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The thickness of a spinneret is always a geometrical constraint in nozzle design. 
The geometrical form of a nozzle has a significant effect on the subsequent spin-
ning characteristics. This paper gives an optimal condition for maximal pressure 
gradient through the nozzle.  
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Introduction  

The nozzle is one of the most important parts of a spinneret in various fiber spinning 
processes, its form will greatly affect the morphology of its productions and output. Figure 1 
shows a widely used spinneret and its nozzle structure.  

The top size of the nozzle section is deter-
mined by the number of nozzle in a spinneret, while its 
low size and its geometrical form are determined by 
fiber requirements. The thickness of a spinneret is a 
main geometrical constraint in many practical applica-
tions. This paper is to optimally design a nozzle with 
maximal pressure drop in the nozzle.  

Theory  

Assuming that the flow through a nozzle follows 
the Darcy law, that is: 

 u pκ= ∇  (1) 

where κ is the constant, u – the flow speed, and p∇  – the pressure gradient through a nozzle.  
In order to improve its output, a high spinning velocity is predicted, that means a 

higher pressure gradient in a nozzle is an appropriate choice in the design of a nozzle.  
For a cone nozzle, the velocity distribution on its section can be expressed as: 

 2 2( )u k R r= −  (2) 

–––––––––––––– 
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Figure 1. A spinneret and nozzle 
geometry  
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where k is the constant, and R – the inner radius of the nozzle.  

The constant k in eq. (2) can be determined by the mass conservation law, which re-
quires: 

 2 2 4

0

12π ( )d π
2

R

Q k r R r r R kρ ρ= − =∫  (3) 

where Q is the flow rate, and ρ – the density of the flow. From eq. (3), we have: 

 4
2
π

Qk
R ρ

=  (4) 

The velocity in a nozzle can be obtained, which reads: 

 2 2
4

2 ( )
π

Qu R r
R ρ

= −  (5) 

Due to geometrical constraint of the thickness of a spinne-
ret, complex nozzles appear in many applications. Assume that 
the radii of the top and low sections of the nozzle are r1 and r3, 
respectively, and its thickness is h as illustrated in fig. 2.  

The velocity distribution in each section of the nozzle can 
be determined by eq. (5). Assume that the flow in the nozzle is 
viscous and incompressible; the flow is laminar and there is no 
acceleration of fluid in the nozzle, the momentum equation be-
comes: 

 
2
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=  (6) 

where µ is the viscosity coefficient.  
In practical applications, the nozzle height is thin (e. g. 1 mm), so the second deriva-

tive of the velocity can be approximately expressed: 
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Equation (6) becomes: 
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−
 (8) 

The pressure drop at r = 0 is: 
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∆ = = =
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 (9) 

where 1 2 3, ,  and u u u  are maximal flow speed at the top, middle, and low sections of the noz-
zle, respectively:  

Figure 2. A nozzle with 
complex geometrical form  
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In practical applications, r1, r3, and h are constants, and r2 and h2 should be such de-
termined that its pressure drop at r = 0 through the nozzle is maximal, that requires: 
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From eq. (13), 2u  can be determined, which reads: 

 
[ ]2 2

2 2 3 1 2 2 3 2 3 1
2

2 2

( ) ( ) (2 3 ) ( )
(2 3 )

h h h u u hh h hu h u u
u

hh h h
− − + − − −

=
−

 (14) 

According to eq. (12), for a fixed h2, its nozzle section can be determined:  
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Equation (15) can be used for practical design of a nozzle.  

Conclusions  

In this paper, we adopt approximately a difference definition for the second deriva-
tive of the velocity in the derivation, and obtain a formula, eq. (15), for determining the radius 
of the middle section of a nozzle for a maximal pressure drop in the nozzle.  
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