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ESTIMATE FOR BDF SCHEMES

Abstract. The concepts of stability regions, A- and A(α)-stability – albeit based on scalar

models – turned out to be essential for the identification of implicit methods suitable for

the integration of stiff ODEs. However, for multistep methods, knowledge of the stability

region provides no information on the quantitative stability behavior of the scheme. In this

paper we fill this gap for the important class of Backward Differentiation Formulas (BDF).

Quantitative stability bounds are derived which are uniformly valid in the stability region

of the method. Our analysis is based on a study of the separation of the characteristic

roots and a special similarity decomposition of the associated companion matrix.
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1. INTRODUCTION

We consider linear multistep methods applied to the stiff test equation

y′ = λ y, with Re λ < 0. (1.1)

Let ∆t denote the stepsize, assumed to be constant, tν := ν∆t, and

µ := λ∆t . (1.2)

A k-step linear multistep method is characterized by its coefficients αj and βj ,

j = 0 . . . k.

Starting from given k initial values y0, . . . , yk−1, applying the method to (1.1)

generates a sequence of approximations

yν ≈ y(tν), ν = k, k + 1, . . . (1.3)

Opuscula Mathematica • Vol. 26 • No. 2 • 2006

203

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26819589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


defined via the difference equation

(αk − µβk)yν + (αk−1 − µβk−1)yν−1 + . . . + (α0 − µβ0)yν−k = 0 . (1.4)

The stability behavior of the scheme is determined by the roots of the so-called

characteristic equation

ρ(ζ) − µσ(ζ) = 0 , with ρ(ζ) :=
k
∑

j=0

αj ζj , σ(ζ) :=
k
∑

j=0

βj ζj , (1.5)

cf. e.g. [5].

Implicit multistep methods of Backward Differentiation type (BDF) play a pro-

minent role in the numerical integration of stiff ODEs. BDF uses only one (implicit)

evaluation of the right hand side of the ODE. Application to model equation (1.1)

yields the difference scheme

k
∑

j=1

1

j
(∇jy)ν = µ yν , (1.6)

where ∇j denotes the j -th backward difference. The associated characteristic poly-

nomials ρ and σ are given by

ρ(ζ) =
k
∑

j=1

1

j
ζk−j (ζ − 1)

j
, σ(ζ) = ζk , (1.7)

see [4]. For orders up to k = 6 the BDF schemes are well known to be A(α)-stable,

and their convergence has been studied in detail for various classes of stiff problems.

In this paper we take a closer look at the stability properties of BDF in the

stiff case. For the scalar model (1.1) the solution of the difference equation (1.4)

remains uniformly bounded for all µ ∈ Sk where Sk denotes the stability region of

the scheme. (The BDF stability regions are the sets outside the closed curves shown

in Fig. 1.) A proof of uniform boundedness can be found in [5]. It applies to general

linear multistep schemes and is valid for the case that Sk is a compact subset of C̄.

However, it does not yield an explicit bound.

The point is that, by definition of the stability region Sk, for µ ∈ Sk all roots

of (1.5) (characteristic roots) are contained in the closed unit disk and all multiple

roots1) are located in the open unit disk. However, the precise behavior of the

sequence (yν) depends on the particular distribution of these roots. If, for instance, for

some µ ∈ Sk a cluster of roots occurs on or close to the boundary of the unit disk, then

the discretization error yν − y(tν) might grow strongly in a certain transient phase.

Note that the stability results for the model problem play also a role in the

analysis of more general classes of stiff problems, e.g. for nonautonomous stiff systems

and for nonlinear equations of singular perturbation type, see [5] and [6].

1) Polynomial roots are counted according to their multiplicity.
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Fig. 1. Stability regions Sk of BDF schemes for k = 1 . . . 6

For obtaining quantitative stability bounds in our situation, uniform estimates

for the location of the characteristic roots are required. In the sequel we perform

such an analysis for the BDF methods of orders2) k = 2 . . . 5. In Section 2 we study

the distribution of these roots, in particular how they are separated. This analysis is

based on a study of the Riemann surface of the mapping defined by the solutions of

a reduced bivariate algebraic equation of degree k − 1. In this way, explicit but very

cumbersome estimation of the characteristic roots can be avoided.

The results obtained are used in Section 3 to derive quantitative stability bounds.

To this end, we use a special similarity decomposition of the companion matrix C(µ)

of the stability function ρ(·) − µσ(·), which has been introduced in [3].
Appendices A and B contain auxiliary lemmas and a visualization of our results,

respectively.

2. LOCATION OF CHARACTERISTIC ROOTS

For the k-step BDF scheme, the characteristic equation reads3)

π(ζ;µ) := ρ(ζ) − µσ(ζ) = ζk





k
∑

j=1

1

j

(

1 − 1

ζ

)j

− µ



 = 0, (2.1)

cf. (1.5),(1.7).

2) k = 1 yields a one-step scheme (Backward Euler).
For k = 6, BDF is still A(α)-stable, but with a very tight angle, see Figure 1 and [5], and
it is rarely implemented. This case is not covered by our analysis (cf. Section 2) and will
not considered here. See, however, the remark at the end of Section 3.
For k ≥ 7 the BDF schemes are not even 0-stable, i.e., 0 6∈ Sk.

3) Throughout the paper, we suppress the dependence of various polynomials on k to simplify
notation.
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It will turn out to be convenient to use transforms

z :=
1

ζ
, ẑ := 1 − z . (2.2)

Since ρ(0) = (−1)
k
/k and σ(0) = 0, no characteristic root ζ vanishes, and therefore

(2.1) is equivalent to

p(z;µ) := zkπ(1/z;µ) =
k
∑

j=1

1

j
(1 − z)

j − µ = 0, (2.3)

i.e., p is a reflected version of π. Equivalently,

p̂(ẑ;µ) := p(1 − ẑ;µ) =
k
∑

j=1

1

j
ẑj − µ = 0. (2.4)

The derivative of p̂ does not depend on µ, as it is just the cyclotomic polynomial of

degree k − 1,

p̂′(ẑ;µ) ≡
k−1
∑

j=0

ẑj . (2.5)

Thus, the roots of p̂′ are precisely the nontrivial k-th roots of unity

ωj
k = e2πij/k , j = 1 . . . k − 1 . (2.6)

This observation enables us to localize the double roots of π(ζ;µ). (Note that due

to Lemma A.1, π cannot have roots of higher multiplicity.)

Proposition 1 (Annuli containing simple roots only). For k = 2 . . . 5 and

arbitrary µ ∈ Sk, each root of π(ζ;µ) which is contained in the annulus

Ak := {ζ ∈ C : ̺k < | ζ | ≤ 1 } , with ̺k :=
1

| 1 − ωk |
< 1 , (2.7)

is simple.

Proof. Actually, the assertion is even true when ζ merely satisfies the inequality

|ζ| > ̺k: For such a root, there is

|ζ| > ̺k =
1

|1 − ωk|
= max

j=1...k−1

1

|1 − ωj
k|

,

because ωk is at the minimum distance to 1 among all ωj
k, j = 1 . . . k− 1. Therefore,

due to Lemma A.1, ζ cannot be a double root.

For k = 2 . . . 5, the inner radii ̺k are given in Table 1.
4)

4) The argument in the proof of Proposition 1 is also valid for k > 5; however, we have ̺6 = 1
(and ̺k > 1 for k > 6).
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Table 1. Inner radius ̺k of Ak,

for k = 2 . . . 5 (see Proposition 1)

k ̺k float(̺k)

2 1
2 0.5000

3 1√
3

0.5774

4 1√
2

0.7071

5

√
5+

√
5√

10
0.8507

Proposition 2 below, our main result, is a sharpened version of Proposition 1:

We shall show that if ζ is a root contained in Ak, then ζ is simple and Ak contains no

other root. To this end, we consider the characteristic equation (2.4) in the variable

ẑ = 1 − 1/ζ. In the sequel, we consider an arbitrary fixed µ ∈ C.

The bivariate polynomial p̂(ŵ;µ) − p̂(ẑ;µ) does not depend on µ and can be

factored as

p̂(ŵ;µ) − p̂(ẑ;µ) = (ŵ − ẑ) q̂(ẑ, ŵ) , (2.8)

with

q̂(ŵ, ẑ) =
k
∑

j=1

1

j

j−1
∑

ℓ=0

ẑℓ ŵj−1−ℓ . (2.9)

Note that q̂(ẑ, ŵ) = 0 if and only if ∃µ ∈ C with p̂(ẑ;µ) = p̂(ŵ;µ) = 0 and either

ẑ 6= ŵ (i.e., ŵ is a companion root of p̂ to ẑ), or ẑ = ŵ is a double root of p̂(ẑ;µ).

Later we shall make use of the symmetries

q̂(ẑ, ŵ) = q̂(ŵ, ẑ) and q̂(¯̂z, ¯̂w) = q̂(ẑ, ŵ) . (2.10)

For k = 2 . . . 5, one can rewrite (2.9) as follows:

— k = 2:

q̂(ẑ, ŵ) = 1 +

(

ẑ + ŵ

2

)

, (2.11)

— k = 3:

q̂(ẑ, ŵ) = 1 +

(

ẑ + ŵ

2

)

+

(

ẑ + ŵ

2

)2

+
1

12
(ẑ − ŵ)

2
, (2.12)
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— k = 4:

q̂(ẑ, ŵ) = 1 +

(

ẑ + ŵ

2

)

+

(

ẑ + ŵ

2

)2

+

(

ẑ + ŵ

2

)3

+

+
1

24

(

2 + 3(ẑ + ŵ)
)

(ẑ − ŵ)2,

(2.13)

— k = 5:

q̂(ẑ, ŵ) = 1 +

(

ẑ + ŵ

2

)

+

(

ẑ + ŵ

2

)2

+

(

ẑ + ŵ

2

)3

+

(

ẑ + ŵ

2

)4

+

+
1

240

(

20 + 30(ẑ + ŵ) + 3
(

11ẑ2 + 18ẑŵ + 11ŵ2
))

(ẑ − ŵ)
2
.

(2.14)

Thus, for k = 2 . . . 5, equation (2.9) can be written as

q̂(ŵ; ẑ) ≡
k
∑

j=1

(

ẑ + ŵ

2

)j−1

+ γk−3(ŵ; ẑ)(ẑ − ŵ)2, (2.15)

where γk−3(ŵ; ẑ) = γk−3(ẑ; ŵ) is a polynomial in ŵ and ẑ.

We are now ready to formulate our main result.

Proposition 2 (Annulus Ak contains at most a simple, solitary root). For

k = 2 . . . 5 and arbitrary µ ∈ Sk, any root of π(ζ;µ) contained in the annulus Ak

defined in Proposition 1, (2.7) is simple and solitary within Ak, i.e., Ak contains no

other root.

Proof. Fix k ∈ {2, . . . , 5} and any root ζ of π(ζ;µ) satisfying |ζ| > ̺k. By Proposi-

tion 1, ζ is a simple root.

It is now convenient to use z = 1/ζ = 1 − ẑ as an independent variable. Our

assumption ζ ∈ Ak implies that z := 1/ζ is a root of p(z;µ) = zk π(1/z;µ) (cf. (2.3))

satisfying |z| > 1/̺k =: rk > 1, see Table 2.

Table 2. Radius rk = 1/̺k of Kk, for

k = 2 . . . 5 (see proof of Proposition 2)

k rk float(rk)

2 2 2.0000

3
√

3 1.7320

4
√

2 1.4142

5
√

10√
5+

√
5
1.1756

208 Winfried Auzinger, Wolfgang Herfort



Now it suffices to check that for z inside the open disk

Kk := {z ∈ C : |z| < rk}, (2.16)

any solution of

q(z, w) := q̂(1 − w, 1 − z) = 0 (2.17)

lies outside Kk.

For the bivariate polynomial q(z, w), the following observations hold:

— q(z, w) is monic in w of degree k − 1, and since q has real coefficients, we have

q(z, w) = 0 ⇔ q(z̄, w̄) = 0.

— Solving the equation q(0, w) = 0 yields k− 1 distinct points w 6∈ K̄k (cf. Fig. 2,

see Appendix B).

— Lemma A.2 shows that the discriminant set

Dk := {z ∈ C : ∃w ∈ C : q(z, w) = qw(z, w) = 0} (2.18)

is finite and disjoint from Kk.

— For any z0 6∈ Dk, Lemma A.4 implies the existence of an analytic function

element (w(z),KR, z0, R) with KR(z0) = {z : |z − z0| < R} and R the distance

from z0 to Dk, i.e., a power series w(z) =
∑∞

j=0 aj(z − z0)
j
convergent on

KR(z0).

Following the description in [7, Vol. III, p. 308] one may construct a Riemann sur-

face by considering k−1 replicas of the extended z-plane (the Riemann sphere),

in each of them perform cuts from the point ∞ to the points in Dk and consider

a certain gluing along the cuts. This at hand, analytic continuation along paths

on the surface gives rise to a (k−1)-valued function w(z) = (w1(z), . . . , wk−1(z))

on the Riemann surface with values in C satisfying q(z, wj(z)) = 0.

In our situation we can assume each of the k−1 cuts to be a half-ray emanating

from a point in Dk parallel to the Re z-axis to the right, because they connect

to ∞ in the extended plane without intersecting each other.
— Lemma A.4 implies that on Kk one can define a function element

(f0(z),Kk, 0, rk) by fixing its value f0(0) 6∈ K̄k. The special form of q(z, w)

shows that poles of f0 cannot occur, since w = ∞ implies z = ∞. Then, f0

has an analytic continuation to the selected sheet (with cuts). Since rk is smal-

ler than the distance from 0 to Dk and no poles can occur within KR(0), we

conclude that f0 has a continuous extension, say f , to the closure K̄k.

— To prove that the restriction of f to ∂Kk is injective, we consider arbitrary points

z, z̃ ∈ ∂Kk and w ∈ C with f(z) = f(z̃) = w. Then, q(z, w) = q(z̃, w) = 0. Now

suppose z̃ 6= z and assume w.l.o.g. w 6= z (else exchange the roles of z and z̃).

Together with the definition of q(·, ·) this implies
z − z̃

z − w
q(z, z̃) ≡ q(z, w) − z̃ − w

z − w
q(z̃, w) = 0, (2.19)
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hence q(z, z̃) = 0, and since |z| = |z̃| = rk, Lemma A.3 yields z = z̃, a contra-

diction. Thus, f restricted to ∂Kk is indeed injective.

By the Theorem of Darboux–Picard, it follows that f is univalent on K̄k and in

fact maps Kk to the interior of f(Kk) (see [2, p. 310, Corollary 9.16]).

— In order to show that

Kk ∩ f(Kk) = ∅ (2.20)

holds, we first consider z0 ∈ ∂Kk ∩ f(∂Kk). Then, q(z0, f(z0)) = 0 and |z0| =

|f(z0)| = rk. Therefore, Lemma A.3 implies z0 = f(z0) ∈ {1 − ωk, 1 − ω̄k} is a
double root of p. As can be seen from the proof of Lemma A.1, z0 indeed has

multiplicity 2, thus

0 6= p′′(z0) ≡
d

dz
q(z, f(z))

∣

∣

z=z0

= qz(z0, z0)+ qw(z0, z0) · 1 = 2 qz(z0, z0), (2.21)

and together with 0 ≡ d
dz q(z, f(z)) = qz(z, f(z)) + qw(z, f(z))f ′(z) this implies

f ′(z0) = −1. This means that the curve f(∂Kk) is differentiable and tangent to

∂Kk at z0.

Hence f certainly maps points from Kk to its complement. Since ∂Kk ∩f(∂Kk)

consists of at most two points, f(∂Kk) lies in the complement of Kk. As noted

above, the interior of f(K̄k) has boundary f(∂Kk) and thus, (2.20) indeed holds.

This completes the proof of Proposition 2.

It can also be shown that for k = 3, 4, 5, two different algebraic solution branches

f(z), f̃(z) of equation q(z, w) = 0 satisfy

f(K̄k) ∩ f̃(K̄k) = ∅, (2.22)

see Figure 2. Since f and f̃ are both analytic on a domain containing K̄k and

univalent on K̄k, (2.22) will follow from f(∂Kk) ∩ f̃(∂Kk) = ∅.
Suppose there exists w ∈ f(∂Kk) ∩ f̃(∂Kk). Then there are z, z̃ ∈ ∂Kk with

w = f(z) = f̃(z̃), hence q(z, w) = q(z̃, w) = 0. The same argument as in the above

proof for injectivity (cf. (2.19)) shows that z̃ = z, where z ∈ {1 − ωk, 1 − ω̄k} is a
double root of p. Now there are two possibilities:

(i) If w = z, then we may repeat an earlier argument (cf. (2.21)) for both f and f̃

and conclude

f ′(z) = f̃ ′(z) = −1 .

This means that both curves f(∂Kk) and f̃(∂Kk) are differentiable and tangent

to ∂Kk at the point z. But this would imply that z has multiplicity > 2, which

contradicts Lemma A.1.

(ii) If w 6= z, then w = f(z) = f̃(z) implies that w is a double root of p . Thus, z

must be contained in the discriminant set Dk. But this together with |z| = rk

contradicts Lemma A.2.
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This proves (2.22).

Proposition 2 shows that, for k = 2 . . . 5 and µ ∈ Sk, there are two possibilities

concerning the distribution of the characteristic roots ζj , j = 1 . . . k :

(i) If the annulus Ak contains a root ζk (we may call it the principle root), then ζk

is simple, and all other roots ζj satisfy |ζj | ≤ ̺k, j = 1 . . . k − 1.

(ii) Otherwise, all roots satisfy |ζj | ≤ ̺k, j = 1 . . . k.

In Appendix B the situation is visualised. For this purpose, the reduced equation

q(z, w) = 0 was solved using Maple 10 for an appropriately large sample of z-values.

In Figure 2, the k − 1 outer loin-shaped zones – let us call them kloings – in each

case corresponds to the range of solutions of q(z, w) = 0 for a given z ∈ Kk. The

positions of double roots of p are marked by diamonds. The contact points between

Kk and a certain kloing correspond to the special roots z = w which are identified

in Lemma A.3.

Figure 3 (see Appendix B) refers to the original variables: For a given characte-

ristic root ζ outside the disk of radius ρk, the companion roots η are separated and

located within the k − 1 interior kloings.

3. UNIFORM STABILITY ESTIMATE

Proposition 2 enables us to derive a uniform stability estimate. To this end, it is

convenient to formulate multistep method (1.4) in a common single-step fashion,

namely




















yν−k

...

yν





















= C(µ)





















yν−1−k

...

yν−1





















, (3.1)

with the companion matrix

C = C(µ) =





































0 1

0 1
. . .

. . .

0 1

−γ0 −γ1 . . . −γk−2 −γk−1





































∈ C
k×k . (3.2)

Here, γj ≡ (αj − µβj)/(αk − µβk), and the characteristic polynomial of C reads

π̃(ζ) = π̃(ζ;µ) =

k
∑

j=0

γj ζj . (3.3)

This is just the monic version of the characteristic polynomial π of the given multistep

method (cf. (1.5)). Each matrix of the form (3.2) is nonderogatory, i.e., all eigenvalues
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ζj of C have geometric multiplicity 1, and the algebraic multiplicity of ζj equals the

multiplicity of ζj as a root of π or π̃, respectively.

We shall quantify the stability behavior in the BDF case by providing a uniform

bound for ‖Cν(µ)‖ where ν ∈ N and µ ∈ Sk. The single-step formulation enables us

to apply linear algebra techniques. Estimation of the powers of C can be gained in

various ways. We shall derive an estimate using a special similarity decomposition

of C(µ) and applying the Kreiss Matrix Theorem (cf., e.g., [5]) to the transformed

matrix. The resulting bounds are certainly not sharp but easy to obtain.5)

In [3] and the forthcoming report [1], a decomposition of the companion matrix

C(µ) is considered which, in contrast to the Jordan decomposition, depends continu-

ously on the parameter µ. To describe it, let us fix some notation. For an arbitrary

ζ ∈ C, we denote

x(ζ) :=
(

1, ζ, ζ2, . . . , ζk−1
)T

. (3.4)

Now, let ζ1, . . . , ζk be given complex numbers (not necessarily distinct). In the sequel,

f [ζj , . . . , ζℓ] denotes a — possibly confluent — divided difference of a function f , i.e.,

f [ζj ] := f(ζj), and

f [ζj , . . . , ζℓ] :=











f [ζj+1, . . . , ζℓ] − f [ζj , . . . , ζℓ−1]

ζℓ − ζj
, ζj 6= ζℓ,

lim
ǫ→0

f [ζj+1, . . . , ζℓ + ǫ] − f [ζj , . . . , ζℓ−1]

ǫ
, ζj = ζℓ.

(3.5)

For the powers f(ζ) = ζn and for f(ζ) = π̃(ζ) we abbreviate

ζn
[j··ℓ] := ζn[ζj , . . . , ζl], π̃[j··ℓ] := π̃[ζj , . . . , ζℓ] . (3.6)

Proposition 3 (Bidiagonal-Frobenius canonical form).

— For arbitrary ζ1, . . . , ζk, the matrix C from (3.2) can be written as

C = LB L−1, (3.7)

with the lower triangular matrix

L =

















x[ζ1] x[ζ1, ζ2] . . . x[ζ1, . . . , ζk]

















=







































1

ζ1 1

ζ2
1 ζ2

[1··2] 1
...

...
. . .

. . .

ζk−1
1 ζk−1

[1··2] . . . ζk−1
[1··k−1] 1







































,

(3.8)

5) One may also apply the Kreiss Matrix Theorem directly to C(µ). However, the algebra
involved would be somewhat more laborious. Alternatively, one may proceed as in [3], where
a scaled ∞-norm is used.
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and

B =





































ζ1 1

ζ2 1
. . .

. . .

ζk−1 1

−π̃[1] −π̃[1··2] . . . −π̃[1··k−1] −π̃[1··k] + ζk





































(3.9)

— When ζj runs through the roots of π̃, B in (3.9) takes bidiagonal shape where the

main diagonal contains the k roots of π̃ counted with multiplicity:

B =





































ζ1 1

ζ2 1
. . .

. . .

ζk−1 1

ζk





































. (3.10)

Proof. In [3], a proof is given for the special case (3.10). An analogous proof for (3.9)

is to be found in [1].

The inverse of L is lower triangular with unit diagonal, and the (i, j)-th element

below the diagonal can be written as

(L−1)i,j = (−1)
i+j
∑

i,j

∏

i−j

ζℓ, (3.11)

where
∑

i,j stands for summation of all possible
(

i−1
j−1

)

products
∏

i−j ζℓ of i−j values

ζℓ with pairwise distinct indices 1 ≤ ℓ < i.

Now we consider bidiagonal form (3.8),(3.10) for the stable BDF case k = 2 . . . 5,

with µ ∈ Sk. We assume that ζk has maximal modulus, i.e., 1 ≥ |ζk| ≥ |ζj | for
j = 1 . . . k − 1. To apply the Kreiss Matrix Theorem, we compute the resolvent

(ζI − B)−1, where ζ ∈ C is not a characteristic root:

(ζI − B)−1 =







































ζ−1
1,1 ζ−1

1,2 . . . . . . ζ−1
1,k

ζ−1
2,2 . . . . . . ζ−1

2,k

. . .
...

ζ−1
k−1,k−1 ζ−1

k−1,k

ζ−1
k,k







































, with ζi,j :=

j
∏

ℓ=i

(ζ − ζℓ).

(3.12)

Consider an arbitrary ζ ∈ C with |ζ| > 1. Since for µ ∈ Sk all characteristic roots ζj

satisfy |ζj | ≤ 1, one has

|ζ − ζj | ≤ |ζ| − 1, j = 1 . . . k. (3.13)

Moreover, due to Proposition 2, one has

|ζ − ζj | ≤ 1 − ̺k, j = 1 . . . k − 1, (3.14)

A uniform quantitative stiff stability estimate for BDF schemes 213



(for the principal root ζk this is not true in general). From (3.13),(3.14) we imme-

diately obtain bounds for the entries in (3.12):

∣

∣

∣(ζI − B)−1
j,j+ℓ

∣

∣

∣ ≤ 1

(|ζ| − 1)(1 − ̺k)
ℓ
, j = 1 . . . k, ℓ = 0 . . . k − j. (3.15)

Using (3.15), one finds the norm estimate

∥

∥(ζI − B)−1
∥

∥

2
≤
√

‖(ζI − B)−1‖1 ‖(ζI − B)−1‖∞ ≤ Kk

|ζ| − 1
, ∀ |ζ| > 1, (3.16)

with

Kk =

(

1 − ̺k

̺k

)

(

(

1

1 − ̺k

)k

− 1

)

. (3.17)

Taking (3.16) into account, application of the Kreiss Matrix Theorem (cf. [5]) to the

matrix B yields

‖Bν‖2 ≤ ekKk, ν = 1, 2, . . . , ∀µ ∈ Sk. (3.18)

Table 3. Stability bounds

for k = 2 . . . 5

k float(ρk) float(Ck)

2 0.5000 4.0e1

3 0.5774 4.6e2

4 0.7071 1.6e4

5 0.8507 4.5e6

Moreover, using (3.11) we can estimate the condition number κ(L) = ‖L‖ ‖L−1‖
of the transformation matrix L from (3.8) by

κ2(L) ≤
√

κ1(L)κ∞(L) ≤ (1 + ̺k)2(k−1). (3.19)

Combining the above estimates, we arrive at the desired uniform stability estimate

for the powers of C = C(µ):

‖Cν‖2 ≤ κ2(L)‖Bν‖2 ≤ Ck, ν = 1, 2, . . . , ∀µ ∈ Sk, (3.20)

with

Ck = (1 + ̺k)2(k−1)

(

1 − ̺k

̺k

)

(

(

1

1 − ̺k

)k

− 1

)

. (3.21)

Numerical values for the Ck are given in Table 3.
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These bounds are certainly not sharp, but they seem to indicate that, especially

for k = 5, significant growth cannot be precluded; typically this might occur in mildly

stiff situations, i.e., for moderate values of µ near the imaginary axis.

It would be interesting to compare the above estimates with numerical experi-

ments, including also the case k = 6. Furthermore, other methods of estimating the

powers of C(µ) could be investigated, which may lead to sharper estimates. In this

paper, these topics are not addressed further.

Let us conclude with a remark concerning k = 6. As mentioned in Section 2,

this case is not covered by our analysis, because π(ζ;µ) may have multiple roots of

modulus 1. A straightforward calculation shows that these roots do actually occur.

Namely,

ζ =
1

2
± i

1

2

√
3, |ζ| = 1, (3.22)

is a double root of π(ζ;µ) for some µ ∈ S6. However, this occurs for

µ =
7

2
± i

63
√

3

2
, with Re µ > 0, (3.23)

i.e., in that part of the stability region S6 where the BDF scheme behaves ‘artificial-

ly stable’ (cf. fig. 1): For λ∆t = µ ∈ Sk with Re µ > 0, the roots of p(ζ;µ) satisfy

|ζ| ≤ 1, although the ODE y′ = λy has exponentially growing solutions. A reaso-

nable quantitative stability analysis for k = 6 would have to observe the additional

condition Re µ ≤ 0.

APPENDIX A. FOUR LEMMAS

This section contains auxiliary results used in the proofs of Propositions 1 and 2.

The notation is as in Section 2; in particular, we recall the definition of the reduced

equation q(z, w) ≡ q̂(ẑ, ŵ) = 0, cf. (2.9), (2.17). In certain parts of the proofs we

have used computer algebra (Maple 10).

Lemma A.1 (Double roots of π). For arbitrary k ≥ 2 and µ ∈ C, any double root

of π(ζ;µ) is of the form

ζ =
1

1 − ωℓ
k

for some ℓ ∈ {1, . . . , k − 1}. (A.1)

Moreover, there exists no µ ∈ C for which a root with multiplicity > 2 occurs.

Proof. Let k ≥ 2 and µ ∈ C be fixed. Assume ζ is a root of π(ζ;µ) of multiplicity

≥ 2 for some µ ∈ C, i.e., π(ζ;µ) = π′(ζ;µ) = 0. Since π(0;µ) = (−1)
k 6= 0 and

π′(1; 0) = 1, we know ζ 6∈ {0, 1}. Hence we may transform the equations according
to (2.2)–(2.4). Now, elementary calculation shows that π(ζ;µ) = π′(ζ;µ) = 0 implies

p̂′(ẑ) = −p′(z) = 0 for ẑ = 1 − z = 1 − ζ−1.
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Here, p̂(ẑ) is the cyclotomic polynomial (2.5) and thus, ζ = 1/(1− ẑ) must be of the

form (A.1).

Let k ≥ 3 and assume that ζ has multiplicity > 2, i.e., π′′(ζ;µ) = 0. Ele-

mentary calculation shows that π(ζ;µ) = π′(ζ;µ) = π′′(ζ;µ) = 0 would imply

p̂′′(ẑ) = p′′(z) = 0 for ẑ = 1 − ζ−1, which is not the case, since p̂′ is the cycloto-

mic polynomial which has simple roots only. Thus, roots of multiplicity > 2 do not

occur.

Lemma A.2 (Discriminant set of the reduced equation). For k = 3 . . . 5, the

discriminant set

Dk =
{

z ∈ C : ∃w ∈ C : q(z, w) = qw(z, w) = 0
}

is finite, and each z ∈ Dk satisfies |z| > rk. The associated w-values are of the form

w = 1 − ωj
k, j ∈ {1, . . . , k}. (A.2)

Proof. The proof is based on a routine calculation; we show that the determination

of Dk amounts to solving a certain set of polynomial equations of degree k − 2. We

do not write down all details but just show how to proceed.

For w = z we have q(z, w) = p′(w); for w 6= z we obtain

qw(z, w) =
∂

∂w

p(w) − p(z)

z − w
=

p′(w)(z − w) + (p(w) − p(z))

(z − w)
2 =

p′(w) + q(z, w)

z − w
.

Therefore, for arbitrary z, w, one has

q(z, w) ≡ (z − w)qw(z, w) − p′(w).

Thus, q(z, w) = qw(z, w) = 0 is equivalent to

qw(z, w) = 0, p′(w) = 0.

Now, p′(w) = 0 implies that w is of the form 1 − ωj
k, j ∈ {1 . . . k − 1}. Substituting

these values into the equation qw(z, w) = 0 and solving for z, yields the desired

values for z. It turns out that all these z ∈ Dk satisfy |z| > rk for k = 3, 4, 5, and

none of them is of the form 1 − ωj
k.

Some of the (z, w) with z ∈ Dk are visible in Figure 2; the z-values appear as

cusps of the various kloings.

Lemma A.3 (Zeros of the reduced equation satisfying |z| = |w| = rk). For

k ∈ {2, . . . , 5}, the solutions of

q(z, w) = 0, |z| = |w| = rk (A.3)
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are given by6)

z = w = 1 − ωk, z = w = 1 − ω̄k. (A.4)

Proof. The proof uses elimination techniques exploiting symmetry properties (2.10)

of the bivariate polynomial q(z, w). We shall present the material in a way indicating

the essential steps, so that an interested reader will be able to reproduce missing

technical details and calculations. For higher values of k, we used computer algebra

(Maple 10) for the more laborious calculations. In particular, for the case k = 5, we

include Maple code.

Let us introduce auxiliary quantities

d :=
z − w

2
=

ŵ − ẑ

2
, h :=

z + w

2
, ĥ :=

ẑ + ŵ

2
= 1 − h. (A.5)

To prove (A.4), we first note that our assumption |z| = |w| = rk implies hh̄ ≤ r2
k.

Moreover, there must hold h 6= 0, i.e. ŵ 6= −ẑ: Namely, substitution of ŵ = −ẑ into

(2.11)–(2.14) in each case yields a polynomial equation in z = 1 − ẑ which is simple

to solve and which has no zero satisfying |z| = rk. Thus we know

hh̄ = s, with 0 < s ≤ r2
k. (A.6)

Furthermore, |z| = |w| = rk together with (A.5),(A.6) imply

d = i

√

r2
k − s

s
h. (A.7)

The cases k = 2 . . . 5 are now considered separately. The eliminations leading to (A.4)

are performed in terms of the variables h ∈ C and s ∈ R.

• k = 2 (with r2 = 2)

This case is very straightforward. The reduced equation (degree 1) is precisely

the cyclotomic equation of degree 1 in the variable ĥ (cf. (2.11)):

q̂(ẑ, ŵ) = 1 + ĥ = 0.

We conclude

h = 1 − ĥ = 1 − ω2 = 2,

and thus,
z + w

2
= h = 2 = r2.

Now, |z| = |w| = r2 implies

w = z = 1 − ω2 = 1 − ω̄2 = 2,

as asserted.

6) For k = 2 these solutions coincide: 1 − ω2 = 1 − ω̄2 = 2.
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• k = 3 (with r3 =
√

3)

In terms of ĥ and d, the reduced equation (degree 2) reads (cf. (2.12))

q̂(ẑ, ŵ) = 1 + ĥ + ĥ2 +
d2

6
= 0, (A.8)

or equivalently,

q(z, w) = 3 − 3h + h2 +
d2

6
= 0.

Using (A.7) and the equality r2
3 = 3, this can be rewritten as an equation in

terms of h and s,

3 − 3h +
1

6

(

7 − 3

s

)

h2 = 0. (A.9)

Note that h2 = s cannot hold, because otherwise (A.6) would imply that h = h̄

is real – but substituting s = h2 into (A.9) results in a quadratic equation for h

with no real solution.

Since (A.9) is an equation for h with real coefficients, it is also valid for h̄ = s/h

(cf. (A.6)), i.e.,

3 − 3
( s

h

)

+
1

6

(

7 − 3

s

)

( s

h

)2

= 0. (A.10)

The linear combination

s · (A.9)− h2 · (A.10)
results in

7

6
(h2 − s)(s − 3) = 0.

Since h2 6= s, we conclude s = r2
3 = 3, hence d = 0 (cf. (A.7)), and (A.8) reduces

to the cyclotomic equation of degree 2 in the variable ĥ (cf. (2.5)):

1 + ĥ + ĥ2 = 0.

Thus, h is necessarily of the form

h = 1 − ĥ = 1 − ωj
3 = 1 − e2πij/3, j ∈ {1, 2},

and both solutions satisfy hh̄ = s = r2
3 = 3. Eventually, we obtain

z + w

2
= h = 1 − e2πij/3, j ∈ {1, 2},

∣

∣

∣

∣

z + w

2

∣

∣

∣

∣

=
√

3 = r3.

Now, |z| = |w| = r3 implies

w = z = 1 − ω3, or w = z = 1 − ω2
3 = 1 − ω̄3,

as asserted.
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• k = 4 (with r4 =
√

2)

In terms of ĥ and d, the reduced equation (degree 3) reads (cf. (2.13))

q̂(ẑ, ŵ) = 1 + ĥ + ĥ2 + ĥ3 +
d2

3
(1 + 3 ĥ) = 0, (A.11)

or equivalently,

q(z, w) = 4 − 6h + 4h2 − h3 +
d2

3
(4 − 3h) = 0.

Using (A.7) and the equality r2
4 = 2, this can be rewritten as an equation in

terms of h and s,

4 − 6h +
8

3

(

2 − 1

s

)

h2 − 2

(

1 − 1

s

)

h3 = 0. (A.12)

Note that h2 = s cannot hold, because otherwise (A.6) would imply that h = h̄

is real – but substituting s = h2 into (A.12) results in a cubic equation for h

with an invalid real solution h ≈ 1.735 . . . > r4 =
√

2 and two strictly complex

solutions.

Since (A.12) is an equation for h with real coefficients, it is also valid for h̄ = s/h

(cf. (A.6)), i.e.,

4 − 6
( s

h

)

+
8

3

(

2 − 1

s

)

( s

h

)2

− 2

(

1 − 1

s

)

( s

h

)3

= 0. (A.13)

Now we proceed by staggered elimination.

— The linear combination

s · (A.12)− h2 · (A.13)

results in

2

3h
(h2 − s)

(

(3s − 3)h2 − (8 s − 10)h + (3 s − 3)s
)

= 0.

Since h2 6= s, we conclude

(3s − 3)h2 − (8s − 10)h + (3s − 3)s = 0. (A.14)

— The linear combination

s2 · (A.12)− h4 · (A.13)

results in

−2(h2 − s)(2h2 + (s2 − 4s)h + 2s) = 0.

Since h2 6= s, we conclude

2h2 + (s2 − 4s)h + 2s = 0. (A.15)
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— Now, the linear combination

2 · (A.14)− (3 s − 3) · (A.15)

results in

−h(3s2 − 9s + 10)(s − 2) = 0.

Here, the quadratic factor has no real zero.

Therefore, s = r2
2 = 2 must hold, hence d = 0 (cf. (A.7)), and (A.11) reduces to

the cyclotomic equation of degree 3 in the variable ĥ (cf. (2.5)):

1 + ĥ + ĥ2 + ĥ3 = 0.

Thus, h is necessarily of the form

h = 1 − ĥ = 1 − ωj
4 = 1 − e2πij/4, j ∈ {1, 2, 3},

where for j = 1, 3 this solution satisfies hh̄ = s = r2
4 = 2. Eventually, we obtain

z + w

2
= h = 1 − e2πij/4, j ∈ {1, 3},

∣

∣

∣

∣

z + w

2

∣

∣

∣

∣

=
√

2 = r4.

Now, |z| = |w| = r4 implies

w = z = 1 − ω4, or w = z = 1 − ω3
4 = 1 − ω̄4,

as asserted.

• k = 5 (with r5 =
√

10√
5+

√
5
)

In terms of ĥ and d, the reduced equation (degree 4) reads (cf. (2.14))

q̂(ẑ, ŵ) = 1 + ĥ + ĥ2 + ĥ3 + ĥ4 +
d2

3

(

1 + 3ĥ + 6 ĥ2
)

+
d4

5
= 0, (A.16)

or equivalently,

q(z, w) = 5 − 10h + 10h2 − 5h3 + h4 +
d2

3

(

10 − 15h + 6h2
)

+
d4

5
= 0.

Using (A.7), this can be rewritten as an equation in terms of h and s (let r := r5;

we do not insert the value of r5 for the moment),

5−10h+
10

3

(

4 − r2

s

)

h2−5

(

2 − r2

s

)

h3+
1

5

(

16 − 12 r2

s
+

r4

s2

)

h4 = 0. (A.17)

Note that h2 = s cannot hold, because otherwise (A.6) would imply that h = h̄

is real – but substituting s = h2 and r = r5 into (A.17) results in a quartic

equation for h with four strictly complex solutions.
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Since (A.17) is an equation for h with real coefficients, it is also valid for h̄ = s/h

(cf. (A.6)), i.e.,

5 − 10
( s

h

)

+
10

3

(

4 − r2

s

)

( s

h

)2

− 5

(

2 − r2

s

)

( s

h

)3

+

+
1

5

(

16 − 12r2

s
+

r4

s2

)

( s

h

)4

= 0.

(A.18)

Now we proceed by staggered elimination, which we present in the form of

a Maple code.

> ‘(A.17)‘:=5-10*h+(10/3)*(4-r^2/s)*h^2-5*(2-r^2/s)*h^3+(1/5)*(16-12*r^

> 2/s+r^4/s^2)*h^4;

(A.17) := 5 − 10h +
10
(

4 − r2

s

)

h2

3
− 5

(

2 − r2

s

)

h3 +

(

16 − 12r2

s + r4

s2

)

h4

5

> ‘(A.18)‘:=collect(subs(h=s/h,‘(A.17)‘),h);

(A.18) := 5 − 10s

h
+

10
(

4 − r2

s

)

s2

3h2
−

5
(

2 − r2

s

)

s3

h3
+

(

16 − 12r2

s + r4

s2

)

s4

5h4

— Since h2 6= s, the linear combination

s · (A.17)− h2 · (A.18)

implies (A.19) = 0:

> factor(s*‘(A.17)‘-h^2*‘(A.18)‘);

(−s + h2)
(

48h4s2 − 36h4r2s + 3h4r4 − 150h3s2 + 75h3sr2 − 50h2sr2

− 75h2s + 200h2s2 + 48h2s3 − 36h2s2r2 + 3h2sr4 − 150hs3

+ 75hs2r2 + 48s4 − 36s3r2 + 3s2r4
)

/(15h2s)

> op(3,%);

48h4s2 − 36h4r2s + 3h4r4 − 150h3s2 + 75h3sr2 − 50h2sr2 − 75h2s

+ 200h2s2 + 48h2s3 − 36h2s2r2 + 3h2sr4 − 150hs3

+ 75hs2r2 + 48s4 − 36s3r2 + 3s2r4

> ‘(A.19)‘:=collect(%,h); (A.19)

(A.19) := (48s2 − 36r2s + 3r4)h4 + (−150s2 + 75r2s)h3

+ (−50r2s − 75s + 200s2 + 48s3 − 36s2r2 + 3sr4)h2

+ (−150s3 + 75s2r2)h + 48s4 − 36s3r2 + 3s2r4
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— Since h2 6= s, the linear combination

s2 · (A.17)− h4 · (A.18)

implies (A.20) = 0, which is quadratic in h:

> factor(s^2*‘(A.17)‘-h^4*‘(A.18)‘);

(−s + h2)
(

h2r4 − 25h2 + 16h2s2 − 12h2sr2 − 50hs2 + 25hr2s + 50hs

+ sr4 − 25s + 16s3 − 12s2r2
)

/5

> op(3,%);

h2r4 − 25h2 + 16h2s2 − 12h2sr2 − 50hs2 + 25hr2s + 50hs + sr4

− 25s + 16s3 − 12s2r2

> ‘(A.20)‘:=collect(%,h); (A.20)

(A.20) := (r4 − 25 + 16s2 − 12r2s)h2 + (−50s2 + 25r2s + 50s)h + sr4

− 25s + 16s3 − 12s2r2

— Since h2 6= s, the linear combination

s3 · (A.17)− h6 · (A.18)

implies (A.21) = 0:

> factor(s^3*‘(A.17)‘-h^6*‘(A.18)‘);

(−s + h2)(−75h4 + 150h3s + 3h2sr4 + 48h2s3 − 36h2s2r2 + 50h2sr2

− 200h2s2 − 75h2s + 150hs2 − 75s2)/15

> op(3,%);

− 75h4 + 150h3s + 3h2sr4 + 48h2s3 − 36h2s2r2 + 50h2sr2 − 200h2s2

− 75h2s + 150hs2 − 75s2

> ‘(A.21)‘:=collect(%,h); (A.21)

(A.21) := −75h4 + 150h3s

+ (3sr4 + 48s3 − 36s2r2 + 50r2s − 200s2 − 75s)h2 + 150hs2 − 75s2

— Next we perform a linear combination of (A.19) and (A.21) eliminating the

terms which are quartic in h. The result contains a factor h, and we end

up with (A.22) = 0, which is quadratic in h:

> factor(coeff(‘(A.21)‘,h,4)*‘(A.19)‘-coeff(‘(A.19)‘,h,4)*‘(A.21)‘);
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− 3hs
(

−1875h − 1250hr2 + 1875r2h2 + 5000hs − 3750h2s

− 1800h2sr2 + 3200hs2r2 − 800sr4h − 3200hs3 − 3750s2

+ 2400s3 + 1875r2s − 1800s2r2 + 2400h2s2 + 528r4hs2

− 1152hs3r2 − 72hr6s + 150h2r4 + 3hr8 + 768hs4 + 50hr6 + 150sr4
)

> ‘(A.22)‘:=collect(%/(-3*h*s),h); (A.22)

(A.22) := (1875r2 − 3750s − 1800r2s + 2400s2 + 150r4)h2

+
(

−1250r2 − 1152s3r2 + 5000s − 1875 + 3r8 + 3200s2r2 − 800sr4

− 72r6s − 3200s3 + 528s2r4 + 768s4 + 50r6
)

h

− 3750s2 + 2400s3 + 1875r2s − 1800s2r2 + 150sr4

— Eventually, we eliminate the terms which are quadratic in h from equations

(A.20) and (A.22). The result contains a factor h, and we obtain an equation

of degree 6 for s. After substituting the value r = r5, the latter factors

into polynomials of degree 5 and 1 in s. For the quintic factor it can be

shown by an analysis based on Sturm sequences that it has no zero in the

interval [0, r2
5] = [0, (5 −

√
5)/2]. We do not present this argument here

but simply resort to numerical approximation. We obtain an invalid real

solution s ≈ 2.410 . . . > r2
5 and four strictly complex solutions:

> factor(coeff(‘(A.22)‘,h,2)*‘(A.20)‘-coeff(‘(A.20)‘,h,2)*‘(A.22)‘);

− h
(

46 875 − 125 000s + 117 500s2r2 + 31 250r2 − 71 250r2s − 14 375sr4

− 121 200s3r2 + 39 300s2r4 + 89 600s4r2 − 54 400s3r4 − 1950r6s

+ 157 500s2 − 147 500s3 + 100 800s4 − 51 200s5 + 13 600r6s2 − 1400r8s

+ 23 040r4s4 + 1440r8s2 − 8640r6s3 − 108r10s − 27 648s5r2 + 3r12

+ 50r10 + 12 288s6 − 75r8 − 2500r6 − 1875r4
)

> collect(op(3,%),s);

12 288s6 + (−27 648r2 − 51 200)s5 + (89 600r2 + 23 040r4 + 100 800)s4

+ (−147 500 − 121 200r2 − 54 400r4 − 8640r6)s3

+ (117 500r2 + 1440r8 + 157 500 + 39 300r4 + 13 600r6)s2

+ (−125 000 − 108r10 − 71 250r2 − 1950r6 − 1400r8 − 14 375r4)s

+ 46 875 + 31 250r2 + 3r12 + 50r10 − 75r8 − 2500r6 − 1875r4

> r5:=sqrt(10)/sqrt(5+sqrt(5));

r5 :=

√
10

√

5 +
√

5

> factor(4*subs(r=r5,%%));
(

24 576s5 − 179 200s4 + 15 360s4
√

5 + 508 800s3 − 76 800s3
√

5
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− 685 000s2 + 119 600s2
√

5 + 412 500s − 52 500s
√

5 − 69 375

− 20 675
√

5
)

(2s − 5 +
√

5)

> op(1,%);

24 576s5 − 179 200s4 + 15 360s4
√

5 + 508 800s3 − 76 800s3
√

5

− 685 000s2 + 119 600s2
√

5 + 412 500s − 52 500s
√

5 − 69 375

− 20 675
√

5

> solve(%,s);

RootOf(%1, index = 1),RootOf(%1, index = 2),RootOf(%1, index = 3),

RootOf(%1, index = 4),RootOf(%1, index = 5)

%1 := 24 576 Z5 + (−179 200 + 15 360
√

5) Z4 + (508 800 − 76 800
√

5) Z3

+ (−685 000 + 119 600
√

5) Z2 + (−52 500
√

5 + 412 500) Z

− 69 375 − 20 675
√

5

> evalf[20](%);

2.4101358391847271384,

1.3264349804676543239 + 0.69600508061974223202 I,

0.41555919030463116003 + 0.83494679402459839215 I,

0.41555919030463116003 − 0.83494679402459839215 I,

1.3264349804676543239 − 0.69600508061974223202 I

> %[1], evalf[20](r5^2);

2.4101358391847271384, 1.3819660112501051518

Therefore, s must be the solution of the linear equation

2s − 5 +
√

5 = 0,

which is precisely s = r2
5 = (5 −

√
5)/2. Hence, one has d = 0 (cf. (A.7)), and

(A.16) reduces to the cyclotomic equation of degree 4 in the variable ĥ (cf. (2.5)):

1 + ĥ + ĥ2 + ĥ3 + ĥ4 = 0.

Thus, h necessarily is of the form

h = 1 − ĥ = 1 − ωj
5 = 1 − e2πij/5, j ∈ {1, 2, 3, 4},

where for j = 1, 4 this solution satisfies hh̄ = s = r2
5 = (5 −

√
5)/2. Eventually,

we obtain

z + w

2
= h = 1 − e2πij/5, j ∈ {1, 4},

∣

∣

∣

∣

z + w

2

∣

∣

∣

∣

=

√
10

√

5 +
√

5
= r5.
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Now, |z| = |w| = r5 implies

w = z = 1 − ω5, or w = z = 1 − ω4
5 = 1 − ω̄5 ,

as asserted.

Lemma A.4 (Analytic continuation for w = w(z)). Let F (z, w) be a polynomial

with complex coefficients. Assume that the discriminant set

D =
{

z ∈ C : ∃w ∈ C : F (z, w) = Fw(z, w) = 0
}

is finite and that f has no zeros of the form (z,∞).

Pick a point z0 /∈ D and let R denote the distance from z0 to D. Then, for any

solution (z0, w0) of F (z, w) = 0, there exists an analytic function w = w(z) defined

on KR(z0) = {z : |z − z0| < R} with F (z, w(z)) = 0 for z ∈ KR(z0) and w(z0) = w0.

Proof. We may assume w.l.o.g. that z0 = w0 = 0 and R = 1 in order to simplify

notation. Application of the implicit function theorem yields a positive number δ, a

disk Kδ := {z : |z| < δ} and an analytic function f(z) defined on Kδ and representing

a local solution of F (z, w(z)) = 0.

If δ = 1, we are done. Suppose not. Due to our assumptions, any local solution

g on any disk K inside KR(z0) cannot have singularities, because g is algebraic, with

no poles (they correspond to F (z,∞) = 0) nor branch points (when F = Fw = 0).

Thus, f possesses an analytic continuation w living on KR(z0). Then F (z, w(z)) is

an analytic continuation of 0 = f(z, f(z)) and hence vanishes.

APPENDIX B. VISUALIZATION

Fig. 2. z-w-plots for k = 2 . . . 5
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Fig. 3. ζ-η-plots for k = 2 . . . 5
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