here). To assess the relative importance of the two —
error contributions, we assume crossing time uncertaintiegV/V = Vérv ATKn (33)

~ §t, relative positional errors- §r, boundary speeds V,

and inter-spacecraft separationsl.. ThenCy ~ (5/L)2 wheree is perpendicular t@, andsV/V is used as a short-

Ca~ (8r/VL)?, and thus hand notation fon;/((8V)2)/V, i.e. the relative rms error in
boundary speed. To study the influence of the spacecraft ar-

C ( 3r )2 (26) ray geometry on boundary parameter accuracy, we write the

C1 V St reciprocal tensor in terms of its eigenvectors and the tetra-

o o _ hedron geometric parameters planaftyelongationt, and
For the Cluster missior§r is in the kilometer range or be-  the rms inter-spacecraft distanée The expression for the
low (Volpp and Sieg2010Q. This has to be compared with resulting quadratic form"K ¢ is given in Appendix A where
the productVr that is usually much larger in the geospace g|sp the parametet3, E, andL are defined. Note that = 1
context. The Cluster FGM instrument with its h|gh but fi- if all Spacecraft are in one p|ane alm=1 if they lie on a
nite time resolution of about 0.05 s (in normal mode) cannotsiraight line (string-of-pearls configuration), and that space-
be expected to yield discontinuity time uncertainties signifi- craft configurations close to an ideal tetrahedron correspond
cantly smaller thadr ~0.1s in the presence of noise. Hence to small values of planarity and elongatiah= 0 andE ~ 0.
for boundary speeds of the order 100 ki @nd abovez>  |n the quadratic forne"K ¢, we setc =i to computes V, and
is much smaller thaa’;, and the effects of positional errors ¢ — ¢ for s9. Hence the errors depend on the orientation of
can be safely neglected against those of timing uncertaintieshe spacecraft tetrahedron, on the length s¢aland on the
For instruments operating at spacecraft spin resolution, th@hape parametets and P. To assess the full range of pos-

timing error is expected to be in the range of the spin period sip|e errors, we assume that the boundary unit normal vector
then this statement holds even for much smaller boundarys aligned with the three eigenvectdrg, one by one.

speeds of order 10 knTs.
If the timing uncertainties and positional covariances are4.3.1 Boundary unit normal aligned with the direction
the same for each spacecraft and mutually uncorrelated, the of elongation
slowness error covariance matrix simplifies to
The direction of elongation is given by the eigenvedgs
<8m8mT> = [((St)z +mT<8r8rT>m] K (27)  tothe largest eigenvalue” of R, which corresponds to the
smallest eigenvalue df. If 7 =¢é1), thenée = ¢y yields
whereK is the reciprocal tensor. When in addition the posi- the minimum angular uncertainty, aée= é(3) its maximum

tional error matrix is isotropic, i.e. value:
Vér 1 Vot 1
T) _ (57)2 — << ——" 34
(8r8r >_(8r) l, 8 T ap YT acpHa-r (34)

www.ann-geophys.net/29/2239/2011/ Ann. Geophys., 29, 23%2-2011
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The error in boundary speed is given by Reference error of the timing method

sV Vs 1000f ; = \/. e 74100
t “ . SN .’ N Y ] n

—_—=— 35 z ¢ ACERN AN -

V L ( ) T L Q > . § 0
This is the best case (highest accuracy) for the speed estimas f
tion but the worst case (lowest accuracy) for the computation $ <
of the boundary normal. Q <

. : : — £ 100F g
4.3.2 Boundary unit normal aligned with the direction = r °
of planarity E; 8.
>
The direction of planarity |33 given by the eigenvectos) § ‘,‘:
to the smallest eigenvalu%i ) of the position tensor, or the 3 é
largest eigenvalue of the reciprocal tensorzn K- €3, then - 0
é = é(1) yields the minimum angular uncertainty, ahe ¢, o 1000
its maximum value: Inter—spacecraft length scale [km]

Vét Vér 1 . .
— <80 < — . (36) Fig. 1. Influence of array geometry on the accuracy of the tim-

L L A-E) ing method: reference errdfst/L. Blue and solid contour lines

The error in boundary speed is given by give the relative error in boundary spe&tl/V in percent. Red
SV Ve 1 and dashed contour lines give the directional uncertaifitn de-

— ) (37) grees. Control variables are the inter-spacecraft length &cated
\% L (1-E)1-P) the boundary speed both for crossing time inaccuraties0.1s
OI(1annotation at the left y-axis) artd = 1 s (annotation at the right

This is the best case (highest accuracy) for the computati y\j-axis). The spacing of the contour lines is logarithmic.

of the boundary normal and the worst case (lowest accurac
for the speed estimation.

The meaning of the term tra@e) = 22:1|kw|2 in the
context of error amplification was recognized Yggt and
Paschmant§199§ in their study on the accuracy of spatial
The eigenvectoé ) belongs to the intermediate eigenvalues derivat_ives, and its importance was confirmed in the th(_)rough
both of the position tensor and the reciprocal tensoi 4  analysis presented bghanteur(200Q who further studied
é2), thené = &, yields the minimum angular uncertainty, the dependence on, P, and E. For further details the

4.3.3 Boundary unit normal aligned with the eigenvec-
tor to the intermediate eigenvalue

andé = é 3, its maximum value: reader is referred to the original publications andvamt
et al.(2008. Note that for planarity values close to one, the
Var _ 50 < vee 1 . 38) functionA is well approximated as ~ 1-E)yta-p)—L
L — ~ L 1—-E)1-P)

The error in boundary speed is given by 4.4 Reference error of the timing method

5_V _ V_f” 1 (39) For geometrically ideal spacecraft configurations character-
1% L (1-E)° ized by zero values of planarity and elongation, the direc-

This is the intermediate case for both boundary normal andona! inaccuracyé and the relative error in boundary speed
speed estimation. 3V /V are both given by

The results for the three cases presented above can be com-

. . . : sV|E=0=F v
bined to yield representative errors for a particular spacecrafgg|F=0= = —— =—.

(42)

geometry. We average the squares of both the angular uncer- 4 L
tainty and the error in speed to obtain For brevity, we refer to the terivi 5 /L as thereference error
5 (of the timing method).
560 = sV _ [(Von) traceK) Figure 1 showsV ét/L as a function of inter-spacecraft
4 length scalel. and boundary speed both in percent (blue
_ Vér A(E, P) (40) solid contours, fo8V/V) and in degrees (red dashed con-
T L V3 tours, fordf). The boundary speed values at the left y-axis
are fordr = 0.1 s in which case the error formulas are
where
2 3 1 1 5V/V]E:°:P_ V/lkms!]
AED = et ampra-pe () [ %] Jyors - Ljlkm] “3

Ann. Geophys., 29, 2232252 2011 www.ann-geophys.net/29/2239/2011/
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Worst—case geometrical

error amplification Average geometrical error amplification
T T 7

: dl{gu.v'—”\ O \ J
0.8 \ - 0.8
> 0.6 u > 0.6
- -
k) Bl - i
5] ©
=] r c H
8 L S H
o o
0.4 1 0.4 |
0.2 } 0.2 1
» o " H w
[ 3 L1l [ g |
0.0 C e Ny Ny " 0.0 MR RS B U ST PR L
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Elongation Elongation

Fig. 2. Influence of array geometry on the accuracy of the timing Fig. 3. Influence of array geometry on the accuracy of the timing
method: geometrical error amplification for the worst-case relativemethod: logarithmically spaced contours of the average geometrical
orientation of the boundary normal vector with respect to the spaceerror amplification functiom (E, P)/+/3 in terms of the elongation
craft configuration. In this case the geometrical error amplification £ and the planarity? of the spacecraft tetrahedron.
function is given by 1[(1— E)(1— P)] whereE is elongation and®
is planarity. The contour lines in the plot are spaced logarithmically.

only on the shape parametefsand P, so the latter may

be termedgeometrical) error amplification factorsThe ef-

and fects of non-ideal configurations are shown in Figsand
so E=0=P V/[kms] 3.' The Worst—case_error amplification both #r/V andéo

[m} =5. W . (44) with respect to their reference values is given by the function
81=0.1s 1/[(1— E)(1— P)], see Fig2. The functionA(E, P)//3

For other values obz, the numerical factors on the right- displayed in Fig.2 can be understood as an average error
hand side of the equation must be multipliedby0.1s. The  amplification factor.
numerical values of the boundary speeds for the 8as€l s Numerical experiments on the accuracy of the timing
have been added in Figjat the right y-axis for convenience. method were carried out bghou et al.(2009. They gen-
The smallest reference errors occur whetis large and  erated a reservoir of spacecraft tetrahedra with a homoge-
both vV andér are small. In this sense magnetopause studiesieous distribution in elongation and planarity, and then sim-
(boundary spee#t ~ 10 km s 1) using high-resolution Clus- ulated crossings of planar discontinuities with timing errors
ter FGM data §r ~ 0.1s) from the year 2003(~ 5000km) that were identical at all four spacecraft and mutually un-
provide a best case scenario as directional inaccuracies coultbrrelated. The resulting distributions of errors in boundary
theoretically be as small asQl deg, if in fact the magne- orientation and speed are shown as function of elongation
topause behaved as an ideal planar structure on the time scadad planarity in Figs. 1, 2, and 4 @hou et al.(2009. They
of the transition (500s) and on length scales close to on&ompare nicely with the corresponding contour plots of the
Earth radius. A worst case scenario for the reference error ipresent study (Fig2 and3), in particular with regard to the
the study of solar wind discontinuitie¥ (~ 100 km s'1) us- sharp increase in errors for values of elongation and planarity
ing Cluster plasma measurements at spin resoludior ¢ s) close to unity. We take this as a consistency check of our an-
from the year 20021 ~ 100 km) which gives a relative er- alytical error formulas that are easier to apply to actual data.
ror in boundary speed of 400 %. High-resolution FGM data

(6t ~0.1s) yield a value of 10 %.
5 Crossing time errors

4.5 Geometrical error amplification
The timing method in boundary parameter estimation rests

Spacecraft array geometries that deviate from an ideal regen the crossing timesg. Our error analysis scheme presented
ular configuration are characterized by non-zero values oin the previous Sec# requires the crossing time error co-
elongation and planarity. The errat@¢ andsV/V are prod- variances(ata Stﬁ) as input parameters. The present section
ucts of the reference erréfst /L and functions that depend aims at quantifying these error covariances through a pattern
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matching approach: we study the similarity of a signaith 5.2 Analytical error formulas

shifted versions of a pattern functign For notational con-

venience, we write for the crossing timelifferenceand re- ~ The following formula for the crossing time error covari-
fer to it also as thdag (time) An overbar— denotes the ances is derived in Appendix B:

time averaging operation. The averaging window is assume(z 1 N

to be fixed with respect to the pattern function. Thus the Sta ‘”ﬁ) = —22 (1_ T_w)

window would have to move with the lag timeif we de- Nyp'(t) } A

fined the association measures in terms of the g@jrand POPCTD) el T A . (47)

p(t — 7). Instead we choose to write the formulas using the ) ] )
pair s(t +7) and p(¢) so that the averaging window is fixed The underlying assumptions can be summarized as follows.

and symmetric with respect to the time origin. — Crossing times estimates are assumed to be based on

the mean square deviatiolig(t) = |5, (t +1) — p(1)|?
between a patterp and the signals, at lag timer.

5.1 Association measures

A variety of association measures can be employed to quan- — The patternp(z) is expected to show a transition at the

tify the similarity of a time series and a pattern functiop origin between approximately constant levels at both

at a time shiftr. Here we choose thmean square deviation ends of the data window. Examples are an ideal step
— (Heaviside) function or a hyperbolic tangent profile.

(1) =|s(t+7)— p(1)|? (45) When timing is only relative, a windowed portion of

a discontinuity crossing observed at a reference space-
craftp may also serve as a pattern function for the signal
measured at another spacectaft

because it allows to derive analytical error formulas, and it
is sensitive also to linear variations in the data. The latter
statement is not true fdtearson’s correlation coefficient

— The residual#, are estimated through
ha(t)zsa(t+fa,*)_p(t) (48)

wheret, . is the lag time at the minimum of the mean
square deviatiot,,.

y () = — so(t+r)pj,(t)

VIso(t+1) 2y 1 po(1)[2

whereu, =u.(¢) is the centered veiion of a time series:
u(t) defined throughe, (r) = u(¢r) —u(z). The coefficienty

(46)

is designed to measure linear correlation:pif) ands(r) — The residual, are assumed to be time-stationary ran-
are both linear functions, then(r) = 1 irrespective of the dom signals that are well characterized by their means
lag timet. The correlation coefficient can be made sensitive and their correlation functions. Angular brackets)

to linear variations in the data by replacingand p, in the denote the ensemble averaging with respect to the resid-
formula with its non-centered counterpagtand p. uals.

Fyrt_heravsscmﬂeasures such asntiean absolute — An overbar— indicates time averaging,, is the time
deviation|s(r + 1) — p(r)| were tested by means of numer- interval used for averaging, andis the number of data
ical experiments using synthetic data _ﬂrst,.and t.helj_actual points in the time window.

Cluster FGM measurements of solar wind discontinuities. In
the noise-free limit the mean absolute deviation allows foran — The time difference parameter in the sum}_, runs
easier identification of crossing times than the mean square  from —T, to +T,, at least in principle. In boundary

deviation. However, in the presence of noise or for actual  analysis practice, when pattern functigng) are char-

measurements the differences turned out to be minor. acterized by constant levels left and right of the transi-
It may also be noted that mean deviation measures exhibit  tion, the factorp’(z) p’(t + A) effectively cuts off theA

a misleading dependence on window width in graphical dis- summation.

plays of association measures. This problem can be easilypte that although both andz denote time differences, we

rectified by a multiplication with the number of data points prefer to use two different symbols as they appear in different
in the averaging window to yield cumulative deviation mea- -gntexts.

sures (R. Wicks, private communication). The analytical e- - A second version of the error covariance formula can be
ror analysis given below is valid for both the mean squaregptained through normalization of the correlation functions.

deviation as well as its cumulative counterpart. We define
A "Op'+A
G(A):(l_u)l?()p(Jr )’ (49)
Ty P (1)2
ha () hp(t+ A
Hyp(A) = hahp(t+A) (50)

hZ(6)\/h5 (1)
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As explained in Appendix B, the factdt — |A|/T,,) comes Cluster FGM data, 3 February 2003
5 T T T

into play through the autocorrelation functipf(z) p’(t + A)
and was thus included in the definition 6{A). The mean
square (time) average @f,(¢) is the minimum value of the
mean square deviatiaf:

B2 = Io(Fas) = 1™ 1) =
>
The crossing time error covariances can thus be written in the
form:
/]minlénin A 2/ AN

o L
(8ta8tp) = +——— > " G(A) Hap(A) . (52) “10 , , ,

Np? 3 20 30 40 50

All information on the right-hand side of this equation can Seconds since 19:11 UT

be constructed from the measurements. Implementation 0rf—'ig. 4. Crossing time error analysis using a tanh pattern function:

the (?rossing time error covariance formulas is (_jiscussed beCIuster FGM data (solid) and pattern functions (dashed, magenta)
low in Sect.7 where the complete error analysis scheme isysed for illustrating the crossing time error formulas. Shown are

summarized. the By components of the interplanetary magnetic field measured
In some special cases the sQn), in Eq. 62) collapsesto by the four Cluster spacecraft (S/C 1: black, S/C 2: red, S/C 3:
a single term. green, S/C 4: blue) when they crossed a directional discontinuity

. . . . shortly before and after 19:11:30 UTC.
— If the pattern functiorp(¢) is an ideal step (Heaviside)

function, the transition between the two states at both
ends of the data window occurs within a sampling in- 6.1 Boundary parameter estimates
terval, thenp’(r) =0 for ¢ # 0 and thusG(A) =0 for

A #0. The error formula then simplifies to The data are shown in Fig. We are looking at the mag-
netic field signature of a directional discontinuity in the so-
/Iogwinlgﬂin lar wind crossed by all four Cluster spacecraft at around
(814818) = ~——=—Hqp(0) . (53)  19:11:30UTC on 3 February 2003. Superposed are shifted
N p' versions of the hyperbolic tangent pattern function

— If the residualshy (t) andhg(r) can be represented as p(r) = Boft + Bamptanh(z/ Tyis) (55)
mutually uncorrelated white noise, théhyg (A) = 0 for
a # B or A #0, so its only non-zero value &, (0) =
1, and we obtain

where the parameteByst, Bamp, and7Tyis Were obtained from
visual comparison with the data. In principle, the model pa-
rameters could also be determined through a least-squares fit

Jmin to a composite profile. The length of the pattern time window
<8t2> S S (54) O
o N2 was chosen to be 10s. The actual crossing tipegere de-

termined from minima of the mean square deviatifng),

The result is consistent with a formula derived by see Eq. 45). Relative to the reference time 19:11:00 UTC,
Alexander Khrabrov (private communication; see alsotheir numerical values are 35.345s, 29.324 s, 30.216's, and
Eq. 1.7 inSonnerup et 812008 for this idealized case. 26.068s for S/C 1 through S/C 4, respectively. The num-
In nonlinear and turbulent space plasmas such as théers are given with three digits as the sampling interval is
solar wind, however, such correlations in the measure-Tsam=44.6 ms.

ments cannot be disregarded. Then the reciprocal vectots, were computed from the
spacecraft positions at, and, finally, the boundary slowness
vectorm from Eq. (L7):

6 Example m
1, =(—2.076 —-0.560Q —0.530". (56)
To demonstrate the error analysis scheme presented in thigl0—= s ]
paper, Cluster FGM measurements of a solar wind disconBoundary speed and normal unit vector:
tinuity are qonsidered. After c(:jomlp#tirr:g the b_ouncjary pa-y _ 1/|m| = 4515km st

rameter estimates, we proceed with the crossing time error, _ T
covariance formulag?). Particular emphasis will be on the ™ = Vm=(-0.0374-02528-0.2394 " .

functionsG and H,g that quantify the effect of correlations The geometrical parameters of the spacecraft configuration
in the set of residuals. Then the slowness vector covarianceare L = 3300 km, P =0.19, andE = 0.27. Geometrical er-
are computed and, finally, the errors of boundary speed andor amplification is small. The simplified error analysis pre-

direction. sented in Sects4.34.5 suggests that the relative error in
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Residuals h, from tanh pattern Table 1. Crossing time error analysis using a tanh pattern function:

elements of the crossing time error covariance mdmi,;(&,g) for

the solar wind discontinuity observed by the FGM instruments on-
board the Cluster spacecraft shortly before and after 19:11:30 UTC
on 3 February 2003. The matrix elements are given in uni&f,
whereTsam= 44.6 ms is the sampling interval.

3 F T T T

(8ta81g)/ TS B=1 p=2 p=3 p=4

1 8.82 6.04 397 493
2 6.04 7.08 2.68 4.04
3 3.97 268 411 2.62
4 493 404 262 4.07

R R R R

—2 E 1 1 1 1 1
-100 -50 0 50 100
Centered array subscript

Product G(A) * H,,(A) for tanh pattern

itatively very similar. The numerical values of the sum in
Eq. 62) are the integrals under the curves. In our example
theyareintherangefrom12&2,8=3)to31 ¢ =6=1).

All variables on the right-hand side of the crossing time
error formula 62) are now available and the crossing time
error covariance matrifz, 8zg) can be computed which in
turn yields the slowness error covariances and all other un-
certainties through the formulas in SettThe resulting ma-

C ] trix elements are given in Table The diagonal elements
_ozb . ) ) ) ] (e = B) of the table can be understood as the square inac-
-100 -50 0 50 100 curacies of the timing method at the respective spacecraft.

Centered array subseripts Taking the square root yields vaIug@STﬁ) around 0.1, i.e.
Fig. 5. Crossing time error analysis using a tanh pattern function.in the range of 2—3 sampling intervals.
Top: residuals computed from the Cluster FGM data and tanh pat- Note that also the off-diagonal elements#£ ) of the er-
tern functipns ir! Fig4 as functions Qf c_entered array subscripts. ror covariance matri(@ta gtﬂ> are positive which reflects the
The total time window is 10's (sampling interval 44.6 ms). BOWOM: 4t that the residuals, are positively correlated. In other
products of correlation functionS(A) and Hep (A) thatenter the 45 the residuals share common substructures. When
sum in the crossing time error formula. Shown are the p_rofiles these ’common features are incorporated in the pattern func-
:r?rtﬁe_c;btiTohneof? ,li:rg;(_)lors correspond to spacecraft Acs listed tion, it should in principle be better adapted to this particular
data set. We constructed suchempirical pattern function
by first averaging the four residuals, (r) and then adding

boundary speed should be of the order of percent, and théhe resulting profile to the initial tanh pattern function. Using

G(a) * Hm(A)

directional error should be in the range of one degree. the empirical pattern function and a new set of residuals, the
cross correlationo # ) functions Hyg(A) were found to
6.2 Crossing time error covariances be predominantly negative around the origin. Furthermore,

the elements of the crossing time error covariance matrix

To evaluate the crossing time error covariance form88,(  (sz,615) turned out to be smaller in magnitude. Refining the
the functionsG and H,p have to be computed. For the hy- pattern function may thus help to improve the accuracy of the
perbolic tangent pattern functignz) chosen here, the (nor-  timing method. A detailed study of the effects of empirical
malized) autocorrelation functio@(A) of the time deriva-  pattern functions on crossing time errors would be beyond
tive dp/dr drops to small values: 0.1 beyond+50 samples  the scope of the present paper and is left for future work.
away from the origin |A| > 2.25s), thus effectively limiting
the summation in Eq5Q). 6.3 Boundary parameter errors

The residuals,, (¢) in the upper panel of Fich were con-
structed according to Eg48). Note that by construction the As explained in Sec#.1, the errors in boundary speed and
residuals are centered around the actual crossing time. Welhormal unit vector are computed from the slowness error
developed structures in the diagram already suggest that theovariance matri><8m8mT) which in turn is found from
ideal white noise model does not apply. Products of corre-Eq. 21). Following the discussion in Seet.2, we disregard
lation functionsG(A) and Hug(A) are displayed in lower the contribution from the positional inaccuracies and con-
panel of Fig5 for « = 1. The results fow = 2,3,4 are qual-  sider the crossing time error covariances only. For the Cluster
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To implement the multi-point crossing time method to
boundary parameter estimation and the error analysis scheme
presented in this paper, we recommend to proceed as follows.

Table 2. Crossing time error analysis using a tanh pattern func-
tion: elements of the slowness error covariance madrixsm " ) for

the solar wind discontinuity observed by the FGM instruments on-
board the Cluster spacecraft shortly before and after 19:11:30 UTC7
on 3 February 2003. The matrix elements are given in units of
10710 (s m~1)2,

1 Crossing times, and boundary parametersm,n,V

Choose a pattern functiop(z), construct the mean square
deviationsly, (1) of p(¢) and the shifted signalg (r + 1), and

<5m5mT> identify the crossing timeg, as the lag values at the minima
[20-10 (s 1)2] . Y < of thel,’s. Take the spacecraft positiongato compute the
x 681 _176 —_183 reciprocal vectorg,. Obtain the boundary slowness vector
y 176 581 _362 m from Eq. (L7), then computd/ =1/|m| andn = Vm.
z —-1.83 -3.62 897

7.2 Crossing time error covariancegdt, 8tg)

Compute the residuals from Eqig), the correlation func-
discontinuity crossing studied here, the numerical values otions p’(t) p'(t + A) andhq (1)hp (1 + A), and then evaluate
the slowness error covariances are given in T&bl€he re-  the sum on the right-hand side of Ed7). Alternatively,
sulting uncertainty in boundary speedsig =5kms™, and  compute the function& (A) andHep (A) from Egs. ¢9) and
the range of the directional erré# is 0.6-0.9 deg. (50), and use Eq.52) to obtain(sz, 5tg).

7.3 Boundary parameter errors(sasa ") and ((8V)?)

7 Summary Equation (9)—(25) give the mean square errors of the bound-
ary parametera andV for general crossing time error co-

The principle variants of the timing approach to boundaryvariances(ézaatﬁ) and spacecraft position covariance matri-

analysis discussed in Se8tequire slightly different param-  ces(sr 8rT)y. To check if the latter make a significant contri-

eter estimation and error analysis strategies. In the preserftution, carry out an order-of-magnitude assessment similar

study we concentrated on absolute crossing times determinei the one in Sec.2 If the assessment is negative, posi-

through minima of the mean square deviatibfr) of the tional inaccuracies can be disregarded and the error formulas

data from a predefined pattern function such as a hyperbolisimplify considerably.

tangent profile. If the relative crossing time approach is em- In the second and third step, it is essential to construct the

ployed, we recommend to construct an effective pattern funcfull crossing time error covariance matr(i&ta (Stﬁ), and then

tion p(z) for the error analysis as follows: first apply time to use the general formula f¢7isi ™). Correlations in the

shifts to the signals so that the transitions all occur at the oriset of residuals are particularly important. If they are disre-

gin, and then average to obtgirr). garded and an oversimplified white noise model is used to
The advantages of absolute crossing times over their relaestimatgsz, 5t5), the crossing time errors may come out far

tive counterparts are not only of technical nature. Compar4oo small.

ing the data with a predefined pattern means that we are in

explicit control of the features in the data that we wish to as- )

sociate. In the relative crossing time method one compareé§Ppendix A

segments of two time series around a transition (that has usu-

ally been identified by eyeballing) but the result can be dis-Tétrahedron geometry parameters and the

torted by substructures in the data that may move at differ/eciprocal tensor

ent speeds than the boundary itself, and that may have been

identified by some (pairs of) sensors but not by others. Fur-/'® geometrical shape of the spacecraft configuration can

thermore, substructures that are moving in the plasma fram8€ characterized through the eigenvalues and eigenvectors
have different effects on the two main types of directional of the so-called \_/olumetnc tenS(va_“ = (1/5)R, (Robert
discontinuities which motivated our error analysis in the first €t &l 1998 that differs from the position tensé, only by
place: TDs are stationary in the plasma frame whereas RDE'€ constant factor, so they share the same set of eigenvec-
propagate through the plasma. In the absolute crossing timErStéem}.n=1,2,3, and the eigenvalues are related through

method with a predefined pattern, such substructures becomBu = (1/S)R{". Assuming that the eigenvalues are ar-

part of the residuals and are thus taken care of in the erroranged in descending ordRﬁl) > Riz) > Rf}) >0, an intrin-
analysis. Alternatively, they can be made explicit through ansic length scald. (inter-spacecraft distance) and two shape

empirical pattern function as explained at the end of S&ct. parameters® (planarity) andE (elongation) can be defined
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as follows for the tetrahedral case=4: Appendix B
L =2 /R\%I) —/RY (A1)  Crossing time error covariance
P= 1—\/R\(/§|)/R5§|) - 1—\/Ri3)/Ri2) ’ (A2)  The following analysis addresses the accuracy of crossing

time estimation based on the mean square deviation

E=1- \/ R2/RD =1 \/ R /RD . (A3) -
I(T)=|s(t+7)—p®)|? (B1)
The eigenvecto@;, to the largest eigenvalug® is as-
sociated with the direction where the configuration appear
stretched. The eigenvectdp) to the smallest eigenvalue is
normal to the surface of planarity. For further discussion of
the geometric quality of a tetrahedron, the reader is referred
to Robert et al(1998. Using the eigenvalues and eigenvec-
tors, the position tensor can be written in the dyadic form

of a signals shifted by the lag time and a patterrp. Here
Ihe overbar= indicates time averaging. Angular brackets
(---) denote the ensemble averaging with respect to the resid-
al to be specified in more detail further below.

Let 7, denote the numerical value of the lag time at the
minimum of the mean square deviation for the (hypotheti-
cal) “noise-free” case, and. the estimated lag time based

3 on a “noisy” measurement. Note that in this context the term
R, = ZRin)g(n)é(Tn) “noise” refers to all contributions to the signal other than the

=1 given pattern function. If noise was absent, thge=7,. In

_ LZ(A 5T 1 (1— E)2% 8T the presence of noise, the mean square deviamqhis non-

cmew €@ zero for all values ofr, and the estimated lag tin& (i.e.
+(1-E)?(1- P)zé(3)é(Ta)> . (A4) the minimum of th_e empirical mean square deviation) differs

from the true lag time,.
The mismatch of pattern and signal at time shiftlefines

The eigenvalueg)™ of the generalized reciprocal tensor the residual:

Q=R;tareQ™ =[R™]~L FurthermoreQ andR, share
a common set of eigenvectors, thus h(t)=s(t+12) — p(t) . (B2)

3 w1 Ys AT To accomplish the error analysis, we wish to translate the
Q= Z[R* ] €n)€(y) - (A5)  mean square deviatioh(,) into a functionJ (87) wherest
n=1 denotes the deviation of the estimated lag from its true value:

The tetrahedral reciprocal tenskir=Y"_k,k} can be ex- 5, — Fo— Ty . (B3)
pressed in terms of the parametétsE, P and the eigenvec-
torse, of R, as follows (see, e.@Chanteur2000): Sincel (7)) = |s(t + ) — p(1)|2, we start by rearranging as
follows:

3 1 ;

K= Z[Ri")] Em)é () SU+T)—pt) = sE+8t+1) —p()
n=1 ———
=p(t+81)+h(1+81)
1/, . 1 . .
= ﬁ e(l)e(l)—f—me@)e(z) = [p(l+8t)—p(l)]+h(l+8l) . (84)
1 A A For the mean square deviation we then obtain
+ﬁ€(3)e-{3) . (A6) q
1-E)*1-pP)

[(Te) = {s(t+7Ts) —P(l)}z
The associated quadratic fouhK ¢ takes an arbitrary vector = {[p(t+8t) — p(O)]+h(t+61)}2
¢ and yields the scalar value

= [p(t+68t) — p(t))2+h(t+61)2

e i @ -©)? +2[p(+80)— p(O]-h(t+51)
=R =J(1). (B5)
(w2 + (e .¢)? Inserting the Taylor expansions
2\ (1—E)? L
N p(t+80) = p(t) + p/ ()8t + = p' (1) 512 + (9(&3) ,
__Co ) (A7) ;
(1-E)*(1-P)? h(t+81) = h(r) + 1 ()81 + Eh”(r)(sﬂ + (’)(81‘3)
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into J (¢) yields the following quadratic approximation: and thus, after replacing thesummation by an equivalent
o o summation over the variablg,
J(6t)=h2+2{p’h+h/h}8t 1
_ L (Pha-Phs) = 55 D haOhs(+A)-
+ip/2+2p/h/+p//h+h/2+h//h}(Stz N
. ") p (tu+A) . B12
+O<&3). (86) ;p(u)p(u ) (B12)
We assume the residual and its derivatives to be sufficientyJP to & constant factor, the suln,, p'(1,) p'(t, + A) i
small compared to the derivatives of the pattern function@/S0 & correlation function: if,, denotes the time inter-
so that only the dominant contributions need to be kept,val covered by the time window used to compute averages,

namely,p’% in the linear term, ang2 in the quadratic term. e nymbe[ of terms in the sum - (1—|A|/T.), hence
Computings: from the condition/’(5r) =0 then leads to 2P () P’y + A) is an approximation of the product

8t =—p'h/p’2 and thus N-(1-|Al/Tw)-p' @) p'(t+ A).
Combining the partial results yields the following expres-

Dhey - p'ha sion for the crossing time error covariances
St tg = ph“—phf (B7) , ’ \

{r©?] (PR PR 0)

(815818) = 5
for measurements at several sensar8 such as the FGM [p’(t)z}
instruments onboard the Cluster spaceciafB(= 1,2,3,4). 1 Al
To arrive at an estimate for the error covariance matrix =— <1— T_>

(812815), we think of the residuals, andhg as realizations N ip’(t)z} A v
of time-invariant and ergodic random processes that are well
characterized by their means and correlation functions. Then PO P E+A) - he()hp(t+A) . (B13)

(---) is the average with respect to the random functiens | principle, the time difference runs from—7,, to T,.

andh. Since the denominator does not depend on the residr practice, its scope is limited by the effective range of the
uals, it is a constant in the ensemble averaging procedure.qrelation functions.
For the numerator we obtain
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