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Abstract 

Expression of genes is a fundamental molecular phenotype that is subject to evolution by 

different types of mutations. Both the rate and the effect of mutations may depend on the 

DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I 

investigate the nature of this dependence using simple genetic systems in Escherichia coli. 

With these systems I explore the evolution of constitutive gene expression from random 

starting sequences at different loci on the chromosome and at different locations in sequence 

space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent 

differences in the potential of a gene under selection to become more highly expressed. Next, 

I find that the effects of point mutations in promoter sequences are dependent on sequence 

context, and that an existing energy matrix model performs poorly in predicting relative 

expression of unrelated sequences. Finally, I show that a substantial fraction of random 

sequences contain functional promoters and I present an extended thermodynamic model that 

predicts promoter strength in full sequence space. Taken together, these results provide new 

insights and guides on how to integrate information on sequence context to improve our 

qualitative and quantitative understanding of bacterial gene expression, with implications for 

rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer. 
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Preface 

In biology, the correct answer to almost any question needs to start with the same two words: 

‘It depends …’  

At all levels, nothing in biology exists in isolation; everything exists in and depends on a 

biological context that may become important in unexpected ways. In molecular genetics, 

context has a quite literal meaning. The four different nucleotide ‘letters’ are each others’ 

neighbors on the linear DNA molecule. The same is true for genes, the ‘words’ formed by 

these letters. Genes physically exist next to each other on the DNA like beads on a string. 

They also evolve like that (and, in bacteria, where sex is rare, not like beans in a bag). In this 

thesis, I investigate, at the two levels of nucleotides and genes, whether and how evolution of 

gene expression in bacteria depends on sequence context. 

Strictly speaking, to form a correct answer to a biological question, a full stop after the two 

words above is sufficient: ‘It depends.’ However, what makes an answer a useful one is what 

follows after these first two words. I hope that this thesis will provide a few such useful 

answers. 
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1 Introduction 

With this thesis, I hope to contribute a minuscule bit to one of the fundamental goals of 

biology at the intersection of molecular and evolutionary biology: to understand biological 

phenotypes from genotypes. To this end, I study how genes come to be expressed by way of 

mutations. Using simple synthetic genetic constructs, instead of dissecting natural genetic 

model systems, I seek to identify generally applicable factors in the sequence context of these 

constructs that constrain the evolution of gene expression. The hope is that, if we take these 

factors into account, we can get a better understanding of the function and evolution of gene 

expression in naturally evolving systems. 

Before I give a preview of how this endeavor is pursued in the individual chapters, I briefly 

locate this work in the larger context of current molecular evolutionary biology. More 

specific introductions can be found in the respective sections of the individual chapters. 

1.1 ‘The middle way’ between molecular model systems and the 

sequencing data deluge 

The foundations of molecular biology in the 1950s and 1960s were laid by the detailed 

dissection of individual model systems such as the lac operon of E. coli (Jacob & Monod 

1961) and the lifecycle control of phage λ (E. M. Lederberg & J. Lederberg 1953; Gottesman 

& Weisberg 2004). Many questions concerning the ecology and evolution of these model 

systems await being addressed (for examples, see the theses of my colleagues Fabienne (Jesse 

2017) and Maroš (Pleška 2017)). On a particular molecular level however, after countless 

lessons have been learned from lac, λ, et cetera, our understanding of their function has 

saturated. What remains to be seen is how much trouble we cause ourselves by the narrow 

focus on model systems when trying to generalize to other genes and organisms. We will 

come across this problem in chapter 4, where we will see that the description of the 

interaction between RNA polymerase and the lac promoter applies poorly to the full 

promoter sequence space. 

Starting in the mid-2000s, ‘next generation sequencing’ put an end to the sequencing 

bottleneck that before then had been limiting molecular biology (Schuster 2007), just to, as it 

goes with bottlenecks, create a new one. Today, sequencing data of all kinds (genomic, meta-

genomic, RNAseq, ChIPseq, …) is pouring in at a much faster rate than we can make sense 

of it. Also, systems biology, which set out to explain biology by integrating components and 

models (Ehrenberg et al. 2003), does not simply scale up with the amount of data one would 
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hope to apply it on (Brenner 2009). Models of interacting components often lose their 

explanatory power when applied to a large scale. This is why, borrowing from a seminar title 

by Nick Barton, ‘systems biology may be doomed to fail’ (FrisBi seminar, Feb 27th, 2015). 

What we are left with is a gap between two extremes: detailed local data on molecular model 

systems and poorly understood data on a global scale. The gap calls for a ‘middle way’ that 

allows us to upscale insights from the reductionist study of model genes to the scale of -omics 

data. It is in this gap where the trickiness of biology lies: Since no two systems under study 

are alike, it is crucial to identify what differences are the important ones. Only if we manage 

to identify these ‘differences that make a difference’ (Bateson), will we make progress in 

putting together a picture that will work more generally. In chapter 2, I will argue that one 

such important difference between two genes, when it comes to evolution of their expression, 

is their position on the chromosome. And fortunately, it appears that we can understand why. 

1.2 Using synthetic systems and random sequences to learn about natural 

ones 

As said above, every evolved biological system comes with its particularities that may 

complicate the abstraction of general principles. For example, when trying to understand the 

strength of a constitutive promoter, as we will in chapter 4, the fact that most genes are 

regulated, constitutes a complication. Or, when trying to carve out the isolated effect of 

chromosome position on evolution, as we do in chapter 2, moving a native gene to different 

chromosome positions may yield results that are difficult to generalize, due to a history of co-

adaptation between a gene and its locus. 

Throughout this thesis, I circumvent this problem by using well-defined synthetic genetic 

systems that function independently from the host cell machinery. They include fluorescent 

reporters and, in chapter 2, a ‘stand-alone’ antibiotic pump gene. ‘Synthetic’ here refers 

solely to the orthogonality of components with respect to the host cell and should not be 

confused with efforts to engineer an artificial function for any purpose other than learning 

about natural systems. 

Also, instead of starting from functional model promoters, I use random sequences to drive 

expression. This approach offers two advantages: First, by acquiring data from random 

sequences covering a larger sequence space (chapter 4), results are expected to generalize 

well over the full space of promoter functionality, instead of being locally fitted to some 

particular sequence. Second, studying the emergence of function in and from random 
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sequences may mimic a possibly important, only recently discovered mode of evolution, that 

is the evolution of transcripts and genes from scratch, i.e. de novo (McLysaght & Guerzoni 

2015). 

1.3 Questions addressed in this thesis 

Chapter 2 describes evolution experiments, in which I subjected engineered strains of E. coli 

to selection for increased expression of an antibiotic pump gene, placed at different positions 

of the chromosome, to answer the following questions: 

• How does the adaptive potential of a gene vary with the position of the gene on the 

chromosome? 

• What mutation types contribute to adaptation via increased gene expression at 

different chromosomal positions? 

• What are the determinants of chromosomal neighborhood that underlie differences in 

adaptive potential and what do these determinants predict about the distribution of 

adaptive potential on the chromosome? 

After considering the full range of possible mutation types in chapter 2, chapter 3 zooms in 

on the effect of point mutations on promoter strength and on modeling these effects using a 

thermodynamic framework. Together with my collaborators Srdjan Sarikas, Murat Tugrul 

and Gašper Tkačik, we quantify the effect of single nucleotide mutations on three different 

starting sequences, one of which we had already used in chapter 2. We use three promoter-

GFP libraries and sort-seq to address the following questions: 

• Can we predict promoter-generating point mutations observed in evolution 

experiments using energy matrix models of RNA polymerase binding? 

• How specific is the predictive power of energy matrix models to distinct sequence 

contexts? 

• How does the effect of promoter mutations depend on the promoter sequence context? 

• What possible reasons are there for the context-specificity of energy matrix models? 

Unexpected observations in chapter 3 raise the question how the sequence context of an RNA 

polymerase binding site, i.e. its location in the full sequence space, influences promoter 

function. In chapter 4, continuing the collaboration with Srdjan Sarikas and Gašper Tkačik, 

we address these unexpected results using sort-seq data of another promoter-GFP library that 

covers a much larger area of random sequence space. We also test different extensions of a 
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thermodynamic model of RNA polymerase binding. Thereby we address the following 

questions: 

• What is the distribution of promoter strength in random sequence space? 

• How can we improve predictions of promoter strength in the full sequence space and 

what does that tell us about the emergence of promoter function? 
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2 Complex chromosomal neighborhood effects determine the adaptive 

potential of a gene under selection  

This chapter was originally published in (Steinrueck & Guet 2017). Figure supplements are in 

the appendix of this thesis, additional source data and video files are available on the 

webpage of the article (open access): https://elifesciences.org/articles/25100 

2.1 Abstract 

How the organization of genes on a chromosome shapes adaptation is essential for 

understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing 

levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene 

inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence 

reporter that allows us to distinguish gene amplifications from other up-mutations, we track 

in real-time adaptive changes in expression of the drug-resistance gene. We find that the 

relative contribution of several mutation types differs systematically between loci due to 

properties of neighboring genes: essentiality, expression, orientation, termination, presence of 

duplicates. These properties determine rate and fitness effects of gene amplification, 

deletions, and mutations compromising transcriptional termination. Thus, the adaptive 

potential of a gene under selection is a system-property with a complex genetic basis that is 

specific for each chromosomal locus, and it can be inferred from detailed functional and 

genomic data. 

2.2 Introduction 

In the process of regulatory evolution, a finite set of genes are continuously combined to form 

new gene expression patterns and create a myriad of phenotypes (Carroll 2000; Wittkopp et 

al. 2004; Wray 2007). Acquiring mutations that increase the expression of a single gene can 

be sufficient to make an individual substantially fitter than its competitors. For example, 

increased expression of drug target or efflux genes is a common mechanism for the evolution 

of resistance to antibiotics (Li et al. 2015; Palmer & Kishony 2014), chemotherapeutics (Cole 

et al. 1992), and insecticides (Devonshire & Field 1991; Coderre & Beverley 1983). 

Increased expression of individual genes also provides access to new nutrient resources 

(Notebaart et al. 2014) and tolerance to diverse toxins (Soo et al. 2011). The fitness effect of 

increased expression of individual genes has mostly been determined in plasmid-based 

overexpression libraries (Notebaart et al. 2014; Soo et al. 2011). However, the large majority 

of genes reside on chromosomes, neighboring other genes, and thus mutations affecting gene 
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expression occur in a specific chromosomal context. Unequal mutation rates along the 

genome (Foster et al. 2013; Anderson & Roth 1981) imply that the chromosomal location can 

affect the adaptive potential of a gene, i.e. the probability that adaptive mutations increasing 

expression of the gene will spread in a population under given selective conditions.  

Adaptation by increased gene expression can result from mutations of different types (Blank 

et al. 2014; Lind et al. 2015): point mutations, promoter insertion by mobile elements 

(Mahillon & Chandler 1998; Ellison & Bachtrog 2013; Stoebel et al. 2009), promoter capture 

by chromosomal rearrangements (ar-Rushdi et al. 1983; Blount et al. 2012; Xiao et al. 2008), 

and gene duplication or amplification, which increases expression by way of gene dosage 

(Andersson & Hughes 2009; Elliott et al. 2013). How the rate of mutation of these individual 

mutation types depends on chromosomal position has in part been determined experimentally 

(Foster et al. 2013; Hudson et al. 2002; Mahillon & Chandler 1998; Craig 1997; Touchon et 

al. 2009; Anderson & Roth 1981; Seaton et al. 2011; Wahl et al. 1984). Despite considerable 

experimental data, we currently lack an understanding of how position biases of the different 

mutation types together combine across different chromosomal loci, and therefore how the 

chromosomal context of a gene under selection affects overall adaptation. 

Here, we investigate how the complex interplay of different mutation types and mutation rate 

biases gives rise to an effect of chromosome position on adaptation in Escherichia coli. To 

this end, we use a single chromosomal drug resistance gene as the target of selection and a 

two-color fluorescence reporter readout for adaptive mutations in evolution experiments. We 

quantify the effect of the chromosomal position of the selected gene on adaptation and 

identify the mutation types underlying this effect. We find that a strong effect of chromosome 

position on adaptation is largely explained by rate differences of gene duplications and fitness 

effect differences of two types of promoter co-opting mutations (promoter capture deletions 

and mutations that cause read-through across upstream transcriptional terminators). Both the 

observed rate differences and fitness effect differences depend on simple features of the 

chromosomal neighborhood of the gene under selection. This suggests that the adaptive 

potential of a gene can be estimated by looking for respective features of chromosomal 

neighborhoods in genomics data. Based on these results, we propose that the chromosomal 

context of a gene under selection is an important factor in adaptation. 
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2.3 Results 

 A dual-fluorescence reporter cassette for tracking the dynamics of 2.3.1

adaptive mutations of different types  

We devised an evolution experiment with Escherichia coli, in which we use a single target of 

selection embedded in a genetic cassette that serves as a reporter of adaptive potential and 

mutation types. The reporter cassette can be inserted at any chromosomal position (Figure 1A 

and Figure 1B), and it allows us to distinguish amplifications from other adaptive mutations 

in real-time using two-color fluorescence measurements. The reporter cassette contains a 

promoterless, translational tetA-yfp gene fusion followed by a transcriptional terminator and a 

constitutively expressed cfp gene. Mutations that increase expression of the tetracycline 

efflux pump TetA-YFP can be selected with antibiotic and monitored through YFP 

fluorescence (Figure 1C, left). Due to the immediate proximity of the tetA-yfp and cfp genes, 

the large majority of tetA-yfp amplifications are expected to contain the cfp gene as well. 

Thus, adaptation by reporter cassette amplification is expected to be distinguishable from 

other up-mutations by a fluorescence increase of both YFP and CFP (Figure 1C, right). We 

integrated the reporter cassette at four different intergenic loci (A, B, C, D) along the 

chromosome of an E. coli ΔtolC strain (Figure 1A), giving rise to four strains (strain A, B, C, 

and D). The four loci were chosen to lie in intergenic regions between divergently transcribed 

genes in order to exclude transcription from upstream genes into the tetA-yfp gene 

(Figure 1B). Loci A and C are located approximately in the middle of the right and left 

replichore respectively. Since we wanted to also include a locus close to the origin of 

replication, where no pair of divergently oriented genes is present, we chose a locus in the 

relatively large intergenic region between the co-oriented rsmG and atpI genes (locus D, 

Figure 1B), a locus previously used for large insertions (Kuhlman & Cox 2010). Locus B was 

chosen based on its vicinity to several insertion sequences (IS). 
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Figure 1. A dual-fluorescence reporter cassette for real-time tracking of adaptive mutations of different types. 
(A) Reporter cassette construct for chromosomal insertion. p0 = 188 bp random DNA sequence, RBS = 
ribosomal binding site, hairpins = transcriptional terminators, tetA-yfp = selected gene, cfp = constitutively 
expressed amplification reporter. A, B, C, D = intergenic chromosomal insertion loci, oriC = origin of 
replication. (B) Immediate chromosomal neighborhoods of loci A-D. Black arrows = essential genes. White 
arrows = non-essential genes. Grey arrows = no essentiality data available. Patterned arrow (yoeD) = 
pseudogene. Orange = cryptic prophage CP4-44. Green = origin of replication (oriC). Chromosomal 
neighborhoods of loci B, C, and D are shown reversed with respect to conventional chromosome coordinates, so 
that the orientation relative to the reporter cassette is shown in the same way for all four loci. Reporter cassette 
genes are not drawn to scale. (C) Example fluorescence trajectories of rescued populations with YFP or 
YFP+CFP (amplification) fluorescence phenotype. RFU = relative fluorescence units (see Methods), yellow 
and blue lines = YFP and CFP fluorescence, dotted lines = threshold for phenotype classification. (D) Increase 
of tetracycline concentration in ten-day experiment, normalized to strain-specific minimal inhibitory 
concentration (MIC, dotted line). (E) qPCR validation of CFP fluorescence as an indicator of extent of 
amplifications. x-axis: tetA-yfp copy number as determined by qPCR on genomic DNA of rescued population 
with a YFP+CFP fluorescence phenotype. Error bars = SD of technical qPCR triplicates. r is the Pearson 
correlation coefficient and P its p-value. RFU = relative fluorescence units, line = linear fit. 
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We used a ΔtolC genetic background in order to constrain the spectrum of possible adaptive 

mutations to the reporter cassette locus. TolC is an outer membrane porin and an essential 

part of several E. coli multi-drug efflux pumps, which are a frequent target of selection 

during drug exposure (Li et al. 2015) and which cause low-level intrinsic resistance of E. coli 

to tetracyclines (Sulavik et al. 2001). By employing daily increasing levels of tetracycline 

(Figure 1D)* and constant daily dilution we created an experimental evolutionary rescue 

scenario (Carlson et al. 2014), in which populations of ancestral cells rapidly undergo 

extinction. Rescue from extinction requires the spread of adaptive mutations activating tetA-

yfp expression in a race against population decline. 

The probability of evolutionary rescue depends on the size and decline rate of an unadapted 

population, and on a combination of rate and fitness effect of adaptive mutations (Martin et al. 

2013). We chose selective conditions such that the initial population size and decline rate are 

approximately equal for all strains. In this way, the probability of rescue (estimated by 

performing a large number of replicate rescue experiments) is expected to be informative 

about the strain-specific rate and fitness effect of adaptive mutations of all types. Specifically, 

we adjusted the tetracycline concentrations used in evolution experiments to strain-specific 

minimum inhibitory concentrations (MICs), which we measured precisely (Figure 1 – 

Supplement 1). Given the otherwise isogenic background of the strains, we interpret MICs as 

a proxy for initial expression of tetA-yfp. MIC measurements revealed locus-dependent 

differences in the initial sensitivity to tetracycline, and all strains showed an increased MIC 

compared to the cassette-free ancestor, which indicates low baseline expression of tetA-yfp. 

For evolution experiments, we used tetracycline concentrations starting at 50% of the strain-

specific MICs (Figure 1D). 

We evolved 95 populations of each strain and measured optical density (OD600) and 

fluorescence daily. Populations yielding OD600 above a fixed threshold after ten days were 

regarded as rescued. Rescued populations were assigned to fluorescence phenotypes (YFP or 

YFP+CFP) based on the increase in fluorescence at the end of the experiment compared to 

the ancestor (Figure 1C). We performed qPCR on genomic DNA of populations displaying 

                                                

* The increase of tetracycline concentration was chosen such that not all populations are 
extinct after the first day and that those surviving until the end of the experiment require a 
substantial increase in resistance that can only be provided by increased expression of the 
tetA-gene. The choice for a geometric increase of the daily concentrations (and not for e.g. a 
linear increase) was arbitrarily taken.  
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increased CFP fluorescence and found a good correlation between CFP fluorescence and the 

chromosomal copy number of the tetA-yfp gene (Figure 1E). Thus, CFP fluorescence is a 

valid proxy for the extent of high level amplification of the reporter cassette. 

 The chromosomal location of a selected gene has large effects on 2.3.2

adaptation 

The number of rescued populations differed significantly between strains (Figure 2A), 

showing that the chromosomal location of the tetA-yfp gene is critical for its adaptive 

potential. No rescue was observed without the reporter cassette (Figure 2 – Supplement 1), 

and all rescued populations displayed increased YFP fluorescence, suggesting that rescue 

depended on the presence and overexpression of tetA-yfp. To test if increased expression of 

tetA-yfp was indeed causative for rescue, we deleted the reporter cassette genes in single 

clones isolated from three different rescued populations. Deletions eliminated growth on 

tetracycline in all three cases (Figure 2B). A minority of populations went extinct despite 

transiently increased YFP fluorescence (37/290 extinct populations), illustrating how our 

experimental selection filters for mutations that increase tetA-yfp expression above a 

minimum level. Two sets of replicate experiments yielded qualitatively similar results 

(Figure 2C), although the number of rescued populations fluctuated considerably between 

replicates, which likely reflects both technical variability (e.g. in the precise amount of 

transferred inoculum from day to day) as well as the inherent stochasticity of evolutionary 

rescue processes. Time-trajectories of OD600 and OD-normalized YFP and CFP fluorescence 

of all evolved populations are available in Supplementary File 1 and fluorescence phenotype 

classifications in Supplementary File 2. 
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Figure 2. Large differences in adaptation by amplification depend on flanking homology in the chromosomal 
neighborhood. (A) Numbers of rescued populations by fluorescence phenotype. The numbers of rescued vs. 
extinct populations and the distribution of fluorescence phenotypes (YFP or YFP+CFP) differ among strains A, 
B, C, and D (p<10−16 and p<10−7, Fisher’s exact test). (B) The ability of evolved clones to grow on tetracycline 
depends on the reporter cassette. Pictures show YFP-fluorescence of cultures spotted at different dilutions on 
solid medium with and without tetracycline (2.25 µg/mL). Top rows: evolved clones sampled from rescued 
populations of three different strains. Bottom rows: respective deletion mutants lacking reporter cassette genes. 
In parentheses: position of the sampled populations on 96-well plates in evolution experiments. (C) Numbers of 
rescued populations by fluorescence phenotype in two additional replicate sets of evolution experiments. (D) IS5 
copies flanking locus B promote duplication. Left: Cartoon showing the position of the reporter cassette 
between two copies of IS5 (distances not drawn to scale, genes in between omitted) and the putative unequal 
crossing over-event causing initial duplications. Right: The expected amplicon junction is present in 
amplifications in strain B, but not in the ancestor or in amplifications in strain BΔIS5I. Arrow: junction PCR 
product obtained with outward facing primers shown as pointers in the cartoon on the left. 
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 Amplification mediated by flanking homology is a main determinant 2.3.3

of neighborhood-dependent adaptation 

We next set out to identify which mutation types were responsible for locus-dependent 

differences in the number of rescued populations. Strain B gave the highest number of 

rescued populations, and 76/77 rescued populations of this strain had reporter cassette 

amplifications (Figure 2A). Rescue by amplification in the other three strains was rare 

(Figure 2AC), implying that large differences between strains were related to locus-specific 

amplification. According to the ‘canonical’ model, formation of amplifications is limited by 

the rate at which initial duplications are generated (Romero & Palacios 1997). Rates of 

spontaneous duplication are elevated between homologous sequences such as rRNA operons 

or duplicate copies of insertion sequences (IS) due to frequent unequal crossing-over 

(Anderson & Roth 1981; Andersson & Hughes 2009). We found homologous copies of IS5 at 

either side of locus B (IS5H and IS5I), but no flanking homology in the chromosomal 

neighborhood of the other three loci. We verified the presence of IS5 at the boundary of the 

amplicon in rescued B populations by obtaining a PCR product of the expected junction in 

16/16 tested clones of evolved populations (PCR products of three populations shown in 

Figure 2D). The junction was undetectable in the ancestor. Deleting one of the two flanking 

IS (strain BΔIS5I) gave highly reduced numbers of rescued populations (Figure 2A) and only 

a minority (3/9) had increased CFP fluorescence, which was not connected to amplification 

between the IS5H and IS5I (Figure 2D). These results confirm flanking homology and its 

effect on gene amplification as a main factor of chromosomal neighborhood on adaptation by 

increased gene expression. 

 Adaptation involves a broad diversity of mutation types 2.3.4

Given the above result, we expected differences to disappear in the absence of IS and we 

repeated the evolution experiments with four strains that had the reporter cassette integrated 

at the same four loci as before, but that are derived from a multiple deletion strain (MDS42) 

free of all IS elements (Pósfai et al. 2006). MDS42 lacks around 15% of the MG1655 

chromosome, including all prophages and many nonessential genes. Apart from the absence 

of IS-related mutations, the rates of other mutation types in MDS42 are similar to those in 

MG1655 (Pósfai et al. 2006). Loci A-D are not immediately next to genes absent in MDS42, 

the chromosomal neighborhood at a larger scale however is different between IS-wt and IS-

free versions of the strains (Figure 3 – Supplement 1). 
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Despite the expected absence of frequent amplification of locus B in the IS-free genetic 

background, the fraction of rescued populations was still different among strains (P = 3 ×	10-

5, Fisher’s exact test), and rescue was observed only in strains B and D (10 and 8 rescued 

populations, respectively). To explain these remaining differences, we identified candidate 

rescue mutations in strains with and without IS. Sequencing ~1 kb of DNA upstream of tetA-

yfp revealed mutations of different types: point mutations (including small insertions and 

deletions), larger deletions, and insertions of mobile elements (Figure 3AB and Figure 3 – 

Supplement 2). The relative contribution of the different mutation types to adaptation differed 

between different chromosomal loci in both IS-containing and IS-free strains (P=10-9 and 

P=0.003, Fisher’s exact test). In several cases, mutations co-occurred with other mutations or 

amplifications (colored dots in Figure 3A), suggesting interactions between mutations, some 

of which we explored in more depth later (section ‘Chromosomal neighborhood influences 

adaptation by affecting the fitness cost of amplifications’). 
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Figure 3. Adaptation involves a broad diversity of mutation types. Mutation types in rescued populations of IS-
wt (A) and IS-free (B) strains. Colored dots = later mutations occurring on top of other mutations (see 
Methods). Mutation types differ between loci (p=10−9 (A) and p=0.003 (B), Fisher’s exact test). (C–E) Effect of 
reconstructed point mutations and IS insertions on reporter expression on plasmids. Plasmids contain mutations 
reconstructed upstream of a ribosomal binding site (not shown) and a yfp reporter gene as shown in cartoons. 
Empty = auto-fluorescence control (plasmid backbone); p0 = ancestral 188 bp random sequence. Error 
bars = 95% confidence intervals of six technical replicates. Grey shading: 95% confidence interval of OD600-
normalized p0 fluorescence. Asterisks = p<0.05, two-tailed t-test on mean fluorescence difference in comparison 
with p0. (C) Reporter fluorescence driven by small mutations within p0 (single bp substitutions and small 
insertions or deletions). Mutation coordinates = distance of mutation to start codon of yfp. Blue bars = 
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mutations that co-occur with amplifications and show overlapping peaks in the sequence chromatogram of 
evolved clones, indicating presence of mutations only in a subset of copies in an amplification. (D) Reporter 
fluorescence driven by IS insertions. Plasmids contain the termini of IS which were truncated to 600 bp. 5’ and 
3’ refers to the direction of the IS-contained transposase gene. IS2 and IS3 drive strong fluorescence of yfp in 
the plasmid context; IS1 and IS5 do not. (E) Reporter fluorescence driven by IS in the precise sequence context 
of p0. IS1, but not IS5, contains a partial promoter whose activity depends on the adjacent sequence in p0. 
Numbers in parentheses = distance between insertion point and the yfp start codon. ‘rnd’ = random shuffling of 
20 bp of p0 downstream of the IS1 insertion point. 

We then continued to identify the mutation types responsible for the remaining differences in 

adaptation among strains, independent of neighborhood-dependent amplifications as 

described above. In order to test the effect of mutations on downstream expression 

independent of chromosomal locus, we constructed yfp reporter plasmids with all mutations 

found within the p0 region of clones from rescued populations of the first replicate set of 

evolution experiments (IS-wt strains, IS-free strains and strain BΔIS5I, Figure 3CDE). Five of 

six small mutations altering the sequence of p0  increased yfp fluorescence in plasmid 

reconstructions (Figure 3C), presumably by increasing the affinity of RNA polymerase to p0. 

One mutation (T-145C) did not affect fluorescence and likely did not contribute to 

adaptation. Instead, rescue of the respective population, which also displayed a YFP+CFP 

fluorescence phenotype, likely depended on amplification alone. In contrast, two other point 

mutations identified in conjunction with amplifications (C-31T and G-92T), did increase 

reporter fluorescence on plasmids, providing examples of a combined beneficial effect of 

amplifications and additional mutations. Two of four insertions sequences that we had found 

inserted into p0 increased reporter fluorescence on plasmids greatly (IS2 and IS3, Figure 3D), 

which is consistent with the delivery of outward-facing promoters within the termini of IS 

(Mahillon & Chandler 1998). The two other IS (IS1 and IS5) had no or no strong effect on 

plasmid reporter fluorescence. Since some IS have been reported to contain partial outward-

facing promoters that can drive downstream expression after insertion next to a resident 

complementary partial promoter site (Mahillon & Chandler 1998), we tested IS1 and IS5 in 

the precise sequence context of p0 in which these IS were found in evolution experiments 

(Figure 3E). In this sequence context, IS1 indeed increased reporter fluorescence, which 

depended on the 20 bp downstream of the insertion point within p0 (Figure 3E), consistent 

with the delivery of a half-promoter within the terminus of this IS. Insertion of IS5, which we 

repeatedly observed in evolution experiments, had very weak, but significant effects on 

downstream fluorescence on plasmids (Figure 1DE). To confirm the adaptive role of 

upstream IS5 insertions in the evolution experiments, we transduced one of the observed 

upstream IS5 insertions into the ancestral background, which restored growth on tetracycline 

as well as a marked increase in YFP fluoresence (Figure 3 – Supplement 3). Thus, in the 
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chromosomal context, IS5 does increase expression of downstream genes, possibly due to 

effects on DNA bending (Zhang & Saier 2009), which may not be recapitulated on the 

plasmid reconstruction. These results illustrate the diverse ways in which IS can adaptively 

affect gene expression, both dependent (IS1, IS5) and independent (IS2, IS3) of the insertion 

context. Given the reporter plasmid results and the fact that the same p0 sequence is part of 

the reporter cassette at all four chromosomal loci, point mutations and IS insertions likely 

were not responsible for the observed differences in the frequency of rescue between strains 

that are not explained by amplifications. 

 Properties of upstream genes determine the availability of two 2.3.5

different types of adaptive promoter co-option mutations 

Whole genome sequencing of clones from three rescued populations with neither upstream 

genetic changes nor amplifications (Figure 3 – Supplement 4), as well as subsequent 

screening of other rescued populations, revealed another candidate type of adaptive 

mutations, which altered the protein sequence of rho (Figure 4 – Supplement 2). Unlike 

mutations of the other types, rho mutations occurred in trans with respect to the reporter 

cassette. The rho gene of E. coli is an essential gene that encodes a transcriptional 

termination factor estimated to be required for termination at around half of all termination 

sites in E. coli (Ciampi 2006). Contrary to point mutations and IS insertions, which we found 

upstream of all four loci (Figure 3A and Figure 3 – Supplement 5), Rho mutations and also 

upstream deletions were only found in evolved clones of strains with the reporter cassette at 

locus B or D, with one exception of a Rho mutation co-occurring with an upstream IS 

insertion in strain A. Thus, upstream deletions and Rho mutations provide candidates for 

locus-dependent adaptive mutations. Comparing the upstream neighborhood of the four 

different loci revealed the basis of this locus-dependency (Figure 4A and Figure 4 – 

Supplement 1). The orientation and expression of upstream transcripts as determined in a 

different study (Conway et al. 2014) suggests that in strains B and D, active upstream 

promoters were co-opted to tetA-yfp, either by deletion of intervening genes, or by 

compromising Rho-dependent termination by partial-loss-of-function mutations in Rho that 

cause transcriptional read-through into tetA-yfp. At loci A and C, such adaptive mutations 

were not available because of two kinds of constraints from neighboring genes: either 

intervening genes were essential (constraining adaptive deletions, Figure 4A), or no upstream 

Rho-terminated transcripts were present (constraining adaptive Rho mutations, Figure 4A). 
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Since active transcripts shown in Figure 4A were experimentally determined under 

conditions different from our evolution experiments (Conway et al. 2014), and classification 

of termination sites as intrinsic or Rho-dependent was done only computationally (Kingsford 

et al. 2007; Conway et al. 2014), we experimentally assessed the effect of Rho mutations on 

transcriptional read-through across candidate upstream terminators at all four loci under 

experimental conditions approximating those in evolution experiments. We first confirmed 

the neighborhood-dependent effect of two different Rho mutations (S153F and M416I) on the 

phenotype of interest, i.e. tetracycline resistance, by transduction into the ancestral IS-wt 

strains, which are isogenic except for the position of the reporter cassette (Figure 4B). 

Consistent with the presence of upstream Rho-terminated transcripts as shown in Figure 4A, 

an increased tolerance of Rho-mutants to tetracycline was observed only in strains with the 

reporter cassette at loci B and D, matching our observation that Rho-mutants were only found 

in rescued populations of these strains. We then performed PCR on cDNA prepared from a 

Rho-wt strain and a Rho mutant (M416I) strain grown in sub-inhibitory tetracycline 

(Figure 4C). We obtained PCR products consistent with read-through across candidate 

terminators upstream of locus B (downstream of yeeD) and locus D (mnmG), but not 

upstream of locus A (cysS) and locus C (xapR). A read-through transcript at locus D was 

detectable even in the Rho-wt background, which offers an explanation for the higher initial 

TetA-YFP expression observed in strain D (Figure 1 – Supplement 1). Mutations found in 

rescued populations of additional replicate experiments (fluorescence phenotypes in 

Figure 2B) are consistent with the above constraints on promoter co-opting mutations 

(Figure 3 – Supplement 5). Thus, upstream deletions and trans mutations that compromise 

transcriptional termination are mutation types that depend on the chromosomal neighborhood 

of the gene under selection. Specifically, the orientation, expression, essentiality and 

termination mode of neighboring genes shape the fitness effect of these promoter co-option 

mutations. 
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Figure 4. The fitness effect of promoter co-opting deletions and Rho-mutations depends on properties of 
upstream neighboring genes. (A) Genes and transcripts upstream of loci A, B, C, and D. Promoters of 
intrinsically terminated transcripts (purple) can be co-opted by deletions (purple brackets) if no essential gene 
(black arrows) is deleted. Promoters of Rho-terminated transcripts (green) can be co-opted by deletions or by 
partial loss-of-function mutations in Rho. Only putatively expressed transcripts oriented toward the reporter 
cassette are shown (all transcripts in Figure 4—Figure supplement 1). Pointers and numbers on the right = 
position and size of PCR products shown in (C). (B) Tetracycline dose-response curves of strains with wt (black 
squares) or transduced mutant Rho (green circles = S153F, green crosses = M416I). Final OD600 after 24 hr 
(platereader units) was measured in three biological replicates. Rho mutants are more tolerant to tetracycline 
only with the reporter cassette at loci B and D. (C) Read-through transcripts spanning upstream terminators in 
a Rho-mutant background are detectable at loci B and D, but not at loci A and C. Bands show PCR products 
obtained from genomic DNA (+ control) or cDNA from a Rho-wt or Rho mutant (M416I) strain grown with sub-
inhibitory levels of tetracycline. Positions of used primers as indicated in (A). NRT = negative control (no 
reverse transcriptase). 
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 Chromosomal neighborhood influences adaptation by affecting the 2.3.6

fitness cost of amplifications 

As seen from promoter co-opting mutations, chromosomal neighborhood may affect the 

adaptive potential of a gene by influencing not only mutation rates (as flanking homology 

does for duplications that can expand into amplifications), but also mutation fitness effects. 

We next asked if this applies to amplifications as well. Due to the instability of amplifications 

and related difficulties in detecting them, quantifying the fitness effect of amplifications is 

laborious (Adler et al. 2014) and has so far not been done on a genome-wide scale. The 

benefit of amplifying a selected gene is counteracted by a cost that arises in part due to 

dosage imbalances in the co-amplified neighboring genes. This cost limits the ability of 

amplifications to effectively expand at the population level as selection increases, an ability 

that comes from high rates of expansion of amplifications at the level of the individual 

chromosome by homologous recombination. The probability of an amplification to contain a 

costly gene is expected to increase with the length of the amplicon. 

We used two-color fluorescence data to extract information on amplification cost and its 

effect on adaptation. For validating this approach, we used two strains (strain BΔIS5I, and the 

newly created strain E, Figure 5A) that we predicted to form amplifications of higher and 

lower cost respectively when compared to the IS-containing strain B, which serves as 

reference. The IS5 deletion in strain BΔIS5I, which reduces the rate of duplications that kick-

start amplifications (see above), is also expected to increase the fitness cost of amplifications, 

since amplicons may be larger than the 35 kb between IS5I and IS5H. In strain E, we placed 

the reporter cassette between two copies of IS1, where duplications are expected to form 

frequently, and amplifications, due to small amplicon size (11 kb), are expected to expand at 

low cost. In our experiment, if cost is negligible, amplifications are expected to expand 

continuously as tetracycline selection increases, resulting in rescue. In this case, YFP+CFP 

fluorescence increases in correlation with the level of tetracycline selection (Figure 5B, left). 

If amplifications are cost-limited, two outcomes are possible: (i) amplifications fail to expand 

beyond a certain level lower than that required for rescue, resulting in extinction – if the level 

of expansion before extinction is high enough, it will appear as a transient increase of CFP 

fluorescence in the fluorescence trajectories of extinct populations (Figure 5B, middle), 

(ii) amplifications allow rescue through interaction with other adaptive mutations that 

increase tetA-yfp expression – resulting in increased YFP/CFP fluorescence ratios in rescued 

populations (Figure 5B, right). We compared the numbers of extinct vs. rescued populations 
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with (transiently) increased CFP fluorescence and found, as expected, that amplifications in 

strain BΔIS5I had a significantly higher extinction risk than amplifications in the reference 

strain B (Table 1), and rescued amplifications had significantly higher final YFP/CFP ratios 

(Figure 5C), confirming that low numbers of rescue in strain BΔIS5I were in part due to 

amplification costs. Contrariwise, populations with increased CFP fluorescence in strain E 

never went extinct (Table 1) and had consistently low final YFP/CFP ratios (Figure 5C), 

indicating the absence of a cost limitation. 

 

Figure 5. Chromosomal neighborhood influences the fitness cost of amplifications. (A) Chromosomal location 
of reporter cassette in strains BΔIS5I and E (IS distances not drawn to scale). (B) Example fluorescence 
trajectories. Left: low-cost amplifications expand in correlation with the increase in tetracycline concentration 
over 10 days. Middle: Cost-limited amplifications fail to expand at higher tetracycline concentrations resulting 
in extinction. Right: Amplifications can escape extinction in combination with other mutations increasing tetA-
yfp expression, resulting in higher final YFP/CFP. RFU = relative fluorescence units (see Materials and 
methods), r.c. = relative concentration as multiples of MIC. (C) Final YFP/CFP ratios of rescued amplifications 
in strains expected to have a higher (strain BΔIS5I) or lower (strain E) cost of amplifications compared to strain 
B. n = initial number of replicate populations used for analysis. Crosses = populations rescued by 
amplifications without additional mutations. Other symbols = secondary mutations (see legend). p-values: 
permutation tests in comparison with strain B. (D) Final YFP/CFP ratios of rescued amplifications in strains A-
D. n = 285 includes replicate evolution experiments to increase statistical power. Symbols and p-values as 
in (C). 

 

Table 1. Differences in amplification cost indicated by the extinction risk of populations with amplifications. 
Populations with amplifications of higher (strain BDIS5I) or lower (strain E) expected cost of amplifications 
have a higher or lower risk of becoming extinct, respectively. n = initial number of replicate populations used 
for analysis (n = 285 includes replicate evolution experiments to increase statistical power), ‘Extinct’ and 
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‘Rescued’ = numbers of extinct and rescued populations with amplifications as indicated by (transiently) 
increased CFP fluorescence (see Materials and methods), sample odds ratio compared to strain B, p-values: 2 x 
2 Fisher’s exact test. 

n Strain 

Populations with (transiently) 
increased CFP fluorescence 

Sample Odds 
Ratio P Extinct Rescued 

95
 

BΔIS5I 12 5 10.1 10-4 

B 18 76 1 (ref) - 

E 0 95 0 10-6 

28
5 

A 8 4 5.8 10-3 

B 58 168 1 (ref) - 

C 0 1 0 n.s. 

D 0 7 0 n.s. 

 

Having validated extinction risk (Table 1) and final YFP/CFP ratios (Figure 5C) as indicators 

of amplification cost, we tested if neighborhood-dependent amplification costs had affected 

adaptation in strains A, C, and D. A significantly elevated extinction risk of populations with 

amplifications in strain A (Table 1), and significantly elevated final YFP/CFP ratios in 

connection with diverse additional mutations in strains A, C, and D (Figure 5D), support that 

the costs of amplifications in these strains were higher compared to strain B. Thus, 

amplification costs represent another neighborhood-dependent constraint on adaptation. In 

this perspective, the availability of neighborhood-dependent promoter co-option mutations, 

the most prevalent non-amplification mutation types at loci B and D, is an important 

determinant of adaptive potential not only in itself, but also in the interaction with 

amplifications. 

 Chromosome neighborhood effects on adaptation in a single-step 2.3.7

plating experiment 

We next investigated whether our observations of chromosomal neighborhood effects on 

adaptation transfer to different selective conditions. In particular, we tested the possibility 

that differences in rescue between strains were due to different population sizes and thus 

different chances for beneficial mutations to occur, rather than due to different mutation rates 

or fitness effects as we propose. Our experimental design corrects for population size 

differences between strains at the first day of selection (Figure 1 – Supplement 1, and first 

section of the results part), but not necessarily for population size differences at later days of 

the experiments. Therefore, we performed single-step plating experiments, in which 
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approximately the same numbers of cells are plated for every strain. In these Luria-Delbrück-

type experiments, we plated replicate cultures grown under non-selective conditions on solid 

medium with tetracycline at two-fold MIC levels. We scored the number of colonies on each 

plate after two days, when clearly visible colonies first appeared. These early colonies are 

expected to result mostly from pre-plating single-step mutations that increase tetA-yfp 

expression (point mutations, IS insertions, and promoter co-option mutations). As in 

evolution experiments, colony numbers in strains B and D were higher than in strains A and C 

(Figure 6, left), for both IS-wt and IS-free genetic backgrounds. This result is consistent with 

neighborhood-dependent availability of promoter co-option mutations as observed also in 

evolution experiments. High CFP fluorescence, indicative of amplifications, was observed 

only in a small fraction of early colonies (34 of 1661 across all strains and plates). During 

longer incubation, the number of colonies on plates of IS-wt strain B increased steadily 

(Figure 6 – Supplement 1) and almost all of these later colonies (1229/1304 on ten plates) 

showed high CFP fluorescence. Since tetracycline is bacteriostatic rather than bactericidal, 

the appearance of these late colonies can be explained by a continuous process of reporter 

cassette amplification expansion and increasing growth rates after plating on selective 

medium, starting from frequent duplications that have a slight growth advantage over single-

copy cells (Andersson 1998). After five days, colony counts on plates were qualitatively 

similar to rescue frequencies in evolution experiments, with IS-wt strain B giving the highest 

number of colonies (Figure 6, right). In all other tested strains, late colonies appeared at much 

lower rates (Figure 6 – Supplement 1) and did not show high CFP fluorescence in most cases 

(Figure 6, right, and Figure 6 – Supplement 2), reflecting the minor role of amplification in 

strains that lack flanking homology in the chromosomal neighborhood of the selected gene. 

The consistency between liquid-culture evolutionary rescue experiments and plating 

experiments supports that strong effects of chromosomal neighborhood on the rate and fitness 

effect of adaptive mutations extend to different selective regimes. 
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Figure 6. Tetracycline-resistant mutants arising in a single-step plating experiment. For each strain (top panels 
= IS-wt, bottom panels = IS-free), 10 replicate cultures grown in the absence of tetracycline were plated on 
agar with tetracycline concentration two times the strain-specific MIC. Left: Colony counts after 2 days of 
incubation. Right: Colony counts after 5 days of incubation. Horizontal lines show the median colony number 
from 10 replicate plates. Pie charts = fraction of plates in which a single tested colony appearing at day 2 (left) 
or at days 4–5 (right) showed high CFP fluorescence indicative of amplification (Figure 6—Figure supplement 
2). 

 

2.4 Discussion 

Our results reveal a complex genetic basis of strong effects of chromosomal position on the 

adaptive potential of a specific gene (Figure 7A). By combining time-resolved fluorescence 

data from the reporter cassette and end-point genetic analysis, we demonstrate how the 

relative contribution of previously known mutation types to adaptation (Figure 7A, bottom 

row) differs between chromosomal loci, how these differences arise, and how a layer of 

complexity is added by the interaction of mutation types. Thus, the concept of a one-

dimensional mutation rate and a focus on point mutations can be misleading (Martinez & 

Baquero 2000), even for the simple case of adaptation by increased expression of a single 

gene. Instead, the adaptive potential of a given gene is a system-level property shaped by the 

local chromosomal genetic neighborhood. Consequently, the organization of genes on a 

chromosome is both cause and consequence of evolutionary change.  
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Figure 7. The adaptive potential of a gene under selection for increased gene expression as a complex function 
of properties of neighboring genes that affect and are affected by mutations of diverse types. (A) Top row: 
Properties of neighboring genes that we identify as main determinants of the adaptive potential of a gene given 
its chromosomal neighborhood. Round corners indicate ‘dynamic’ properties that may be environment-
dependent or subject to change over short evolutionary timescales. Bottom row: Different mutation types 
causing increased expression of a gene. Solid arrows: Effects and interactions shown or suggested by data in 
this study. Dashed arrows: Other effects and interactions that are likely to exist. Pointed arrowheads indicate a 
positive effect, T-bar ends indicate a negative effect. A sentence equivalent of each arrow is given in Figure 7—
source data 1. As a sum of the above interactions, the adaptive potential of a gene emerges as a system-
property. (B) Classification of chromosomal neighborhoods of E. coli genes according to adaptive potential. 
The chromosomal neighborhood of 4317 genes of E. coli MG1655 was assessed using published information on 
the position of promoters and terminators (Conway et al., 2014) and gene essentiality (see Methods for details). 
Numbers in parentheses = genes belonging to respective sets or intersections of sets. Genes in the intersection 
of all three circles (boldface) are expected to have the highest adaptive potential based on their chromosomal 
neighborhood. Loci A-E of this study are placed in the respective areas of the diagram. 

 

Importantly, the effects that we describe arise from several properties (Figure 7A, top row) of 

different genetic elements that are present in the vicinity of the selected gene, rather than 
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from more global factors such as distance to the origin of replication or chromosome macro-

domain organization (Bryant et al. 2014). Therefore, we propose to refer to them as 

‘chromosome neighborhood effects’ that determine the evolution of gene expression, as 

opposed to ‘chromosome position effects’ that modulate gene expression per se (Bryant et al. 

2014; Levis et al. 1985; Akhtar et al. 2013). 

 Different mutation types interact to cause neighborhood-dependent 2.4.1

differences in adaptive potential 

In our experiments, chromosomal neighborhoods facilitate or constrain adaptation mainly via 

amplification and promoter co-option mutations, by affecting the rate of mutations 

(duplication-amplification) or the fitness effects of mutations (promoter co-option mutations 

and amplifications). For gene amplification, a strong effect of flanking homology as provided 

by IS, which are often present in multiple copies, has been known for a long time (B. C. 

Peterson & Rownd 1985; Andersson & Hughes 2009). Our data confirm that if flanking 

homology is present at a given locus, amplification is the main response to selection for 

increased gene expression. For loci lacking nearby flanking homology, which depending on 

the distribution of IS elements on a chromosome may be the majority of loci (Boyd & Hartl 

1997; Green et al. 1984), our data show that adaptation by amplification is limited on the 

level of duplication rate and fitness cost. For these loci, differences in the adaptive potential 

are largely due to the different availability of deletions and mutations compromising 

transcriptional termination, both of which co-opt upstream promoters to the selected gene. 

Such mutations also act in concert with amplifications and can alleviate amplification cost 

limitations by lowering the required fold-amplification to reach a certain level of expression 

of the selected gene (Figure 7A). 

The multitude of mutations discovered in the termination factor Rho suggests that the 

function of this protein may be more ‘tunable’ than expected from it being an essential gene 

in E. coli. Our results may suggest that adaptation via trans mutations in Rho with potentially 

large pleiotropic effects is more likely than via local mutations that compromise upstream 

terminators in cis. Given that the sequence-dependence of Rho-dependent termination is 

poorly understood (Ciampi 2006), there is no clear expectation of the nature and target size of 

mutations that would compromise Rho-dependent termination in cis. This makes it difficult 

to compare adaptation via mutations affecting Rho-dependent termination in cis versus trans. 

The adaptiveness of trans mutations in Rho despite their pleiotropic effects is supported by a 



27 

previously characterized single amino-acid substitution in Rho, which was found to have 

large-scale effects on the E. coli transcriptome and to confer higher fitness in several 

environments (Freddolino et al. 2012). We found substitutions at 22 different amino acid 

residues mapping to various regions of the Rho protein structure (Skordalakes & Berger 2003) 

(Figure 4 – Supplement 2 and Figure 4 – Supplement 2 – Source Data 1), which largely 

expands the number of Rho residues found mutated in evolution experiments (Conrad et al. 

2011). This supports the idea that operons delimitated by factor-dependent terminators may 

be rather fluid, providing a large source of variation for adaptation to changing environments. 

It remains to be seen whether different Rho alleles, by revealing ‘hidden’ transcriptional 

variation, serve as capacitors of adaptation (Masel 2013) beyond laboratory evolution 

experiments. 

 Assessing properties of neighboring genes to infer the adaptive 2.4.2

potential of a gene under selection 

For both amplifications and promoter co-opting mutations, the influence of the chromosomal 

neighborhood arises mechanistically from several simple properties of neighboring genes – 

their expression, orientation, transcriptional termination, essentiality, the presence or absence 

of flanking gene duplicates – and from the cost of neighboring gene co-amplification 

(Figure 7A, top row). If these properties are known at a genomic scale, inferring a 

chromosome-wide ‘map of adaptive potential’ becomes conceivable. An understanding of 

adaptive potential may help assess the risk of resistance evolution via overexpression of 

preexisting chromosomal genes (as opposed to acquisition by horizontal transfer). Clearly, 

some properties of neighboring genes can be assessed on a genome-wide scale more easily 

(e.g. gene orientation) than others (e.g. gene essentiality or cost of genes when amplified). 

Once it becomes feasible to acquire data on all the main factors shaping adaptive potential, 

this data may improve efforts to predict specific adaptations. 

As a first step towards this goal, we used published information on gene essentiality, and 

promoter and terminator locations (Conway et al. 2014) to assess how many of E. coli genes 

(strain MG1655) are expected to reside in a chromosomal neighborhood associated with high 

adaptive potential (Figure 7B). Based on the most simply assessable properties (colored 

circles in Figure 7B), the chromosomal neighborhood of most genes (2295/4317) is expected 

to have a medium adaptive potential, comparable to that of locus D from this study. 
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 Adaptive potential as a dynamic property 2.4.3

Importantly, some properties of chromosomal neighborhoods are dynamic (rounded boxes in 

Figure 7A) – gene essentiality (Baba et al. 2006) and expression can be environment-

dependent, and transposition causes rapid turnover of mobile element positions (Sawyer et al. 

1987; Wagner 2006). Therefore, the classification of chromosomal neighborhoods of genes 

according to adaptive potential as in Figure 7B needs to be understood as a snapshot in time 

reflecting particular conditions. Also, how adaptive potential translates into the actual 

likelihood of adaptation depends on population parameters and the precise selection scenario. 

On evolutionary timescales, the dynamics of chromosomal neighborhood properties would 

rapidly degrade signals that neighborhood-dependent evolution leaves in genome sequences. 

Nevertheless, neighborhood-dependent evolution could offer mechanistic explanations for 

phenomena observed in genomic data such as operon organization (Reams & Neidle 2004; 

Lawrence & Roth 1996), reductive genome evolution by promoter capture-deletions as 

suggested previously (Lind et al. 2015), or the chromosomal position of horizontally 

transferred genes (Touchon et al. 2009). Since horizontally transferred genes carrying 

selective functions are often silenced after initial integration (Navarre 2006; Cardinale et al. 

2008), they depend on activating mutations to play out their benefit to the host and become 

stably maintained in the host chromosome. Thus, the evolutionary fate of horizontally 

transferred genes will be shaped by the new chromosomal neighborhood they find themselves 

in. For example, a drug resistance gene entering the genome at loci B or D via horizontal 

transfer will be more likely to enable survival of the host under drug selection, compared to 

insertion at loci A and C, both because of higher initial expression and the higher adaptive 

potential associated with these loci as described here. The common association of 

horizontally acquired genes with flanking mobile elements as in complex transposons and 

genomic islands (Dobrindt et al. 2004) may not only reflect the high transferability of such 

configurations, but also their high amplifiability, which may be of particular relevance for 

mis-expressed foreign genes. 

 Chromosomal neighborhood effects beyond prokaryotes 2.4.4

Although our results reflect many specifics of prokaryote genome organization, the 

importance of promoter-capture mutations (ar-Rushdi et al. 1983), modulation of 

transcriptional read-through (Grosso et al. 2015) and gene amplification (Cole et al. 1992; 

Gajduskova et al. 2007) extends to cancer evolution and cases of rapid adaptation in higher 
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organisms (Devonshire & Field 1991). This implies that chromosomal neighborhood effects 

on evolution may be of wider significance and they could be investigated with similar 

reporter-based methods. 

2.5 Materials and Methods 

 Materials 2.5.1

Unless noted otherwise, we obtained chemicals from Sigma-Aldrich (St. Louis, Missouri) and 

enzymes from New England Biolabs (Ipswich, Massachusetts). Evolution experiments and 

phenotyping tests were done in in M9 medium supplemented with 2 mM MgSO4, 

0.1 mM CaCl2, and 0.2% glucose and 0.2% casein hydrolysate as carbon sources (M9CG 

medium), unless noted otherwise. A list of oligonucleotides, strains, and plasmids is available 

in Supplementary File 3. 

 Construction of the reporter cassette 2.5.2

The reporter cassette (p0-RBS-tetA-yfp-pR-cfp) was assembled on a plasmid using a 

combination of standard cloning techniques, ligation chain reaction (Rouillard et al. 2004), 

and fusion PCR. For the p0 sequence upstream of tetA-yfp, we generated a random 188 bp 

nucleotide sequence matching the average GC content of E. coli 

(CCGGAAAGACGGGCTTCAAAGCAACCTGACCACGGTTGCG 
CGTCCGTATCAAGATCCTCTTAATAAGCCCCCGTCACTGTTGGTTGTAGAGCCCAGGACGGGTTGGCCAGATGTG

CGACTATATCGCTTAGTGGCTCTTGGGCCGCGGTGCGTTACCTTGCAGGAATTGAGGCCGTCCGTTAATTTCC). 

We synthesized the sequence from oligonucleotides in a ligation chain reaction. The tetA 

sequence was taken from strain TKC (Sharan et al. 2009), and the yfp gene from plasmid 

pZA21-yfp (Lutz & Bujard 1997). At the fusion point, we placed a 3xGS linker peptide 

between the C-terminus of TetA and the N-terminus of YFP. Between p0 and the start codon 

of tetA-yfp is a sequence containing a restriction site and a ribosomal binding site 

(GTCGACAGGAGGAATTCACC). We placed the p0-tetA-yfp sequence on plasmid pAH81-

FRT-cfp (Haldimann & Wanner 2001), upstream of the chloramphenicol resistance gene and 

the terminator-flanked pR-cfp gene. pR is a strong constitutive promoter originating from 

phage λ. We sequenced the full length of the reporter cassette on the resulting plasmid, 

pMS7. Replication of the pMS7 plasmid depends on the Pir protein and the plasmid was 

propagated in a pir-containing version of strain DH5α. 
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 Strain construction 2.5.3

We moved the ΔtolC::kan allele from E. coli strain JW5503-1 into strain MG1655 using P1 

transduction. For the IS-free genetic background, the same ΔtolC::kan allele was introduced 

into strain MDS42 (Pósfai et al. 2006) by recombineering (L. C. Thomason et al. 2014) with 

pKD13 (Datsenko & Wanner 2000) as PCR template. kanR cassettes were removed using 

plasmid pCP20 (Datsenko & Wanner 2000). We inserted the reporter cassette from plasmid 

pMS7 into the two ΔtolC strains by recombineering. Precise insertion points are given in 

Figure 1 – Source Data 1. All reporter cassette genes point towards the terminus of 

replication. Recombinants were selected on LB agar with chloramphenicol (10 µg/mL). The 

chloramphenicol marker was subsequently removed (Datsenko & Wanner 2000). We 

confirmed the presence of the full-length single copy insertion by PCR and verified the 

sequence of p0-tetA-yfp by sequencing. The presence of functional pR-cfp was confirmed by 

observing fluorescence. To obtain strain BΔIS5I, the camR cassette from pKD3 (Datsenko & 

Wanner 2000) was recombineered into the IS5I element of strain B. Recombinants were 

selected with choloramphenicol (10 µg/mL) and confirmed by PCR. Deletion of the reporter 

cassette genes in evolved clones was done by recombineering the kanR cassette of pKD13 

into the reporter cassette such that the coding regions of both tetA-yfp and cfp were disrupted. 

Deletions were confirmed by absence of fluorescence and PCR with flanking primers 

(Figure 2 – Supplement 2). For P1 transduction of rho mutations, we first transduced 

mutations S153F and M416I from rescued clones of populations of strain D into MG1655. As 

selective marker, we used a kanR cassette that we had inserted upstream of rho by 

recombineering. After sequence verification, we transduced rho mutations into IS-wt 

strains A-D. 

 MIC measurements and dose-response curves 2.5.4

Strains were pre-grown for 16 h in M9CG medium without tetracycline and transferred to 96-

well plates (200 µL/well). From there, we pin-diluted cultures with a VP408 pin replicator 

(V&P Scientific, San Diego, California, dilution factor ~1:820, tested with fluorescein) into 

fresh medium with different concentrations of tetracycline, incubated plates for 24 h at 37 °C 

on a Titramax plateshaker (Heidolph, Schwabach, Germany, 900 rpm), shook plates for 20 s 

at 1200 rpm and measured OD600 with a H1 platereader (Biotek, Vinooski, Vermont). For 

obtaining fine-scale MIC measurements we tested tetracycline concentrations at intervals of 

0.125 µg/mL. We defined MIC as the lowest drug concentration that yielded OD600 ≤ 0.075 

(plate reader units) in three replicates performed on different days. 
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 Evolution experiments 2.5.5

All precultures and evolution experiments were performed in M9CG medium. We transferred 

an overnight culture of every strain into 95 wells of clear flat bottom 96-well plates 

(200 µL/well), from where we diluted cultures into medium with tetracycline using VP408. 

One well contained a growth medium control. As initial concentration of tetracycline, we 

used half of the strain-specific MIC. For ten days, we pin-diluted cultures with VP408 every 

24 h into medium with geometrically increasing tetracycline concentrations such that at day 

10 the concentration was ten times the initial concentration (Figure 1D). During the 

experiment, the maximum number of generations was set by the daily dilution factor (~1:820) 

and was ~97. A fresh tetracycline stock solution was prepared from powdered tetracycline-

HCl every day. All incubations were done at 900 rpm on a plate shaker at 37°C in the dark 

and plates were wrapped in plastic bags to mitigate evaporation. Replicate evolution 

experiments were performed with two additional 96-well plates for each of strains A, B, C, 

and D (IS-wt). Each 96-well plate was started from a culture inoculated with a different 

colony. At the end of experiments, we froze all rescued populations. 

 OD600 and fluorescence measurements 2.5.6

Every day during the evolution experiment, after using 24 h old cultures for inoculating fresh 

medium with a higher tetracycline concentrations using VP408, we shook the old plates for 

20 s at 1200 rpm to resuspend cells and measured OD600 and reporter fluorescence with a H1 

Platereader (Biotek, Vinooski, Vermont; excitation/emission: YFP 515/545 nm / gain 100; 

CFP 433/475 nm / gain 60). 

 Data analysis 2.5.7

Populations were classified as rescued if OD600 exceeded 0.075 (plate reader units) at the end 

of the experiment. Fluorescence values were normalized to OD600 and set to zero if OD600 fell 

below 0.075. As reference for calculating the fold-increase in fluorescence, we took the 

average OD-normalized fluorescence of 95 cultures of the respective ancestral strain, 

inoculated in the same way as described for the beginning of evolution experiments, and 

grown in 96-well plates for 24 h without tetracycline. Rescued populations were classified as 

YFP or YFP+CFP if the observed fold increase in respective fluorescence over the ancestor 

was >2.77 at the end of the experiment. This threshold corresponds to the lowest observed 

increase in YFP fluorescence that was sufficient for rescue in the first set of replicate 

experiments (IS-wt strains A, B, C, and D). To identify populations that went extinct despite 
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elevated YFP and/or CFP fluorescence we applied more stringent criteria, requiring increased 

fluorescence (fold increase >2.77) for at least two days at which OD was >0.3 (platereader 

units). These criteria were used to exclude extinct populations that were false positive for 

increased fluorescence due to low OD600 values prior to extinction. Rescued populations that 

met the more stringent criteria for elevated CFP fluorescence, but that did not show elevated 

CFP fluorescence at the end of the experiment (final fold increase <2.77), were counted as 

amplifications for cost analysis (Figure 5 and Table 1), but not for Figure 2. For calculating 

final YFP/CFP ratios of rescued amplifications, we used internal plate reader fluorescence 

units directly. A Matlab script used to perform the above analysis is available as a 

supplementary file along with the platereader raw data used as input for the script (‘Source 

code.zip’). Plots of fluorescence trajectories of every population can be found in 

Supplementary File 1 and phenotype classifications in Supplementary File 2. 

 Quantitative PCR for reporter cassette copy number determination 2.5.8

We inoculated samples of all rescued populations that we had chosen for sequencing from the 

first set of replicate experiments and that had a YFP+CFP fluorescence phenotype. We 

inoculated 2 mL M9CG with 10 µL of populations that were frozen at the end of the 

evolution experiment. The large inoculum was used to maintain amplification-related 

population diversity. We added the same amount of tetracycline as on the last day of 

evolution experiments to maintain amplifications. From all cultures that were turbid after 

overnight incubation, we isolated genomic DNA (gDNA). Ancestor gDNA was isolated from 

cultures without tetracycline. We performed qPCR using the GoTaq qPCR mastermix 

(Promega, Madison, Wisconsin) and a C1000 instrument (Bio-Rad, Hercules, California). 

Using dilution series of one of the gDNA extracts as template, we confirmed that all primer 

pairs had an amplification efficiency >90%. We quantified the copy number of tetA in each 

sample with the ΔΔCq method implemented in the instrument software (Bio-Rad), taking 

amplification efficiency into account. As reference, we used loci equidistant from the origin 

of replication and compared ratios of the measured and reference locus to the ratio of the 

same two loci in the ancestral DNA. qPCR was done in three technical replicates. 

 Identification of flanking homology 2.5.9

We searched 400 kb around loci A-D for homologous sequences on either side using REPuter 

(Kurtz et al. 2001) with the following search criteria: forward repeats ≥200 bp, Hamming 

distance ≤5. 
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 DNA sequencing 2.5.10

We streaked all rescued populations of strains A, C, D (IS-wt), of strains B and D (IS-free), 

and of strain BΔIS5I for single colonies on LB agar. For IS-wt strain B, we analyzed one 

rescued population that had a YFP-only fluorescent phenotype, two YFP+CFP populations 

with unusual fluorescence trajectories and 11 randomly chosen populations from the 

remaining 74 YFP+CFP rescued populations, which had highly similar fluorescence 

trajectories. Colony-PCRs were performed on a single representative clone of each streak. 

We amplified at least 1.5 kb of the region upstream of the tetA start codon. The size of PCR 

products was checked for insertions or deletions on an agarose gel. Sequences were obtained 

using primer tetA_pseq1_f. If no PCR product was obtained, we performed arbitrary PCR 

with primer tetA_pseq2_f and a random primer, arb1 or arb6, for upstream binding. We then 

did a second PCR with a nested primer tetA_arb2 and primer arb2 using the first PCR 

product as template, and sequenced DNA extracted from the largest distinct band on an 

agarose gel. The full-length sequence of the rho gene was amplified and sequenced with 

primers rho_seq_f and rho_seq_r. For additional replicate evolution experiments, we 

sequenced clones of all rescued populations with a YFP fluorescence phenotype and with a 

YFP+CFP fluorescence phenotype showing high final YFP/CFP ratios. In four cases, we 

identified the exact same mutation in clones isolated from two populations that had been in 

neighboring wells during evolution experiments. In order to ensure that a potential cross-

contamination between these two wells did not influence results, we excluded one of each 

pair of such neighboring populations from all analyses. 

 Junction PCR 2.5.11

Colony PCR for amplification junctions was performed with primers IS5I_flank_f and 

IS5H_flank_r on single colonies of 16/16 evolved populations of strain B. For the data shown 

in Figure 2D, we used gDNA previously isolated from populations for qPCR to ensure a 

comparable amount of PCR template in all reactions. 

 Whole genome sequencing 2.5.12

We isolated gDNA from overnight cultures of single clones of four rescued D populations as 

well as of the ancestral D strain grown in LB. A whole genome library was prepared and 

sequenced by GATC biotech (Konstanz, Germany) on an Illumina sequencer (125 bp reads). 

Fastq files were analyzed with the breseq script (Barrick et al. 2014). We used the MG1655 

genome (Genbank accession number U00096.3) as a reference for assembling the ancestral D 
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genome, which then served as a reference for analyzing the genomes of the evolved clones. 

Fastq files are available at: http://dx.doi.org/10.15479/AT:ISTA:65 

 Cloning of reporter plasmids 2.5.13

For building the reference plasmid pAnc, which reports on expression from the ancestral p0 

sequence, we exchanged the pLtetO-1 promoter and RBS of pZA21-yfp for the p0-RBS 

sequence upstream of tetA-yfp in the reporter cassette. Using a Q5 site-directed mutagenesis 

kit (New England Biolabs) with pAnc as template, we reconstructed small mutations 

(substitutions and small insertions and deletions, Figure 3C). We did the same with the 

terminal 50 bp of IS1 (5’ terminus) and IS5 (3’ terminus), which we put instead of the 50 bp 

of p0 in the exact position where insertions were found in the experiment (Figure 3E). To 

confirm the IS1-p0 hybrid promoter, we exchanged 20 bp of p0 downstream of the IS1 

insertion point in the respective reporter plasmid. The 20 bp were replaced by a randomly 

shuffled sequence composed of the same nucleotides. For the other IS reporter plasmids 

(Figure 3D), we PCR-amplified the last 600 bp of IS and cloned them into the XhoI/EcoRI 

sites of pZA21-yfp. The orientation of the truncated IS corresponds to that found in 

sequenced clones. As autofluorescence control, we removed the YFP fragment between 

EcoRI and MfeI restriction sites of pZA21-yfp and obtained pZA21-empty by religation of 

compatible ends. All changes were sequence-verified. Cloning and reporter measurements 

were done in strain NEB 5 alpha (New England Biolabs). 

 Quantifying YFP reporter fluorescence from plasmids 2.5.14

We grew six replicate overnight cultures of the reporter plasmid strains in LB Kanamycin 

(50 µg/mL) in a 96-well plate and diluted them into M9CG supplemented with Kanamycin 

using a VP407 pin replicator (approximate dilution factor 1:100). Diluted cultures were 

shaken and incubated at 37°C in the platereader and OD600 and YFP fluorescence was 

monitored every 10 min (YFP gain 120). YFP readings were normalized to OD600 and 

averaged for each replicate at all timepoints at which OD600 was between 0.20 and 0.25 

(platereader units, i.e. mid-exponential phase). 

 Tetracycline resistance phenotyping on solid medium 2.5.15

Clones and strains to be tested were pregrown overnight in M9CG and diluted as shown in 

Figure 2B and Figure 3 – Supplement 3. We spotted 2.5 µL of diluted cultures on M9CG agar 

plates. After 24 h incubation at 37 °C, we took YFP fluorescence images of plates using a 
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lab-made macroscope (http://openwetware.org/wiki/Macroscope). The macroscope uses a 

Canon EOS 600D digital camera and a Canon EF-S 60 mm f/2.8 Macro USM lense (Canon, 

Tokyo, Japan). For illumination, we used a Cyan (505 nm) Rebel LED (Luxeon Star LEDs, 

Brantford, Canada) with a HQ500/20x excitation filter (Chroma, Bellow Falls, Vermont). As 

emission filter we used a camera-mounted D530/20 filter (Chroma). 

 Reverse transcription 2.5.16

Stationary cultures of MG1655 ∆tolC (rho-wt) and of the isogenic strain with the rho M416I 

mutation in LB were diluted 1:100 in M9CG supplemented with tetracycline (0.44 µg/mL, 

i.e. 50% of the MIC of strain MG1655 ∆tolC and grown overnight at 37°C with shaking. 

Total RNA was isolated using an Aurum Total RNA Mini kit (Bio-Rad) and DNA removed 

using an Ambion DNA-free kit (Life Technologies, Carlsbad, California). Isolated RNA was 

quantified using a Nanodrop spectrophotometer and integrity was checked on an agarose gel. 

cDNA was synthesized using an iScript cDNA synthesis kit (Bio-Rad) with 1 µg of total 

RNA as input in a 20 µL reaction. For the non-reverse-transcriptase (NRT) control reaction 

we used 0.5 µg of each of the two RNA samples. 

 Endpoint PCR on cDNA 2.5.17

After reverse transcription, cDNA samples and the NRT control sample were diluted by 

adding 150 µL of nuclease-free water. Endpoint PCR to test for the presence of transcripts 

resulting from possible read-through across Rho-dependent terminators were done with a 

OneTaq Quick-Load Mastermix (New England Biolabs), using 1 µL of diluted cDNA or 

NRT control as template in a 50 µL reaction. To detect rare transcripts, we used 45 

amplification cycles. As a positive control template in PCR reactions, we used 1 µL of a 

colony of strain MG1655 ∆tolC resuspended in 25 µL water and heated to 95°C for 4’. For 

agarose gel visualization, we loaded 15 µL of cDNA and NRT control PCR reactions and 2 

µL of the positive control PCR reactions. 

 Inferring the order of two adaptive mutations occurring in the same 2.5.18

clone 

In several cases, fluorescence analysis and sequencing revealed two potentially adaptive 

mutations in the same clone/population (colored dots on top of bars in Figure 3A and 

Figure 5 – Supplement 1). To infer which mutation came first, we proceeded as follows. For 

amplifications that occurred in combination with point mutations, we examined sequence 



36 

chromatograms obtained from single clones. In all three cases, point mutations appeared as 

mixed nucleotide peaks, indicating that amplifications were initiated before the point 

mutations occurred. In two cases of amplifications co-occuring with upstream IS insertions, 

insertions occurred first. This is evident since PCR products used for sequencing appear as 

single bands of larger size than expected on agarose gels, whereas later insertions are 

expected to give two bands – a smaller one for copies without the insertion and a larger one 

for copies having the insertion. In one case, the insertion of IS3 upstream of locus C was a 

prerequisite for amplification initiation, as we could show by PCR that the IS3 insertion was 

at the amplicon junction. Cases of co-occurrence of amplifications with deletions or Rho-

mutations were decided based on fluorescence trajectories. YFP/CFP ratios that remained 

high and relatively constant throughout the experiment indicate that amplifications expanded 

only after the other mutation had occurred. YFP/CFP ratios that increase at an intermediate 

timepoint during the experiment indicate that amplifications were initiated first. Last, we 

assume that a Rho mutation in strain A was selected only after the insertion of an upstream 

IS5 element, since Figure 4B indicates that Rho mutations alone would not have been 

adaptive in strain A. Rather, we assume that the Rho mutation enhanced transcriptional read-

through from IS5 into the reporter cassette. Dots-on-bar color assignments in Figure 3 – 

Supplement 5 do not reflect the order of mutations, as we did not do such analysis for 

additional replicate experiments. 

 Assessment of gene essentiality 2.5.19

Essentiality data for upstream protein coding genes (Figure 4A) was taken from a published 

dataset (Baba et al. 2006). We did not find data on the essentiality of the valU tRNA operon 

upstream of locus C in the literature data. Therefore we tested experimentally, if deletions of 

the complete valU operon are tolerated. We attempted to delete the operon using 

recombineering with pKD13 as template plasmid for a kanR cassette and primers valU_ko_f 

and valU_ko_r. The number of colonies on the valU knockout selection plate was more than 

tenfold lower than that of a control knockout of the neighboring xapR gene with primers 

xapR_ko_f and xapR_ko_r. To exclude that the low number of recombinants was due to a 

hairpin structure contained in the valU_ko_r primer, we repeated recombineering with a 

different reverse primer, valU_ko_r2, and obtained similar results. The low recombineering 

efficiency was not due to a smaller amount of PCR product used in transformations. Of six 

tested colonies obtained on the ΔvalU::kanR selection plate, only one colony gave a PCR 

product of the expected size in a test with flanking primers, showing that 5/6 colonies are not 
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true valU knockouts. This suggests that valU deletion mutants require rare compensatory 

mutations to restore growth. Therefore the valU operon was considered as essential. 

 Single-step plating experiments 2.5.20

We inoculated 1 mL of LB with a single colony of strains to be tested. After overnight 

incubation, saturated cultures were diluted 1:1000 into experimental evolution medium 

without tetracycline, and then split into 10 wells of a 96-well plate (220 µL / well). The 96-

well plate was incubated on a plate shaker at 37°C for 24 h to obtain saturated cultures, of 

which 180 µL containing approximately 2 × 108 cells were plated on M9CG medium with 

tetracycline at a concentration two times the MIC of respective strains (cell numbers were 

determined by plating dilutions on non-selective medium). Plates were incubated at 37°C in 

the dark and colonies counted every 24 h. After 2 days, we picked one colony from every 

plate that had at least one colony on it and inoculated 200 µL of M9CG medium in a 96-well 

plate with the picked colony. After 24 h incubation at 37 °C, we used the VP407 pinner to 

spot approximately 2 µL on M9CG agar plates. After another 24 h incubation, we took CFP 

fluorescence images of plates with the macroscope (see ‘Tetracycline resistance phenotyping 

on solid medium’). For illumination, we used a Royal Blue (447.5 nm) Rebel LED (Luxeon 

Star LEDs) with a D436/20x excitation filter (Chroma). As emission filter we used a camera-

mounted D480/40m filter (Chroma). The mean intensity of pixels of each spot was 

quantified. Spots with intensity 6 times greater than the mean intensity of all ancestor spots 

are considered to have amplifications (Figure 6 – Supplement 2). 

 Statistical analysis 2.5.21

To test for homogeneity in the distribution of rescued vs. extinct populations, fluorescence 

phenotypes and mutation types, r × c Fisher’s exact test for Count Data was used (fisher.test 

function in R (Core Team 2012)). For testing the distribution of mutation types, we used 

types indicated in Figure 3A by bar color, not dot color. For testing 2x2 contingency tables, 

Fisher’s exact test was used with an alternative hypothesis of odds ratio ≠ 1. Permutation tests 

were performed with the perm package (Fay & Shaw 2010) for R (permTS function, 

method=‘exact.mc’, 104 Monte Carlo replications, two-sided). 



38 

 In-silico analysis of adaptive potential of E. coli gene neighborhoods 2.5.22

(Venn Diagram) 

We used the Profiling of E. coli Chromosome (PEC) database available at 

https://shigen.nig.ac.jp/ecoli/pec/genes.jsp (accession number UA00096.2) and included all 

4317 genes (feature type ‘gene’) of E. coli MG1655 with essentiality information in our 

analysis, which excludes non-coding genes. The position and orientation of promoters was 

extracted from Table S2 of the same study used to identify candidate transcripts in Figure 4A 

(Conway et al. 2014). We only included promoters annotated as ‘primary’ promoters in our 

analysis. The ‘Promoter Confidence Score’ was not taken into account. The position, 

orientation, and termination mode (intrinsic or non-intrinsic) of all terminators was extracted 

from Table S3 of the same study (Conway et al. 2014). In order to identify all genes 

downstream of Rho-dependent terminators (green circle in Figure 7B), we identified the 

closest upstream co-oriented terminator of every gene and evaluated whether it was predicted 

to be an intrinsic terminator or not, in which case we assumed it is Rho-dependent. In order to 

identify all genes to which a co-oriented upstream promoter could be co-opted by deletion 

without disrupting an essential gene, we first identified the next essential upstream gene of 

every gene, and then evaluated if there is at least one co-oriented promoter and intervening 

co-oriented terminator between the gene of interest and the next upstream essential gene. If 

this was the case, the gene of interest was included in the respective set of genes (magenta 

circle in Figure 7B). In order to identify genes between flanking duplicates (blue circle in 

Figure 7B), we used the online REPuter tool (Kurtz et al. 2001) to find all forward repeats on 

the chromosome that satisfied the following criteria: repeat length ≥200 bp, Hamming 

distance ≤8, maximum distance between repeats 100 kb, minimum distance between repeats 

200 bp. In this way, we identified four large regions of the MG1655 chromosome between 

flanking repeats: between IS1B and IS1C (containing 13 genes and locus E), between IS5H 

and IS5I (containing 42 genes and locus B), and between the ribosomal operons rrnA and 

rrnC (81 genes), and rrnB and rrnE (31 genes). We also obtained 6 genes between closely 

spaced repeats matching our criteria (ybfB, ybfL, yibA, ldrA, ldrB, ldrC), which we did not 

include in the set ‘between flanking duplicates’, since the behavior of such closely spaced 

repeats might be different than those studied in our system. The Venn diagram was drawn in 

Matlab using the ‘ChowRodgers’ method for sizes of circles and intersection areas. A list of 

all included genes and their assignment to the three sets is available in Figure 7B – Source 

Data. 
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3 Context-specific effects of promoter mutations 

This chapter is the result of a collaboration with Murat Tugrul, Srdjan Sarikas, and Gašper 

Tkačik in an advisory role. Murat Tugrul did initial modeling of a preliminary dataset (see 

text). Srdjan Sarikas processed the sort-seq raw data. 

3.1 Introduction 

Predicting gene expression from DNA sequence is a fundamental problem of molecular 

biology and is central to understanding the evolution of gene regulation in the genomic era. In 

the absence of a genetic code for regulatory DNA, inferring a genotype-phenotype map and 

effects of mutations, calls for different approaches than for protein-coding DNA. A 

fundamental way in which the sequence of regulatory DNA is translated into a phenotype is 

through sequence-specific binding of proteins, such as transcription factors and the RNA 

polymerase (RNAP) (Snyder & Champess 2007). Arguably the simplest regulatory molecular 

phenotype is the strength of a constitutive promoter as a function of the sequence-specific 

interaction between RNA polymerase (RNAP) and the promoter sequence. 

The bacterial RNAP is a large multi-subunit protein complex, composed of subunits β, β’, α1, 

α2, and ω (Figure 2A, (Browning & Busby 2004)). For promoter recognition, RNAP 

associates with another subunit, the σ factor, to form the RNAP holoenzyme. In this work, I 

use simply ‘RNAP’ to refer to the holoenzyme. Different σ factors recognize different sets of 

sequences associated with particular stresses or growth conditions (Ishihama 2000), with σ70 

being the ‘housekeeping’ σ factor in E. coli, responsible for expression of genes during 

exponential growth. Although the C-terminal domain of the α subunit of RNAP also contacts 

DNA (the ‘up-element’), it is the σ factor that is the primary specificity determinant of the 

RNAP-DNA interaction (Figure 2A). DNA recognition by the σ factor occurs primarily at 

two elements of the promoter, the -35 and -10 box, located upstream of the transcription start 

site (TSS or ‘+1’), most frequently at positions between -35 to -30 and -12 to -7 respectively. 

The strength of a constitutive promoter, i.e. the frequency of productive transcription 

initiation, is therefore a function of the DNA sequence in this region. 

We should keep in mind that transcription initiation is a multi-step process which is not yet 

fully understood (Ruff et al. 2015). Sequence-specific binding of RNAP to DNA is only the 

very first step (Figure 2B). Also the kinetics of later steps of the initiation process show some 

sequence-dependency, particularly the promoter isomerization step, in which an open 

‘transcription bubble’ is formed (McClure et al. 1983). Other factors influencing gene 
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expression from promoters, which I do not discuss here, include chromosome structure and 

position on the chromosome (Bryant et al. 2014), temperature and other environmental 

factors, and physiological state of the cell, including the concentration of specific metabolites 

(Haugen et al. 2008). Also, the concentration of proteins used to report on promoter strength 

depends on additional post-transcriptional factors such as mRNA structure and stability and 

initiation of translation (Griswold et al. 2003; Stenström & Isaksson 2002; Vind et al. 1993). 

Next to influencing protein binding, the DNA sequence also affects DNA shape locally, 

which can impact the recognition of DNA by proteins (Rohs et al. 2010) such as the RNAP. 

 

Figure 8. Promoter recognition by RNAP. (A) Multiple subunits of the RNAP holoenzyme and contacts with a 
promoter sequence. ‘TGn’ denotes the extended -10 element. (B) Steps of transcription initation. R – RNAP 
holoenzyme, P – promoter DNA, RPC – closed complex, RPI – poorly defined intermediate step(s), RPO – open 
complex with DNA melting at the -10 box, RPi – initiation complex with nascent RNA, RDNAel – elongation 
complex. (C) Position weight matrix of the E. coli -10 box. (A) reproduced from (Browning & Busby 2004), (B) 
reproduced from (Knaus & Bujard 1990), (C) reproduced from (Stormo 2000). 

Constitutive expression is an equally fundamental and attractive molecular phenotype for 

studying, as it is the basis of other more complex phenotypes involving regulation by 

transcription factors, and it is measured easily. Early attempts to abstract a regulatory ‘code’ 

for promoter sequences in general and the sequence determinants for RNAP binding in 

particular were based on the detailed study of a few model promoters such as the promoter of 

the E. coli lac operon (Plac, (Dickson et al. 1975)), the promoters of phage λ (PRM, PR, PL 

(Maniatis et al. 1975)) and phage T7 (Pribnow 1975). As the sequence of more promoters 

became known, the notion of ‘consensus’ sequences became central to our understanding 

(Pribnow 1975; Hawley & McClure 1983; Lisser & Margalit 1993), the consensus being the 

A 

B 

C 
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sequence of the most frequently found nucleotides at each position of a binding site. For the 

RNAP binding site, its consensus sequence is also referred to as the ‘canonical’ binding site 

(TTGACA and TATAAT for -35 and -10 boxes respectively). It should be noted that no 

single promoter in E. coli has the exact canonical sequence. The homology between a given 

sequence and the consensus RNAP binding site is often assumed to correlate with promoter 

strength, however this is not generally true (Knaus & Bujard 1990; Kawano 2005), and in 

fact ‘perfect’ consensus promoters may be dysfunctional (Graña et al. 1988; Hook-Barnard & 

Hinton 2007; Miroslavova & Busby 2006). The distance to consensus can be measured as 

number of mismatches or, a little more sophisticated, using a homology score that takes into 

account the frequency distribution of nucleotides found at different positions in promoter 

collections, as in position weight matrices (PWMs, Figure 2C). Consensus-based approaches 

are central in bioinformatics for the prediction of promoters (Stormo 2000), although 

evidence based on bioinformatic predictions, without additional experimental support, is 

usually classified as weak (Gama-Castro et al. 2016). 

As our knowledge of transcription initiation and the interaction of RNAP with promoter 

sequences became more detailed, more realistic and quantitative models of gene regulation 

were developed. An important class of such models are thermodynamic models (Bintu et al. 

2005). These models rest on the assumption that gene expression is proportional to the 

equilibrium probability of RNAP being bound to a promoter sequence (i.e. promoter 

occupancy). This assumption should be broken down into two assumptions, the 

thermodynamic equilibrium assumption per se, and the assumption that RNAP binding is the 

only sequence-dependent step in the initiation of transcription (‘single step assumption’). In 

thermodynamic equilibrium, the binding probability Pon is a function of the binding energy E 

between RNAP and the promoter DNA. 

𝑃!" 𝐸 = (1+ 𝑒(!!!)/!!!)!! (1) 

µ is the chemical potential (related to the concentration of free RNAP, generally having an 

unknown value), and kBT is the product of the Boltzmann constant and the temperature, a 

scaling factor for energy values. The binding energy E is a function of the promoter sequence 

and is often assumed to be the sum of energy contributions of individual nucleotides 

(‘additivity assumption’). Thus, individual nucleotide positions are thought to contribute 

independently to binding, which is mathematically practical, but biologically questionable 

(Graña et al. 1988). The above function has a sigmoid shape with lower binding energy 
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yielding higher expression. RNAP binding sites are expected to stand out on DNA sequences 

as positions of minimal binding energy. 

Thermodynamic models are also widely applied to transcription factor (TF) binding and how 

it affects the RNAP-DNA interaction in turn. It should be noted that although both TFs and 

RNAP bind promoters in a sequence-specific manner, these interactions are not equivalent. 

Consequently, different modeling complications arise from the specifics of RNAP-DNA and 

TF-DNA interactions respectively. For example, one would expect the above ‘single step’ 

assumption to be less problematic for transcription factors. Additional complications for 

modeling the action of TFs are the wealth of possible mechanisms how TF binding can 

influence RNAP binding, e.g. by steric exclusion, recruitment, DNA looping (Bintu et al. 

2005) and the observation that TF binding sites can affect gene expression independently of 

occupancy (Garcia et al. 2012). 

The equivalent of a position weight matrix in the thermodynamic framework is an energy 

matrix, in which the energy contributions of each of the four possible nucleotides at the 

different positions of a promoter are given as matrix entries (Figure 9). While entries of a 

position weight matrix are generally inferred from homology of natural promoters, energy 

entries of a matrix in thermodynamic models are often derived by quantifying the effect of 

mutations on a given sequence. For example, the energy matrix in Figure 9 was inferred from 

fluorescence measurements of a mutant library of the lac promoter driving expression of GFP 

(Kinney et al. 2010). 

 

Figure 9. Energy matrix of the interaction of RNAP with the lac promoter. Scale is in units of kBT. Matrix 
entries are from (Kinney et al. 2010) and were provided by Murat Tugrul. Frames indicate the -35 and -10 
boxes (‘feet’) and the consensus sequence corresponding to the minimum energy values. 

Embedded in the thermodynamics framework, energy matrices can be used to model the 

effect of mutations on gene expression in a biophysically more realistic and possibly more 

quantitative way than by using homology-based methods. In his PhD thesis, Murat Tugrul 

used the above energy matrix to test whether he could predict mutations in p0 observed in 

evolution experiments preliminary to those presented in chapter 2 (Tuğrul 2016). He also 

tested the correspondence of the thermodynamic model with an experimental dataset of 76 



43 

single nucleotide mutants of p0, which I generated and characterized with respect to driving 

expression of YFP (for details, see (Tuğrul 2016)). In both cases, correlations between 

experiment and the model were highly significant, which means that the model overall 

accurately captures an important part of the sequence dependency of promoter strength. At 

the same time however, correlations were not very strong, which means that the uncertainty 

in the prediction of a particular sequence remains large.  

Overall, it is clear that promoter sequence is the most important determinant for the rate of 

transcription initiation. It is also clear that when trying to predict expression from sequence, 

currently used genotype-phenotype maps perform well in terms of significance of correlation 

when applied to large datasets. For individual sequences however, predictions of promoter 

strength are not very accurate. One possible reason for this inaccuracy is that our models of 

promoter function are typically inferred using naturally evolved, functional promoters as a 

starting point. Many of the best-studied promoters are phage promoters and very strong (PL 

and PR of phage λ, PA1 of phage T7, PN25 and PH207 of phage T5) (Deuschle et al. 1986; Knaus 

& Bujard 1990). It is an open question how well insights and mathematical models derived 

from these model promoters apply to bacterial promoters in general and, beyond that, to the 

full space of sequence and function, which includes many more weak than strong promoter 

sequences (see section 4.2.2). 

Understanding where the inaccuracy of current models of promoter function comes from, 

with the eventual goal of improving models of promoter function, is the main concern of this 

and the following chapter. We do so by applying energy matrix models to expression data 

from random sequence libraries. Initially, this work was motivated by the question whether 

we could predict point mutations seen in evolution experiments (chapter 2), and how likely 

de novo promoter evolution by point mutation is compared to evolution by other mutation 

types as explored in chapter 2.  

In this chapter, I explore the following questions: 

1. Can point mutations in p0 found in evolution experiments of chapter 2 be predicted 

using an energy-matrix based model? This is essentially a recapitulation of the work 

of Murat Tugrul’s thesis with a more comprehensive mutant dataset. 

2. How specific is the power of energy matrix models to the sequence they are applied to 

given their inference on a particular sequence background? For this, I use three 
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starting sequences for single-nt promoter mutagenesis: the RNAP binding site of the 

lac promoter, a part of the random p0 sequence, and a second random sequence. 

3. At which positions of a promoter does the energy matrix model fail? 

3.2 Results 

 A sort-seq experiment for quantifying effects of single-nt mutations in 3.2.1

multiple promoter sequences 

To obtain genotype-phenotype data for the sequence space surrounding more than one 

sequence, I created three plasmid libraries with single nucleotide mutations in a 36 bp region 

upstream of a gfp reporter gene preceded by a functional RBS (Figure 10). The length of 36 

bp was chosen as it is large enough to accommodate a full RNAP binding site and small 

enough to use the primer-based mutagenesis approach, which is a variation of classic site-

directed mutagenesis (Figure 10). Also, the relatively small mutagenized region was chosen 

to enable the creation of libraries with near-complete coverage of all possible single-nt 

mutants and high sequence coverage for every single mutant. Each of the three libraries are 

derived from one starting sequence as shown in Table 2. Apart from the mutagenized 36 bp 

region, the three starting plasmids are identical. 

Table 2. Starting sequences of mutagenized region in three plasmid libraries. 

pMS9_1 lacZ RNAP binding site GGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTG 

pMS9_2 randomized order of nts in lacZ RNAP binding site TTCGGCTTTCTTCGTGCATAATGCTTCGGTCTATGG 

pMS9_3 p0 from chapter 2 TTACCTTGCAGGAATTGAGGCCGTCCGTTAATTTCC 

 

Mutant expression is measured using sort-seq (Peterman & Levine 2016). In sort-seq, a 

library of cells with different genotypes is first sorted into bins according to reporter 

fluorescence using FACS. Afterwards, sorted sequences are bar-coded by bins and the 

identity of mutations in conjunction with bin information is obtained by Illumina sequencing, 

yielding a distribution of read counts for each mutant sequence (Figure 10). There are 

multiple experimental steps from sorting to obtaining read distributions (sorting, re-growing 

cultures, isolating plasmid, barcoding, sequencing, post-processing; see Figure 10, details 

described in Methods sections 3.4.3 to 3.4.6), each of which may introduce biases in the 

mapping between actual fluorescence distributions and read count distributions. We sought to 

minimize biases to obtain more accurate fluorescence proxies from read distributions. We did 

so by ‘spiking’ binned cultures with known numbers of cells containing a plasmid with an 
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unrelated reference sequence instead of the mutagenized region Figure 10. The distribution of 

the reference sequence, added in equal amounts to each bin, is expected to become biased 

along the process in the same way as the mutant sequences. Therefore, dividing read counts 

of each mutant sequence bin-wise by the number of reference sequence reads is expected to 

debias fluorescence proxies calculated from read distributions. Since the number of reference 

sequence reads in each bin is rather high (>103, Table 5), there is no concern about 

introducing substantial noise due to division by small numbers. 

The effect of debiasing can be seen from comparing read distributions to the known 

fluorescence distributions of the three starting plasmids in Figure 11A. Although the effect of 

debiasing on calculated fluorescence proxies is modest (Figure 11B), the close alignment of 

debiased read distributions with the original fluorescence distributions (Figure 11A) 

demonstrates the usefulness of the procedure. 

 The distribution of mutational effects on three different starting 3.2.2

sequences. 

Having obtained fluorescence proxies for each mutant, we inspected the distribution of 

mutational effects of single nucleotide mutants (Figure 12). We notice three things. 

First, and surprisingly, the two random starting sequences of pMS9_2 and pMS9_3 yield 

higher fluorescence than the naturally evolved RNAP binding site of the lacZ promoter 

(pMS9_1). Although the lacZ promoter is known to be a weak promoter requiring activation 

by CRP for full activity (Malan et al. 1984), it is unexpected that both random sequences 

yield higher expression and thus should be deemed ‘functional’. Still, expression from all 

three starting sequences is much lower (by roughly two orders of magnitude) than that of 

known strong promoters such as PL of phage λ. 

Considering the shape of the distribution of mutation effects in the three libraries and the 

differences in expression between the three reference sequences, it appears that moving from 

a weak to a stronger promoter by single point mutations is possible but gets harder as a 

promoter gets stronger. 

The third observation is that for pMS9_3, which contains the part of p0 repeatedly found 

mutated in evolution experiments, the two mutations found in evolution experiments (C-31T 

and T-24A are among the mutations with the highest beneficial effect (arrow in Figure 12). 

This indicates that the effect of these mutations is similar in the chromosomal context in 
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which they were selected, and in the context of a plasmid, as is also expected from previous 

reporter assays (chapter 2.3.4). 

 

 

Figure 10. Workflow for mutagenesis and measuring fluorescence of multiple mutant libraries using sort-seq. 
Starting from the top left: Single nucleotide mutagenesis of plasmids pMS9_x (x=1, lacZ RNAP binding site; 
x=2, lacZ scrambled; x=3, p0). A 36 bp region (yellow) upstream of a ribosomal binding site (RBS, grey) and a 
gfp reporter gene (green) is mutagenized by PCR amplification with degenerate primer pools introducing 
exactly 1 mutation per molecule. Red dots – position of degenerate nucleotide in single primers constituting the 
primer pools. PCR products are circularized and transformed into E. coli. Each of the three resulting libraries, 
to which the ancestral starting plasmid is added, is sorted according to GFP fluorescence into six bins (B1-B6). 
Green FACS histogram – cartoon example of a library, grey FACS histogram, AF – autofluorescence 
background. After sorting, cells in respective bins 1-6 of the three libraries are pooled and a constant number of 
cells containing a reference sequence (red cell) is added for later debiasing. Isolated plasmid libraries are 
subsequently used as PCR templates with primers that incorporate bin-specific barcodes into PCR products 
used in Illumina sequencing. Finally, read count distributions of every sequence across bins are debiased by 
dividing by bin counts of the reference sequence. Debiased distributions are then transformed into a 
fluorescence proxy. For details see Methods. 
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Figure 11. Debiased read distributions approximate FACS distributions better than raw read distributions. (A) 
Black line – relative frequency of cells with the starting plasmid across bins as observed in FACS of a clonal 
culture. Blue line – raw distribution of reads of the starting sequence across bins. Red line – debiased read 
distribution. For debiasing, raw read counts of each bin are divided by the read counts of a reference sequence 
derived from cells that were added at equal numbers to each FACS bin (see Table 5 in the Methods section) . 
For calculating relative frequencies, the sum of the divided read counts is normalized to 1. (B) Fluorescence 
proxy of starting plasmids calculated as the geometric mean of raw (blue) and debiased (red) read distributions 
(y-axis) compared to the median of the FACS distribution of respective clonal cultures (x-axis, horizontal error 
bars are rSD). Dashed line is x=y. 

 

Figure 12. Distribution of mutational effects. Dashed lines – fluorescence proxy of the starting sequence. “C-
31T” and “T-24A” are the two point mutations within the tested region of p0 seen in evolution experiments. 
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 Identifying RNAP binding sites in random sequences 3.2.3

As a next step, we sought to identify the specific binding sites of RNAP that apparent 

transcription from the three sequence libraries can be ascribed to. For pMS9_1, as this 

encodes the natural RNAP binding site of the lacZ promoter, the position of the binding site 

is known, but for pMS9_2 and pMS9_3, it is not. Importantly, searching for the ‘core bases’ 

of the canonical motifs (TTGnnn <spacer> TAnnnT, (Yona et al. 2018)) fails to identify a 

functional promoter in both pMS9_1 and pMS9_2. This illustrates the necessity for more 

detailed motif models such as an energy matrix model in the identification of promoters. 

In our data, a functional binding site of RNAP is expected to satisfy two criteria. 1) It 

corresponds to the matrix position in a sequence with a minimum energy. 2) The variation in 

binding energy between different mutants is negatively correlated with the variation in 

observed expression. In Figure 13, we tested all possible binding frames of RNAP that 

overlap the mutagenized core of 36 nt for these two criteria. Due to flexibility in the length of 

the spacer between the -35 and -10 boxes, we tested frames for both spacer length 17 bp, 

which is the most common spacing in natural promoters (Lisser & Margalit 1993), and 18 bp 

as in the native lac promoter. For all three libraries, a single binding frame of the -10 box 

could be identified, although for pMS9_2 and pMS9_3 there was no clear preferred spacer 

length. For pMS9_1, the known RNAP binding site of lac promoter was correctly found 

(Figure 14). Going with the spacer length that gives the minimum binding energy, we 

continue our analysis assuming a spacer length of 18 bp for pMS9_1 and pMS9_2 and 17 bp 

for pMS9_3. Note that the -35 box of pMS9_2 lies outside of the mutagenized region 

(Figure 14) and is therefore constant for all mutants. 

 

Figure 13. Identifying a predominant frame of RNAP binding. Three panels show results for the three libraries. 
Each point corresponds to a single tested frame. Values are calculated with the lacZ energy matrix of spacer 
length 18 (red) or 17 (blue). x-axis: mean binding energy of a mutant sequence of the respective library. A 
frame important for binding is expected to have a low mean binding energy value. y-axis: Spearman rank 
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correlation coefficient between expression (FACS fluorescence proxy) and binding energy of all mutant 
sequences contained in the library. Since binding energy is inversely related to expression, a highly negative 
Spearman r is expected for predominant frames. Point labels indicate the position of +1 and multiplicity 
corrected p-values of Spearman r. 

 

Figure 14. Predominant frames of RNAP binding in 3 starting sequences. The TSS (+1) is underlined in bold 
face, box frames show -35 and -10 regions. For pMS9_2 and pMS9_3 there are two possible positions of the -35 
box. 

 

 Binding energy matrices predict the effect of mutations locally, but 3.2.4

not between unrelated sequences. 

After having identified RNAP binding sites, we moved on to checking how well the effect of 

mutations is described by the lacZ energy matrix. A more complete way to do this would be 

to fit the full thermodynamic model to the data as described by equation (1) in the 

introduction. This involves fitting a sigmoidal function mapping binding energy to promoter 

occupancy and requires fitting the parameter for the chemical potential of RNAP. To keep 

things simple, I proceed without this step and continue using just binding energies. 

Figure 15A shows correlations of binding energy with the fluorescence proxy for the three 

separate libraries. 
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Figure 15. Binding energy computed with the lacZ matrix and observed fluorescence. (A) Binding energy and 
fluorescence of three libraries shown separately. Blue cross – starting sequence. Grey areas show fluorescence 
ranges beyond the inner edges of the outer bins, for which fluorescence cannot be quantified reliably using read 
distributions. This also means that the apparent ‘sigmoid’ shape of a fitted curve, which could be expected by 
theoretical considerations, is not supported by the data (it is not excluded either). Highlighted points in the left 
panel indicate mutations in the -35 and -10 hexamers that have an unexpectedly small effect on fluorescence. 
Dashed line in middle panel – identical binding energy predictions of strong-effect mutations downstream of the 
binding site. (B) Data from the three panels in A overlaid. 

Overall, we find highly negative correlations between energy and fluorescence for all three 

libraries as expected (P < 10-4 for Spearman correlation). Interestingly, a number of 

mutations expected by the binding energy model to lower expression of pMS9_1, have only a 

mild effect on expression in our dataset. These mutants locate to the -10 and -35 hexamers 

(Figure 15A, highlights in left panel). 

As noted above, the RNAP binding site in pMS9_2 is only partially overlapping the 

mutagenized region (Figure 14). This implies that many mutants of the library are located in a 

region downstream of that covered by the energy matrix. Therefore, in the model, their 

binding energy is identical to that of the starting sequence. Interestingly, despite no difference 

in binding energy, fluorescence of these mutants spans an entire order of magnitude (dashed 

vertical line in middle panel of Figure 15A). This may indicate the importance of the 

downstream sequence context in which an RNAP binding site is embedded. Alternatively, the 

unexpected effect of mutations downstream of the hypothetical binding site could however 
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also indicate a second RNAP binding site. In fact, the direction of mutational effects would 

be consistent with a second RNAP binding frame 17 bp downstream of the ‘main frame’. 

This second frame does not give correlations for the whole dataset (and thus does not stand 

out in Figure 13), but this observation raises the possibility that RNAP could bind at multiple 

positions in a sequence, with expression being the sum (or some other function) of occupancy 

at the two (or more) positions. We will explore this in more depth in chapter 4. 

A particularly puzzling observation is the discordance of the binding energy not within the 

three libraries, but between them (Figure 15B). Based on binding energies, the pMS9_1 

library is expected to have higher expression than the other two, but the opposite is the case. 

Possible reasons for the ‘energy offset’, i.e. the gap between the predictions for pMS9_1 and 

the other two libraries, are given in the discussion. 

 Context-dependent effects of promoter mutations 3.2.5

Our dataset allows us to compare the effect of single-nt mutations at corresponding positions 

within the RNAP binding site in the different contexts of the three plasmid libraries (Figure 

16). With a few exceptions, the direction of mutation effects is independent of sequence 

context. The magnitude of mutation effects can be strikingly different. For example, a G-11A 

transition (in the -10 hexamer, TATAAT) in the context of the pMS9_2 sequence increases 

fluorescence by a factor of 23, in the context of pMS9_3 by a factor of 29, and in the context 

of pMS9_1 by a factor of only 1.4. A C-12A transversion (TATAAT) decreases expression in 

pMS9_2 by a factor of 4.9 but has close to no effect in either pMS9_1 or pMS9_3. Similar 

differences in the effect of mutations are found in the -35 hexamer, e.g. G-31C (TTGACA), 

increases expression in the context of pMS9_1 by a factor of 8, but has close to no effect in 

the context of pMS9_3. 

 

Figure 16. Context-dependent effects of promoter mutations. Every panel compares respective mutations from 
two libraries (axes). Every point in the scatterplot represents a particular letter change, e.g. AàG. The values 
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on the two axes are the respective log10-fold differences in fluorescence. Points are colored with respect to their 
position in the RNAP binding site. Arrows indicate mutations mentioned in the text. 

3.3 Discussion 

In this chapter, we have seen how single mutations on three short, unrelated sequences, one 

naturally evolved and two random, affect gene expression, how well mutation effects are 

captured by a previously published energy matrix, and how much the effect of individual 

mutations depends on the sequence context in which they occur. We find three surprising 

results. 

The first surprising result is that two randomly chosen starting sequences gave higher 

expression than the naturally evolved lac promoter. In chapter 4 we follow up on this 

observation and, by looking at many more random sequences, quantify how unexpected this 

actually is. 

The second surprising result is that higher expression from the two libraries with a random 

starting sequence is not captured by the energy matrix, which predicts the lac library to yield 

highest expression (‘energy offset’ in Figure 15B). This discrepancy between libraries is 

particularly interesting given the good overall match between model and data within the 

libraries. Also, up-mutations observed in evolution experiments (chapter 2) are correctly 

retrieved. So while the lacZ energy matrix ‘works’ locally, i.e. it produces mostly correct 

predictions in a small area of sequence space around a reference sequence, it appears not to 

work well globally, i.e. in larger sequence space. Possibly, the ‘energy offset’ is due to the 

particular fit between the pMS9_1 library and the lacZ energy matrix, which reflects that this 

matrix was inferred on a closely related sequence background. Evidence against this comes 

from the observation of a comparable energy offset when using two other RNAP binding 

energy matrices inferred on different sequences (λ PL and PR, Figure 17; matrices derived by 

Mato Lagator and Srdjan Sarikas). At this point, it is impossible to say if this result is a 

peculiarity of the three sequences studied or if it holds more generally. If indeed energy 

matrix models work well only locally, this raises the question whether there is a universal 

energy matrix that works comparably well for all possible sequences. If we assume that an 

energy matrix is a representation of the biophysics of the RNAP, then there should be such a 

single universal matrix, as there is only a single RNAP. We will address this question in 

chapter 4. 
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Figure 17. The energy offset between the pMS9_1 library and the pMS9_2 and pMS9_3 libraries persists when 
using different energy matrices to calculate the predicted binding energy. Left and right plots: matrix inferred 
on a mutant library of the λ PR and PL promoter respectively (Mato Lagator and Srdjan Sarikas). 

Lastly, we find that corresponding mutations can have dramatically different effects 

depending on local sequence context. The results of this chapter, in particular the ‘energy 

offset’ and the context-dependency of mutations, indicate that our models of the sequence 

dependency of promoter strength are incomplete in important ways. We can come up with 

several hypotheses in which way this could be the case. In the following, we discuss four 

such hypotheses in more detail. 

Epistasis 

RNAP binding energy may not be the sum of energy contributions of individual interacting 

positions. This violates the additivity assumption and calls for models that incorporate 

epistatic interactions between nucleotide positions, which in principle can be addressed 

experimentally, but quickly becomes intractable if one seeks to cover interactions between all 

positions. 

Alternative promoter types 

The rate of transcription initiation is known to not be simply proportional to the sequence-

dependent equilibrium binding probability of RNAP. Instead, already in the 80s, the 

existence of at least two sequence-dependent steps on the initiation pathway was discovered 

(McClure et al. 1983; Studnicka 1988), which led to the formulation of the ‘bipartite model’ 

of promoter function, which assumes the sequences of the -35 and -10 boxes to determine 

RNAP binding and promoter isomerization respectively. Recent studies have improved our 

understanding of the sequence determinants at these two important steps of promoter function 

(E. Heyduk & T. Heyduk 2014; Feklistov et al. 2006; Ruff et al. 2015; Hook-Barnard & 

Hinton 2007; Djordjevic & Bundschuh 2008), resulting not in a rejection of the bipartite 
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model, but rather in its refinement. Thus the single-step assumption is certainly violated. The 

question is, how much this provides a complication. In the best case (from the perspective of 

modeling for the purpose of minimizing errors), sequence dependent effects at the promoter 

isomerization step simply ‘blend in’ mathematically and show up in the energy entries in our 

inferred matrices without introducing any distortions. In the worst case, there may actually be 

multiple distinct classes of promoters, possibly ‘living’ in disconnected areas of sequence 

space, and only a subset of them is described well by our models. ‘Alternative promoter 

types’ may then call for different equations or ‘matrices’, possibly containing highly epistatic 

interactions between different sequence positions. One suggestion has been to describe the 

two-step process of transcription initation using Michaelis-Menten kinetics (Ruff et al. 2015). 

The ‘alternative promoter types’ hypothesis is nourished mainly by the observation of strong 

promoters with a relatively low homology score (exemplified by λPL (Knaus & Bujard 1988)) 

or by the observation of individual mutations that influence transcription in the opposite 

direction than expected from consensus (Miroslavova & Busby 2006). We will consider this 

hypothesis in more detail in chapter 4.  

Multiple RNAP binding positions 

We can also question our assumption that transcription is initiated only at the position of the 

RNAP binding energy minimum. Our finding of strong effect mutations outside of the 

supposed primary RNAP binding site in the pMS9_2 library may support that promoter 

activity emerging from random sequences is the combined result of multiple very weak 

RNAP binding sites, but more data is needed and will be provided in chapter 4. 

Local differences in the chemical potential of the RNAP 

The offset between predicted binding energies (Figure 15B) could be due to a violation of the 

assumption that the same chemical potential of RNAP applies to all three libraries. There are 

two possible problems. 

The first is a problem at the stage of applying models. At the time of inference of the energy 

matrix that I use (Kinney et al. 2010), the chemical potential, an additive term to binding 

energy (Eq. 1), was inferred as well. It might be flawed thinking that one can simply take 

energy values scaled in this way and apply them to a different experimental context. Possibly, 

a different value for the chemical potential, and analysis at the level of predicted binding (Pon) 

instead of predicted binding energy (E) is needed. Earlier, Murat Tugrul tried exactly this and 
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calculated predicted binding probabilities for the three libraries using different values for the 

chemical potential and the same energy matrix that I use. Importantly, he could not find a 

value that would reconcile the offset between predictions, and correlation coefficients were 

low across the tested range of chemical potential values (Figure 18). 

 

Figure 18. Pearson and Spearman correlation coefficients between predicted and observed expression of the 
three single-nt libraries (pMS9_1, pMS9_2 and pMS9_3, all pooled) as a function of chemical potential. This 
Figure and the underlying analysis is the work of Murat Tugrul. 

The second problem concerns an actual biophysical question. There could be differences in 

the actual chemical potential of RNAP between the three libraries. Given however, that 

everything except 36 bp is identical between the three libraries and respective experiments, 

this explanation seems unlikely. Still, one could imagine that the three different starting 

sequences impose a particular sterical configuration on the DNA, making it more or less 

accessible to RNAP, changing its chemical potential. 

 

Together, our results demonstrate the need for caution when using energy matrices inferred 

on a particular sequence background to predict expression from unrelated sequences. 

Obtaining RNAP binding energy matrices from a much more diverse sample of the sequence 

space may be essential in alleviating this problem. This is what we do in chapter 4. 

 

3.4 Materials and Methods 

 Plasmid cloning 3.4.1

We used plasmid pUA66-lacZ (Zaslaver et al. 2006) as a starting point for plasmid 

construction. The four 36 nt long sequences to be mutagenized in the next step were 
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synthesized as middle part of oligonucleotides of length 100 nt. We put sequences of length 

32 nt both upstream and downstream of the 36 nt core sequence. These flanking sequences 

serve as homology in the plasmid assembly step. Their sequence was obtained by a random 

shuffling of the sequences flanking the RNAP binding site in the pUA66-lacZ contained 

promoter fragment. The oligonucleotides (1_lacZ, 2_lacZscrambled, 3_p0) were made 

doublestranded using primer novo_Klenow and Klenow fragment. The pUA66-lacZ 

backbone was linearized using PCR amplification with primers novo_ohup and 

novo_ohdown. The backbone linearized in this way contains the gfpmut2 reporter gene, but 

leaves out the lacZ promoter fragment originally contained in pUA66-lacZ. We assembled 

plasmids by combining the 100 nt doublestranded fragments and the backbone fragment 

using an NEBuilder kit. The resulting plasmids were designated pMS9_1, pMS9_2 and 

pMS9_3. 

The control plasmid pMS9_control was created using a Q5 site directed mutagenesis kit with 

primers letitshine_f and letitshine_r, and was transformed into NEB 5α cells. All newly 

cloned inserts were verified by sequencing. 

 Creation of single-nt libraries from four starting sequences of length 3.4.2

36 nt 

Plasmids pMS9_1 to pMS9_3 were used as starting plasmids for library mutagenesis. For 

each plasmid, we created two pools of 18 primers each, one pool serving as forward primer 

(L) and one as backward primer (R). Each of the 18 primers constituting a pool was ordered 

such that one nucleotide of the starting sequence was replaced by an equiprobable mixture of 

the three alternative nucleotides (e.g. A à B = 33% C / 33% G/ 33% T). In this way, a pool 

of 18 primers contains all single-nt variants of one half of the 36 nt sequence to be 

mutagenized. At the 3’ end of the primers we put a constant region homologous to sequences 

on the plasmid backbone. Next, we synthesized 6 plasmid pools using a Q5 site directed 

mutagenesis kit. For every reaction we used one starting plasmid (e.g. pMS9_1) as template, 

one primer pool as forward primer and a single constant reverse primer (e.g. L1_pool + 

R1_constant). The resulting plasmid pools were transformed into chemically competent cells 

(NEB 5α), incubated for 1 h at 37°C and plated on LB plates with Kanamycin (50 µg/mL) 

and sterile charcoal (5g / L to reduce background fluorescence). For each plasmid pool, we 

plated the undiluted cultures on three plates. Plates were incubated for 48 h and colonies were 
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scraped off. After scraping, suspensions were vortexed vigorously and diluted to an OD600 of 

1, aliquoted (100 µL) and frozen after addition of glycerol (50%, 40 µL). 

 FACS-sorting 3.4.3

Prior to sorting, cells were grown in freshly filtered (0.22µm) M9 minimal medium with 

0.2% CAS, 0.2% Glucose and 50 µg/mL kanamycin. Frozen aliquots of plasmid pools, 

starting plasmids and the control plasmid were diluted 1:10 and grown overnight. Prior to 

sorting, overnight cultures were diluted again 1:100 and grown for 3 h to reach exponential 

phase. 

FACS-sorting was performed on an FACS Aria III flow cytometer (BD Biosciences, San 

Jose, CA) with a 70 µm nozzle for droplet formation. A 488 nm laser was used to detect 

forward scatter (FSC) and side scatter (SSC) with a 488/10 band-pass filter. The same laser 

was used for excitation of GFP (FITC channel, emission filters 502LP, 530/30). We chose the 

FITC channel voltage such that the median fluorescence of a plasmid-free auto-fluorescence 

control sample (AF) is between 0 and 100 on the FITC axes. The flow rate was set to 1.0 and 

samples were diluted to obtain a cell count of approximately 5000 events/second. Cells for 

sorting were manually gated on the densest population in an FSC/SSC scatter plot, which 

comprised 97-98% of all events exceeding a threshold of 1000 on the SSC axis. Six sorting 

gates were set on the FITC axes as follows: First we recorded autofluorescence of a culture 

with a plasmid lacking GFP. The median autofluorescence (42) served as upper boundary of 

the lowest bin (B1). Then, to obtain the three libraries, we mixed respective plasmid pools 

containing the left and the right mutagenized half of the 36 nt insert. For each of the resulting 

three libraries, we recorded fluorescence of 106 cells. The lower bound of the highest bin 

(B6) was then taken to correspond to the 95th percentile of the fluorescence distribution. The 

three boundaries between intermediate bins (B2-B5) were then chosen with equidistant 

spacing on log scale. This procedure was done for each of the three libraries individually. Bin 

boundaries can be found in Table 3. 

Table 3. Upper bin boundaries for FACS. 

Starting plasmid B1 B2 B3 B4 B5 

pMS9_1 42 126 375 1122 3353 

pMS9_2 42 115 315 863 2365 

pMS9_3 42 118 334 942 2656 
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The number of cells to be sorted into each of the six bins B1-B6 corresponded to the number 

of cells previously recorded in each of the bins and can be found in Table 4. Before sorting, a 

culture of cells with the starting plasmid was added to the library culture at a ratio of 1:100. 

Cells were sorted into a 24-well plate with 500 µL sorting medium / well. The recipient plate 

was cooled to 4 °C to halt growth while sorting to other wells was still going on. 

Table 4. Number of cells sorted from each library. 

Starting plasmid B1 B2 B3 B4 B5 B6 

pMS9_1 34140 89728 247835 410198 171421 49810 

pMS9_2 123504 206937 278145 167228 177238 49822 

pMS9_3 61146 65106 56345 355932 413442 49804 

pMS9_control 1000 1000 1000 1000 1000 1000 

 

After completion of sorting, 1000 cells of the culture with the control plasmid pMS9_control 

were added into each of six wells. Sorted cells were spun down in a cooled centrifuge and 

resuspended in 1 mL medium. We then plated a dilution from each well on LB Kan to 

estimate viability (mean viability over 6 bins and 3 libraries was 62%, standard deviation 

11%) and the frequency of mis-sorting (mean outlier frequency over 6 bins and 3 libraries 

was 2.2%, standard deviation 2.5%, outlier classification using ROUT with Q=1%). Finally, 

the cells from each bin and the different libraries (columns in Table 4) were pooled and 

grown overnight. 

 Plasmid library isolation and barcoding PCR 3.4.4

We isolated plasmid from the six culture pools and quantified DNA concentration using a 

Nanodrop spectrophotometer. Given the number of cells sorted and the plasmid pool 

concentrations, every sorted cell is expected to contribute 100 plasmid molecules or more to 

1 ng of plasmid pool DNA, which is the amount of template we used in the subsequent PCR 

amplification step. 

For barcoding PCR products containing the mutagenized region, we created primers 

mutseq_f1-6 and mutseq_r1-6. They contain a 3’ constant region, a bin-specific barcode of 

5 nt and a constant 5’ tail of 5 nt. 

PCRs were performed using Q5 high fidelity polymerase and 1 ng of the plasmid pools as 

template in a 50 µL reaction. We first performed five cycles with an annealing temperature 
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calculated for the constant 3’ part of the primers, followed by 25 cycles using an annealing 

temperature matched to each of the full length primer pairs. 

PCR products were column-purified (Zymo research, Irvine, CA) and eluted in 30 µL, of 

which 2 µL were run on an agarose gel for relative product quantification based on band 

fluorescence. PCR products were finally pooled to reach approximately equimolar 

concentrations of the six reaction products. 

 Illumina sequencing 3.4.5

We sent ~1 µg of pooled PCR product to sequencing by GATC biotech (Konstanz, Germany) 

on an Illumina sequencer (125 bp paired end). 

 Debiasing read distributions and calculating a fluorescence proxy 3.4.6

The sequencing raw data was processed by Srdjan Sarikas. For our analysis, we only used 

reads with matching barcodes in the forward and reverse primers and single nt mutations in 

the mutated core region. To account for biases in the sort-seq process, we normalized the 

number of reads from each bin and sequence by dividing by the number of reads of the 

control sequence (Table 5). 

Table 5. Distribution of control sequence reads across bins 

Bin B1 B2 B3 B4 B5 B6 

# of control sequence reads 9025 9223 6544 3616 5707 25394 

 

In the (purely theoretical) absence of biases, the number of control reads would be the same 

for each bin, given the same number of cells of pMS9_control added to the sorted cultures. 

Then, for each single nt mutant sequence, we calculated its fluorescence value as the 

geometric mean from debiased (i.e. control-normalized) read distributions. For doing so, we 

used median bin fluorescence values of the whole library distribution recorded in FACS. We 

chose to use the geometric mean over the arithmetic mean to reflect that scatter in FACS 

appears symmetric on a log axis. We verified the effect of debiasing by applying it to the 

count distribution of starting sequences, the expression of which is known from FACS of 

clonal cultures (Figure 11). 

For subsequent analysis, we only used mutant sequences with ≥50 reads. 
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 Calculation of binding energies 3.4.7

For calculating binding energies, we used a previously published energy matrix inferred from 

a sort-seq dataset of the mutagenized lac promoter in E. coli (Kinney et al. 2010). The matrix 

entries were shared by Murat Tugrul and can be found in Table 6. For a matrix of spacer 

length 17, we deleted line 16 from the matrix. 
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Table 6. LacZ energy matrix with spacer length 18. For the lacZ energy matrix with spacer length 17, line 16 
was omitted. 

	
A	 C	 G	 T	

1	 0.0030200	 0.1680000	 0.0218000	 0.1440000	

2	 0.0582000	 0.4190000	 0.0000259	 0.5030000	

3	 0.1100000	 0.0510000	 0.0864000	 0.0000129	

4	 0.0000000	 0.1950000	 0.0456000	 0.1860000	

5	 0.8440000	 0.0880000	 0.0000000	 1.6300000	

6	 2.7700000	 2.7300000	 2.6200000	 0.0000000	

7	 1.2800000	 2.9400000	 1.0300000	 0.0000000	

8	 3.8000000	 3.2200000	 0.0000000	 1.6900000	

9	 0.0000000	 1.6800000	 0.9690000	 1.6100000	

10	 2.0100000	 0.0000000	 2.7500000	 1.5200000	

11	 0.0000000	 1.0600000	 0.8250000	 0.3960000	

12	 0.0000000	 0.4200000	 0.3150000	 0.0742000	

13	 0.0183000	 0.1590000	 0.0018200	 0.0970000	

14	 0.0129000	 0.1120000	 0.0042000	 0.0672000	

15	 0.0874000	 0.0640000	 0.0363000	 0.0000639	

16	 0.0000000	 0.2740000	 0.0706000	 0.3740000	

17	 0.2140000	 0.0936000	 0.0440000	 0.0000122	

18	 0.0000000	 0.2880000	 0.1580000	 0.5620000	

19	 0.1840000	 0.0072100	 0.0034600	 0.2510000	

20	 0.0813000	 0.0250000	 0.0931000	 0.0002750	

21	 0.1270000	 0.0995000	 0.1470000	 0.0000000	

22	 0.0179000	 0.0634000	 0.1140000	 0.0011600	

23	 0.0738000	 0.1080000	 0.0821000	 0.0000000	

24	 0.1210000	 0.2880000	 0.3130000	 0.0000000	

25	 0.6760000	 0.6050000	 0.6110000	 0.0000000	

26	 0.0000000	 0.8070000	 0.2950000	 1.1500000	

27	 0.3670000	 0.5720000	 0.0000000	 0.5210000	

28	 1.0800000	 1.9000000	 0.0000000	 1.1100000	

29	 0.4400000	 0.4480000	 0.0000000	 0.1540000	

30	 1.3700000	 1.9400000	 2.9100000	 0.0000000	

31	 0.0000000	 3.8700000	 3.8900000	 3.4800000	

32	 0.3680000	 0.8740000	 0.9370000	 0.0000000	

33	 0.0000000	 1.0500000	 1.2900000	 1.3800000	

34	 0.0000000	 0.6000000	 1.2800000	 1.3500000	

35	 1.5700000	 2.9400000	 2.5000000	 0.0000000	

36	 0.0000000	 0.8420000	 0.4200000	 0.7250000	

37	 0.0511000	 0.6130000	 0.1630000	 0.0000001	

38	 0.0000000	 0.3380000	 0.2830000	 0.2500000	

39	 0.0803000	 0.1860000	 0.0422000	 0.0000527	

40	 0.0000000	 0.4800000	 0.4600000	 0.3420000	

41	 0.0225000	 0.1110000	 0.1780000	 0.0020500	
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To calculate the binding energy for a sequence, matrix entries corresponding to the given 

nucleotides at respective positions are summed up. Binding energy was calculated for each 

possible frame overlapping the variable 36 nt region. 

To identify the predominant frame of RNAP binding, we calculated the Spearman rank 

correlation coefficient between the fluorescence proxy as described in section 3.4.6 and 

binding energies of all mutant sequences. This was done for each possible frame. P-values of 

spearman rank correlations were adjusted by multiplication with the number of frames tested. 

Mutants with a fluorescence proxy beyond the upper edge of the lowest bin and the lower 

edge of the highest bin were excluded for calculating correlations, because fluorescence in 

these limits cannot be properly quantified using our approach. 

 List of primers 3.4.8

Cloning primers 

1_lacZ-RNAP binding site 
CACGAGGCCAGGCTTCAAATCTCAATGCTATTGGCTTTACACTTTATGCTTCCGG
CTCGTATGTTGTGTGTGCATACAGATTGAGTAATGGCATCGAAAC 
2_lacZscrambled 
CACGAGGCCAGGCTTCAAATCTCAATGCTATTTTCGGCTTTCTTCGTGCATAATGC
TTCGGTCTATGGTGTGCATACAGATTGAGTAATGGCATCGAAAC 

3_p0 
CACGAGGCCAGGCTTCAAATCTCAATGCTATTTTACCTTGCAGGAATTGAGGCCG
TCCGTTAATTTCCTGTGCATACAGATTGAGTAATGGCATCGAAAC 
novo_Klenow GTTTCGATGCCATTACTCAATC 

novo_ohup TAGCATTGAGATTTGAAGCCTGGCCTCGTG 
novo_ohdown TGCATACAGATTGAGTAATGGCATCGAAAC 

letitshine_f TAAAGCCATATTAACGAATGTGCATACAGATTGAGTAATG 
letitshine_r GGTAATTTAGGTTTCCAGAATAGCATTGAGATTTGAAGC 

 
Barcoding primers 

mutseq_f1 AAGCTATCTATCGTCTTCACCTCGAGCAC 

mutseq_f2 AAGCTGTACATCGTCTTCACCTCGAGCAC 
mutseq_f3 AAGCTAAGTGTCGTCTTCACCTCGAGCAC 

mutseq_f4 AAGCTCTCGTTCGTCTTCACCTCGAGCAC 
mutseq_f5 AAGCTATAACTCGTCTTCACCTCGAGCAC 

mutseq_f6 AAGCTCGTCATCGTCTTCACCTCGAGCAC 
mutseq_r1 CGTACATCTATTCTCCTTTACTCATATGTATATCT 
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mutseq_r2 CGTACGTACATTCTCCTTTACTCATATGTATATCT 
mutseq_r3 CGTACAAGTGTTCTCCTTTACTCATATGTATATCT 

mutseq_r4 CGTACCTCGTTTCTCCTTTACTCATATGTATATCT 
mutseq_r5 CGTACATAACTTCTCCTTTACTCATATGTATATCT 

mutseq_r6 CGTACCGTCATTCTCCTTTACTCATATGTATATCT 
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4 The distribution and prediction of promoter function in a random 

sample of the full sequence space 

This chapter is the result of a collaboration with Srdjan Sarikas, and Gašper Tkačik in an 

advisory role. Srdjan Sarikas processed the raw sort-seq data, contributed to the development 

of data filtering criteria and applied filtering, contributed to the development of 

thermodynamic models and implemented their inference, and provided me with the model 

output. 

4.1 Introduction 

In the final chapter of this thesis, we return to a number of questions brought up in chapter 3. 

We start by first addressing a new question: 

• How frequently do random sequences exhibit transcriptional activity? 

We approach this question by performing a similar sort-seq experiment as in chapter 3, but 

this time we measure expression from a plasmid library in which the variable regions of the 

pMS9 plasmids are replaced by a stretch of 36 random nucleotides (36N). In this way, we 

sample a much larger and more disperse area in sequence space. 

In addition, we develop an extended thermodynamic model to predict expression from 

sequence. We allow an energy-penalized flexibility in the length of the spacer separating 

the -35 and -10 boxes, and we test the effect of summing contributions over multiple possible 

binding positions of RNAP within the random upstream sequence. Combining experimental 

data and outputs of the model, we address the following open questions from chapter 3. 

• Is there an RNAP energy matrix that can make better predictions of transcription from 

a wide variety of sequences than matrices locally inferred on model promoters? How 

is such a matrix different from model promoter matrices? 

• What is the distribution of spacer lengths in random promoters and how important are 

non-canonical spacer lengths for accurately modeling expression? 

• Is there evidence that promoter activity of weakly transcribing sequences is driven by 

multiple RNAP binding sites? 

• Is there evidence for distinct promoter types that are optimized for different steps in 

the transcription initiation process, in particular is there evidence of an ‘extended -10 

type promoter’? 
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In a very recent related study, functional promoters driving expression of the lac operon were 

evolved from random sequences by selection for growth on lactose minimal medium (Yona 

et al. 2018). Earlier work using synthetic selection for higher expression in FACS also started 

from random sequences in E. coli, but the authors were mainly interested in the noise 

properties of emerging promoters, and not in the genotype-phenotype map of promoter 

strength (L. Wolf et al. 2015). In eukaryotes, a recent high-throughput study in yeast 

investigated promoter function using random libraries, with the added complication of 

transcription factor binding sites (de Boer et al. 2018). Our focus on functionality over a wide 

range from non-functional to strong binding and the associated technical challenges is shared 

with a recent article that quantifies eukaryote protein-DNA binding affinity in vitro (Rastogi 

et al. 2018). To our knowledge, no other study has investigated the genotype-phenotype map 

of bacterial promoter strength in a quantitative way using large random sequence libraries. 

4.2 Results 

 A sort-seq experiment for quantifying fluorescent reporter expression 4.2.1

from a random sequence promoter library 

Analogous to library creation in chapter 3, we created a plasmid library (pMS9_36N) using a 

variation of site-directed mutagenesis to insert a 36 nt long random sequence in front of a gfp 

reporter gene (Figure 19). Expression from the 36N inserts was measured by sorting cells 

transformed with the library into 12 bins according to GFP fluorescence, followed by plasmid 

isolation, bin specific barcoding of the variable inserts, and Illumina sequencing. In this way, 

we obtained a fluorescence proxy for 15492 unique clones that we use for further analyses 

(see Methods). As in chapter 3, we perform debiasing using read counts of a reference 

sequence (Table 8), added in equal cell numbers to each bin after sorting. Debiasing is 

particularly important given the skewed distribution of fluorescence in our library, with many 

more sequences in lower than in higher bins. As in chapter 3, the number of reference 

sequence counts in each bin is high enough (>103, Table 8), so that division by small numbers 

is no concern. 

We compared fluorescence proxies of a dataset of 78 clones that we obtained after sorting to 

the fluorescence measured using a platereader. For clones with little expression, both 

methods are limited by autofluorescence background, which means we cannot expect a 

correlation between measurements. On the other end of the scale, if a clone is mostly sorted 

into the highest bin, the fluorescence proxy calculated from sort-seq becomes unreliable too. 
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This is because the highest bin has no upper bound, which means that the very high 

fluorescence (much higher than the lower bound of the bin) will be underestimated by the 

fluorescence proxy. When excluding the problematic clones on the very low and high end, we 

found a strong linear correlation between the two fluorescence (Figure 20). The origin of a 

small remaining non-linearity in the white region of Figure 20 remains unclear and probably 

signifies that platereader and FACS fluorescence are not perfectly comparable across the 

measurement range for inherent technical reasons. Since both measurements offer only 

indirect information on promoter activity, which is what we are eventually after, we decided 

not to investigate this discrepancy in more detail to find out which of the two measurements 

is ‘right’. We conclude that, at the level that is of interest to us, platereader measurements 

validate the sort-seq approach across approximately three orders of magnitude of 

fluorescence. 

 

Figure 19. Workflow for creating the 36N random promoter sequence library and measuring fluorescence using 
sort-seq. Starting from the top left: Creation of a plasmid library pMS9_36N. A stretch of 36 random 
nucleotides (‘N’) is inserted upstream of an RBS and a gfp reporter gene using PCR with 18N degenerate 5’ 
primer ends.  PCR products are circularized and transformed into E. coli. Cells are sorted according to GFP 
fluorescence into twelve bins (B1-B12). ). Green FACS histogram – cartoon of library fluorescence; grey FACS 
histogram, AF – autofluorescence background. After sorting, a constant number of cells containing a reference 
sequence (red cell) is added for later debiasing. Isolated plasmid libraries are subsequently used as PCR 
templates with primers that incorporate bin-specific barcodes into PCR products used in Illumina sequencing. 
Finally, read count distributions of every sequence across bins are filtered and debiased by dividing by bin 
counts of the reference sequence. Debiased distributions are then transformed into a fluorescence proxy. For 
details see Methods. 
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Figure 20. Correlation between platereader fluorescence (x-axis) and the sort-seq-derived FACS fluorescence 
proxy (y-axis) for 78 clones. R2 is the linear Pearson correlation coefficient calculated excluding points with a 
fluorescence proxy in the lowest or highest bin (grey shading). 

 The distribution of fluorescence from random sequences 4.2.2

Fluorescence from random clones spanned three orders of magnitude on the FACS scale 

(Figure 21A). Fluorescence from the strongest expressing sequences approached that of the 

strong phage promoter PL (dashed line in Figure 21A). 9.1% of the library (1414 clones) 

showed fluorescence exceeding the 95th percentile of a no-plasmid autofluorescence control 

culture (AF95). For the rest of this chapter we refer to clones exhibiting fluorescence larger 

than AF95 as ‘functional’. 

 

Figure 21. Distribution of fluorescence of the pMS9_36N library. (A) Histogram of fluorescence of 15429 
clones in the pMS9_36N library (black bars) and distribution of the FACS autofluorescence background from a 
plasmid-free culture (grey shaded area). Dashed line indicates median FACS fluorescence of the pMS9_PL 
reporter. (B) Cumulative frequency of library fluorescence. (C) Magnification of boxed area in (B). Dashed 
lines indicate the 95th percentile of the autofluorescence background (AF95), and the fluorescence proxy of the 
starting sequences pMS9_2 and pMS9_3 from chapter 3. 
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We evaluated where fluorescence from the two random starting sequences used in chapter 3 

fell with respect to the full distribution in the 36N sequence space. Fluorescence from both 

pMS9_2 and pMS9_3 plasmids exceeded that of 95% of the 36N distribution (Figure 21), 

which means that generating two sequence of such fluorescence in two attempts by chance is 

indeed highly unexpected (with a chance of 0.4%), but not extremely unexpected. 

 An extended thermodynamic model to predict expression from 4.2.3

sequence 

Due to the limitations of existing models predicting expression from sequence as described in 

chapter 3, we developed an extended thermodynamic model, inferred its parameters on a 

training subset of the 36N dataset, and did the same with simpler models for comparison. We 

tested the effect of introducing two extensions to the model (Figure 22). The first extension is 

to allow a flexible spacer length between the -35 and -10 boxes. Energy penalties of 

suboptimal spacer lengths are inferred from the data. The second extension is to allow 

multiple additive binding sites of RNAP to contribute to expression. Although this includes 

the possibility of overlapping RNAP binding sites, which may interfere with each other rather 

than adding up (M. L. Peterson & Reznikoff 1985), the rational is that interference is unlikely 

when binding probabilities are low overall. Specifically, we count the Boltzmann weights of 

all possible binding sites overlapping the 36N region, as opposed to taking the Boltzmann 

weight of only a single energy minimum position of RNAP binding.  

 

Figure 22. Two extensions of the thermodynamic model of promoter strength. 

The fitted parameters of the models include energy matrix entries for the two ‘feet’ of RNAP 

(comprising the -35 box and the -10 box), chemical potential and an energy scale parameter, 

and, in the case of a flexible spacer, energy penalties for suboptimal spacer lengths between 

15 bp and 19 bp. The model fitting procedure is outlined in the Methods section and will be 

published in full detail elsewhere (Srdjan Sarikas). 
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 Model selection 4.2.3.1

Figure 23 shows scatterplots for overall performance of the four tested models (with and 

without spacer flexibility, and with and without multiple RNAP binding positions). All 

parameters are inferred separately for the four models. Allowing energy-penalized spacer 

flexibility clearly improves correlations between predicted promoter occupancy and 

fluorescence. Allowing multiple RNAP binding positions has a much smaller, but positive 

effect on correlations. 

Due to the best overall performance of the ‘full’ model, i.e. the model that includes both 

spacer flexibility and multiple binding sites (lower right scatter plot in Figure 23), we 

conclude that this model offers the most accurate description of the actual biophysical 

process generating the observed variation in the data and analyze the output of this model in 

more detail in the following sections.  

 

Figure 23. Model selection. Scatter plots of promoter occupancy predictions (x-axes) and fluorescence (y-axes) 
for the simplest model (top left) and two model extensions (flexible spacer - bottom panels; binding at multiple 
sites – right panels). The slope of the fits is constrained to 1. R2 is the weighted Pearson correlation coefficient. 
For details, see Methods.  
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 The distribution of primary RNAP binding sites across the 4.2.3.2

upstream region of the GFP reporter 

The 36N library has a large enough variable region to accommodate a full RNAP binding site 

(29 bp), but there is nothing restricting RNAP binding outside or partially outside the variable 

36N region. We can exclude that promoter function of the library is dominated by a binding 

site fully outside of the 36N region, as variation outside of the binding position is not 

expected to affect expression as much as seen in the library (Figure 21). However, a partial 

overlap of RNAP binding sites with the constant up- or downstream flanking region on the 

plasmid, could be consistent with the observed variation in fluorescence. If a particular ‘half-

site’ in the flanking region were dominating promoter function in the 36N dataset, results 

would be highly specific to the flanking regions, a serious problem when trying to generalize 

results. 

Before anything else, we therefore check if this is the case by inspecting the distribution of 

‘primary’ RNAP binding sites identified by the model on the region upstream of the GFP 

reporter (Figure 24). By ‘primary’ RNAP binding site we mean the single binding site of 

every sequence that contributes maximally to the binding probability. Only 15% of all clones 

have a primary binding site with both of the complete -35 and -10 hexamers in the 36N 

region. This is lower than expected if RNAP sites were distributed evenly across the 

considered interval (~20%). Also, one position upstream of 36N frequently provides a -35 

box (TTCAAA, first green peak in Figure 24). A second frequently predicted position of 

the -35 box (second high green peak in Figure 24) also overlaps the constant region, but only 

with an initial ‘T’ (TNNNNN). Despite these potential biases by overrepresentation of 

sequences with a -35 in the constant region, the distribution of fluorescence across possible 

binding site positions (boxplots in Figure 24) shows that there are no particular positions 

outside of the 36N region that dominate expression in the library. We therefore conclude that 

frequent positioning of the -35 box (and to a lesser extent, of the -10 box) in the constant 

flanking region may influence model fitting and introduce biases in the following analyses, 

but these biases do not introduce strong effects. 
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Figure 24. Distribution of primary RNAP binding sites across the 36N variable region and left and right 
constant flanking regions. All panels are aligned to the sequence shown between the two boxplot panels. Bottom 
panel – frequency of clones with the -35 nucleotide (green line) and the -10 nucleotide (blue line) across the 
sequence. The 36N variable region is highlighted in yellow. Percentages are the number of clones for which the 
complete 6 bp -35 box (green), -10 box (blue), and both (black) are within the 36N region. Top panels show 
boxplots of the fluorescence proxy of all clones with the -35 (green) and -10 box (blue) at specific positions. 
Boxplots show median, interquartile range and whiskers extend to maximally 1.5 times the interquartile range. 
All panels show data from 13544 clones with an exact length of 36 bp in the variable region. 

 A ‘universal’ RNAP energy matrix 4.2.3.3

The 36N dataset is best described using two energy matrices of length 12 (including the -35 

box) and 15 (-10 box), although the exact choice of the two lengths is of minor importance 

(Srdjan Sarikas). In the following, I refer to the two matrices together as ‘36N matrix’. We 

compared the energy values of the 36N matrix to those of the lacZ matrix used in chapter 3 

(Figure 9). Since there is a free energy scale parameter in the inference of both matrices, we 

need not worry that energy values differ by a small scaling factor (line fit in scatter plot in 

Figure 25). We notice that the two energy matrices are overall similar, and the energy 

minimum values at the -35 and -10 boxes defining the strongest binding sequence match the 

known RNAP consensus. There are however considerable differences in the energy penalties 

of non-optimal letters at critical positions. In the 36N matrix, the -35 box has an overall lower 

importance, while the -10 box has a higher importance as compared to the lacZ matrix. 
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Interestingly, the ‘TGTG’ motif at the extended -10 is part of the energy minimum sequence 

in the 36N matrix, but not in the lacZ matrix. 

 

Figure 25. Comparison of the 36N energy matrices with the lacZ energy matrix. Top: lacZ matrix (as in chapter 
3) and 36N matrices for the two feet of RNAP. Values of the colorscale are in units of kBT, but are not directly 
comparable (see text). Bottom left: Scatter plot of correlation between matrix entries. Line: linear fit. Bottom 
right: Energy residuals of the linear fit aligned with matrix positions. Residuals > 0 indicate larger energy 
penalties for non-optimal nucleotides (higher importance for promoter recognition) and residuals < 0 indicate 
smaller penalties (less importance). Sequences below the residual plot show energy minimum sequence of the 
different matrices and a previously published consensus sequence (Studnicka 1988). 

To quantify how much of the predictive power of our model is owed to the inferred energy 

matrix entries, we calculated binding probabilities with the full model, in which we 

substituted the 36N matrix entries with the lacZ energy matrix entries. This caused a large 

drop in the correlation coefficient R2 between binding probabilities and fluorescence, from 

0.69 (36N matrix) to 0.42 (lacZ matrix). 

We next checked if differences between the matrices are meaningful beyond the 36N dataset 

and used the 36N matrix to predict expression of the single-nt mutants of the libraries from 

chapter 3. Figure 26 shows that the offset in calculated binding energies between the three 

libraries that we had observed with the lacZ matrix (and also the PL and PR matrices) became 

smaller, which came at the cost of lower local correlation for the pMS9_1 library (i.e. the 

lacZ RNAP binding site). This may indicate that the 36N matrix is indeed a more ‘universal’ 

energy matrix, although other explanations are possible (see discussion). The overall good fit 

between the binding energy obtained using the 36N matrix and the three single-nt libraries 

depended on allowing different spacer lengths. 

On the level of predicted binding probabilities, our full model performs relatively well on the 

three single-nt libraries. The pMS9_1 library however is still incorrectly predicted to yield 

higher expression than the other two (Figure 26C). 
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Figure 26. Predictions of fluorescence of the three single-nt libraries from chapter 3. (A) Binding energies 
obtained using the lacZ energy matrix (same as Figure 15) (B) Binding energies obtained using the 36N matrix, 
a single frame, and a fixed optimal spacer (18 bp for pMS9_1 and pMS9_2 and 17 bp for pMS9_3). (C) 
Predicted binding probabilities of the full thermodynamic model. 

 Effect of spacer flexibility 4.2.3.4

Flexibility in the spacing between the -35 and -10 boxes of the RNAP binding site has been 

described early on (Stefano & Gralla 1982). In our model, energy values for five different 

spacings are inferred from the data. This allows to quantitatively compare the influence of 

spacer lengths on RNAP binding to the influence of nucleotide positions in the binding site 

(i.e. the energy matrix entries). The energy penalty of non-optimal spacer lengths increases 

with the distance from the canonical spacer length of 17 bp (Figure 27). Spacer penalties 

range from 1 to 5 kBT and are thus comparable to the energy contribution of a single non-

optimal nucleotide at an important position of the energy matrix. Correspondingly, we find 

most primary promoters in the 36N dataset to have the canonical spacer length, as has been 

observed for natural promoters as well (Hawley & McClure 1983). 

As already observed at the stage of model selection (Figure 23), allowing a flexible spacer 

length with energy penalties greatly increases the overall fit between model and data 

(Figure 28), which confirms that spacer flexibility is indeed important for promoter output in 

vivo. In particular, fluorescence of strong promoters is predicted with considerably better 
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accuracy (Figure 28). The fixed spacer model yields a higher number of false negative 

predictions and a much higher number of false positive predictions compared to the full 

model with the flexible spacer model (quadrants in Figure 28A and B). 

  

Figure 27. Spacer flexibility in the dataset. (A) Inferred energy penalties of non-optimal spacer lengths. (B) 
Distribution of spacer lengths at the strongest binding position of RNAP for the full dataset. 

 

Figure 28. Effect of allowing a flexible, energy-penalized spacer. Scatter plots of promoter occupancy 
predictions (x-axes) and fluorescence (y-axes). (A) Full model (B) Fixed spacer. For (B), only binding positions 
with spacer length 17 bp are considered as contributing towards Pon. Other parameters (energy matrix values, 
chemical potential and energy scale) are identical between (A) and (B). Solid lines show a weighted linear fit 
with a constrained slope of 1. Dashed lines indicate AF95 and respective Pon thresholds. Percentages in 
quadrants are false negatives (top left), true positives (top right) and false positives (bottom right). (C) 
Difference between x-axis values of data shown in (A) and (B). Solid line is a weighted linear fit. 

 Effect of additive RNAP binding at multiple sites  4.2.3.5

The textbook view of a bacterial promoter presents transcription initiation as the result of 

RNAP binding to a single position upstream of a gene (Snyder & Champess 2007). As is 

evident from Figure 21, transcription is frequently initiated at random DNA and thus we can 

expect that productive RNAP binding occurs relatively frequently throughout the genome. 

This is consistent with the observation of pervasive transcription of the bacterial genome (M. 

K. Thomason et al. 2014; James et al. 2017), although binding of RNAP outside of promoter 
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regions appears to be avoided to some extent (Yona et al. 2018). Figure 29 shows that 

fluorescence of the 36N library is better captured by a model that allows contributions of 

multiple RNAP binding sites upstream of our reporter gene, although the improvement in 

terms of R2 is modest. 

Differences in predicted Pon between the multiple sites model and the single site model are 

largest for weakly expressing clones and become smaller with increasing fluorescence 

(Figure 29C). This proportionality between the model difference between and fluorescence 

explains why overall correlation coefficients are almost identical. 

RNAP binding at multiple sites could be pervasive in our random dataset – considering only 

the functional promoters, the median number of RNAP binding sites required to reach 90% of 

the total predicted promoter occupancy (Pon,90) is three (Figure 30A). Most promoters reach 

Pon,90 only with more than four binding sites. The single position model yields a higher 

number of false negative predictions and also a slightly higher number of false positive 

predictions compared to the full model with multiple binding sites (quadrants in Figure 29A 

and B). The total strength of a promoter is inversely correlated with the number of binding 

sites (Figure 30). 

 

Figure 29. Effect of allowing multiple RNAP binding positions. Scatter plots of promoter occupancy predictions 
(x-axes) and fluorescence (y-axes). (A) Full model, (B) single binding position. For (B), only the single energy 
minimum binding position and spacer length is considered as contributing towards Pon. Other parameters 
(energy matrix values, chemical potential, energy scale and spacer penalties) are identical between (A) and (B). 
Solid lines show a weighted linear fit with a constrained slope of 1. Dashed lines indicate AF95 and respective 
Pon thresholds. Percentages in quadrants are false negatives (top left), true positives (top right) and false 
positives (bottom right). (C) Difference between x-axis values of data shown in (A) and (B). Solid line is a 
weighted linear fit. 
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Figure 30. Additive binding of RNAP at multiple positions is common. (A) Histogram showing the number of 
independent binding positions (positions of the -10 energy matrix) in a single sequence to reach at least 90% of 
the total binding probility of RNAP (Pon,90). (B) Weaker promoters are more likely to have multiple contributing 
binding sites. r=-0.4728, P=10-12 (Spearman correlation). Both plots show data from a subset of clones with 
functional promoters (Fluorescence proxy > AF95) and with the four largest contributions to Pon coming from 
different positions of the -10 energy matrix, n=200. 

 Signs of ‘alternative promoter types? 4.2.3.6

One possible explanation why predicting expression from sequence is hard, is that not all 

promoters may be described equally well by our models (see discussion in chapter 3). Due to 

its random nature, the 36N dataset is expected to sample promoters of all types (if such a 

distinction makes sense at all), and thus allows testing if specific sequences are better 

described by our model compared to other sequences. For this, we would however already 

have to have an idea of the features of ‘alternative’ types, or we could try to learn these 

features from scratch, i.e. using naïve neural networks. What is easier, is to test if sequence 

determinants of previously postulated promoter ‘types’ interact in unexpected ways, which 

would justify the notion of ‘alternative types’. Here, we provide a small example of such an 

approach by testing if the ‘extended -10 type’ promoter exists as a recognizable class in our 

data. 

The ‘extended -10 type’ of promoter was first described in B. subtilis (Moran et al. 1982) and 

later found to be conserved more weakly also in E. coli promoters (Mitchell et al. 2003), 

although it had been observed to be important earlier, for example in the context of λPRE 

(Keilty & Rosenberg 1987). It has been proposed that ‘extended -10’ promoters, defined by a 

‘TG’ at positions -15:-14 do not require a -35 box (Kumar et al. 1993), which could indicate 

that this promoter type is in fact functionally different from the bipartite -35/-10 promoter. 

Others have found that TG promoters have a lower requirement for homology in any of the 

other recognition elements, i.e. -35 or -10, and productive RNAP binding is merely the 
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outcome of a sufficient number of contacts to the promoter, irrespective of their location at -

35, -10, the extended -10, or distal elements (Mitchell et al. 2003), which is what has been 

referred to as the ‘mix and match’ model (Hook-Barnard & Hinton 2007). 

We used our fluorescence data and model output to check if functional TG promoters are 

more likely to have a weak -35 element (Figure 31A). We found no statistical difference in 

the energy of the -35 box between TG and non-TG promoters. Also, we tested whether 

grouping functional promoters according to presence or absence of TG and binding energy of 

the -35 hexamer below or above the median revealed an interaction between these two 

elements (Figure 31B). While both a low-energy (i.e. strong) -35 box and a TG element 

increase fluorescence, there is no statistical support for an interaction, i.e. the positive effects 

of these motives on transcription appear to add up. We therefore reject the hypothesis that 

‘extended -10 promoters’ constitute a functionally distinct promoter type. Rather, this 

analyses supports the additive ‘mix and match’ model of promoter function.  

 

Figure 31. No evidence for a distinct ‘extended -10 type’ promoter. (A) The energy of the -35 hexamer of 
functional promoters is the same for promoters regardless of the extended -10 ‘TG’ motif. Numbers in 
parenthesis = n. (B) Presence of a strong -35 box or of a TG in the extended -10 have a positive effect on 
expression. The effect of the two motifs is independent. P-values are from two-way ANOVA (anovan, Matlab) 
and were calculated on log-transformed fluorescence values. 

This does not exclude that other functionally distinct classes of promoters may exist, in 

particular among very strong promoters. For example, our model fails to identify λPL as a 

very strong promoter, with a predicted Pon lower than the top 5.09% of the functional subset 

in our data, whereas its actual fluorescence is higher than we can resolve by sort-seq. For λPL, 

our model is no better than a simple homology score, which would predict it to be as strong 

as 4.95% of the functional promoters. 
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4.3 Discussion 

In this chapter, we have seen how promoter functionality is distributed in sequence space and 

we developed an extended thermodynamic model to predict promoter strength from 

sequence. We found that a relatively large fraction (9%) of random sequences contain 

functional promoters. This finding is consistent with a recently published paper that also 

reported 10% of random sequences to contain functional promoters (Yona et al. 2018). The 

authors of that study replaced the chromosomal upstream region of the E. coli lac operon 

(between the next upstream terminator and the TSS of the lacZYA transcript) by 40 distinct 

random sequences of the same length (103 bp). Of these 40 random sequences, four (10%) 

provided sufficient expression of the downstream lac operon to form colonies on plates with 

lactose as sole carbon source. Additional 23 of the 40 sequences (58%) evolved this capacity 

in evolution experiments by acquiring single point mutations. In our 36N dataset, which is 

substantially larger (>15000 sequences), we find a similar frequency of functional sequences. 

In addition, our data provides a high resolution of the shape of the distribution of promoter 

function in sequence space, which has a long tail that includes numerous promoters that 

approach the strength of RNAP binding sites of strong evolved promoters. 

Our findings mean that promoters can evolve rather easily de novo, as weak promoters appear 

to be abundant in random sequence space. If one extrapolates the shape of the distribution of 

promoter function (Figure 21) into the region that is inaccessible to our measurements due to 

autofluorescence, one may be suspect that the fraction of functional promoters would even be 

substantially larger if we defined a lower threshold for functionality. This argues, at least in 

bacteria, against de novo promoter evolution being equivalent to a ‘bit-sum problem’ (as 

speculated by Gasper Tkacik inspired by the work of Murat Tugrul (Tuğrul et al. 2015)), in 

which selection is incapable of driving efficient adaptation due to vast areas of sequence 

space devoid of function. Rather, if RNAP binding is common in random sequence space, we 

expect selection for avoidance of RNAP binding motifs at non-promoter sites such as in 

coding regions, which is supported by bioinformatic evidence (Yona et al. 2018), or the 

existence of other mechanisms that alleviate the problem of abundant off-target binding and 

the resulting dilution of RNAP molecules in the cell. Experimental evidence supports that the 

DNA binding protein H-NS plays such a role in E. coli as it silences transcription from AT-

rich regions in horizontally acquired genes (Lamberte et al. 2017). 

Our results and those of Yona et al. on the feasibility of de novo promoter evolution are 

relevant to a broader question: Whether, in bacteria, functional genes can be ‘born’ from non-
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functional DNA, in addition to originating by modification of preexisting genes e.g. by 

duplication and divergence or rearrangements, as is widely accepted. The idea of continuous 

de novo evolution of genes is receiving increasing support in the case of eukaryotes 

(Schlötterer 2015; Wilson et al. 2017; Neme & Tautz 2016; McLysaght & Guerzoni 2015), 

but it has received little attention with respect to prokaryotes. De novo gene evolution offers 

an explanation for the existence of orphan genes, which have no recognizable homologs in 

species other than the one they were found in, arguing against their origin by duplication and 

divergence. Certainly, the specifics of prokaryote vs. eukaryote genome organization (Koonin 

& Y. I. Wolf 2010) makes de novo gene evolution, as we understand it today, less likely in 

prokaryotes. Since the organization of genes on prokaryote genomes is highly compact, 

prokaryote genomes contain little ‘junk’ DNA, which, free of major constraints, provides 

ample raw material for newly evolving gene functions in multicellular eukaryotes (Neme & 

Tautz 2016). 

The origin of abundant prokaryote orphan genes (often termed ORFans) remains poorly 

understood (Yomtovian et al. 2010). More detailed hypotheses involving continuous de novo 

origination appear to be absent from the literature. The alternative hypothesis to continuous 

de novo evolution of genes, is the origin of all extant genes in a distant ‘big bang’, which has 

been loosely dated to the Archaean eon (David & Alm 2010) or even to the time before the 

most recent universal common ancestor (Harish et al. 2013). In this view, ORFans require 

other explanations such as rapid divergence that makes homologs unrecognizable. 

A basic chicken-and-egg question in the de novo evolution of genes is whether the coding 

sequence evolves first or de novo gene expression, i.e. promoters, evolve first (Schlötterer 

2015). Our results imply that, if continuous de novo gene evolution does exist in bacteria, the 

latter step, i.e. the evolution of functional promoters, should not provide a serious constraint 

in the process. 

 

One reason for the large fraction of functional promoters can be found in the inherent 

flexibility of the promoter recognition machinery instantiated in RNAP. Both the flexibility 

of spacer length and additive binding at multiple sites, as suggested by our model, contribute 

to the large fraction of functional promoters in random sequence space. Spacer flexibility 

increases primarily the number of strong promoters; additive binding at multiple sites 

increases primarily the number of weak promoters. 
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Taken together, our two model extensions of energy-penalized spacer flexibility and additive 

binding of RNAP at multiple sites, combined with the 36N energy matrix, greatly improve 

predictions of expression using a thermodynamic model, exceeding the accuracy of a 

prediction based on a simple homology-score by far (Figure 32). 

 

Figure 32. Correlation coefficients between observed expression and different models of promoter strength. 
‘HD from consensus’ is the square of the weighted correlation coefficient between expression and the hamming 
distance of both core hexamers (-35 and -10) to the consensus. ‘full’ refers to the best performing model with a 
flexible spacer, summing over multiple positions, and using the 36N matrix. The other three thermodynamic 
models are identical except for the specified modification. 

Spacer flexibility is a well known fact, but we are not aware of previously reported explicit 

energy penalties of suboptimal spacer lengths, and we find them to be in the same range as 

energy penalties of a single important position in the recognition boxes. 

Additive contributions of multiple RNAP binding sites in natural promoters are less clearly 

supported by the literature. Although there is indirect evidence for such a case at the dgoR 

promoter as recently published (Belliveau et al. 2018), there are other reports in which 

multiple RNAP binding sites either at the same strand (M. L. Peterson & Reznikoff 1985) or 

at the opposite strand (Bendtsen et al. 2011) interfere with each other rather than add up. 

Also, the existence of regions with high densities of promoter like-signals on bacterial 

chromosomes is poorly understood (Huerta & Collado-Vides 2003). Such ‘promoter islands’ 

are typically associated with horizontally acquired genomic islands and do not initiate long 

transcripts (Panyukov & Ozoline 2013). In our random dataset, additive contributions of 

multiple RNAP binding sites, particularly in weak promoters, are mainly supported by better 

HD fro
m co

ns
en

su
s

lac
Z m

atr
ix

fix
ed

 sp
ac

er

sin
gle

 po
sit

ion ful
l

0.2

0.4

0.6

0.8

R
2  

thermodynamic models



81 

fitting statistics, but also by general considerations: If there are multiple sites of comparable 

affinity to RNAP, but only one of them contributes to expression (as in the single site model), 

RNAP would have to ‘know’ how to choose, and clearly, molecules do not ‘know’. 

An alternative explanation for the better fit of the multiple sites model could be that our 

incomplete understanding of the RNAP-promoter interaction fails to capture something 

important in how different potential binding sites contribute to expression. Even if it were 

true, that expression is driven by single RNAP binding sites, the multiple sites model may 

give better results. For example, a minimum-energy binding site that is further away from the 

start of the coding sequence may contribute little to expression, because longer untranslated 

transcripts could be targeted by the termination factor Rho (Ciampi 2006). If this is the case, 

the single site model will incorrectly assume the more distant site to determine expression 

levels, at the expense of missing another site further downstream. The multiple sites model 

would also incorrectly assume a contribution of the more distant site, but it would still 

incorporate sequence information from the downstream site. Therefore, the multiple sites 

model should be more tolerant to wrong assumptions. To clarify the question whether and 

how multiple possible RNAP binding sites contribute to expression, it remains to be tested 

experimentally how engineered mutations in predicted multiple RNAP binding sites affect 

fluorescence. 

Possibly, contributions of multiple sites are typical in de novo evolution of promoters, 

whereas multiple sites tend to become repressed or differentially regulated (Huerta & 

Collado-Vides 2003) as promoters ‘mature’ evolutionarily, or as they switch hosts by way of 

horizontal transfer. 

Another substantial improvement of our predictions (Figure 32) is owed to a new energy 

matrix that is inferred from data that covers a wide sequence space and range of expression. 

This is different from other energy matrices that were derived by mutagenesis in the local 

sequence space surrounding a functional sequence (Kinney et al. 2010; Kreamer et al. 2015). 

The impact of the specific reference sequence around which an energy matrix is inferred that 

became evident in chapter 3 was recently observed also for energy matrices of transcription 

factor binding (Barnes et al. 2018). Using a matrix inferred from an unbiased sample of 

sequence space is therefore crucial for predicting expression from any sequence. In random 

sequence space, and therefore possibly in natural evolution of promoters de novo, the -35 box 

appears less important than generally assumed, and the -10 element with its upstream 

extension appears to be more important. The closing of the ‘energy gap’ between the three 
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libraries from chapter 3, by simple substitution of the matrix values from lacZ to 36N, 

supports that the 36N matrix is indeed a more ‘universal’ energy matrix. Alternatively, the 

36N matrix could be overfitted to the sequence context on the pMS9 plasmids (and in 

particular the constant flanking region), which is identical for all four plasmid libraries in this 

thesis. The wider applicability of the 36N matrix therefore needs to be tested on unrelated 

datasets. 

Without doubt, caution needs to be taken before applying our model to predict the strength of 

expression of natural chromosomally encoded promoters in vivo, where a multitude of 

additional factors enter the equation. Factors such as chromosome structure and physiological 

state of the cell, including the expression state of transcription factors etc. are constant in our 

experiment. Only in this way can we carve out the specific contribution of the RNAP binding 

site sequence to transcription. Still, applying our model to predict the strength of promoters, 

e.g. in intergenic regions on the E. coli chromosome, and comparing results to existing 

bioinformatics approaches should yield interesting result. 

Our model builds on the assumption of expression being proportional to RNAP occupancy 

and additivity of energy contributions of individual nucleotides. Although we know these 

assumptions are wrong, we find an overall good performance of the model, indicating that 

‘alternative promoter types’, if they exist, are uncommon or inconsequential, at least in our 

dataset. Also, we do not find evidence that the model performs worse on a particular 

previously proposed ‘promoter type’, the extended -10 promoter, or that this promoter type is 

even a meaningful class. Rather, having the features of the extended -10 element in the 36N 

energy matrix (Figure 25) is sufficient to improve model fits for sequences that we speculated 

to belong to the extended -10 promoter class in chapter 3 (Figure 26). Still, there is a 

possibility that there are indeed alternative promoter types that are not captured well by our 

model because they validate the above assumptions. So far, there is little quantitative work 

that addresses the sequence dependence of later steps of the transcription initiation process 

(E. Heyduk & T. Heyduk 2014; Djordjevic & Bundschuh 2008). As I am not aware of work 

that uses a multi-step model for the prediction of promoter strength from sequence, it remains 

to be seen how much is to be gained by a more complete model that is refined it this 

particular way. 

One hypothesis is that alternative promoter architectures are to be found primarily at 

repressible promoters that, in the absence of repressor, are very strong. Promoters that bind 

RNAP strongly are hard to regulate by repressors (Hook-Barnard & Hinton 2007; Lanzer & 
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Bujard 2007). Therefore, ‘consensus-type’ promoters, whose strength is largely determined 

by RNAP binding, face a tradeoff between promoter strength and regulatability. This tradeoff 

can be circumvented in different ways to achieve expression that is both strong and 

responsive to regulation. The E. coli rrn operons, from which ribosomal RNA is transcribed, 

are a particularly informative example. Their transcripts constitute up to 70% of the total 

RNA in the cell, yet their promoters are not strong in the sense of being close to the 

consensus sequence and binding RNAP tightly (Haugen et al. 2006). Rather, the ribosomal 

RNA genes exist in multiple copies on the chromosome and their promoters are regulated by 

the activator Fis and additional specialized mechanisms (Haugen et al. 2006). The highly 

abundant protein EF-Tu is also encoded by a gene with two chromosomal copies (van der 

Meide et al. 1982). These examples cannot substitute a more systematic analysis, but together 

with the absence of the consensus sequence in the genome of E. coli they are consistent with 

the hypothesis that promoters that bind RNAP tightly are avoided in the chromosome due to 

the strength/regulatability tradeoff. Genes required at very high expression levels circumvent 

the tradeoff by increased gene copy number or by regulation via activation. 

In phage genomes with strongly constrained genome sizes, increasing copy number is not an 

option. Thus, the PL promoter of phage λ, which is tightly repressed by the lambda repressor 

cI (Ptashne 2004), represents yet another, an ‘alternative’ resolution of the tradeoff. PL is 

strong despite its poor homology to the consensus sequence and relatively weak binding of 

RNAP (Knaus & Bujard 1988). This allows for tight repression. What remains to be 

understood is what, if not tight binding of RNAP, makes PL a strong promoter. Bujard and 

coworkers concluded from their detailed in vitro and in vivo studies that the sequence 

determinants of the strength of PL must be downstream (in the twofold sense: spatially, i.e. 

downstream of the -10 box, and temporally, i.e. after initial binding) (Knaus & Bujard 1990). 

If they are located downstream of the -10 box, this may explain why our 36N dataset is 

unsuitable for identifying alternative promoter signatures, as these downstream regions are 

likely too large to be covered by the variable part of the 36N library. 

We conclude that we should not expect alternative promoters to be abundant in bacterial 

genomes, as there are other ways to avoid the strength/regulatability tradeoff. Instead, phage 

genomes may be a better place to look for them, and repressible strong promoters are prime 

candidates. 
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4.4 Materials and Methods 

 Plasmid cloning 4.4.1

We used plasmid pMS9_4 as a starting point for plasmid and library construction. The only 

difference between pMS9_4 and the other pMS9 plasmids from chapter 3, is a different 36 nt 

sequence upstream of the gfp reporter. pMS9_4 was initially part of the project described in 

chapter 3, but was later abandoned due to technical issues. The reference plasmid pMS9_PL 

was built from pMS9_4 using a Q5 site directed mutagenesis kit and primers PL_f and PL_r. 

The plasmid changes were verified by Sanger sequencing. 

 Creation of the 36N library 4.4.2

The 36N plasmid DNA library was generated using a Q5 site directed mutagenesis kit (NEB) 

in a 20 µL reaction. For amplification, we used plasmid pMS9_4 as a template and two pools 

of primers with a constant 3’ end and an 18N random 5’ end (18N_f and 18N_r). We 

transformed 5 µL of the KLD reaction mix into 50 µL of chemically competent NEB5α cells. 

After 1 h outgrowth in 1 mL LB, we plated 100 µL of the culture on 10 LB kan agar plates 

and 5 g/L sterile charcoal. Based on plating dilutions of the same culture, the total number of 

colonies plated in this way is ~ 2 × 104 cells. After overnight incubation, colonies from the 10 

plates were scraped off and resuspended in LB kan. Suspensions were vortexed vigorously 

and diluted to an OD600 of ~1. Aliquots of the 36N library were then frozen at -80 °C (100 µL 

cell suspension with 40 µL glycerol (50%). 

 FACS-sorting 4.4.3

Prior to sorting, cells were grown in freshly filtered (0.22µm) M9 minimal medium with 

0.2% CAS, 0.2% Glucose and 50 µg/mL kanamycin. Frozen aliquots of the 36N library and 

the reference plasmid were diluted 1:10 and grown overnight. Prior to sorting, overnight 

cultures were diluted again 1:100 and grown for 3 h to reach exponential phase. 

FACS-sorting was performed on an FACS Aria III flow cytometer (BD Biosciences, San 

Jose, CA) with a 70 µm nozzle for droplet formation. A 488 nm laser was used to detect 

forward scatter (FSC) and side scatter (SSC) with a 488/10 band-pass filter. The same laser 

was used for excitation of GFP (FITC channel, emission filters 502LP, 530/30). We chose the 

FITC channel voltage such that the median fluorescence of a plasmid-free auto-fluorescence 

control sample (AF) is between 0 and 100 on the FITC axes. The flow rate was set to 1.0 and 

samples were diluted to obtain a cell count of approximately 5000 events/second. Cells for 
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sorting were manually gated on the densest population in an FSC/SSC scatter plot, which 

comprised 95.5% of all events exceeding a threshold of 1000 on the SSC axis. Twelve sorting 

gates were set on the FITC axes as follows: The upper boundary of the lowest gate (B1) 

corresponded to the median of an autofluorescence control sample (plasmid-free cells). The 

lower boundary of the highest gate (B12) was set to 2 ×	104. Distances between the 

remaining intermediate nine gate boundaries defining B2 to B11 were chosen with a constant 

multiplication factor of 1.85, i.e. gates were of equal size on the log-scale FITC histogram 

(Table 7). Prior to sorting, we recorded 106 events. The number of cells to be sorted into each 

of the twelve bins B1-B12 then corresponded to the number of cells previously recorded in 

each of the bins and can be found in Table 7. Cells were sorted into 24-well plates with 

500 µL sorting medium / well. After completion of sorting, 1000 cells of the culture with the 

reference plasmid pMS9_PL were sorted into each of the wells holding cells from one bin. 

The recipient plate was cooled to 4 °C to halt growth while sorting to other wells was still 

going on. 

Table 7. Number of cells sorted (top) and bin boundaries (bottom). 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

pMS9_36N (cells) 306183 170570 233624 138623 57313 33512 21488 14381 8857 4644 2716 2197 

pMS9_PL (cells) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Upper boundary 

(FACS units) 
42 78 144 267 495 917 1698 3146 5827 10796 20000 - 

 

After completion of sorting, 1000 cells of the culture with the control plasmid pMS9_L were 

added into each of twelve wells. Sorted cells were spun down in a cooled centrifuge and 

resuspended in 1 mL medium. We then plated a dilution from each well on LB Kan (around 

100 cells / plate), quantified colony fluorescence using the macroscope to estimate the 

frequency of mis-sorting (mean outlier frequency over 12 bins was 4.2%, standard deviation 

0.5%, outlier classification using ROUT with Q=1%). Finally, the cells from each bin were 

grown overnight. 

 Plasmid library isolation and barcoding PCR 4.4.4

We isolated plasmid from the twelve culture pools and quantified DNA concentration using a 

Nanodrop spectrophotometer. Given the number of cells sorted and the plasmid pool 

concentrations, every sorted cell is expected to contribute 600 plasmid molecules or more to 
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1 ng of plasmid pool DNA, which is the amount of template we used in the subsequent PCR 

amplification step. 

For barcoding PCR products containing the mutagenized region, we created primers 

mutseq_f1-12 and mutseq_r1-12. They contain a 3’ constant region, a bin-specific barcode of 

5 nt and a constant 5’ tail of 5 nt. 

PCRs were performed using Q5 high fidelity polymerase and 1 ng of the plasmid pools as 

template in a 50 µL reaction. We first performed five cycles with an annealing temperature 

calculated for the constant 3’ part of the primers, followed by 25 cycles using an annealing 

temperature matched to each of the full length primer pairs. 

PCR products were column-purified (Zymo research, Irvine, CA) and eluted in 30 µL, of 

which 2 µL were run on an agarose gel for relative product quantification based on band 

fluorescence. PCR products were finally pooled to reach approximately equimolar 

concentrations of the twelve reaction products. 

 Illumina sequencing 4.4.5

We sent ~1 µg of pooled PCR product to sequencing by GATC biotech (Konstanz, Germany) 

on an Illumina sequencer (125 bp paired end). 

 Characterizing a reference set of clones 4.4.6

We picked 8 colonies plated from each of the 12 bins and quantified OD600-normalized 

fluorescence of single replicate exponential cultures using an H1 platereader (Biotek, 

Vinooski, Vermont) with a GFP filter. Platereader fluorescence was found to correlate 

linearly with the median of the FACS signal of the bin clones were derived from. The 

variable region of the clones was identified using Sanger sequencing. After filtering out 

clones which could not be sequenced or which had rearrangements, we obtained a dataset of 

78 unique clones. 

 Debiasing read distributions and calculating a fluorescence proxy 4.4.7

The sequencing raw data was processed by Srdjan Sarikas. For our analysis, we only used 

reads with matching barcodes in the forward and reverse primers and a variable region of 

length 34-38 bp. For subsequent analysis, we only used mutant sequences with ≥10 reads. 

This threshold excludes presumable artifact sequences resulting from molecular sequencing 

noise that can be recognized by being almost identical to other unique sequences with a much 
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higher read count. These and additional filters yield 15492 unique sequences, each with a 

distribution over expression bins (‘raw read distributions’). Raw read distributions are then 

pruned to reduce the impact of sequencing noise (the detailed method of this pruning were 

developed by Srdjan Sarikas) and debiased by dividing by the number of reads of the 

reference sequence (Table 8). Finally, we took the geometric mean of debiased distributions 

as fluorescence proxy. The previous steps were validated by comparing fluorescence proxies 

against platereader fluorescence data of 78 clones. 

Table 8. Distribution of control sequence reads across bins 

Bin B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

# of control sequence 

reads 
2152 3188 3048 7054 22973 51575 33671 73805 103077 169988 293402 381119 

 

 

 Model inference 4.4.8

Thermodynamic models were inferred by Srdjan Sarikas, with the support of Gašper Tkačik 

and will be published in detail elsewhere. Here, I only outline important points and the 

differences to the work in chapter 3 of this thesis. Instead of using only binding energy, we 

work with the full thermodynamic model based on equation (1). This means that chemical 

potential and, in case of a flexible spacer, spacer penalties are inferred from the data. Also, 

instead of using a published energy matrix, matrix entries of two binding regions of the 

RNAP ‘feet’ are inferred from the data. For initialization, the energy matrix values of the lac 

promoter are used. Instead of using fluorescence proxies directly, datapoints are binned by 

their fluorescence proxy, into the 12 bins previously used in FACS sorting. For inference, we 

use logistic regression between log(binding probability, Pon) and log(fluorescence). The 

maximized value during training is a log likelihood estimator. Since the abundance of clones 

in each bin decreases with higher fluorescence, observations are weighted by the inverse of 

unique sequence counts in each bin. After obtaining fitted parameters, the energy scale and 

the chemical potential, but not matrix entries and spacer penalties, are refitted to achieve a 

linear fit with slope 1 between log(Pon) and log(fluorescence), as this is the expected 

relationship between the two quantities. For refitting the energy scale and the chemical 

potential, data from the lowest and highest bins are excluded. Scatterplots in Figure 23 and 

reported R2 refer to refitted models and weighted data. 



88 

 List of primers 4.4.9

Cloning primers 
PL_f CTGGCGGTGATACTGAGCTGTGCATACAGATTGAGTAATGG 

PL_r CTGGCGGTGATACTGAGCTGTGCATACAGATTGAGTAATGG 
18N_f NNNNNNNNNNNNNNNNNNTGTGCATACAGATTGAGTAATG  

18N_r NNNNNNNNNNNNNNNNNNAATAGCATTGAGATTTGAAGC 
 

Barcoding primers 
For primers mutseq_f/r1-6 see chapter 3. 

mutseq_f7 AAGCTGACACTCGTCTTCACCTCGAGCAC 
mutseq_f8 AAGCTTCGTATCGTCTTCACCTCGAGCAC 

mutseq_f9 AAGCTCCAATTCGTCTTCACCTCGAGCAC 
mutseq_f10 AAGCTTGGTGTCGTCTTCACCTCGAGCAC 

mutseq_f11 AAGCTGCTATTCGTCTTCACCTCGAGCAC 
mutseq_f12 AAGCTTGACCTCGTCTTCACCTCGAGCAC 

mutseq_R7 CGTACGACACTTCTCCTTTACTCATATGTATATCT 
mutseq_R8 CGTACTCGTATTCTCCTTTACTCATATGTATATCT 

mutseq_R9 CGTACCCAATTTCTCCTTTACTCATATGTATATCT 
mutseq_R10 CGTACTGGTGTTCTCCTTTACTCATATGTATATCT 

mutseq_R11 CGTACGCTATTTCTCCTTTACTCATATGTATATCT 
mutseq_R12 CGTACTGACCTTCTCCTTTACTCATATGTATATCT 
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5 Conclusions 

In this thesis, we have seen how the evolution of gene expression in bacteria depends on 

sequence context at two levels: at the level of genes in their chromosomal context, and at the 

level of nucleotides in the context of a promoter sequence. At both levels, we have seen how 

the influence of context can be dramatic, but also how it can be dealt with: by identifying the 

important determinants in the context (chapter 2 / chromosomal neighborhood) or by using 

models that are inferred from highly diverse contexts and thus are less prone to being 

overfitted to any particular context (chapter 4 / promoter context). 

Overall, this gives us an optimistic outlook that context dependency in the evolution of gene 

expression is not an unpredictable beast, but that it can be tamed. Of course, the specific way 

in which we have done this here needs verification in a wider set of contexts. For 

chromosome neighborhood effects, this would entail testing whether our expectations of 

adaptive potential hold for additional chromosomal loci and, beyond E. coli, for different 

bacterial species. For context effects on promoter strength, this would entail testing our 

model in particular for longer variable regions, known strong promoters, other flanking 

regions, and chromosomal integrations instead of plasmid systems. Some of these tests are 

currently under way. 

If our results hold more generally, they should be useful for a number of important questions: 

• Can we predict the likelihood of rapid adaptation such as the evolution of drug 

resistance from genomic data? 

• How much is horizontal gene transfer constrained by the need to evolve proper 

expression patterns? 

• Is there de novo evolution of bacterial genes? 
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6 Appendix 

6.1 Figure Supplements of Chapter 2 

 

Figure 1 - Figure Supplement 1. Fine-scale determination of MICs of tetracycline for ancestor strains used 
in experimental evolution. OD600 (platereader units) after 24 hr is shown across tetracycline concentrations 
(triplicates). Panel columns = integration loci of the reporter cassette, panel rows = genetic background. Note 
the different scaling of the x-axis for D strains. We define MIC (dashed vertical lines and inset values) as the 
lowest concentration that restricts growth to OD600 ≤0.075 (= ODt, plate reader units, dashed horizontal lines) 
in all three replicates. We regard the highest replicate value of strain E at 2 µg/mL as an outlier uninformative 
about ancestral drug sensitivity, as this culture showed highly increased CFP fluorescence indicative of 
reporter cassette amplification. The selective conditions in evolution experiments (i.e., tetracycline 
concentrations) were adjusted according to strain-specific MICs to make results more comparable between 
strains. Without such an adjustment in tetracycline concentrations, different MICs would cause large differences 
in population sizes and consequently in the probability of acquiring beneficial mutations.  
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Figure 2 - Figure Supplement 1. Survival curves of 95 populations in evolution experiments. ODt = threshold 
OD600. Solid lines = IS-wt genetic background, dashed lines = IS-free genetic background, dotted line in Locus 
B panel = strain BΔIS5I. Triple solid lines for loci A-D represent replicate sets of evolution experiments. Local 
minima in the number of populations are due to populations that fell below ODt only transiently. 

 

Figure 2 - Figure Supplement 2. PCR products confirming the deletion of reporter cassette genes in clones 
shown in Figure 2B. Colony PCR was performed with primers flanking integration loci. 
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Figure 3 - Figure Supplement 1. Differences in the chromosomal neighborhood (100 kb) of loci A-D between 
IS-wt and IS-free strains.White boxes = regions deleted in the IS-free strains derived from strain MDS42 
(Pósfai et al., 2006). Orange arrows = prophages, black arrows = insertion sequences. Chromosomal 
neighborhoods of loci B, C, and D are shown reversed with respect to conventional chromosome coordinates, so 
that the orientation relative to the reporter cassette is shown in the same way for all four loci. Reporter cassette 
genes are not drawn to scale. 
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Figure 3 - Figure Supplement 2. Graphical overview of mutations identified by sequencing. All mutations 
found within 1 kb DNA upstream of tetA-yfp are labeled with their distance to the tetA-yfp start codon and the 
fluorescence phenotype of the population they were found in (YFP or YFP+CFP). Grey-shaded area indicates 
the 188 bp random DNA sequence common to all strains. Trans mutations in the Rho protein are shown at the 
right edge. IS-free A and C strains are not shown as they did not give any survivors. ‘Heterozygote’ indicates 
overlapping peaks in the sequence chromatogram, which suggests that the mutation is present only in some 
copies contained in the amplification. Red box frame indicates that for this amplification, we showed by PCR 
that the junction of this amplification was at the breakpoint between the newly inserted IS3 copy and a second 
IS3 copy downstream of locus C. Mutations identified in additional replicate experiments are not shown. 
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Figure 3 - Figure Supplement 3. An upstream IS5 insertion in the chromosomal context of the reporter 
cassette confers resistance to tetracycline and increases tetA-yfp fluorescence. Pictures show brightfield (top) 
and YFP-fluorescence (bottom) images of cultures spotted at different dilutions on solid medium with and 
without tetracycline (2.25 µg/mL). We used an evolved clone isolated from population A09 of strain A in which 
IS5 was found inserted 29 bp upstream of the TetA-YFP start codon as a donor for P1 transduction of the 
reporter cassette with upstream IS5. MG1655 ∆tolC, the cassette-free parent strain of strain A was used as 
recipient strain for the transduction. 
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Figure 3 - Figure Supplement 4. Mutations identified by whole genome sequencing of clones from four 
rescued populations of IS-wt strain D. All mutations identified by the breseq pipeline (Barrick et al., 2014) in 
reference to the strain D ancestral genome are shown. Black arrow in magnified box: reporter cassette. 
Mutations from the same clone are indicated by the same color. Orange (source population C10): 11-fold 
amplification of a region including tetA-yfp and half of the cfp gene, explaining why we did not observe 
increased CFP fluorescence. Notably, this amplification included the origin of replication. Blue, purple, green: 
Mutations found in sequenced clones of the three remaining populations (blue = A11, purple = D08, 
green = C08), in which we consider non-synonymous substitutions in rho as main adaptive mutations. We 
interpret missing coverage in one of the rRNA operons as an assembly artifact related to the multiplicity of 
rRNA operons, rather than as a deletion, as no corresponding junction was detected. The inversion found in the 
stfP-stfE region of prophage e14 is catalyzed by the e14-encoded Pin recombinase (van de Putte et al., 1984), 
possibly expressed as a secondary effect of rho mutations (Cardinale et al., 2008). We thus assume that the 
same inversion was found three times not because it was adaptive, but because it was the consequence of an 
adaptive mutation in rho. Mutations at other sites were not tested for their fitness effect. Fastq files are 
deposited online: http://dx.doi.org/10.15479/AT:ISTA:65. 
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Figure 3 - Figure Supplement 5. Numbers of rescued populations by mutation type in two additional replicate 
sets of evolution experiments. Each bar represents the number of rescued populations out of 95 started 
populations per experiment. 

 

Figure 4 - Figure Supplement 1. Fully annotated genes and putatively expressed transcripts of either 
orientation upstream of the reporter cassette insertion loci. Genes and transcripts upstream of loci A, B, C, and 
D. Black arrows = essential genes (see Methods), white arrows = non-essential genes, purple arrows = 
intrinsically terminated transcripts, green arrows = Rho-terminated transcripts, purple brackets = deletions. 
Start- and endpoints of expressed transcripts and termination mode (intrinsic or factor-dependent) were taken 
from a recent dataset (Conway et al., 2014), for which RNA from E. coli cells grown in minimal glucose medium 
was sequenced at base pair resolution. Pointers on the right = position of PCR products shown in Figure 4C. 
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Figure 4 - Video 1. Animated structure of the Rho hexamer with mutated residues highlighted. Mutations 
were mapped on the previously published structure of Rho (Skordalakes and Berger, 2003). – This video can be 
played at https://doi.org/10.7554/eLife.25100.021 

 

Figure 5 - Figure Supplement 1. Rescued populations of strains BΔIS5I and E by mutation type. Number of 
rescued populations out of 95 replicates, shown by mutation type. Colored dots = later mutations occurring on 
top of earlier mutations. 
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Figure 6 - Figure Supplement 1. Colony appearance over time in plating experiments. Each line represents 
the number of colonies on one of 10 replicate plates per strain. Right panels show the same data as on the left 
with different y-axis scaling. 

 

Figure 6 - Figure Supplement 2. CFP-fluorescence of cultures spotted on non-selective medium used to 
obtain pie-chart data in Figure 6. The leftmost column of spots on each picture is derived from colonies of the 
ancestor strain plated on non-selective medium. The other spots are derived from colonies that appeared on day 
2 (left picture) or on days 4–5 (right picture) after plating. One colony was picked from every replicate plate on 
which at least one colony had appeared in the respective time interval. White asterisks indicate spots with CFP 
fluorescence intensity greater than 6 standard deviations above the mean fluorescence intensity of all ancestor 
spots. 
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6.2 List of source data files pertaining to Chapter 2 (available online) 

Figure 1—source data 1. Chromosomal coordinates of reporter cassette insertion loci. 

https://doi.org/10.7554/eLife.25100.003  

Figure 1—source data 2. Source data for Figure 1E. 

Mean and standard deviation of chromosomal tetA-yfp copy number (qPCR) and final CFP 

fluorescence (plate reader data). 

https://doi.org/10.7554/eLife.25100.004  

Figure 3—source data 1. Source data for Figure 3C–E. 

OD600-normalized fluorescence values measured in exponential phase (six replicates). 

https://doi.org/10.7554/eLife.25100.012  

Figure 4—video 1—source data 1. Rho mutations from all replicate evolution experiments. 

28 unique mutations (substitutions at 22 different amino acid residues, two internal 

duplications and one upstream insertion) were found in 31 rescued populations. Affected 

amino acid residues of Rho are highlighted in red in Figure 4—video 1. 

https://doi.org/10.7554/eLife.25100.022 

Figure 6—figure supplement 2—source data 1 

Mean fluorescence intensity values of culture spots and thresholding for identification of 

colonies with extensive amplifications. 

https://doi.org/10.7554/eLife.25100.032  

Figure 7—source data 1 

Extended legend of Figure 7A explaining each arrow and what loci are affected by respective 

interactions. 

https://doi.org/10.7554/eLife.25100.034  

Figure 7—source data 2 

List of E. coli genes included in the analysis shown in Figure 7B and their assignment to the 

three sets shown by colored circles. 

https://doi.org/10.7554/eLife.25100.035  
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6.3 List of additional files pertaining to Chapter 2 (available online) 

Supplementary file 1. Population trajectories. 

Set of 96-panel figures showing OD and OD-normalized fluorescence values for each 

population in each of 18 evolution experiments. 

https://doi.org/10.7554/eLife.25100.036  

Supplementary file 2. Source data populations. 

Excel table containing information on survival, fluorescence phenotypes, sequences, and 

mutation types of every experimental population, as well as information on which 

populations where used for further investigation (plasmid reconstruction etc.). This contains 

the source data of Figures 2AC, 3AB, 5CD, Table 1, and respective Figure Supplements. 

https://doi.org/10.7554/eLife.25100.037  

Supplementary file 3. Strains, plasmids, oligonucleotides. 

Excel table with all strains, plasmids and oligonucleotides used in this study. 

https://doi.org/10.7554/eLife.25100.038  

Source code 1 

Compressed file containing Matlab scripts and OD/YFP/CFP plate-reader raw data files of 

evolution experiments. 

https://doi.org/10.7554/eLife.25100.039  

 

 


