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Abstract. In this second part of a series of articles dedicated
to a detailed analysis of bromine chemistry in the atmosphere
we address one (out of two) dominant natural sources of re-
active bromine. The two main source categories are the re-
lease of bromine from sea salt and the decomposition of bro-
mocarbons by photolysis and reaction with OH. Here, we
focus on C1-bromocarbons. We show that the atmospheric
chemistry general circulation model ECHAM5/MESSy real-
istically simulates their emission, transport and decomposi-
tion from the boundary layer up to the mesosphere. We in-
cluded oceanic emission fluxes of the short-lived bromocar-
bons CH2Br2, CH2ClBr, CHClBr2, CHCl2Br, CHBr3 and
of CH3Br. The vertical profiles and the surface mixing ra-
tios of the bromocarbons are in general agreement with the
(few available) observations, especially in view of the limited
information available and the consequent coarseness of the
emission fields. For CHBr3, CHCl2Br and CHClBr2 photol-
ysis is the most important degradation process in the tropo-
sphere. In contrast to this, tropospheric CH2Br2, CH3Br and
CH2ClBr are more efficiently decomposed by reaction with
OH. In the free troposphere approximately 40% of the C1-
bromocarbons decompose by reaction with OH. Our results
indicate that bromoform contributes substantial amounts of
reactive bromine to the lower stratosphere and thus should
not be neglected in stratospheric simulations.

Correspondence to:A. Kerkweg
(akerkweg@mpch-mainz.mpg.de)

1 Introduction

The abundance of bromine in the troposphere and the impor-
tance of individual bromine sources to atmospheric halogen
chemistry is highly uncertain. Only few measurement data of
reactive bromine precursors are available. The main sources
are the release of inorganic bromine from sea salt and emis-
sions of bromocarbons followed by photolysis or reaction
with OH. In the present study about atmospheric bromine,
the focus is on C1-bromocarbons (further denoted as bromo-
carbons). Their emission fluxes, the transport and the main
regions and processes of degradation are investigated here.

The most comprehensive model studies of bromocarbons
thus far have been performed byWarwick et al.(2006a,b)
who applied the Chemistry Transport Model (CTM) p-
TOMCAT to simulate atmospheric bromoform (CHBr3) and
other short-lived bromocarbons (Table1 lists all abbre-
viations). They concluded that global source estimates
using the previously used top-down approach were too
low and suggested a global emission flux of about 400–
600 Gg(CHBr3)/yr. These emissions largely take place in the
tropics. In addition to bromoform,Warwick et al.(2006a) in-
vestigated the short-lived bromocarbons CH2Br2, CH2ClBr,
CHClBr2, and CHCl2Br. The emission fields of these com-
pounds have been scaled to the emission fields of bromo-
form. Yang et al.(2005) were the first to use these emission
fields to simulate bromine chemistry in the troposphere to-
gether with semi-prognostically calculated bromine sources
from sea-salt aerosol, also using the p-TOMCAT model.

In this study we apply the emission fields proposed by
Warwick et al.(2006a) in our atmospheric chemistry general
circulation model (AC-GCM). As the GCM is only weakly
forced towards the analysed meteorology of the European
Centre for Medium-Range Weather Forecasts (ECMWF),
it consistently calculates its own meteorology, whereas
p-TOMCAT is driven offline by 6-hourly ECMWF data.
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Table 1. List of abbreviations and acronyms.

abbreviation

AASE-II Airborne Arctic Stratospheric Expedition II
AC-GCM Atmospheric Chemistry General Circulation Model
AIRSEA MESSy submodel: trace gas air-sea exchange
CARIBIC Civil Aircraft for the Regular Investigation of the atmosphere based on an Instrument Container
CTM Chemistry Transport Model
CLOUD MESSy submodel: cloud microphysics
CONVECT MESSy submodel: convection parameterisation
CVTRANS MESSy submodel: convective transport of tracers
DRYDEP MESSy submodel: dry deposition of gases and aerosols
E5/M1+ extended ECHAM5/MESSy version 1
ECHAM5 an atmospheric general circulation model
ECMWF European Centre of Medium-range Weather Forecasts
GABRIEL Guyanas Atmosphere-Biosphere exchange and Radicals Intensive Experiment with the Learjet
GCM general circulation model
H2O MESSy submodel: feedback control for chemical tendency of H2O
HETCHEM MESSy submodel: heterogenous chemistry
JVAL MESSy submodel: photolysis rates
L87 abbr. for vertical number of layers (L87=87 vertical layers)
LNOX MESSy submodel: Lightning NOx
M7 MESSy submodel: aerosol dynamical model
MAECHAM5 middle atmosphere setup of ECHAM5
MBL Marine Boundary Layer
MECCA (-AERO) MESSy submodel: gas and aerosol phase chemistry
MESSy Modular Earth Submodel System
MINOS Mediterranean Intensive Oxidant Study
OFFLEM MESSy submodel: calculating offline emissions
ONLEM MESSy submodel: calculating online emissions
PARFORCE Particle Formation and Fate in the Coastal Environment, measurement campaign
PEM Pacific Exploratory Mission
PSC MESSy submodel: polar stratospheric clouds
RAD4ALL MESSy submodel: radiation
QBO Quasi-Biennial Oscillation (process and MESSy submodel)
SCAV MESSy submodel: scavenging and cloud chemistry of gases and aerosol particles
SEDI MESSy submodel: sedimentation of aerosol particles
SOAPEX Southern Ocean Atmospheric Photochemistry EXperiment, measurement campaign
STRAT Stratospheric Tracers of Atmospheric Transport
TOMCAT a CTM
TROPOP MESSy submodel: diagnostics of tropopause and boundary layer height
UTLS upper troposphere/lower stratosphere

MESSy submodel: the acronym is a name of a MESSy submodel describing the respective process.

Furthermore, our model also includes the middle atmosphere
(up to≈80 km) and realistically simulates the exchange be-
tween stratosphere and troposphere (STE) in the applied ver-
tical resolution. This has been shown byJöckel et al.(2006)
by analysing the O3-budget and by comparison of simu-
lated O3-profiles with observations. The p-TOMCAT model
domain, in contrast, is restricted to below 30 km altitude.
Hence, the two models differ inevitably in the dynamics con-
sequently evoking differences in the simulated bromocarbon
distributions.

Only few measurement data sets are available for an eval-
uation of the simulation results. Surface mixing ratios have
often been observed in coastal regions, but at these locations
bromocarbon emissions are usually higher than over the open
ocean. Thus, many measurements have to be interpreted as
upper limits, as coastlines and surf effects can not be re-
solved in a model with a horizontal resolution of approxi-
mately 250 km. Information about the vertical distribution of
bromocarbons is even harder to obtain, since satellite obser-
vations of these species are not available.
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Fig. 1. Annually integrated bromocarbon emission fluxes for CH2ClBr (left, µg/(m2 yr)) and CHBr3 (right, mg/(m2 yr)).

Thus the only source of vertically resolved information are
aircraft measurements. The three data sets used here are from

- CARIBIC1 (1997–2001,Brenninkmeijer et al., 1999),

- the Pacific Exploratory Mission(s) (PEM): PEM-West B
(February–March 1994,Hoell et al., 1997), PEM-
Tropics A (August–October 1996,Hoell et al., 1999)
and PEM-Tropics B (March–April 1999,Raper et al.,
2001) and from

- the GABRIEL campaign (October 2005,Stickler et al.,
2007; Lelieveld et al., 2008).

Section2 describes the model setup. In Sect.3 the simu-
lated distributions of CHBr3, CH2Br2, CH2ClBr, CHClBr2,
CHCl2Br and CH3Br are evaluated. The relative importance
of photolysis and the reaction with OH of the bromocarbons
as a source of reactive bromine is discussed in Sect.4. Fi-
nally, the results are summarised in Sect.5.

2 Model description

For the first comprehensive study of bromine chemistry in
the boundary layer (BL), the free troposphere (FT) and the
stratosphere, the ECHAM5/MESSy1+ (E5/M1+) model is
applied. The model system consists of the general circula-
tion model ECHAM5 (Roeckner et al., 2003, 2004, 2006)
and the Modular Earth Submodel System (MESSy,Jöckel
et al., 2005, 2006). For this study the middle atmosphere
setup of ECHAM5, (MAECHAM5; Giorgetta et al., 2002,
2006) has been applied in the T42L87 resolution, i.e. with a
triangular truncation at wave number 42 for the spectral core
of ECHAM5. This corresponds to a quadratic Gaussian grid
of approximately 2.8◦×2.8◦ in latitude and longitude, with

87 vertical levels on a hybrid-pressure grid, reaching up to
0.01 hPa (middle of the uppermost layer). The model time
step is 720 s. Instantaneous data output is triggered every
five hours.

The following submodels included in MESSy were
switched on: cloud formation (submodel CLOUD), con-
vection (CONVECT; Tost et al., 2006b, 2007b), convec-
tive tracer transport (CVTRANS), scavenging of trace gases
and aerosols and wet deposition (SCAV;Tost et al., 2006a),
gas and aerosol phase chemistry (MECCA(-AERO);Sander
et al., 2005; Kerkweg et al., 2007), photolysis (JVAL; Land-
graf and Crutzen, 1998) and heterogeneous chemistry in the
stratosphere (HETCHEM), online and offline emissions as
well as tracer nudging (ONLEM, OFFLEM and TNUDGE;
Kerkweg et al., 2006b), the air-sea exchange of acetone and
methanol (AIRSEA;Pozzer et al., 2006), emission of NOx
from lightning (LNOX; Tost et al., 2007a), aerosol dynam-
ics (M7; Vignati et al., 2004; Kerkweg et al., 2008), dry
deposition of trace gases and aerosols (DRYDEP;Kerkweg
et al., 2006a) calculated following the big leaf approach of
Wesely(1989), sedimentation of aerosols (SEDI;Kerkweg
et al., 2006a), radiation feedback (RAD4ALL), nudging of
the QBO (QBO), polar stratospheric clouds (PSC;Buchholz,
2005) and TROPOP (used to determine the tropopause and
the boundary layer height).

The individual submodels of the setup are described by
Jöckel et al. (2006) and Kerkweg et al.(2008). Previ-
ously, atmospheric bromine was represented by prescribing
CH3Br and halon mixing ratios (CH3Cl, CFCl3, CH3CCl3,
CCl4, CF2BrCl, CF3Br) at the surface based on observations
(Jöckel et al., 2006), whereas in the present study five ad-
ditional bromocarbons are taken into account. Hence, we
provide details about the submodels which are of special im-
portance for the current study.

www.atmos-chem-phys.net/8/5919/2008/ Atmos. Chem. Phys., 8, 5919–5939, 2008



5922 A. Kerkweg et al.: Part 2: Sources of reactive bromine – Bromocarbons

Table 2. List of surface measurements (average, minimum and maximum) of CHBr3 (pmol/mol) in the mid-latitudes and tropics.

Reference Location Time mean min max

Penkett et al.(1985) Atlantic Ocean NH 1982/1983 0.85 0.41 1.29
Atlantic/Southern Ocean SH 0.58 0.28 0.88

Class and Ballschmiter(1988) Atlantic Ocean 1985 2 0.5 >200
Atlas et al.(1992) Hawaii May–Jun 1988 0.22 0.08 0.41
Yokouchi et al.(1997) western Pacific 1 Feb 1991 1.01 0.28 2.9

western Pacific 2 Sep–Oct 1992 0.63 0.13 1.91
Asian coast Feb 1994 1.2 0.32 7.1

Ramacher et al.(1999) Ny Ålesund ≈Apr–May 1996 0.65 < 0.1 1.9
Carpenter et al.(1999) Mace Head May 1997 6.3 1.9 16.3
Carpenter and Liss(2000) Mace Heada Sep 1998 6.8 1.0 22.7

Cape Grimb 2.6 0.6 8.0
Carpenter et al.(2005) Mace Head May 2001–Dec 2003

Mar–Oct 5.3 4.3 6.3
Oct–Mar 1.8 1.0 2.6

a PARFORCE campaign,b SOAPEX 2 campaign. NH Northern Hemisphere, SH Southern Hemisphere.

Fig. 2. Year 2000 annual cycle of the surface CH3Br mixing ratios
(pmol/mol) as used by the submodel TNUDGE.

Bromocarbon emissions are included using the
annually averaged emission fields as provided by
Warwick et al.(2006a). They are processed by the submodel
OFFLEM (Kerkweg et al., 2006b). Figure 1 shows the
emission fields for CH2ClBr and bromoform (CHBr3). The
emission fluxes of CHCl2Br, CH2Br2 and CHClBr2 show
the same global pattern as CH2ClBr. They are scaled by a
constant factor yielding the annual global emission fluxes
as proposed byWarwick et al.(2006a). These are listed in
Table6. It is assumed that the bromocarbon emissions are
highest in the tropics, decrease towards the mid-latitudes
and approach zero at high-latitudes (>50◦ N or S). For
bromoform, additionally enhanced coastal emissions are

assumed which result in a slightly different emission pat-
tern. For methyl bromide pseudo-emissions are calculated
using the submodel TNUDGE by prescribing the observed
mixing ratio in the lowest model layer by a Newtonian
relaxation technique and diagnosing the resulting tendency
as pseudo-emission flux. For more detail we refer to
Kerkweg et al.(2006b). In case of CH3Br the observations
from the measurement stations of the ALE/GAGE/AGAGE
database (Prinn et al., 2000) andMontzka et al.(2003) are
extrapolated into the respective surrounding latitude band
yielding monthly zonal averages. Thus, the input data for
TNUDGE are specific for each month and year and the trend
in the surface CH3Br mixing ratios as reported byMontzka
et al.(2003) is considered (Fig.2).

To evaluate the relative importance of photolysis and
reaction with OH for bromocarbon degradation, diag-
nostic tracers are introduced to trace the yields of
Br radicals by photolysis of the six bromocarbons
and by their reactions with OH. The supplement of
this article (http://www.atmos-chem-phys.net/8/5919/2008/
acp-8-5919-2008-supplement.zip) comprises a full list of all
reactions taken into account in the chemistry mechanism of
MECCA (Sander et al., 2005; Kerkweg et al., 2007). The
rate coefficients for the reactions of the bromocarbons with
OH (Eqs. G7404 to G7408 in the supplement) have been esti-
mated byYang et al.(2005). Their photolysis rates have been
included following the suggestions ofSander et al.(2003).

The simulation period is 3 years (January 1998 to De-
cember 2000). The first two years are taken as model spin
up, whereas the year 2000 is analysed. Methyl bromide
was initialised from the ECHAM5/MESSy S1 simulation
(Jöckel et al., 2006). The other initial halocarbon mixing
ratios have been scaled to methyl bromide. The two years
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of model spinup are sufficient to ensure that no more artifi-
cial trends from the initialisation are present. As chemistry
calculations which include gas and aerosol phase reactions
are computationally very expensive, simulations of longer
periods are not yet feasible. One simulation month took ap-
proximately 14 h wall clock time on 256 CPUs of the IBM
pSeries Regatta system, based on Power 4 processor tech-
nology at the Rechenzentrum Garching (RZG).

3 Comparison of bromocarbon distributions

Bromocarbon observations are scarce because these com-
pounds are difficult to measure and the interest to study them
was limited. We concentrate on the comparison with obser-
vations in the midlatitudes and tropics, as a meaningful com-
parison with high-latitude (polar) data would require a model
comprising parameterisations for the specific needs of tropo-
spheric polar chemistry in particular for polar ozone deple-
tion events.

Most observations are limited to CH3Br and CHBr3. We
start with the investigation of the species with the shortest
lifetime, CHBr3, followed by the analysis of the distributions
of CH2Br2, CH2ClBr, CHCl2Br and CHClBr2. We complete
this section with the analysis of methyl bromide, the com-
pound with the longest lifetime of the six investigated bro-
mocarbons.

3.1 CHBr3

Bromoform is the shortest-lived bromocarbon addressed here
with a lifetime of approximately 3 weeks. Figure3 presents
the simulated annual average surface mixing ratios of bro-
moform in pmol/mol for the year 2000. Measurements of
surface CHBr3 are reported more often than for other short-
lived bromocarbons (see Table2).

Surface CHBr3 was measured byYokouchi et al.(1997)
during two western Pacific cruises (one from 31 Jan-
uary 1991, to 20 February 1991, in the area of approxi-
mately 135–165◦ E, 25◦ S to 40◦ N; and one from 16 Septem-
ber to 25 October 1992, in the area of 135–180◦ E, 40◦ S
to 40◦ N). They report mixing ratios between 0.13 and
2.9 pmol/mol for the western Pacific cruises. For this re-
gion, the CHBr3 mixing ratios in the simulation are higher
reaching values between 0.14 and 33 pmol/mol with an av-
erage of 1.9 pmol/mol. The same holds for the Asian
cruise with maxima of 7.1 pmol/mol and 10 pmol/mol for
the observations and the simulation, respectively.Carpen-
ter et al.(1999) observed bromoform at Mace Head, Ireland
(53◦19′ N, 9◦54′ W) during May, 1997. The bromoform mix-
ing ratios ranged from 1.9 to 16.3 pmol/mol with an aver-
age of 6.3 pmol/mol. Two factors contribute to these rela-
tively high mixing ratios. First, the biological seasonal cycle
induces higher bromoform mixing ratios (Carpenter et al.,
2005) during summer (from mid-March to mid-October:

Fig. 3. Simulated annually averaged CHBr3 mixing ratio
(pmol/mol) in the lowest model layer for the year 2000.

on average 5.3 pmol/mol) and lower ones in winter (mid-
October to mid-March: on average 1.8 pmol/mol). Thus, the
mixing ratio measured byCarpenter et al.(1999) is at the
high end of what is to be expected in summer at Mace Head.
Second, Mace Head is a well-known coastal source region
for bromocarbons.Carpenter and Liss(2000) observed bro-
moform at Mace Head during the PARFORCE campaign (av-
erage: 6.8 pmol/mol; 1.0–22.7 pmol/mol) and at Cape Grim,
Tasmania during SOAPEX 2 (average: 2.6 pmol/mol; 0.6–
8.0 pmol/mol;Carpenter et al., 2003). Our simulated sur-
face mixing ratios for this region are near the low end of
this range, possibly because of the coarse model resolu-
tion as there is no distinction between coastal zones and the
open sea.Ramacher et al.(1999) observed bromoform in
Ny Ålesund, Norway (78◦55′ N, 11◦56′ E) and report an av-
erage of 0.65 pmol/mol. The measurements range from be-
low the detection limit up to 1.0 pmol/mol. Our simulation
agrees well with these measurements.

The only available data for a comparison of the verti-
cal profiles are those from the PEM-Tropics A and B cam-
paigns (Emmons et al., 2000; Colman et al., 2001; Blake
et al., 2001). Figure 4 shows the simulated vertical pro-
files for bromoform (black line) compared to the PEM-
Tropics A data (red dots). The figure displays only a small
subset of the available data, however, the supplement of
this article (http://www.atmos-chem-phys.net/8/5919/2008/
acp-8-5919-2008-supplement.zip) contains a document pro-
viding all profiles for all three campaigns. The profiles for
the PEM-Tropics B campaign are very similar and not shown
here. Since this simulation was performed for the year 2000
only, we show values for this year. The solid line indi-
cates a spatiotemporal average for the respective flight. The
dashed lines indicate the simulated minimum and maximum
values during the campaign. Near the surface the simula-
tion matches the vertical gradient, i.e. an increase towards
the surface in most profiles. In contrast, the upper parts of
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Fig. 4. CHBr3 vertical profiles (pmol/mol) as measured during the PEM-Tropics A DC8 campaign (red dots). The black lines show the
simulated vertical profiles averaged over the flight period and area. The dashed lines indicate the simulated minimum and maximum CHBr3
mixing ratios during the whole campaign period.

Table 3. List of surface measurements (average, minimum and maximum) of CH2Br2 (pmol/mol) in the mid-latitudes and tropics.

Reference Location Time mean min max

Penkett et al.(1985) Atlantic Ocean NH 1982/1983 2.70 2.11 3.29
Atlantic/Southern Ocean SH 1.58 1.32 1.84

Class and Ballschmiter(1988) Atlantic Ocean 1985 2 1 25
Yokouchi et al.(1997) Western Pacific 1 Feb 1991 0.87 0.47 1.36

Western Pacific 2 Sept–Oct 1992 0.59 0.14 1.58
Asian coast Feb 1994 0.77 0.38 1.42

Carpenter et al.(2003) Mace Heada Sept 1998 1.44 0.28 3.39
Cape Grimb 0.43 0.1 1.39

a PARFORCE campaign,b SOAPEX 2 campaign. NH Northern Hemisphere, SH Southern Hemisphere.

the profiles do not match well. The observations mostly
decrease towards higher altitudes, whereas most simulated
profiles increase towards the tropopause. This is also in con-
tradiction to measurements of the NASA START campaign
(Schauffler et al., 1998). During this campaign in January–
February, July–August and December 1996 most bromocar-
bons discussed here were measured in the tropical tropopause
region.Schauffler et al.(1998) found bromoform at or below
0.2 pmol/mol in the upper tropical troposphere. Our simula-
tion reaches values as high as 2 pmol/mol.

Unfortunately, we assumed the wrong rate coefficient
for the reaction CHBr3+OH. We could not redo the whole
simulation, as it is much too sumptuous. Since photoly-
sis and reaction with OH are the only chemical sinks of
bromoform, we performed a sensitivity analysis by apply-
ing a chemical mechanism reduced to bromoform chemistry
only. The OH concentration was prescribed by monthly
means from the main simulation (S-hal;Kerkweg et al.,
2008). Using monthly averaged OH fields must change
the bromoform decay in contrast to prognostically calcu-
lated OH. Thus we performed this analysis study for the
wrong rate as used in the S-hal simulation and for the
new rate, which was taken fromSander et al.(2006)

(RCHBr3+OH=1.35×10−12
∗exp(−600./T ), with T tempera-

ture in K), to calculate the relative importance of the different
rates. Figures 12 and 13 in the supplement display the pro-
files for the corrected bromoform mixing ratios. In general,
the CHBr3 mixing ratios are lower as in the S-hal simula-
tion. They agree well with the observations in the middle
troposphere for most profiles. Nevertheless, the shape of
the profiles is very similar, i.e. the corrected bromoform still
increases towards the tropopause, but this increase is much
smaller for most of the profiles compared to the S-hal simu-
lation.

The bromoform mixing ratio in the upper tropo-
sphere/lower stratosphere (UTLS) is most probably oversti-
mated for dynamical reasons. A detailed analysis of the ver-
tical velocity fields at all the dates and places of the vertical
profiles of PEM-Tropics A showed that all c-shaped profiles
are associated with large scale downward motion which is
mostly attributed to the Hadley cell circulation. Obviously,
this motion transports bromoform downward into the upper
to free troposphere. As the only source of bromoform is
emission at the surface, it must have been transported up-
ward by convection, i.e. in the upward branch of the Hadley
cell circulation. Thus convection plays an important role
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for the simulated overestimation in the upper troposphere.
But the convection scheme by Tiedtke does not overestimate
neither convection intensity or height, nor the frequence at
which convection is triggered (Tost et al., 2006b). Hence,
the bromoform emission in the tropics which have been in-
creased along the coastlines byWarwick et al.(2006a) to
yield a better agreement between their simulation and the ob-
servations are most probably too high. Thus too much bro-
moform is transported upward by convection resulting in too
high bromoform mixing ratios in the subsidence area of the
Hadley cell. This is confirmed by the good agreement of the
measured and the simulated profiles (the corrected ones) in
the lower and middle troposphere in all regions which re-
cently have been subject to convection. These regions can be
identified by their flat profiles.

3.2 CH2Br2

The number of measurements for dibromomethane is very
limited. Measurements at the surface in the mid-latitudes
and tropics are listed in Table3. Figure5 displays the sim-
ulated annually averaged surface mixing ratios of CH2Br2.
For the Atlantic Ocean the simulation underestimates the
CH2Br2 abundance ranging only from 0.8 to 2 pmol/mol,
whereas both observers (Penkett et al., 1985; Class and
Ballschmiter, 1988) report mixing ratios ranging from 1.32
to 3.29 pmol/mol with an average above 2 pmol/mol. This
underestimation is also present in comparison to the obser-
vations reported byCarpenter et al.(2003). They report
CH2Br2 mixing ratios ranging from 0.28 to 3.39 pmol/mol
with an average of 1.44 pmol/mol at Mace Head during the
PARFORCE campaign (September 1998). This is about a
factor of 2 more CH2Br2 than predicted by the simulation.
This discrepancy may be partly attributed to the local effects,
as Mace Head is located directly at the shore. This is likely to
give higher mixing ratios than the average for a model grid-
box of ≈250 km length. In contrast, the simulation agrees
well with the range reported byPenkett et al.(1985) for the
southern Ocean and those reported byYokouchi et al.(1997)
for the western Pacific and the Asian coast, whereas the sur-
face mixing ratios measured during the SOAPEX 2 campaign
(Carpenter et al., 2003) are slightly overestimated by the sim-
ulation.

To evaluate the vertical distribution of CH2Br2 aircraft
measurements are required. The aircraft measurement cam-
paigns PEM-Tropics A and B (Colman et al., 2001) and
the project CARIBIC provide the only available databases
for CH2Br2 measurements.Colman et al.(2001) observed
CH2Br2 mixing ratios from 0.41 to 2.55 pmol/mol for the
PEM-Tropics A campaign. Figure6 shows the vertical pro-
files of CH2Br2 mixing ratios for the PEM-Tropics B cam-
paign. The simulation overestimates CH2Br2 in all profiles.
The observations are mostly below the interval determined
by the minimum and maximum values in the model for the
whole period of the measurement campaign. Nevertheless,

Fig. 5. Simulated annual average CH2Br2 in pmol/mol in the lowest
model layer.

the mixing ratios usually increase towards the surface in the
simulation and in the measurements. The comparison of the
vertical profiles to the PEM-Tropics A data is similar and
therefore not shown here, but it is available in the supple-
ment.

The second collection of CH2Br2 aircraft measurements
used is from the CARIBIC1 database (Oram et al., 2008;
Brenninkmeijer et al., 1999). Figure7 shows the compari-
son of the simulation (black line) with the CARIBIC1 data
(red line) for eight flights in 2000. The simulation over-
estimates the amount of CH2Br2 at cruising altitude (≈9–
11 km) by a factor of approximately 1.5. As a consequence
of the rather coarse horizontal resolution of the model setup,
the variability in time is smaller in all simulations compared
to the observations, partly also because averaging over the
model grid-boxes smoothes small scale variations.

In addition to these aircraft observations for which the data
can be used for a direct comparison, some measurement data
are available in the literature.Schauffler et al.(1993) mea-
sured a range of 0.15 to 1.02 pmol/mol, with an average of
0.72 pmol/mol during the AASE-II campaign (1991/1992) at
a flight altitude from 15.3 to 17.2 km. For the same area, the
model predicts CH2Br2 mixing ratios of about 0.55 pmol/mol
with a range from 0.11 to 0.9 pmol/mol. This matches the
measurements bySchauffler et al.(1993), even though the
average is too low.Kourtidis et al.(1996) published three
coarse vertical profiles of CH2Br2. One was measured over
Hyderabad, India (17.5◦ N) on 9 April 1990, the others were
measured over Kiruna, Sweden (68◦ N). For Hyderabad the
shape of the model profile matches the observations rela-
tively well, but the absolute values are too high. Apart
from one low value at 10 km altitude, the gradient at the
tropopause is relatively well captured. For the observations
at Kiruna the simulated mixing ratios are lower by less than
a factor of 2 for January for the measurements above the de-
tection limit. For March, the simulation is off by a factor of
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Fig. 6. As Fig.4 but for CH2Br2 and the PEM-Tropics B campaign.

Fig. 7. Point to point comparison of CH2Br2 mixing ratios from the CARIBIC aircraft data (red line) and model results (black) as a function
of hour of day (UTC) from March–December 2000.

2. The steep gradient in the measurements is also found in
the simulation, though at a higher altitude. This might be due
to the offset of the tropopause height of the model (≈9 km)
compared to the observed tropopause height of 7.2 km.

Figure8 shows the seasonal cycle of the vertical distribu-
tion of CH2Br2. The CH2Br2 concentrations are highest in
the Southern Hemisphere. The mixing ratio decrease in the
northern summer hemisphere is much more pronounced than
in the Southern Hemisphere. This is due to the distribution of
the sources and sinks of CH2Br2. First, the emission fluxes
of CH2Br2 are assumed to be only oceanic and symmet-
ric around the Equator. Since a larger part of the Southern
Hemisphere is covered by the ocean, the total emissions are
larger. Second, the losses by photolysis and reaction with
OH give rise to a seasonal cycle. The zonally averaged verti-
cal distributions of OH concentrations in 106/cm3 are given
in Fig. 9. The concentration of OH is higher in the north-

ern hemispheric summer than in the southern hemispheric
summer, thus the oxidation of CH2Br2 by OH is stronger in
the Northern Hemisphere.Schauffler et al.(1998) measured
on average 0.5(±0.2) pmol/mol in the tropical tropopause re-
gion. Figure8 suggests that the model overestimates this
mixing ratio by a factor of 2, depending on the position of
the tropopause, here indicated by the black line. Shown is
the average position for this time interval.

3.3 CHClBr2, CHCl2Br and CH2ClBr

Knowledge about these short-lived bromocarbons is sparse.
Therefore, their emissions were scaled to the oceanic bro-
moform emissions according to the estimated global annual
emission flux (see Table6) as proposed byWarwick et al.
(2006a). These species have been mostly investigated in
high-latitudinal (polar) regions (Sturges et al., 2001; Yok-
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Fig. 8. Simulated vertical distribution of CH2Br2 in pmol/mol. Shown are seasonal averages; DJF: December 1999, January 2000, February
2000; MAM: March–May 2000; JJA: June–August 2000; SON: September–November 2000.

Fig. 9. Simulated vertical distribution of OH in 106/cm3. Seasons as in Fig.8.

ouchi et al., 1996; Simpson et al., 2007). Our model does
not include any parameterisation of the processes leading to
polar ozone depletion events. Thus, a comparison with these
data is not feasible.

Table4 lists the few available surface measurements for
CHClBr2, CHCl2Br and CH2ClBr. Carpenter et al.(1999)
report CHClBr2 mixing ratios from 0.3 to 1.8 pmol/mol
with an average of 0.8 pmol/mol for Mace Head, Ireland,
whereasSchall and Heumann(1993) observed from<0.01
to 1.0 pmol/mol in Spitsbergen, Norway, with an average of
0.33 pmol/mol andClass and Ballschmiter(1988) found on
average 0.3 pmol/mol over the Atlantic Ocean with mixing
ratios varying from 0.1 to 5 pmol/mol. The left panel of
Fig.10presents the simulated annual average surface mixing
ratios of CHClBr2. The simulation agrees with the observa-
tions fairly well. For the mid-latitudes and tropics the surface
measurements reported byClass and Ballschmiter(1988) are
– to our knowledge – the only available for CHCl2Br and
CH2ClBr. The simulated surface mixing ratios (in pmol/mol)
are shown in the middle and right panels of Fig.10, respec-
tively. The abundance of both species is underestimated in
the simulation. However, as the information regarding the
emissions is equally poor as the number of measurements,
no final conclusion can be drawn from this comparison.

Figure11 shows the seasonal cycle of the vertical distri-
butions (in fmol/mol) of CHClBr2 (top), CHCl2Br (middle)
and CH2ClBr (bottom). The southern hemispheric mixing

ratios of all three bromocarbons are higher than the northern
hemispheric ones except for DJF. The gradient is largest dur-
ing the northern hemispheric summer. Generally, due to the
higher irradiation the photolysis rates and the OH concentra-
tion are higher in summer leading to a higher rate of decom-
position of the bromocarbons. During the STRAT campaign
Schauffler et al.(1998) measured CHClBr2, CHCl2Br and
CH2ClBr mixing ratios at the tropical tropopause of about
40, 20 and 120 fmol/mol, respectively. These values are for
CHClBr2 and CH2ClBr in general agreement with the aver-
age mixing ratios as shown in Fig.11, whereas the CHCl2Br
mixing ratio at the tropical tropopause is up to a factor of 3
larger than measured bySchauffler et al.(1998).

The only available vertical profiles from aircraft mea-
surements for these three compounds are from the PEM-
Tropics A and B campaigns (Emmons et al., 2000; Col-
man et al., 2001; Blake et al., 2001). Figure 12 presents
the vertical profiles for CHClBr2 measured during the PEM-
Tropics B campaign. The observations and the simulation
agree well. The picture for the PEM-Tropics A campaign
is very similar and thus not shown here. Figures13 and14
show a comparison of the observed and simulated CHCl2Br
vertical profiles during PEM-Tropics A and PEM-Tropics B,
respectively. For PEM-Tropics B the model underestimates
the CHCl2Br mixing ratios, whereas for PEM-Tropics A
they are slightly overestimated. The model tends to simu-
late increasing mixing ratios towards the surface, which is
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Fig. 10. Annual average CHClBr2 (left), CHCl2Br (middle) and CH2ClBr (right) in the lowest model layer in pmol/mol.

Table 4. List of surface measurements (average, minimum and maximum) of CHClBr2, CHCl2Br and CH2ClBr (pmol/mol) in the mid-
latitudes and tropics.

Reference Location Time mean min max

CHClBr2
Class and Ballschmiter(1988) Atlantic Ocean 1985 0.3 0.1 5
Schall and Heumann(1993) Spitsbergen 09/1992 0.33 <0.01 1.0
Carpenter et al.(1999) Mace Head May 1997 0.8 0.3 1.8

CHCl2Br
Class and Ballschmiter(1988) Atlantic Ocean 1985 0.3 0.2 1

CH2ClBr
Class and Ballschmiter(1988) Atlantic Ocean 1985 0.4 0.2 0.4

not always evident in the observations. CH2ClBr measure-
ments are only available for PEM-Tropics B (Fig.15). The
simulation underestimates the CH2ClBr mixing ratio by up
to a factor of 2. At the beginning and the end of the PEM-
Tropics B campaign the observed mixing ratios of CH2ClBr
and CHCl2Br are very high. The feature is not covered by
the simulation indicating a so far unknown source process of
CH2ClBr and CHCl2Br.

In general, no systematic model biases are apparent from
Figs.12–15and the observations are well captured. Some of
the model-measurement discrepancies may be attributed to
the simplified emission distribution of CHClBr2, CHCl2Br
and CH2ClBr rather than to their overall emission strength.

3.4 CH3Br

Methyl bromide is the longest-lived species of all six
bromocarbons investigated here, and relatively many mea-
surement data are available (Table5). Andreae et al.
(1996) measured 10 to 60 pmol/mol of methyl bromide
in air influenced by forest fires. This may be consid-
ered as an upper limit as methyl bromide is enhanced in
biomass burning plumes. At Mace HeadCarpenter et al.
(1999) observed a mean methyl bromide mixing ratio of

13.9 pmol/mol, with a range from 9.3 to 26.1 pmol/mol.
Since the coastal region near Mace Head is known to be a
strong source of bromocarbons, these mixing ratios proba-
bly also represent upper limits for methyl bromide. Simi-
lar values – also measured in coastal regions – i.e. a mean
of 13.7 pmol/mol (10.6–17 pmol/mol), are reported byRa-
macher et al.(1999) for Ny Ålesund. Gros et al.(2003)
measured 12(±3) pmol/mol in Finokalia (35◦19′ N 25◦40′ E)
during the MINOS campaign.Simmonds et al.(2004) ob-
served mixing ratios of 10.37(±0.05) pmol/mol methyl bro-
mide at Mace Head and considerably lower mixing ratios
with a mean of 7.94(±0.03) pmol/mol at Cape Grim, Tasma-
nia (41◦ S, 145◦ E). This is in accordance with the simulation.
The surface mixing ratios of CH3Br displayed in Fig.16also
show a distinct north-south gradient. These measurements
are all taken in coastal regions, thus a distinct influence of
the tidal forcing on bromocarbon emissions (due to algae
falling dry during low tide) is likely: Algae experience ox-
idative stress when seaweeds are exposed to air at low water
(Carpenter et al., 1999).

Montzka et al.(2003) observed a decrease of methyl bro-
mide since 1998 on the basis of ten globally distributed base-
line stations. Most of this decline can be attributed to reduced
industrial production due to the Montreal ProtocolUnited
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Fig. 11. Simulated vertical distribution of CHClBr2 (upper row), CHCl2Br (middle row) and CH2ClBr (lower row) in fmol/mol. Shown
are seasonal averages from left to right; DJF: December 1999–February 2000; MAM: March–May 2000; JJA: June–August 2000; SON:
September–November 2000.

Fig. 12. As Fig.4 but for CHClBr2 and the PEM-Tropics B campaign.

Nations Environment Programme(UNEP). From their mea-
surements a decrease of the methyl bromide mixing ratios
from ≈10.5 pmol/mol for 1998 to 9 pmol/mol in 2003 can
be inferred in the Northern Hemisphere. The mixing ra-
tio of methyl bromide is lower in the Southern Hemisphere,
decreasing from≈8.2 pmol/mol in 1998 to≈7 pmol/mol in
2003. Montzka et al.(2003) conclude from the fact that the
measured decrease of CH3Br is larger as the reported indus-

trial reduction, that the atmospheric lifetime of methyl bro-
mide is most likely larger (≥0.8 yr) as assumed until now
(0.7 yr).

Figure 17 presents the annual average CH3Br pseudo-
emission fluxes resulting from the tracer nudging (seeKerk-
weg et al., 2006bfor a description of the tracer nudging tech-
nique). The globally integrated emission fluxes as proposed
by Warwick et al.(2006a) and as derived from our model
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Fig. 13. As Fig.4 but for CHCl2Br.

Fig. 14. As Fig.4 but for CHCl2Br and PEM-Tropics B.

simulation do not differ much (131 Gg/yr vs. 130.6 Gg/yr).
However, the spatial distribution of the emission fluxes of
these two parameterisations deviate. In our approach, the
methyl bromide mixing ratios are relaxed to the observations.
As the used observed field (see Fig.2) is divided into latitu-
dinal bands, the simulated pseudo-emission flux shows ar-
tifical maxima at the border between two bands. However,
the tracer nudging method leads to accordance with the ob-
served surface mixing ratios and to consistent methyl bro-
mide concentrations in the stratosphere in longer term simu-
lations (Jöckel et al., 2006). Thus it is reasonable to use this
emission approach.

For higher altitudes only data from the aircraft campaigns
PEM-West B (Blake et al., 1997), PEM-Tropics A and B
(Colman et al., 2001; Blake et al., 2001; Emmons et al.,
2000), STRAT (Schauffler et al., 1998), GABRIEL (Geb-
hardt et al., 2008) and CARIBIC (Brenninkmeijer et al.,
1999) are available.

Schauffler et al.(1998) report an average of 9.45 pmol/mol
and Colman et al.(2001) summarise measurements from
the PEM-Tropics A (5 August to 6 October 1996) and
PEM-Tropics B (6 March to 18 April 1999) campaigns.
Mixing ratios of CH3Br from 6.0 to 11.9 pmol/mol were
observed, with averages of 8.9 pmol/mol and 8.6 pmol/mol
for PEM-Tropics A and PEM-Tropics B, respectively. Fig-
ure18 shows the simulated zonally averaged vertical methyl
bromide distribution for the campaign periods of PEM-

Tropics A and B though for the year 2000. The simulated
mixing ratios compare well to the observations ofColman
et al. (2001) and Schauffler et al.(1998). For a more de-
tailed comparison Fig.19shows the vertical profiles as mea-
sured during the PEM-Tropics B campaign (red dots) and
those resulting from the simulation (black lines). For the
PEM-Tropics campaigns the simulation and the observations
match very well. The vertical profiles for PEM-Tropics A
are very similar and the interested reader is referred to the
supplement.

The correspondence between simulations and observa-
tions decreases towards the north of the measurement do-
main. This indicates a lack in the representativeness for these
positions in the mid-latitudes as zonal averages are used as
input. Figure20shows the vertical profiles for PEM-West B.
The mixing ratios are often underestimated by the model,
while the shape of the profiles is reproduced. Part of the dis-
crepancies may be explained by the negative CH3Br trend of
about 10% between 1994 (PEM-West B measurements) and
2000 due to a reduction in anthropogenic emissions (WMO,
2007; Montzka et al., 2003).

However, some underestimation of the CH3Br abundance
is also apparent from the comparison with CARIBIC (Bren-
ninkmeijer et al., 1999) as well as with GABRIEL (Gebhardt
et al., 2008) data. Figure21 displays 8 CARIBIC flights of
the year 2000 and Fig.22 shows the 7 GABRIEL flights,
where the measurements of October 2005 are compared to
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Fig. 15. As Fig.4 but for CH2ClBr and PEM-Tropics B.

Table 5. List of surface measurements (average, minimum and maximum) of CH3Br (pmol/mol) in the mid-latitudes and tropics.

Reference Location Time mean min max

Penkett et al.(1985) Atlantic Ocean NH 1982/1983 15.4 13.5 17.3
Atlantic/Southern Ocean SH 10.6 9.7 11.5

Carpenter et al.(1999) Mace Head May 1997 13.9 9.3 26.1
Ramacher et al.(1999) Ny Ålesund ≈Apr–May 1996 13.7 10.6 17
Gros et al.(2003) Cretec Aug 2001 12 15 9
Simmonds et al.(2004) Mace Head 1998–2001 10.37 10.28 10.42

Cape Grim 7.94 7.97 7.91
Montzka et al.(2003) 10 baseline stations 1998 ≈10.5

2003 ≈9.0

c MINOS campaign. NH Northern Hemisphere, SH Southern Hemisphere.

the simulation results of October 2000. The red line indi-
cates the measurements, the black line shows the simulation
results, respectively. For most flights the simulation yields
too low CH3Br mixing ratios. The methane lifetime in our
simulation is 7.8 years. This is slightly lower asJöckel et al.
(2006) derived (8.02 years) and well within the range of other
models (8.67±1.32;Stevenson et al., 2006). Thus chemistry
is not the reason for the low CH3Br mixing ratios. They are
most likely a consequence of a lack in representativeness of
the methyl bromide source for which latitudinal averages are
used. This is probably most relevant for the GABRIEL cam-
paign as CH3Br emissions of the tropical rainforest are not
explicitly taken into account in our emission inventories. The
derived lifetime of CH3Br of about a year (Table6), is up
to 50% larger than previous estimates (WMO (2007), Ta-
ble 8–2). This helps to reduce an imbalance between esti-
mated sources and sinks (Reeves, 2003). One consequence
is that substantially more CH3Br may enter the stratosphere
and contribute to ozone loss than previously assumed, both
presently and in the natural pre-industrial atmosphere.

Fig. 16. Annual average (year 2000) of CH3Br (pmol/mol) in the
lowest model layer.

4 Bromocarbons as sources of reactive bromine

Subsequently to the evaluation of the individual bromo-
carbon distributions, we focus on the production of reac-
tive bromine by photolysis of bromocarbons and their re-
actions with OH and the relative importance of the two
pathways. In the following, the term “organic bromine”
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Table 6. Simulated annually averaged global column burdens, annually integrated emission and dry deposition fluxes, and annually averaged
lifetimes of the six bromocarbons. The emission fluxes are adopted fromWarwick et al.(2006a), scenario 5. The WMO lifetimes are taken
from WMO (2007) Tables 8–2 for CH3Br and Tables 2–1 for the other bromocarbons.

species burden (Gg) emission (Gg/yr) dry deposition (Gg/yr) life time (days) WMO lifetime (days)

CH3Br 136.1 130.6 46.1 386 255
CHBr3 33.2 595.0 30.2 20 26∗

CH2Br2 31.0 113.0 12.1 100 120∗

CH2ClBr 2.8 6.8 1.0 150 150∗

CHCl2Br 2.1 16.0 0.7 48 78∗

CHClBr2 2.3 23.0 1.1 36.5 69∗

∗ These lifetimes are local lifetimes as stated byWMO (2007) Tables 2–1, i.e. not directly comparable to our lifetimes.

Fig. 17.Annual average (year 2000) of the CH3Br pseudo-emission
flux (1011molecules/(m2s)) resulting from the tracer nudging in the
lowest model layer.

denominates the bromine contained in all six previously in-
vestigated compounds and in the halons CF2BrCl and CF3Br.
“Reactive bromine” refers to bromine found in all gaseous
compounds which are not organic bromine.

Table7 lists the stratospheric and tropospheric globally in-
tegrated production in kg(Br)/s of Br radicals by photolysis
of bromocarbons and reaction with OH, respectively. As the
reaction rate of bromoform with OH was not correct in the
S-hal simulation, Table7 also lists the corrected production
of Br radicals from bromoform and the corrected total pro-
duction. In the discussion below, always the corrected values
are used. Figure23shows the vertical distribution of the total
production of Br radicals. The bromocarbon production has
also been corrected in this figure.

The degradation of bromocarbons is by far larger in
the troposphere with a total production of Br radicals of
22.6 kg(Br)/s. Reaction with OH amounts to 9.7 kg(Br)/s,
i.e. slightly more than 40% of the total amount. Conversely,
this means that photolysis is the dominant source process ac-
counting for approximately 60% of the bromine radical pro-

duction from organic bromine. The stratospheric source is
much smaller producing only 0.37 kg(Br)/s even though pho-
tolysis of CH3Br, CH2Br2 and CH2ClBr is more efficient in
the stratosphere than in the troposphere. In accordance with
most stratospheric chemistry models (e.g.Steil et al., 1998;
Teyss̀edre et al., 2007), which usually take only methyl bro-
mide into account, CH3Br is indeed the major source of reac-
tive bromine in the upper stratosphere. Figure23 shows that
CH2Br2 is the C1-bromocarbon (except CH3Br) contributing
most to the reactive bromine production in the middle to up-
per stratosphere. Nevertheless, its contribution is more than
one order of magnitude smaller than that of methyl bromide.
More important is the photolysis of fluorinated halons. The
brominated halons CF2BrCl and CF3Br were taken into ac-
count in our simulation and their photolysis yields about 14%
of the overall stratospheric bromine production. Therefore
the restriction of bromocarbon chemistry to methyl bromide
(and additional fluorinated halons) in stratospheric models
seems justified in view of our results for the upper strato-
sphere. For the lower stratosphere another bromocarbon
gains importance: bromoform. It contributes approximately
twice as much bromine radicals to the stratosphere as methyl
bromide. As discussed in Sect.3.1even the corrected bromo-
form distribution tends to overestimate the amount of bromo-
form in the UTLS compared to the available measurements.
From the profiles it can be roughly estimated that the bro-
moform content is overpredicted by a factor of 2. Even if
we take this factor into account, bromoform still provides
the same amount of bromine radicals to the stratosphere as
methyl bromide does. Thus, the contribution of bromoform
to the reactive bromine content of the stratoshpere is not neg-
ligible. It rather contributes a subsantial amount of reactive
bromine to the lower stratosphere. This result agrees very
well with the findings ofDvortsov et al.(1999) andNielsen
and Douglas(2001) which both claim that bromoform con-
tributes substantial amounts of Bry to the lower stratosphere.
For this reason bromoform should not be neglected in strato-
spheric models for studies focussing on the UTLS.
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Fig. 18.Zonal averages of simulated CH3Br mixing ratios (pmol/mol). The periods coincide with the PEM-Tropics A (5 August–6 October)
and PEM-Tropics B (6 March–16 April) campaigns, though for the year 2000.

Fig. 19. CH3Br vertical profiles (pmol/mol) as measured during the PEM-Tropics B campaign (6 March–16 April, red dots). The black
lines show the simulated vertical profiles averaged over the flight period and area. The dashed lines indicate the simulated minimum and
maximum mixing ratios.

In summary, photolysis and reaction with OH are both im-
portant decomposition processes of bromocarbons in the tro-
posphere although photolysis dominates. In the stratosphere
the photolysis of halons contributes about 14% to the overall
Br production. Bromoform degradation provides a substan-
cial amount of reactive bromine to the lower stratosphere and
thus should not be neglected in stratospheric simulations.

5 Conclusions

In this part of a series of articles, focussing on atmospheric
bromine chemistry, we investigate the distribution of bromo-
carbons as simulated with the AC-GCM ECHAM5/MESSy.
The applied emission fields follow the estimates ofWarwick
et al. (2006a), more specifically emission scenario 5 which
gave the most reasonable results in their study. Depending on
the bromocarbon species, the model tends to slightly under-
or overestimate the abundance. For bromoform the observed

increase (PEM) from the free troposphere towards the sur-
face is very well reproduced. The model predicts a slight
increase towards higher altitudes while the observations indi-
cate a decrease. The CH2Br2 mixing ratios are overestimated
by the simulation for most PEM profiles. Nevertheless, the
simulated profile shape, especially the observed increase in
the mixing ratio towards the surface is reproduced by the sim-
ulation. Compared to the CARIBIC data the CH2Br2 mixing
ratios tend to be overestimated in the UTLS.

The simulated CH2ClBr mixing ratios are generally
too low compared to PEM and surface observations.
On the other hand the simulated CHClBr2 mixing ratios are
in agreement with the measurements (PEM+surface), while
the simulated CHCl2Br mixing ratios are slightly underesti-
mated compared to surface measurements and PEM-B data
and partly overestimated for PEM-Tropics A.

Bromoform is too high in our simulation compared to the
measurements which is due to an incorrect reaction rate for
the reaction of CHBr3 with OH. A sensitivity simulation

www.atmos-chem-phys.net/8/5919/2008/ Atmos. Chem. Phys., 8, 5919–5939, 2008



5934 A. Kerkweg et al.: Part 2: Sources of reactive bromine – Bromocarbons

Fig. 20. As Fig.4 for CH3Br but from PEM-West B (February–March 1994).

Fig. 21. Point to point comparison of CH3Br mixing ratios from CARIBIC aircraft data (red line) and model results (black) as a function of
time of day from March–December 2000.

showed that bromoform profiles corrected for this rate agree
well with the measurements in the free troposphere. The
erroneous increase towards the UTLS is still apparent in
the corrected profiles even though much smaller. We con-
clude that this increase is a consequence of an overestimated
CHBr3 emission flux in the tropics. We applied the emission
scenario proposed byWarwick et al.(2006b) with enhanced
coastline emissions in the tropics. The emitted bromoform
is efficiently transported upward by tropical deep convec-
tion yielding too much bromoform in the UTLS. In turn,
this results in an overestimation of the Br-radical production
in the lowermost stratosphere. Nevertheless, our simulation
indicates that bromoform contributes substantial amounts of
bromine to the lower stratosphere. This implies that strato-
spheric simulations should not neglect bromoform.

The simulated methyl bromide profiles match the observa-
tions very well in the tropics, whereas this agreement de-
creases somewhat towards the north. This is most likely

caused by the simple assumptions about the surface mixing
ratios of CH3Br used for the tracer nudging. The comparison
with CARIBIC and GABRIEL data shows an underestima-
tion for the same reason.

In summary, many bromocarbon mixing ratios are slightly
overestimated by the model. However, as the measurements
are mostly within the uncertainty of the simulation (and vice
versa), we conclude that the agreement is relatively good
while the shape of the vertical profiles and the total mixing
ratios are realistically reproduced except the overestimations
in the UTLS for CHBr3 and CH2Br2.

Based on the evaluated bromocarbon distributions the pro-
duction processes of reactive bromine were investigated.
Photolysis was found to be the dominant decomposition pro-
cess in the stratosphere for all bromocarbons. In the tropo-
sphere reaction with OH is the dominant loss process for
CH3Br, CH2Br2 and CH2ClBr, whereas photolysis is most
important for CHBr3, CHCl2Br and CHClBr2.
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Fig. 22. Point to point comparison of CH3Br mixing ratios from GABRIEL aircraft data (red line) and model results (black) as a function of
time of day in October 2000.

Fig. 23. Simulated production of Br radicals in g(Br)/s by bromocarbon photolysis and reaction with OH.
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Table 7. Production of Br by photolysis (hν) and reaction with OH
in kg/s in the stratosphere (strat) and troposphere (trop), respec-
tively. The rates for the reactions of the halons have been calculated
from the difference of the total Br production and the sum of the
six bromocarbons. Furthermore, the values for bromoform and the
total production corrected for the wrong reaction rate of bromoform
with OH are displayed.

hν OH
species strat trop strat trop

CH3Br 0.064 0.003 0.031 2.201
CHBr3 0.211 15.804 0.003 0.713
CH2Br2 0.022 0.006 0.043 2.588
CH2ClBr 0.002 <0.001 0.003 0.123
CHCl2Br 0.003 0.124 <0.001 0.102
CHClBr2 0.007 0.332 <0.001 0.183
halons 0.052 0.0 0.001 0.0
total 0.361 16.266 0.082 5.909

CHBr3
corr 0.141 12.47 0.052 4.485

totalcorr 0.239 12.935 0.131 9.682

This analysis focussed on the bromine source from bro-
mocarbons. In Part 3 of this series we will investigate the
importance of bromine release from sea salt aerosol and the
resultant Bry distribution.
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Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld,
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J.: Technical Note: Simulation of detailed aerosol chem-
istry on the global scale using MECCA-AERO, Atmos.

Chem. Phys., 7, 2973–2985, 2007,http://www.atmos-chem-
phys.net/7/2973/2007/.

Kerkweg, A., J̈ockel, P., Pozzer, A., Tost, H., Sander, R., Schulz,
M., Stier, P., Vignati, E., Wilson, J., and Lelieveld, J.: Consistent
simulation of bromine chemistry from the marine boundary layer
to the stratosphere, Part I: model description, sea salt aerosols
and pH, Atmos. Chem. Phys., 8, 5899–5917, 2008,
http://www.atmos-chem-phys.net/8/5899/2008/.

Kourtidis, K., Borchers, R., and Fabian, P.: Dibromomethane
(CH2Br2) measurements at the upper troposphere and lower
stratosphere, Geophys. Res. Lett., 23, 2581–2583, 1996.

Landgraf, J. and Crutzen, P.: An Efficient Method for Online Calcu-
lation of Photolysis and Heating Rates, J. Atmos. Sci., 55, 863–
878, 1998.

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer,
H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M.,
Taraborrelli, D., and Williams, J.: Atmospheric oxidation capac-
ity sustained by a forest, Nature, 452, 737–740, 2008.

Montzka, S., Butler, J., Hall, B., Mondeel, D., and Elkins, J.: A
decline in tropospheric organic bromine, Geophys. Res. Lett., 30,
1826, doi:10.1029/2003GL017745, 2003.

Nielsen, J. E. and Douglas, A. R.: A simulation of bromoform’s
contribution to stratospheric bromine, J. Geophys. Res., 106,
8089–8100, 2001.

Penkett, S. A., Jones, B. M. R., Rycroft, M. J., and Simmons,
D. A.: An interhemispheric comparison of the concentrations of
bromine compounds in the atmosphere, Nature, 318, 550–553,
doi:10.1038/318550a0, 1985.

Oram, D. E., Sturrock, G. A., Penkett, S. A., and Brenninkmeijer, C.
A. M.: Distribution of halocarbons in the UTLS: overview of re-
sults from the CARIBIC experiment, 1997–2002, in preparation,
2008.

Pozzer, A., J̈ockel, P., Sander, R., Williams, J., Ganzeveld, L., and
Lelieveld, J.: Technical Note: The MESSy-submodel AIRSEA
calculating the air-sea exchange of chemical species, Atmos.
Chem. Phys., 6, 5435–5444, 2006,
http://www.atmos-chem-phys.net/6/5435/2006/.

Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cun-
nold, D. M., Alyea, F. N., O’Doherty, S., Salameh, P., Miller,
B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C.,
Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch,
A.: A history of chemically and radiatively important gases in
air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105,
17 751–17 792, 2000.

Ramacher, B., Rudolph, J., and Koppmann, R.: Hydrocarbon mea-
surements during tropospheric ozone depletion events: Evidence
for halogen atom chemistry, J. Geophys. Res., 104, 3633–3653,
1999.

Raper, J. L., Kleb, M. M., Jacob, D. J., Davis, D. D., Newell,
R. E., Fuelberg, H. E., Bendura, R. J., Hoell, J. M., and McNeal,
R. J.: Pacific Exploratory Mission in the Tropical Pacific: PEM-
Tropics B, March-April 1999, J. Geophys. Res., 106, 32 401–
32 425, 2001.

Reeves, C.: Atmospheric budget implications of the temporal and
spatial trends in methyl bromide concentration, J. Geophys. Res.,
108, 4343, doi:10.1029/2002JD002943, 2003.

Roeckner, E., B̈auml, G., Bonaventura, L., Brokopf, R., Esch,
M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh,
L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U.,

www.atmos-chem-phys.net/8/5919/2008/ Atmos. Chem. Phys., 8, 5919–5939, 2008

http://www.atmos-chem-phys.net/8/3185/2008/
http://www.atmos-chem-phys.net/3/1223/2003/
http://www.atmos-chem-phys.net/5/433/2005/
http://www.atmos-chem-phys.net/6/5067/2006/
http://www.atmos-chem-phys.net/6/4617/2006/
http://www.atmos-chem-phys.net/6/3603/2006/
http://www.atmos-chem-phys.net/7/2973/2007/
http://www.atmos-chem-phys.net/7/2973/2007/
http://www.atmos-chem-phys.net/8/5899/2008/
http://www.atmos-chem-phys.net/6/5435/2006/


5938 A. Kerkweg et al.: Part 2: Sources of reactive bromine – Bromocarbons

and Tompkins, A.: The atmospheric general circulation model
ECHAM5, Tech. Rep. MPI-Report 349, Max Planck-Institute for
Meteorology, Hamburg,http://www.mpimet.mpg.de/fileadmin/
publikationen/Reports/maxscirep349.pdf, 2003.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann,
S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida,
U.: The atmospheric general circulation model ECHAM5. PART
II: Sensitivity of Simulated Climate to Horizontal and Ver-
tical Resolution, Tech. Rep. MPI-Report 354, Max Planck-
Institute for Meteorology,http://www.mpimet.mpg.de/fileadmin/
publikationen/Reports/maxscirep354.pdf, 2004.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann,
S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida,
U.: Sensitivity of simulated climate to horizontal and vertical
resolution in the ECHAM5 atmosphere model, J. Climate, 19,
3771–3791, 2006.
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