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Abstract. Recent multi-spacecraft studies of solar wind dis-
continuity crossings using the timing (boundary plane tri-
angulation) method gave boundary parameter estimates that
are significantly different from those of the well-established
single-spacecraft minimum variance analysis (MVA) tech-
nique. A large survey of directional discontinuities in Cluster
data turned out to be particularly inconsistent in the sense
that multi-point timing analyses did not identify any rota-
tional discontinuities (RDs) whereas the MVA results of the
individual spacecraft suggested that RDs form the majority
of events. To make multi-spacecraft studies of discontinu-
ity crossings more conclusive, the present report addresses
the accuracy of the timing approach to boundary parameter
estimation. Our error analysis is based on the reciprocal vec-
tor formalism and takes into account uncertainties both in
crossing times and in the spacecraft positions. A rigorous
error estimation scheme is presented for the general case of
correlated crossing time errors and arbitrary spacecraft con-
figurations. Crossing time error covariances are determined
through cross correlation analyses of the residuals. The prin-
cipal influence of the spacecraft array geometry on the accu-
racy of the timing method is illustrated using error formulas
for the simplified case of mutually uncorrelated and identical
errors at different spacecraft. The full error analysis proce-
dure is demonstrated for a solar wind discontinuity as ob-
served by the Cluster FGM instrument.
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1 Introduction

The analysis of discontinuities in space plasmas has received
a lot of attention since the beginning of the space age. In
the case of a planar discontinuity moving at constant veloc-
ity, its orientation can be estimated from magnetic field mea-
surements using theminimum variance analysis (MVA)tech-
nique (Sonnerup and Cahill, 1967; Sonnerup and Scheible,
1998) based on the conservation law for magnetic flux. The
MVA framework can also be applied to electric field mea-
surements or plasma data if other conservation laws are
used (e.g.Sonnerup et al., 2008), and it further allows to take
into account physical or geometrical constraints.

Applications of the MVA technique to solar wind discon-
tinuities were recently challenged in a comprehensive study
based on data from ESA’s Cluster satellites (Knetter et al.,
2004; Knetter, 2005). Such multi-spacecraft missions of-
fer an independent road to boundary parameter estimation
through a crossing time analysis that effectively yields a
boundary plane triangulation technique or, in brief, the so-
called timing method. T. Knetter and colleagues found that
the discontinuity normal vectors obtained with the timing ap-
proach differ from the MVA normals. Furthermore, the MVA
normals at the individual spacecraft are often mutually in-
consistent even though previously used quality criteria such
as the intermediate-to-minimum eigenvalue ratio were met.
The discrepancy became less pronounced when important
quality thresholds like the required eigenvalue ratio and/or
the change in magnetic field direction across the disconti-
nuity were raised, and then the results turned out to be also
more consistent with the timing normals.

The discrepancy of discontinuity normal vector estimates
using the two principal methods has crucial implications on
the physical interpretation of the measurements. In accor-
dance with previous single-spacecraft studies of solar wind
discontinuities (e.g.Tsurutani and Smith, 1979; Neugebauer
et al., 1984; Lepping and Behannon, 1986; Söding et al.,
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2001), Knetter’s MVA results gave significant normal mag-
netic field componentsBn for a large fraction of the solar
wind directional discontinuities (DDs), and hence put them
into the category of rotational discontinuities (RDs). The
timing analysis, on the other hand, led to consistently small
Bn’s so that the DDs were either considered to be tangential
discontinuities (TDs) or could not be clearly classified (Knet-
ter et al., 2004; Knetter, 2005). The inconsistencies in the
relative distributions of RDs and TDs based on different dis-
continuity analysis methods had been noted already earlier
in a study ofHorbury et al.(2001) using data from Geotail,
IMP 8, and Wind. The state of the problem was summarized
by Neugebauer(2006) who also reexamined a large number
of solar wind discontinuities observed by the ISEE 3 space-
craft with inconclusive results, and discussed possible phys-
ical mechanisms.

The discrepancy in the distributions of boundary orienta-
tions obtained with different methods, and the resulting am-
biguity in RD/TD classification may, for brevity, be termed
discontinuity analysis inconsistency. In 2009, a team has
formed at the International Space Science Institute in Bern
to investigate the problem in detail. The present paper ad-
dresses one of the main team objectives, namely, the con-
struction of a rigorous error analysis scheme for the timing
method. Numerical experiments on this issue were carried
out byZhou et al.(2009). The purpose of our study is a fully
analytical treatment of the problem. We start by introduc-
ing the reciprocal vector formalism in Sect.2. In Sect.3, we
show how the main variants of the multi-point timing method
all allow to write the boundary slowness vector as a linear
combination of crossing times and reciprocal vectors. The
error analysis in Sect.4 starts from the slowness vector for-
mula to quantify the mean square errors in boundary orien-
tation and speed in terms of the spacecraft configuration, the
estimated parameters, and the uncertainties in crossing times
and spacecraft positions. The crossing time uncertainty is
studied further in Sect.5. In Sect.6, the complete chain of
boundary parameter estimation and error analysis is demon-
strated using Cluster FGM measurements across a solar wind
discontinuity. We conclude in Sect.7 by summarizing the
important steps of the error analysis procedure.

2 Reciprocal vectors in multi-spacecraft analysis

To facilitate the use of vectors in the definition of dyads and
for the purpose of matrix multiplication, we adopt the no-
tation conventions described, e.g. inPaschmann and Daly
(1998): vectorsa,b,c,... are always understood as column
vectors. They can be turned into row vectors by means of
transposition denoted by the superscriptT, e.g.aT. The hat
symbol ·̂ indicates unit vectors, matrices are typeset in up-
right bold, andI denotes the identity matrix.

The positions of the spacecraft are given byrα (α =

1,...,S). Since we are mainly interested in the Cluster mis-

sion with four spacecraft, we focus onS = 4 but consider the
more general case where possible. Relative position vectors
are written in the formrαβ = rβ −rα. If the origin of our co-
ordinate system coincides with the mean position (mesocen-
ter)r∗ = (1/S)

∑
α rα of the spacecraft array, then obviously

r∗ = 0 and the reference frame is calledmesocentric. Space-
craft position vectors in a mesocentric frame are denoted as
r∗α, hence

∑
α r∗α = 0. The so-calledposition tensoris de-

fined through

R∗ =

∑
α

r∗αrT
∗α . (1)

Throughout this paper, we assume that the number of space-
craft is at least four, and that they form a three-dimensional
configuration that does not degenerate into a plane or a line.
Then the position tensorR∗ is a non-singular matrix (Vogt
et al., 2008), and its inverse is thereciprocal tensordefined
through

Q =

∑
α

qαqT
α (2)

where the(generalized) reciprocal vectorsare given by

qα = R−1
∗ r∗α , α = 1,...,S . (3)

Note the identity

I =

∑
α

qαrT
α =

∑
α

rαqT
α . (4)

In the caseS = 4, the vectorsqα coincide with the reciprocal
vectors of the spacecraft tetrahedron defined through

kα =
rβγ ×rβλ

rβα ·(rβγ ×rβλ)
(5)

(Chanteur, 1998) where(α,β,γ,λ) must be a cyclic permu-
tation of(1,2,3,4). In this case the symbolK is used for the
reciprocal tensor, i.e.

K =

∑
α

kαkT
α . (6)

Useful algebraic identities forS = 4 are

kα ·(rβ −rγ ) = δαβ −δαγ , (7)

kα ·r∗β = δαβ −
1

4
(8)

whereδαβ denotes the Kronecker delta symbol.
Reciprocal vectors can also be defined for three-spacecraft

configurations, seeVogt et al.(2009).

3 Boundary parameter estimation from crossing data

The problem of computing boundary parameters from the
crossing times and the positions of a multi-spacecraft ar-
ray has been studied by a number of authors (e.g.Burlaga
and Ness, 1969; Russell et al., 1983; Dunlop et al., 1988;
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Mottez and Chanteur, 1994; Schwartz, 1998; Dunlop and
Woodward, 1998; Harvey, 1998; Soucek et al., 2004; Haa-
land et al., 2004; Vogt et al., 2008; Zhou et al., 2009). In
its simplest and most popular form, the underlying model as-
sumes a planar structure that varies only in the direction of
the boundary unit normal vectorn̂ and propagates at a speed
V alongn̂ relative to the spacecraft array. The model param-
etersn̂ andV are conveniently combined into theboundary
slowness vector

m =
n̂

V
. (9)

The vectorm can then be determined from a set of lin-
ear equations where the crossing times constitute the known
data, and the spacecraft position vectors form the coefficient
matrix that has to be inverted. There are essentially three
variants of this procedure using (a) relative crossing data
with respect to one reference spacecraft (e.g.Russell et al.,
1983; Knetter et al., 2004), (b) all relative crossing data that
are available (e.g.Soucek et al., 2004; Zhou et al., 2009),
or (c) absolute crossing times and spacecraft positions (e.g.
Haaland et al., 2004). To facilitate the comparison of these
three options, we only consider four-spacecraft configura-
tions and make use of algebraic identities for the tetrahedral
reciprocal vectorskα (α = 1,2,3,4). Note that options (b)
and (c) can be easily generalized to configurations with more
than four spacecraft by means of the generalized reciprocal
vectorsqα.

3.1 Crossing data relative to one reference spacecraft

To uniquely determine the three-component slowness vector
m, knowledge of three relative position vectorsrρα and the
corresponding differencestρα = tα − tρ in crossing times are
sufficient. Here the subscriptρ denotes the reference space-
craft, andα 6= ρ. The three conditions are thusV tρα = rρα ·n̂

which can be divided by the speedV to obtain

tρα = rρα ·m . (10)

Since any subset of three reciprocal vectorskβ form a ba-
sis of three-dimensional space, the slowness vector can be
expressed in the formm =

∑
β(6=ρ)Cρβkβ . The symbol∑

β(6=ρ) indicates summation over all indicesβ except for
β = ρ. To determine the three coefficientsCρα, we insert
this ansatz into Eq. (10) to obtain

tρα = rρα ·m = rρα ·

∑
β(6=ρ)

Cρβkβ =

∑
β(6=ρ)

Cρβrρα ·kβ

=

∑
β(6=ρ)

Cρβ(δβα −δβρ) = Cρα (11)

where the identitykβ · rρα = δβα − δβρ has been used. The
slowness vector is thus given by

m =

∑
α( 6=ρ)

kαtρα . (12)

The restrictionα 6= ρ may be dropped by settingtρρ = 0, and
then

m =

∑
α

kαtρα . (13)

3.2 Using all available relative crossing data

We can incorporate all available crossing data into the bound-
ary analysis by assigning the role of reference spacecraft to
each one of them in turn, then compute slowness vector es-
timatesm(ρ) using Eq. (12), and, finally, average the results
to obtainm = (1/4)

∑
ρ m(ρ). The result can be easily rear-

ranged to yield:

m =

∑
α

kα

[
1

4

∑
ρ

tρα

]
(14)

wheretρρ = 0 as before. This form is completely equivalent
to the least-squares result obtained byHarvey (1998) for a
symmetrical treatment of relative crossing data. Using our
notation, his Eq. (12.13) translates to

m =
1

8
R−1

∗

4∑
α=1

4∑
ρ=1

tραrρα

=
1

8

4∑
α=1

4∑
ρ=1

tραR−1
∗ rρα . (15)

SinceR−1
∗ rρα = R−1

∗ r∗α −R−1
∗ r∗ρ = kα −kρ , we get

m =
1

8

4∑
α=1

4∑
ρ=1

tραkα −
1

8

4∑
α=1

4∑
ρ=1

tραkρ , (16)

and withtρα = −tαρ the least-squares formula can be written
in the form of Eq. (14).

3.3 Absolute crossing times

If a boundary crossing is unambiguously identified in the
data of all spacecraft without reference to another, e.g. as
the center time of a jump in one variable, or through correla-
tion with a prescribed model profile, it is more appropriate to
think in terms of absolute crossing timestα rather than their
relative counterparts. We inserttρα = tα − tρ into Eq. (14)
and use the identity

∑
αkα = 0 to obtain the formula

m =

∑
α

kαtα . (17)

The result holds for arbitrary time offsets.
The following version of Eq. (17) was derived byChanteur

(1998) from spatial interpolation theory, as well as byHar-
vey (1998) andVogt et al.(2008) through a least squares ap-
proach:

m =

∑
α

kαt∗α . (18)
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Here t∗α = tα − t∗, and the mean crossing timet∗ =

(1/4)
∑

α tα, was chosen as a reference point to center the
time axis. It is straightforward to show that the linear com-
bination of relative crossing times in Eq. (14) is equal to the
respective absolute crossing time in the time frame centered
at t∗ as(1/4)

∑
ρ tρα = t∗α.

The case of an accelerated planar discontinuity was con-
sidered byChanteur(1998), see Sect. 14.5.2 of that publica-
tion.

3.4 Comments on implementation

In all variants of the boundary triangulation approach dis-
cussed above, the slowness vectorm is given in terms of the
crossing times and the reciprocal vectors. It is important to
note that the latter have to be computed from the relative
crossing position vectors, i.e. from rαβ = rβ(tβ) − rα(tα).
Here the spacecraft trajectoriesrα(t) and rβ(t) have to be
evaluated at the (absolute) crossing timestα andtβ , respec-
tively. This means that the set of relative crossing times alone
is not sufficient to determine the solution uniquely but must
be supplemented by at least one absolute time datum such as
the crossing time of one reference spacecraft.

The discussion in the following Sect.4 shows that the rel-
ative crossing times which directly enter the slowness vec-
tor formulas should be known very precisely to yield accu-
rate boundary parameter estimates. Ifδt denotes a reference
value for the error in relative crossing times, then the addi-
tional absolute datum required for obtaining the crossing po-
sitions can tolerate an uncertaintyδt ′ that is somewhat larger
thanδt . The resulting positional inaccuracies are of the or-
dern̂·uαβ δt ′ whereuαβ are the relative spacecraft velocities,
corresponding to timing uncertaintiesn̂ ·uαβ δt ′/V . For the
Cluster mission,̂n ·uαβ/V is a very small quantity (of the
order of 10−3 or less). This means that as long asδt andδt ′

are of the same order, we can disregard the contribution of
the uncertainty in the additional absolute crossing time in the
following error analysis.

If, however, instead of the actual crossing position vectors
an instantaneous spacecraft configuration is used to compute
the reciprocal vectors, another source of error comes into
play that can no longer be neglected. Such a procedure yields
additional timing inaccuracies of the ordern̂ · uαβ tαβ/V .
Since the relative crossing timestαβ can be several orders
of magnitude larger than their errorsδt , the instantaneous
configuration approximation may introduce significant inac-
curacies and thus should be avoided.

4 Error analysis and array geometry

In this section we present the first part of the error analysis
scheme for the timing approach to boundary parameter esti-
mation. We give formulas for the errors in boundary orien-
tation and speed, and assume that the primary uncertainties

in crossing times and the positional inaccuracies are given
in the form of error covariance matrices. The crossing time
errors are quantified further in Sect.5.

4.1 Analysis framework and general error formulas

The quality of boundary parameter estimation suffers from
inaccuracies in crossing times and spacecraft positions. The
problem was addressed, e.g. byDunlop and Woodward
(1998); Knetter(2005); Zhou et al.(2009). Analytical error
formulas were derived by Ǵerard Chanteur for the absolute
crossing times approach in various contexts (e.g.Chanteur,
1998, 2000, 2003; Cornilleau-Wehrlin et al., 2003; Vogt
et al., 2008), and a partial summary of Chanteur’s results was
also given in the PhD thesis ofKnetter(2005). The analysis
rests on Eq. (17) which is repeated here for convenience:

m =

∑
α

kαtα .

Since Eq. (14) exhibits the same structure withtα being re-

placed by the expression
[
(1/4)

∑
ρ tρα

]
, the line of reason-

ing can in principle be applied also to this case.
With only mild assumptions on error correlations,

Chanteur arrived at the following formula for the unit nor-
mal covariance matrix〈
δn̂δn̂T

〉
= V 2

(
I − n̂n̂T

)〈
δmδmT

〉(
I − n̂n̂T

)
(19)

and wrote the error in boundary speedV in the form〈
(δV )2

〉
= V 4n̂T

〈
δmδmT

〉
n̂ , (20)

see Eqs. (4.33) and (4.34) inVogt et al.(2008). Here〈
δmδmT

〉
=

∑
α

∑
β

〈
δtα δtβ

〉
kαkT

β

+

∑
α

∑
β

tαtβ

〈
δkα δkT

β

〉
, (21)〈

δkα δkT
β

〉
=

∑
γ

kT
α

〈
δr δrT

〉
γ
kβkγ kT

γ , (22)

and
〈
δr δrT

〉
γ

denotes the positional error covariance for
spacecraft numberγ . For the Cluster mission, the positional
error covariance matrices are available through the Cluster
Active Archive (Volpp and Sieg, 2010).

If ê is an arbitrary unit vector perpendicular tôn, then
êT
〈
δn̂δn̂T

〉
ê is a quadratic measure of the angular uncertainty

of n̂ in the plane spanned by the two vectorsê andn̂. If small
compared to unity, this measure can be associated with the
opening half angle (in̂e-direction) of an elliptical cone of
uncertainty for the boundary unit normal vector:

δθ = δθ(ê) =

√
êT
〈
δn̂δn̂T

〉
ê

= V

√
êT
〈
δmδmT

〉
ê = V

√
C1+C2 (23)
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where

C1 =

∑
α,β

〈
δtαδtβ

〉
(ê ·kα)(ê ·kβ) , (24)

C2 =

∑
γ

mT
〈
δr δrT

〉
γ
m(ê ·kγ )2 . (25)

The formulas (19)–(25) in this subsection provide the gen-
eral framework for a rigorous error analysis of the timing
method. They give the uncertainties in boundary orientation
and speed in terms of the error covariance matrices of cross-
ing times and spacecraft positions. For illustrating purposes,
we proceed with order-of-magnitude estimates and simplifi-
cations that allow to highlight the influence of the spacecraft
configuration and the boundary parameters on the overall ac-
curacy.

4.2 Primary errors and relative importance

The error termC1 is controlled by uncertainties in cross-
ing time estimates, andC2 originates from positional un-
certainties (note that the errors in relative position vectors
matter here). To assess the relative importance of the two
error contributions, we assume crossing time uncertainties
∼ δt , relative positional errors∼ δr, boundary speeds∼ V ,
and inter-spacecraft separations∼ L. ThenC1 ∼ (δt/L)2,
C2 ∼ (δr/V L)2, and thus

C2

C1
∼

(
δr

V δt

)2

. (26)

For the Cluster mission,δr is in the kilometer range or be-
low (Volpp and Sieg, 2010). This has to be compared with
the productV δt that is usually much larger in the geospace
context. The Cluster FGM instrument with its high but fi-
nite time resolution of about 0.05 s (in normal mode) cannot
be expected to yield discontinuity time uncertainties signifi-
cantly smaller thanδt ∼ 0.1 s in the presence of noise. Hence
for boundary speeds of the order 100 km s−1 and above,C2
is much smaller thanC1, and the effects of positional errors
can be safely neglected against those of timing uncertainties.
For instruments operating at spacecraft spin resolution, the
timing error is expected to be in the range of the spin period,
then this statement holds even for much smaller boundary
speeds of order 10 km s−1.

If the timing uncertainties and positional covariances are
the same for each spacecraft and mutually uncorrelated, the
slowness error covariance matrix simplifies to〈
δmδmT

〉
=

[
(δt)2

+ mT
〈
δr δrT

〉
m
]

K (27)

whereK is the reciprocal tensor. When in addition the posi-
tional error matrix is isotropic, i.e.〈
δr δrT

〉
= (δr)2I , (28)

then〈
δmδmT

〉
=

[
(δt)2

+
(δr)2

V 2

]
K . (29)

If positional inaccuracies can be ignored, the term in square
brackets reduces to(δt)2. In the remainder of the present
section this approximation is employed to study the influence
of tetrahedron geometry on boundary parameter estimation
accuracy. To recover the complete formulas with the effects
of positional inaccuracies included, one may replace

δt →

√
(δt)2 + mT

〈
δr δrT

〉
m (30)

or

δt →

√
(δt)2+(δr)2/V 2 . (31)

4.3 Influence of the spacecraft array geometry

The error formulas for the simplified case are

δθ = V δt
√

êTK ê , (32)

δV/V = V δt
√

n̂TK n̂ (33)

whereê is perpendicular tôn, andδV/V is used as a short-

hand notation for
√〈

(δV )2
〉
/V , i.e. the relative rms error in

boundary speed. To study the influence of the spacecraft ar-
ray geometry on boundary parameter accuracy, we write the
reciprocal tensor in terms of its eigenvectors and the tetra-
hedron geometric parameters planarityP , elongationE, and
the rms inter-spacecraft distanceL. The expression for the
resulting quadratic formcTKc is given in Appendix A where
also the parametersP , E, andL are defined. Note thatP = 1
if all spacecraft are in one plane andE = 1 if they lie on a
straight line (string-of-pearls configuration), and that space-
craft configurations close to an ideal tetrahedron correspond
to small values of planarity and elongation:P ≈ 0 andE ≈ 0.
In the quadratic formcTKc, we setc = n̂ to computeδV , and
c = ê for δθ . Hence the errors depend on the orientation of
the spacecraft tetrahedron, on the length scaleL, and on the
shape parametersE andP . To assess the full range of pos-
sible errors, we assume that the boundary unit normal vector
is aligned with the three eigenvectorsê(n) one by one.

4.3.1 Boundary unit normal aligned with the direction
of elongation

The direction of elongation is given by the eigenvectorê(1)

to the largest eigenvalueR(1)
∗ of R∗ which corresponds to the

smallest eigenvalue ofK . If n̂ = ê(1), then ê = ê(2) yields
the minimum angular uncertainty, andê = ê(3) its maximum
value:

V δt

L

1

(1−E)
≤ δθ ≤

V δt

L

1

(1−E)(1−P)
. (34)
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The error in boundary speed is given by

δV

V
=

V δt

L
. (35)

This is the best case (highest accuracy) for the speed estima-
tion but the worst case (lowest accuracy) for the computation
of the boundary normal.

4.3.2 Boundary unit normal aligned with the direction
of planarity

The direction of planarity is given by the eigenvectorê(3)

to the smallest eigenvalueR(3)
∗ of the position tensor, or the

largest eigenvalue of the reciprocal tensor. Ifn̂ = ê(3), then
ê = ê(1) yields the minimum angular uncertainty, andê = ê(2)

its maximum value:

V δt

L
≤ δθ ≤

V δt

L

1

(1−E)
. (36)

The error in boundary speed is given by

δV

V
=

V δt

L

1

(1−E)(1−P)
. (37)

This is the best case (highest accuracy) for the computation
of the boundary normal and the worst case (lowest accuracy)
for the speed estimation.

4.3.3 Boundary unit normal aligned with the eigenvec-
tor to the intermediate eigenvalue

The eigenvector̂e(2) belongs to the intermediate eigenvalues
both of the position tensor and the reciprocal tensor. Ifn̂ =

ê(2), then ê = ê(1) yields the minimum angular uncertainty,
andê = ê(3) its maximum value:

V δt

L
≤ δθ ≤

V δt

L

1

(1−E)(1−P)
. (38)

The error in boundary speed is given by

δV

V
=

V δt

L

1

(1−E)
. (39)

This is the intermediate case for both boundary normal and
speed estimation.

The results for the three cases presented above can be com-
bined to yield representative errors for a particular spacecraft
geometry. We average the squares of both the angular uncer-
tainty and the error in speed to obtain

δθ =
δV

V
=

√
(V δt)2

3
trace(K)

=
V δt

L

A(E,P )
√

3
(40)

where

A2(E,P ) = 1+
1

(1−E)2
+

1

(1−E)2(1−P)2
. (41)

Fig. 1. Influence of array geometry on the accuracy of the tim-
ing method: reference errorV δt/L. Blue and solid contour lines
give the relative error in boundary speedδV/V in percent. Red
and dashed contour lines give the directional uncertaintyδθ in de-
grees. Control variables are the inter-spacecraft length scaleL and
the boundary speed both for crossing time inaccuraciesδt = 0.1 s
(annotation at the left y-axis) andδt = 1 s (annotation at the right
y-axis). The spacing of the contour lines is logarithmic.

The meaning of the term trace(K) =
∑4

α=1|kα|
2 in the

context of error amplification was recognized byVogt and
Paschmann(1998) in their study on the accuracy of spatial
derivatives, and its importance was confirmed in the thorough
analysis presented byChanteur(2000) who further studied
the dependence onL, P , and E. For further details the
reader is referred to the original publications and toVogt
et al.(2008). Note that for planarity values close to one, the
functionA is well approximated asA ' (1−E)−1(1−P)−1.

4.4 Reference error of the timing method

For geometrically ideal spacecraft configurations character-
ized by zero values of planarity and elongation, the direc-
tional inaccuracyδθ and the relative error in boundary speed
δV/V are both given by

δθ |
E=0=P

=
δV

V

∣∣∣∣E=0=P

=
V δt

L
. (42)

For brevity, we refer to the termV δt/L as thereference error
(of the timing method).

Figure 1 showsV δt/L as a function of inter-spacecraft
length scaleL and boundary speedV both in percent (blue
solid contours, forδV/V ) and in degrees (red dashed con-
tours, forδθ ). The boundary speed values at the left y-axis
are forδt = 0.1 s in which case the error formulas are[

δV/V

[%]

]E=0=P

δt=0.1 s
= 10

V/[km s−1
]

L/[km]
(43)
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Fig. 2. Influence of array geometry on the accuracy of the timing
method: geometrical error amplification for the worst-case relative
orientation of the boundary normal vector with respect to the space-
craft configuration. In this case the geometrical error amplification
function is given by 1/[(1−E)(1−P)] whereE is elongation andP
is planarity. The contour lines in the plot are spaced logarithmically.

and[
δθ

[deg]

]E=0=P

δt=0.1s
= 5.73

V/[km s−1
]

L/[km]
. (44)

For other values ofδt , the numerical factors on the right-
hand side of the equation must be multiplied byδt/0.1 s. The
numerical values of the boundary speeds for the caseδt = 1 s
have been added in Fig.1 at the right y-axis for convenience.

The smallest reference errors occur whenL is large and
bothV andδt are small. In this sense magnetopause studies
(boundary speedV ∼ 10 km s−1) using high-resolution Clus-
ter FGM data (δt ∼ 0.1 s) from the year 2003 (L ∼ 5000 km)
provide a best case scenario as directional inaccuracies could
theoretically be as small as 0.01 deg, if in fact the magne-
topause behaved as an ideal planar structure on the time scale
of the transition (500 s) and on length scales close to one
Earth radius. A worst case scenario for the reference error is
the study of solar wind discontinuities (V ∼ 100 km s−1) us-
ing Cluster plasma measurements at spin resolution (δt ∼ 4 s)
from the year 2002 (L ∼ 100 km) which gives a relative er-
ror in boundary speed of 400 %. High-resolution FGM data
(δt ∼ 0.1 s) yield a value of 10 %.

4.5 Geometrical error amplification

Spacecraft array geometries that deviate from an ideal reg-
ular configuration are characterized by non-zero values of
elongation and planarity. The errorsδθ andδV/V are prod-
ucts of the reference errorV δt/L and functions that depend

Fig. 3. Influence of array geometry on the accuracy of the timing
method: logarithmically spaced contours of the average geometrical
error amplification functionA(E,P )/

√
3 in terms of the elongation

E and the planarityP of the spacecraft tetrahedron.

only on the shape parametersE and P , so the latter may
be termed(geometrical) error amplification factors. The ef-
fects of non-ideal configurations are shown in Figs.2 and
3. The worst-case error amplification both forδV/V andδθ

with respect to their reference values is given by the function
1/[(1−E)(1−P)], see Fig.2. The functionA(E,P )/

√
3

displayed in Fig.2 can be understood as an average error
amplification factor.

Numerical experiments on the accuracy of the timing
method were carried out byZhou et al.(2009). They gen-
erated a reservoir of spacecraft tetrahedra with a homoge-
neous distribution in elongation and planarity, and then sim-
ulated crossings of planar discontinuities with timing errors
that were identical at all four spacecraft and mutually un-
correlated. The resulting distributions of errors in boundary
orientation and speed are shown as function of elongation
and planarity in Figs. 1, 2, and 4 ofZhou et al.(2009). They
compare nicely with the corresponding contour plots of the
present study (Figs.2 and3), in particular with regard to the
sharp increase in errors for values of elongation and planarity
close to unity. We take this as a consistency check of our an-
alytical error formulas that are easier to apply to actual data.

5 Crossing time errors

The timing method in boundary parameter estimation rests
on the crossing timestα. Our error analysis scheme presented
in the previous Sect.4 requires the crossing time error co-
variances

〈
δtα δtβ

〉
as input parameters. The present section

aims at quantifying these error covariances through a pattern
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matching approach: we study the similarity of a signals with
shifted versions of a pattern functionp. For notational con-
venience, we writeτ for the crossing timedifferenceand re-
fer to it also as thelag (time). An overbar··· denotes the
time averaging operation. The averaging window is assumed
to be fixed with respect to the pattern function. Thus the
window would have to move with the lag timeτ if we de-
fined the association measures in terms of the pairs(t) and
p(t −τ). Instead we choose to write the formulas using the
pair s(t +τ) andp(t) so that the averaging window is fixed
and symmetric with respect to the time origin.

5.1 Association measures

A variety of association measures can be employed to quan-
tify the similarity of a time seriess and a pattern functionp
at a time shiftτ . Here we choose themean square deviation

I (τ ) = |s(t +τ)−p(t)|2 (45)

because it allows to derive analytical error formulas, and it
is sensitive also to linear variations in the data. The latter
statement is not true forPearson’s correlation coefficient

γ (τ) =
s◦(t +τ)p◦(t)√

|s◦(t +τ)|2
√

|p◦(t)|2
. (46)

whereu◦ = u◦(t) is the centered version of a time seriesu =

u(t) defined throughu◦(t) = u(t)−u(t). The coefficientγ
is designed to measure linear correlation: ifp(t) and s(t)

are both linear functions, thenγ (τ) = 1 irrespective of the
lag timeτ . The correlation coefficient can be made sensitive
to linear variations in the data by replacings◦ andp◦ in the
formula with its non-centered counterpartss andp.

Further association measures such as themean absolute
deviation|s(t +τ)−p(t)| were tested by means of numer-
ical experiments using synthetic data first, and then actual
Cluster FGM measurements of solar wind discontinuities. In
the noise-free limit the mean absolute deviation allows for an
easier identification of crossing times than the mean square
deviation. However, in the presence of noise or for actual
measurements the differences turned out to be minor.

It may also be noted that mean deviation measures exhibit
a misleading dependence on window width in graphical dis-
plays of association measures. This problem can be easily
rectified by a multiplication with the number of data points
in the averaging window to yield cumulative deviation mea-
sures (R. Wicks, private communication). The analytical er-
ror analysis given below is valid for both the mean square
deviation as well as its cumulative counterpart.

5.2 Analytical error formulas

The following formula for the crossing time error covari-
ances is derived in Appendix B:〈
δtα δtβ

〉
=

1

N
{
p′(t)2

}2

∑
1

(
1−

|1|

Tw

)
·

·p′(t)p′(t +1) · hα(t)hβ(t +1) . (47)

The underlying assumptions can be summarized as follows.

– Crossing times estimates are assumed to be based on
the mean square deviationsIα(τ ) = |sα(t +τ)−p(t)|2

between a patternp and the signalssα at lag timeτ .

– The patternp(t) is expected to show a transition at the
origin between approximately constant levels at both
ends of the data window. Examples are an ideal step
(Heaviside) function or a hyperbolic tangent profile.
When timing is only relative, a windowed portion of
a discontinuity crossing observed at a reference space-
craftρ may also serve as a pattern function for the signal
measured at another spacecraftα.

– The residualshα are estimated through

hα(t) = sα(t + τ̃α,∗)−p(t) (48)

whereτ̃α,∗ is the lag time at the minimum of the mean
square deviationIα.

– The residualshα are assumed to be time-stationary ran-
dom signals that are well characterized by their means
and their correlation functions. Angular brackets〈···〉

denote the ensemble averaging with respect to the resid-
uals.

– An overbar··· indicates time averaging,Tw is the time
interval used for averaging, andN is the number of data
points in the time window.

– The time difference parameter1 in the sum
∑

1 runs
from −Tw to +Tw, at least in principle. In boundary
analysis practice, when pattern functionsp(t) are char-
acterized by constant levels left and right of the transi-
tion, the factorp′(t)p′(t +1) effectively cuts off the1
summation.

Note that although both1 andτ denote time differences, we
prefer to use two different symbols as they appear in different
contexts.

A second version of the error covariance formula can be
obtained through normalization of the correlation functions.
We define

G(1) =

(
1−

|1|

Tw

)
·
p′(t)p′(t +1)

p′(t)2
, (49)

Hαβ(1) =
hα(t)hβ(t +1)√

h2
α(t)

√
h2

β(t)

. (50)
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As explained in Appendix B, the factor(1−|1|/Tw) comes
into play through the autocorrelation functionp′(t)p′(t +1)

and was thus included in the definition ofG(1). The mean
square (time) average ofhα(t) is the minimum value of the
mean square deviationIα:

h2
α(t) = Iα(τ̃α,∗) = Imin

α . (51)

The crossing time error covariances can thus be written in the
form:

〈
δtα δtβ

〉
=

√
Imin
α Imin

β

Np′2

∑
1

G(1)Hαβ(1) . (52)

All information on the right-hand side of this equation can
be constructed from the measurements. Implementation of
the crossing time error covariance formulas is discussed be-
low in Sect.7 where the complete error analysis scheme is
summarized.

In some special cases the sum
∑

1 in Eq. (52) collapses to
a single term.

– If the pattern functionp(t) is an ideal step (Heaviside)
function, the transition between the two states at both
ends of the data window occurs within a sampling in-
terval, thenp′(t) = 0 for t 6= 0 and thusG(1) = 0 for
1 6= 0. The error formula then simplifies to

〈
δtα δtβ

〉
=

√
Imin
α Imin

β

Np′2
Hαβ(0) . (53)

– If the residualshα(t) andhβ(t) can be represented as
mutually uncorrelated white noise, thenHαβ(1) = 0 for
α 6= β or 1 6= 0, so its only non-zero value isHαα(0) =

1, and we obtain〈
δt2

α

〉
=

Imin
α

Np′2
. (54)

The result is consistent with a formula derived by
Alexander Khrabrov (private communication; see also
Eq. 1.7 inSonnerup et al., 2008) for this idealized case.
In nonlinear and turbulent space plasmas such as the
solar wind, however, such correlations in the measure-
ments cannot be disregarded.

6 Example

To demonstrate the error analysis scheme presented in this
paper, Cluster FGM measurements of a solar wind discon-
tinuity are considered. After computing the boundary pa-
rameter estimates, we proceed with the crossing time error
covariance formula (52). Particular emphasis will be on the
functionsG andHαβ that quantify the effect of correlations
in the set of residuals. Then the slowness vector covariances
are computed and, finally, the errors of boundary speed and
direction.

Fig. 4. Crossing time error analysis using a tanh pattern function:
Cluster FGM data (solid) and pattern functions (dashed, magenta)
used for illustrating the crossing time error formulas. Shown are
the By components of the interplanetary magnetic field measured
by the four Cluster spacecraft (S/C 1: black, S/C 2: red, S/C 3:
green, S/C 4: blue) when they crossed a directional discontinuity
shortly before and after 19:11:30 UTC.

6.1 Boundary parameter estimates

The data are shown in Fig.4. We are looking at the mag-
netic field signature of a directional discontinuity in the so-
lar wind crossed by all four Cluster spacecraft at around
19:11:30 UTC on 3 February 2003. Superposed are shifted
versions of the hyperbolic tangent pattern function

p(t) = Boff +Bamptanh(t/Tdis) (55)

where the parametersBoff , Bamp, andTdis were obtained from
visual comparison with the data. In principle, the model pa-
rameters could also be determined through a least-squares fit
to a composite profile. The length of the pattern time window
was chosen to be 10 s. The actual crossing timestα were de-
termined from minima of the mean square deviationsIα(τ ),
see Eq. (45). Relative to the reference time 19:11:00 UTC,
their numerical values are 35.345 s, 29.324 s, 30.216 s, and
26.068 s for S/C 1 through S/C 4, respectively. The num-
bers are given with three digits as the sampling interval is
Tsam= 44.6 ms.

Then the reciprocal vectorskα were computed from the
spacecraft positions attα, and, finally, the boundary slowness
vectorm from Eq. (17):

m

[10−3 s m−1]
= (−2.076,−0.560,−0.530)T . (56)

Boundary speed and normal unit vector:

V = 1/|m| = 451.5 km s−1 ,

n̂ = V m = (−0.9374,−0.2528,−0.2394)T .

The geometrical parameters of the spacecraft configuration
areL = 3300 km,P = 0.19, andE = 0.27. Geometrical er-
ror amplification is small. The simplified error analysis pre-
sented in Sects.4.3–4.5 suggests that the relative error in
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Fig. 5. Crossing time error analysis using a tanh pattern function.
Top: residuals computed from the Cluster FGM data and tanh pat-
tern functions in Fig.4 as functions of centered array subscripts.
The total time window is 10 s (sampling interval 44.6 ms). Bottom:
products of correlation functionsG(1) andHαβ (1) that enter the
sum in the crossing time error formula (52). Shown are the profiles
for α = 1. The four colors correspond to spacecraft no.β as listed
in the caption of Fig.4.

boundary speed should be of the order of percent, and the
directional error should be in the range of one degree.

6.2 Crossing time error covariances

To evaluate the crossing time error covariance formula (52),
the functionsG andHαβ have to be computed. For the hy-
perbolic tangent pattern functionp(t) chosen here, the (nor-
malized) autocorrelation functionG(1) of the time deriva-
tive dp/dt drops to small values< 0.1 beyond±50 samples
away from the origin (|1| > 2.2s), thus effectively limiting
the summation in Eq. (52).

The residualshα(t) in the upper panel of Fig.5 were con-
structed according to Eq. (48). Note that by construction the
residuals are centered around the actual crossing time. Well-
developed structures in the diagram already suggest that the
ideal white noise model does not apply. Products of corre-
lation functionsG(1) and Hαβ(1) are displayed in lower
panel of Fig.5 for α = 1. The results forα = 2,3,4 are qual-

Table 1. Crossing time error analysis using a tanh pattern function:
elements of the crossing time error covariance matrix

〈
δtα δtβ

〉
for

the solar wind discontinuity observed by the FGM instruments on-
board the Cluster spacecraft shortly before and after 19:11:30 UTC
on 3 February 2003. The matrix elements are given in units ofT 2

sam
whereTsam= 44.6 ms is the sampling interval.

〈
δtα δtβ

〉
/T 2

sam β = 1 β = 2 β = 3 β = 4

α = 1 8.82 6.04 3.97 4.93
α = 2 6.04 7.08 2.68 4.04
α = 3 3.97 2.68 4.11 2.62
α = 4 4.93 4.04 2.62 4.07

itatively very similar. The numerical values of the sum in
Eq. (52) are the integrals under the curves. In our example
they are in the range from 12 (α = 2,β = 3) to 31 (α = β = 1).

All variables on the right-hand side of the crossing time
error formula (52) are now available and the crossing time
error covariance matrix

〈
δtα δtβ

〉
can be computed which in

turn yields the slowness error covariances and all other un-
certainties through the formulas in Sect.4. The resulting ma-
trix elements are given in Table1. The diagonal elements
(α = β) of the table can be understood as the square inac-
curacies of the timing method at the respective spacecraft.

Taking the square root yields values
√〈

δt2
α

〉
around 0.1 s, i.e.

in the range of 2–3 sampling intervals.
Note that also the off-diagonal elements (α 6= β) of the er-

ror covariance matrix
〈
δtα δtβ

〉
are positive which reflects the

fact that the residualshα are positively correlated. In other
words, the residuals share common substructures. When
these common features are incorporated in the pattern func-
tion, it should in principle be better adapted to this particular
data set. We constructed such anempiricalpattern function
by first averaging the four residualshα(t) and then adding
the resulting profile to the initial tanh pattern function. Using
the empirical pattern function and a new set of residuals, the
cross correlation (α 6= β) functionsHαβ(1) were found to
be predominantly negative around the origin. Furthermore,
the elements of the crossing time error covariance matrix〈
δtα δtβ

〉
turned out to be smaller in magnitude. Refining the

pattern function may thus help to improve the accuracy of the
timing method. A detailed study of the effects of empirical
pattern functions on crossing time errors would be beyond
the scope of the present paper and is left for future work.

6.3 Boundary parameter errors

As explained in Sect.4.1, the errors in boundary speed and
normal unit vector are computed from the slowness error
covariance matrix

〈
δmδmT

〉
which in turn is found from

Eq. (21). Following the discussion in Sect.4.2, we disregard
the contribution from the positional inaccuracies and con-
sider the crossing time error covariances only. For the Cluster
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Table 2. Crossing time error analysis using a tanh pattern func-

tion: elements of the slowness error covariance matrix
〈
δmδmT

〉
for

the solar wind discontinuity observed by the FGM instruments on-
board the Cluster spacecraft shortly before and after 19:11:30 UTC
on 3 February 2003. The matrix elements are given in units of
10−10 (s m−1)2.

〈
δmδmT

〉
[10−10 (s m−1)2]

x y z

x 6.81 −1.76 −1.83
y −1.76 5.81 −3.62
z −1.83 −3.62 8.97

discontinuity crossing studied here, the numerical values of
the slowness error covariances are given in Table2. The re-
sulting uncertainty in boundary speed isδV = 5 km s−1, and
the range of the directional errorδθ is 0.6–0.9 deg.

7 Summary

The principle variants of the timing approach to boundary
analysis discussed in Sect.3 require slightly different param-
eter estimation and error analysis strategies. In the present
study we concentrated on absolute crossing times determined
through minima of the mean square deviationI (τ ) of the
data from a predefined pattern function such as a hyperbolic
tangent profile. If the relative crossing time approach is em-
ployed, we recommend to construct an effective pattern func-
tion p(t) for the error analysis as follows: first apply time
shifts to the signals so that the transitions all occur at the ori-
gin, and then average to obtainp(t).

The advantages of absolute crossing times over their rela-
tive counterparts are not only of technical nature. Compar-
ing the data with a predefined pattern means that we are in
explicit control of the features in the data that we wish to as-
sociate. In the relative crossing time method one compares
segments of two time series around a transition (that has usu-
ally been identified by eyeballing) but the result can be dis-
torted by substructures in the data that may move at differ-
ent speeds than the boundary itself, and that may have been
identified by some (pairs of) sensors but not by others. Fur-
thermore, substructures that are moving in the plasma frame
have different effects on the two main types of directional
discontinuities which motivated our error analysis in the first
place: TDs are stationary in the plasma frame whereas RDs
propagate through the plasma. In the absolute crossing time
method with a predefined pattern, such substructures become
part of the residuals and are thus taken care of in the error
analysis. Alternatively, they can be made explicit through an
empirical pattern function as explained at the end of Sect.6.

To implement the multi-point crossing time method to
boundary parameter estimation and the error analysis scheme
presented in this paper, we recommend to proceed as follows.

7.1 Crossing timestα and boundary parametersm,n̂,V

Choose a pattern functionp(t), construct the mean square
deviationsIα(τ ) of p(t) and the shifted signalssα(t+τ), and
identify the crossing timestα as the lag values at the minima
of theIα ’s. Take the spacecraft positions attα to compute the
reciprocal vectorskα. Obtain the boundary slowness vector
m from Eq. (17), then computeV = 1/|m| andn̂ = V m.

7.2 Crossing time error covariances
〈
δtα δtβ

〉
Compute the residuals from Eq. (48), the correlation func-
tions p′(t)p′(t +1) andhα(t)hβ(t +1), and then evaluate
the sum on the right-hand side of Eq. (47). Alternatively,
compute the functionsG(1) andHαβ(1) from Eqs. (49) and
(50), and use Eq. (52) to obtain

〈
δtα δtβ

〉
.

7.3 Boundary parameter errors
〈
δn̂δn̂T

〉
and

〈
(δV )2

〉
Equation (19)–(25) give the mean square errors of the bound-
ary parameterŝn andV for general crossing time error co-
variances

〈
δtα δtβ

〉
and spacecraft position covariance matri-

ces
〈
δr δrT

〉
γ
. To check if the latter make a significant contri-

bution, carry out an order-of-magnitude assessment similar
to the one in Sect.4.2. If the assessment is negative, posi-
tional inaccuracies can be disregarded and the error formulas
simplify considerably.

In the second and third step, it is essential to construct the
full crossing time error covariance matrix

〈
δtα δtβ

〉
, and then

to use the general formula for
〈
δn̂δn̂T

〉
. Correlations in the

set of residuals are particularly important. If they are disre-
garded and an oversimplified white noise model is used to
estimate

〈
δtα δtβ

〉
, the crossing time errors may come out far

too small.

Appendix A

Tetrahedron geometry parameters and the
reciprocal tensor

The geometrical shape of the spacecraft configuration can
be characterized through the eigenvalues and eigenvectors
of the so-called volumetric tensorRvol = (1/S)R∗ (Robert
et al., 1998) that differs from the position tensorR∗ only by
the constant factor, so they share the same set of eigenvec-
tors{ê(n)},n= 1,2,3, and the eigenvalues are related through

R
(n)
vol = (1/S)R

(n)
∗ . Assuming that the eigenvalues are ar-

ranged in descending orderR
(1)
∗ ≥ R

(2)
∗ ≥ R

(3)
∗ ≥ 0, an intrin-

sic length scaleL (inter-spacecraft distance) and two shape
parametersP (planarity) andE (elongation) can be defined
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as follows for the tetrahedral caseS = 4:

L = 2
√

R
(1)
vol =

√
R

(1)
∗ , (A1)

P = 1−

√
R

(3)
vol /R

(2)
vol = 1−

√
R

(3)
∗ /R

(2)
∗ , (A2)

E = 1−

√
R

(2)
vol /R

(1)
vol = 1−

√
R

(2)
∗ /R

(1)
∗ . (A3)

The eigenvector̂e(1) to the largest eigenvalueR(1) is as-
sociated with the direction where the configuration appears
stretched. The eigenvectorê(3) to the smallest eigenvalue is
normal to the surface of planarity. For further discussion of
the geometric quality of a tetrahedron, the reader is referred
to Robert et al.(1998). Using the eigenvalues and eigenvec-
tors, the position tensor can be written in the dyadic form

R∗ =

3∑
n=1

R(n)
∗ ê(n)ê

T
(n)

= L2
(
ê(1)ê

T
(1) +(1−E)2ê(2)ê

T
(2)

+(1−E)2(1−P)2ê(3)ê
T
(3)

)
. (A4)

The eigenvaluesQ(n) of the generalized reciprocal tensor
Q = R−1

∗ areQ(n)
= [R(n)

]
−1. Furthermore,Q andR∗ share

a common set of eigenvectors, thus

Q =

3∑
n=1

[
R(n)

∗

]−1
ê(n)ê

T
(n) . (A5)

The tetrahedral reciprocal tensorK =
∑

αkαkT
α can be ex-

pressed in terms of the parametersL, E, P and the eigenvec-
tors ê(n) of R∗ as follows (see, e.g.Chanteur, 2000):

K =

3∑
n=1

[
R(n)

∗

]−1
ê(n)ê

T
(n)

=
1

L2

(
ê(1)ê

T
(1) +

1

(1−E)2
ê(2)ê

T
(2)

+
1

(1−E)2(1−P)2
ê(3)ê

T
(3)

)
. (A6)

The associated quadratic formcTKc takes an arbitrary vector
c and yields the scalar value

cTKc =

3∑
n=1

(ê(n) ·c)
2

R
(n)
∗

=
1

L2

(
(ê(1) ·c)

2
+

(ê(2) ·c)
2

(1−E)2

+
(ê(3) ·c)

2

(1−E)2(1−P)2

)
. (A7)

Appendix B

Crossing time error covariance

The following analysis addresses the accuracy of crossing
time estimation based on the mean square deviation

I (τ ) = |s(t +τ)−p(t)|2 (B1)

of a signals shifted by the lag timeτ and a patternp. Here
the overbar··· indicates time averaging. Angular brackets
〈···〉 denote the ensemble averaging with respect to the resid-
ual to be specified in more detail further below.

Let τ∗ denote the numerical value of the lag time at the
minimum of the mean square deviation for the (hypotheti-
cal) “noise-free” case, and̃τ∗ the estimated lag time based
on a “noisy” measurement. Note that in this context the term
“noise” refers to all contributions to the signal other than the
given pattern function. If noise was absent, thenτ̃∗ = τ∗. In
the presence of noise, the mean square deviationI (τ ) is non-
zero for all values ofτ , and the estimated lag timẽτ∗ (i.e.
the minimum of the empirical mean square deviation) differs
from the true lag timeτ∗.

The mismatch of pattern and signal at time shiftτ∗ defines
the residual:

h(t) = s(t +τ∗)−p(t) . (B2)

To accomplish the error analysis, we wish to translate the
mean square deviationI (τ̃∗) into a functionJ (δt) whereδt

denotes the deviation of the estimated lag from its true value:

δt = τ̃∗ −τ∗ . (B3)

SinceI (τ̃∗) = |s(t + τ̃∗)−p(t)|2, we start by rearranging as
follows:

s(t + τ̃∗)−p(t) = s(t +δt +τ∗)︸ ︷︷ ︸
=p(t+δt)+h(t+δt)

−p(t)

= [p(t +δt)−p(t)]+h(t +δt) . (B4)

For the mean square deviation we then obtain

I (τ̃∗) = {s(t + τ̃∗)−p(t)}2

= {[p(t +δt)−p(t)]+h(t +δt)}2

= [p(t +δt)−p(t)]2+h(t +δt)2

+2[p(t +δt)−p(t)] ·h(t +δt)

= J (δt) . (B5)

Inserting the Taylor expansions

p(t +δt) = p(t) + p′(t)δt +
1

2
p′′(t)δt2

+O
(
δt3
)

,

h(t +δt) = h(t) + h′(t)δt +
1

2
h′′(t)δt2

+O
(
δt3
)
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into J (δt) yields the following quadratic approximation:

J (δt) = h2 + 2
{
p′h+h′h

}
δt

+

{
p′2+2p′h′ +p′′h+h′2+h′′h

}
δt2

+O
(
δt3
)

. (B6)

We assume the residual and its derivatives to be sufficiently
small compared to the derivatives of the pattern function
so that only the dominant contributions need to be kept,
namely,p′h in the linear term, andp′2 in the quadratic term.
Computingδt from the conditionJ ′(δt) = 0 then leads to
δt = −p′h/p′2 and thus

δtα δtβ =
p′hα ·p′hβ{

p′(t)2
}2

(B7)

for measurements at several sensorsα,β such as the FGM
instruments onboard the Cluster spacecraft (α,β = 1,2,3,4).

To arrive at an estimate for the error covariance matrix〈
δtα δtβ

〉
, we think of the residualshα andhβ as realizations

of time-invariant and ergodic random processes that are well
characterized by their means and correlation functions. Then
〈···〉 is the average with respect to the random functionshα

andhβ . Since the denominator does not depend on the resid-
uals, it is a constant in the ensemble averaging procedure.
For the numerator we obtain

p′(t)hα(t) ·p′(t)hβ(t)

=

(
1

N

∑
µ

p′(tµ)hα(tµ)

)(
1

N

∑
ν

p′(tν)hβ(tν)

)

=
1

N2

∑
µ,ν

p′(tµ)p′(tν)hα(tµ)hβ(tν) . (B8)

HereN is the number of data points in the time averaging
window. The ensemble average of this expression is〈
p′hα ·p′hβ

〉
=

1

N2

∑
µ,ν

p′(tµ)p′(tν)
〈
hα(tµ)hβ(tν)

〉
(B9)

where the expression
〈
hα(tµ)hβ(tν)

〉
can be further rear-

ranged as follows〈
hα(tµ)hβ(tν)

〉
=
〈
hα(tµ)hβ(tµ +1)

〉
(B10)

with 1 = tν − tµ. This is the correlation betweenhα andhβ

at time tµ and lag1. Since the residuals are assumed to
be realizations of random processes that are time-invariant
and ergodic, the dependence ontµ can be dropped, and the
ensemble average can be replaced by a time average. We
then obtain〈
hα(tµ)hβ(tν)

〉
= hα(t)hβ(t +1) (B11)

and thus, after replacing theν-summation by an equivalent
summation over the variable1,〈
p′hα ·p′hβ

〉
=

1

N2

∑
1

hα(t)hβ(t +1) ·

·

∑
µ

p′(tµ)p′(tµ +1) . (B12)

Up to a constant factor, the sum
∑

µp′(tµ)p′(tµ + 1) is
also a correlation function: ifTw denotes the time inter-
val covered by the time window used to compute averages,
the number of terms in the sum isN · (1−|1|/Tw), hence∑

µp′(tµ)p′(tµ + 1) is an approximation of the product

N ·(1−|1|/Tw) ·p′(t)p′(t +1).
Combining the partial results yields the following expres-

sion for the crossing time error covariances

〈
δtα δtβ

〉
=

〈
p′(t)hα(t) ·p′(t)hβ(t)

〉
{
p′(t)2

}2

=
1

N
{
p′(t)2

}2

∑
1

(
1−

|1|

Tw

)
·

·p′(t)p′(t +1) · hα(t)hβ(t +1) . (B13)

In principle, the time difference1 runs from−Tw to Tw.
In practice, its scope is limited by the effective range of the
correlation functions.
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Local wavelet correlation: applicationto timing analysis of
multi-satellite CLUSTER data, Ann. Geophys., 22, 4185–4196,
doi:10.5194/angeo-22-4185-2004, 2004.

Tsurutani, B. T. and Smith, E. J.: Interplanetary discontinuities –
Temporal variations and the radial gradient from 1 to 8.5 AU, J.
Geophys. Res., 84, 2773–2787,doi:10.1029/JA084iA06p02773,
1979.

Vogt, J. and Paschmann, G.: Accuracy of Plasma Moment Deriva-
tives, pp. 419–447, ISSI SR-001, 1998.

Vogt, J., Paschmann, G., and Chanteur, G.: Reciprocal Vectors, pp.
33–46, ISSI SR-008, 2008.

Vogt, J., Albert, A., and Marghitu, O.: Analysis of three-spacecraft
data using planar reciprocal vectors: methodological framework
and spatial gradient estimation, Ann. Geophys., 27, 3249–3273,
doi:10.5194/angeo-27-3249-2009, 2009.

Volpp, J. and Sieg, D.: ESOC Data Products in the CAA, pp. 209–
222, Springer,doi:10.1007/978-90-481-3499-113, 2010.

Zhou, X.-Z., Pu, Z. Y., Zong, Q.-G., Song, P., Fu, S. Y., Wang, J.,
and Zhang, H.: On the error estimation of multi-spacecraft tim-
ing method, Ann. Geophys., 27, 3949–3955,doi:10.5194/angeo-
27-3949-2009, 2009.

Ann. Geophys., 29, 2239–2252, 2011 www.ann-geophys.net/29/2239/2011/

http://dx.doi.org/10.5194/angeo-21-437-2003
http://dx.doi.org/10.5194/angeo-21-437-2003
http://dx.doi.org/10.5194/angeo-22-1347-2004
http://dx.doi.org/10.5194/angeo-22-1347-2004
http://dx.doi.org/10.1029/2000GL000121
http://dx.doi.org/10.1029/2003JA010099
http://dx.doi.org/10.1029/JA091iA08p08725
http://dx.doi.org/10.1029/93JA03326
http://dx.doi.org/10.1029/2005JA011497
http://dx.doi.org/10.1029/JA089iA07p05395
http://dx.doi.org/10.1029/JA088iA12p09941
http://dx.doi.org/10.5194/angeo-19-667-2001
http://dx.doi.org/10.5194/angeo-22-4185-2004
http://dx.doi.org/10.1029/JA084iA06p02773
http://dx.doi.org/10.5194/angeo-27-3249-2009
http://dx.doi.org/10.1007/978-90-481-3499-1_13
http://dx.doi.org/10.5194/angeo-27-3949-2009
http://dx.doi.org/10.5194/angeo-27-3949-2009

