
Natural Hazards and Earth System Sciences (2001) 1: 93–98
c© European Geophysical Society 2001 Natural Hazards

and Earth
System Sciences

Detecting premonitory seismicity patterns based on critical point
dynamics
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Abstract. We test the hypothesis that critical point dynamics
precedes strong earthquakes in a region surrounding the fu-
ture hypocenter. Therefore, we search systematically for re-
gions obeying critical point dynamics in terms of a growing
spatial correlation length (GCL). The question of whether or
not these spatial patterns are correlated with future seismic-
ity is crucial for the problem of predictability. The analysis
is conducted for earthquakes withM ≥ 6.5 in California. As
a result, we observe that GCL patterns are correlated with
the distribution of future seismicity. In particular, there are
clear correlations in some cases, e.g. the 1989 Loma Prieta
earthquake and the 1999 Hector Mine earthquake. We claim
that the critical point concept can improve the seismic hazard
assessment.

1 Introduction

Different critical point concepts have been discussed exten-
sively with respect to the predictability of earthquakes (Bufe
and Varnes, 1993; Jaumé and Sykes, 1999; Hainzl et al.,
1999, 2000; Hainzl and Z̈oller, 2001). Motivated by dam-
age mechanics and laboratory experiments (Leckie and Hay-
hurst, 1977; Das and Scholz, 1981), the time-to-failure ap-
proaches assume that the preparatory process of a large earth-
quake is characterized by a highly correlated stress field with
a growing correlation length (GCL) and an accelerating en-
ergy/moment (AMR) release. In practice, these concepts
have been tested by fitting time-to-failure relations to seis-
micity data. For the AMR model, this relation is

(6
√

E)(t) = A − B(tf − t)m, (1)

with positive constantsA, B, m, the time-to-failuretf , and
the cumulative Benioff strain(6

√
E)(t), whereE is the en-

ergy release of an earthquake. In the GCL model, the corre-
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lation lengthξ is expected to diverge fort → tf according
to

ξ(t) = C(tf − t)−k (2)

with positive constantsC andk. Both approaches describe
the same underlying mechanism, namely, the critical point
dynamics. An important problem is the determination of
free parameters, which are in addition toA, B, tf , andm in
Eq. (1), respectively,C, tf , andk in Eq. (2), which represent
windows for space, time, and magnitude.

The accelerating moment release in terms of cumulative
Benioff strain has been documented in several cases, e.g.
for California seismicity (Bufe and Varnes, 1993; Bowman
et al., 1998; Brehm and Braile, 1998, 1999). The growth of
the spatial correlation length has been concluded from varia-
tions in the epicenter distribution (Zöller et al., 2001). How-
ever, these studies have not been conducted systematically
in space and time, i.e. the analysis was restricted to the oc-
currence time and the epicenter of the largest events. Thus,
possible false alarms (critical point behaviour without a sub-
sequent strong earthquake) have not been examined. There-
fore, it is an open question whether or not the observed phe-
nomena are unique, i.e. the occurrence of patterns prior to
large earthquakes is only meaningful if there is a system-
atic correlation between these patterns and subsequent earth-
quakes.

In the present work, we compare patterns based on crit-
ical point dynamics in terms of GCL before strong earth-
quakes with the epicenters of these events, and subsequent
intermediate to large earthquakes. By performing a system-
atic spatial search algorithm, we address the question of spa-
tial correlations. To estimate the significance of the results,
the method is also applied to catalogues from an appropriate
Poisson process model.

2 Data and method

In this section, we present the data and the method to detect
spatial correlations between GCL patterns and subsequent
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Fig. 1. Earthquakes withM ≥ 3.0
in California since 1910. Solid cir-
cles denote the events withM ≥ 6.5
since 1952: circle (a), 1952M = 7.5
Kern County; circle (b), 1968M =

6.5 Borrego Mountain; circle (c), 1971
M = 6.6 San Fernando; circle (d), 1983
M = 6.7 Coalinga; circle (e), 1987
M = 6.6 Superstition Hills; circle (f),
1989M = 7.0 Loma Prieta; circle (g),
1992M = 7.3 Landers; circle (h), 1994
M = 6.6 Northridge; and circle (i),
1999M = 7.1 Hector Mine.

seismicity.
We analyze the seismicity in California between the 32◦ N

and 40◦ N latitude and the−125◦ W and−114◦ W longitude.
The data are taken from the Council of the National Seismic
System (CNSS) Worldwide Earthquake Catalogue. The cat-
alogue covers the time span from 1910 to 2000. The distri-
bution of earthquakes is shown in Fig. 1. To account for the
completeness of the data, we restrict the analysis to the nine
strongest earthquakes withM ≥ 6.5 since 1952. Note that
completeness of the CNSS catalogue was not achieved until
1940.

For a detailed description of the GCL model, we refer to
Zöller et al. (2001). The method is based on a fit of Eq. (2)
to the data in a circular space window with radiusR and in a
time interval(t0; tf ) for earthquakes with magnitudesM ≥

Mcut = 4.0. The exponentk is set tok = 0.4 according to
the result of Z̈oller et al. (2001). The power law fit is then
compared with the fit of a constant and the quality of the
power law fit is measured by the curvature value introduced
by Bowman et al. (1998),

C =
power law fit root-mean-square error

constant fit root-mean-square error
. (3)

Around each epicenter of a strong earthquake, the curvature
parameter has been calculated for different values ofR and
t0. The set of parameters for whichC is minimal is used
for further calculations; i.e. the space window (R) and the
length of the time interval (t0) are adjusted in order to opti-
mizeC. The approach of looking at different spatial scales is

based on the observation of Zöller et al. (1998), that the dy-
namics of a spatially extended system is most clearly visible
on intermediate spatial scales between the noisy microscales
and the large scales, where the dynamics are hidden due to
the averaging. TheC values are determined on a spatial grid
with a resolution of 0.5◦ in longitude and latitude at nine dif-
ferent timest if , corresponding to the occurrence times of the
nine earthquakes withM ≥ 6.5, denoted with indexi. The
result is a functionCi(x) for the GCL model, which is com-
pared with the epicenter distribution of the earthquakes with
M ≥ 5.0 in the time interval(t if ; t if + 1 year). This set of

epicenters is called the patternQi(x) for the ith strongest
earthquake. The (arbitrary) magnitude thresholdM = 5.0
defining the patternQi(x) has been introduced, since the
premonitory patterns are assumed to be correlated not only
with the strongest earthquake, but also with some subsequent
main shock activity.

In the next step, the curvature parameterCi
APC(x) is calcu-

lated for 100 adjusted Poisson catalogues (APC) in order to
derive a measure for the statistical significance of the results.
These catalogues are calculated according to the algorithm
of Zöller et al. (2001):

1. The CNSS catalogue is declustered using the algorithm
of Reasenberg (1985);

2. Random epicenters according to the epicenter distribu-
tion of the declustered CNSS catalogue are calculated;

3. The earthquake occurrence times are drawn from a Pois-
son process;
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4. The earthquake magnitudes are taken randomly from a
probability distribution fulfilling the Gutenberg-Richter
law (Gutenberg and Richter, 1956);

5. Aftershocks according to the law of Omori (1894) are
added using the algorithm of Reasenberg (1985) in the
inverse direction.

The resulting earthquake catalogue corresponds to a Poisson
process in time with additional aftershock activity. The dis-
tributions of the epicenters and the magnitudes are similar to
those of the genuine catalogue. Note that only the spatiotem-
poral correlations of the seismicity are randomized and all
other features are preserved. Therefore, the APCs allow one
to test for systematic spatiotemporal behaviour.

The likelihood ratio test has been proposed by Gross and
Rundle (1998) in order to compare two models with respect
to their suitability to describe an observed data set. In this
work, the observed data are given by the setQi(x) of epicen-
ters withM ≥ 5.0 after theith strongest earthquake. Model 1
is defined by the GCL pattern of the original catalogue before
theith strongest earthquake, i.e. the distribution of curvature
parametersCi(x) in space. Model 2 is the corresponding pat-
tern Ci

APC(x) for an APC. For both models, the likelihood
function L is computed with respect to theN earthquakes,
forming the patternQi(x):

L =

N∏
k=1

P(xk, Ck). (4)

P(xk, Ck) is the normalized probability density for an event
occurring at the epicenterxk with a premonitory GCL pat-
tern characterized by the curvature parameterCk. To ap-
ply the likelihood ratio test, we assume Gaussian probabil-
ity density functionsP(x, C) = p1(x) × p2(C) consisting
of a two-dimensional Gaussian functionp1 around the spa-
tial grid nodex with standard deviationσ1 and a (right wing)
Gaussian functionp2 depending on the curvature parameter
C with standard deviationσ2. The value ofσ1 is the distance
between two adjacent grid nodes andσ2 = 0.35 is an empir-
ical value (Z̈oller et al., 2001). It should be noted that Eq. (4)
must be applied cautiously, since this equation only holds if
theN earthquakes are statistically independent.

The likelihood function is also measured for each of the
APCs (model 2). The likelihood ratioLRi

= L/LAPC of the
normalized likelihood functions for model 1 and model 2 is
equal to the probability ratiop/pAPC, wherep denotes the
probability thatQi(x) arises from the original data (model 1)
and pAPC is the corresponding probability for the APCs
(model 2). In the case ofLRi > 1, the detected GCL pat-
terns in the original catalogue are more correlated with the
subsequent occurring intermediate to large earthquakes. In
contrast,LRi < 1 means that the patterns from the random
catalogue are correlated with the future seismicity. Due to a
rather skewed distribution ofLRi , the mean value〈LRi

〉 is
not an appropriate measure for the spatial correlations. In-
stead, we use the numberN i

s of APCs that is a better fit than
the original model (LRi < 1) and represents a more robust

Table 1. Results of Likelihood Ratio Test.Ns is the number of ad-
justed Poisson catalogues, where the GCL patterns are more corre-
lated with main shock activity than for the CNSS catalogue.Pconf
is the probability that nine random numbers (corresponding to the
nine strong earthquakes) have a mean value smaller than or equal
to 〈Ns〉. The values in the parentheses are the results for〈Ns〉 and
Pconf without the Kern County earthquake

Earthquake date M Ns

a. Kern County 21 Jul 1952 7.5 85

b. Landers 28 Jun 1992 7.3 34

c. Hector Mine 16 Oct 1999 7.1 23

d. Loma Prieta 18 Oct 1989 7.0 16

e. Coalinga 2 May 1983 6.7 26

f. Northridge 17 Jan 1994 6.6 62

g. San Fernando 9 Feb 1971 6.6 16

h. Superstition Hills 24 Nov 1987 6.6 28

i. Borrego Mountain 9 Apr 1968 6.5 51

〈Ns〉 38 (32)

Pconf 89% (97%)

measure. The value ofN i
s varies between 0 (no APCs fit

better than the original model) and 100 (all APCs fit better).

3 Results and discussion

Results for the correlation length from Eq. (2) are shown in
Fig. 2. The triangles are the earthquakes withM ≥ 5.0 oc-
curring during one year after the strong shock withM ≥ 6.5
(largest triangle), i.e. the patternQi(x). The grey shaded
boxes denote the GCL patternCi(x). Analogously, Fig. 3
is the same for a catalogue from the Poisson process model.
Curvature parameters above 0.7 are not shown, since power
laws and constant functions are no longer distinguishable.

The likelihood ratio test introduced in Sect. 2 is now ap-
plied to compare the patternsCi(x) andCi

APC(x) with the
patternQi(x). The quantityN i

s (0 ≤ Ns ≤ 100), which is
the number of APCs that fit better toQi(x) than the orig-
inal data, is used as a measure for the predictive power of
the GCL pattern in the original catalogue before a certain
strong earthquake. Note that we do not introduce alarm con-
ditions using threshold values. The results forN i

s are given
in Table 1. The confidence levelpconf in the last row is the
probability that nine random numbers (corresponding to the
nine strongest earthquakes) have a mean value smaller than
or equal to〈Ns〉 = (1/9)

∑
i N i

s .
The spatial correlations of the GCL patterns with the fu-

ture seismicity are clearly visible in some cases, e.g. the
Hector Mine, the Loma Prieta, the Coalinga, and the San
Fernando earthquakes. The most conspicuous anomaly can
be observed prior to the Loma Prieta earthquake in Fig. 2d.
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Fig. 2. Curvature parameterC (grey shaded boxes) based on the GCL pattern. The filled triangles are the strong earthquakes (largest triangle)
and the earthquakes withM ≥ 5.0 until one year after these events.

This is probably due to the fact that there had been no other
strong earthquake in the Loma Prieta region since 1910 and
consequently, the GCL pattern of this event is not disturbed
by the overlapping patterns from the other events. In con-
trast, the result for the Kern County earthquake is close to a
random response. A possible explanation is that the quality
and the length of the data may not be sufficient prior to 1952.

As we have checked, the result for the Kern County event can
be slightly improved with a magnitude cutoff ofMcut = 4.5
instead ofMcut = 4.0. The confidence levelpconf = 89%
for the nine strongest earthquakes is below the typical con-
fidence levels for statistical hypothesis tests, e.g.p = 95%.
However, if the Kern County earthquake is excluded from the
analysis due to a lack of data quality, we obtain〈Ns〉 = 32
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Fig. 3. Curvature parameterC (grey shaded boxes) with respect to
a strong earthquake (M = 7.0) for an adjusted Poisson catalogue
(APC). The filled triangles are the earthquakes withM ≥ 5.0 until
one year after these events.

and a resulting probability ofpconf = 97%. In this case, the
null hypothesis where the results can be reproduced using a
realistic Poisson process model without spatiotemporal cor-
relations is rejected with a reasonable high confidence level.

We want to point out that all parameters in our analysis
are fixed empirically or determined by the optimization tech-
niques described in the previous section. This is a first or-
der approach which may ignore important information in the
data, leading to small significances. Therefore, it is important
to determine parameters by physical conditions, e.g. scal-
ing relations such as logR = c1 + c2M with constantsc1
andc2 for the space windowR (Bowman et al., 1998; Z̈oller
et al., 2001) and logT = c3 + c4M with constantsc3 and
c4 for the time windowT (Hainzl et al., 2000), as well as
search magnitudes should be introduced in order to increase
the significances. This would also be a step towards a pre-
diction algorithm, where a spatiotemporal search for anoma-
lies can be conducted. By introducing threshold values in
terms of alarm conditions, an analysis by means of error di-
agrams (Molchan, 1997) could then be carried out. These
refinements and extensions are left for future studies.

4 Summary and conclusions

We have tested the hypothesis that spatial anomalies accord-
ing to the critical point concept for earthquakes occur before
strong earthquakes. Therefore, we have used the growing
spatial correlation length as an indicator for critical point be-
haviour. To reduce the number of free parameters, we have

fixed the magnitude cutoff and the critical exponent by val-
ues known from the literature. The remaining parameters,
namely, space and time windows have been determined sys-
tematically by an optimization technique. From a likelihood
ratio test in combination with a sophisticated Poisson process
model, we have extracted a statistical confidence level.

By applying a search algorithm in space, we find a rough
agreement of the predicted regions with future seismicity.
Although false alarms and false negatives are present, the
original data provide significantly better results than the Pois-
son process model. The confidence level of 89% is enhanced
by excluding the Kern County (1952) earthquake due to a
lack of data quality. Further improvements in both the GCL
model itself and the statistical test are possible. In particular,
it is desirable to map directly probabilities instead of curva-
ture values. This would allow one to compare the present
analysis with similar approaches, especially with models
based on accelerating energy/moment release.

In conclusion, we have shown that the critical point con-
cept makes a contribution to the improvement of the seismic
hazard assessment. Further studies and applications of the
methods are promising to increase the significance of the re-
sults.
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