
Yugoslav Journal of Operations Research
 16 (2006), Number 1, 125-135

AN IMPLEMENTATION OF RAY TRACING ALGORITHM
FOR THE MULTIPROCESSOR MACHINES

Aleksandar B. SAMARDŽIĆ
Faculty of Mathematics,

University of Belgrade, Serbia and Montenegro
asamardzic@matf.bg.ac.yu

Dušan STARČEVIĆ
Faculty of Organizational Sciences,

University of Belgrade, Serbia and Montenegro
starcev@fon.bg.ac.yu

Milan TUBA
Faculty of Mathematics,

University of Belgrade, Serbia and Montenegro
auba@matf.bg.ac.yu

Received: November 2004 / Accepted: February 2005

Abstract: Ray Tracing is an algorithm for generating photo-realistic pictures of the 3D
scenes, given scene description, lighting condition and viewing parameters as inputs. The
algorithm is inherently convenient for parallelization and the simplest parallelization
scheme is for the shared-memory parallel machines (multiprocessors). This paper
presents two implementations of the algorithm developed by the authors for alike
machines, one using the POSIX threads API and another one using the OpenMP API.
The paper also presents results of rendering some test scenes using these
implementations and discusses our parallel algorithm version efficiency.

Keywords: Computer graphics, Ray tracing, parallelization, multiprocessors.

1. INTRODUCTION

Ray Tracing is an advanced image generation algorithm ([18]). The algorithm
consists of the two phases. First phase concerns the visible surface determination. During
this phase, imaginary rays are traced from the viewpoint through the various points on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26816247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:asamardzic@matf.bg.ac.yu
mailto:asamardzic@matf.bg.ac.yu

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 126

the projection plane and intersected with all objects in scene. The closest intersection that
is in front of the viewpoint determines the visible object along this ray. Second phase of
the algorithm is conducted then, in order to calculate the illumination at given
intersection point. In that order, rays are traced from the intersection point to each light
source in scene. If alike ray is intersecting some object in scene before reaching the
corresponding light source, then the intersection point is in shade regarding given light
source. Thus, this light source is giving no contribution to overall illumination in given
point. Otherwise, local illumination equation ([4]) is applied with regard to given light
source and its contribution is added to illumination amount in the intersection point.
Further, if material surface is reflective and/or transparent, reflection and refraction rays
are traced in reflection and refraction directions in order to estimate global illumination
influence in given point.

Because of applying the global illumination model, Ray Tracing algorithm is
capable to generate much more realistic and attractive images than Z-Buffer algorithm
and other algorithms presently used for the real-time 3D graphics. However, Ray Tracing
is also, even with applied efficiency schemes, rather slow in comparison with alike
algorithms and thus inappropriate for the real-time rendering. Because of this, since
invention of Ray Tracing algorithm there was strong incentive to speed-up the calculation
and after crucial algorithm improvement options exercised (through applying mentioned
and other less used efficiency schemes), the parallelization remained as only viable
solution.

Parallelization of the Ray Tracing algorithm for the multiprocessor machines is
an area that was not much researched. On the other side, alike machines are since
recently commonly available and that was our motivation to approach a parallel
implementation of the algorithm for the multiprocessor machines. We expected to
confirm that similar implementation is reachable and efficient. We also expected to
collect some measuring and analyze them in order to be able to point to optimally
structure parallel implementation. As an aside goal, we expected also to compare
different known sequential Ray Tracing efficiency schemes regarding their behavior
under multiprocessor parallelization.

The rest of this paper is organized as follows: section 2 presents sequential Ray
Tracing algorithm; section 3 analyzes previous work regarding parallelization of Ray
Tracing algorithm; section 4 outlines a parallel implementation of the algorithm for the
shared memory parallel machines; section 5 presents the results obtained by the parallel
version of the algorithm and makes comparison of sequential and parallel algorithm
versions performance. Finally, Section 6 presents the conclusions.

2. SEQUENTIAL ALGORITHM

This section more closely examines sequential Ray Tracing algorithm, in order
to be able to detect and develop parallelization approach. Rays traced from the viewpoint
are usually denoted primary rays, while rays traced towards light sources and in
reflection and refraction directions are collectively denoted secondary rays. Illumination
coming from reflection and refraction rays is calculated recursively, on the same manner
as for primary rays. This illumination is then multiplied with corresponding reflection
and refraction factors and added to local illumination calculated for given intersection

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 127

point, thus giving total amount of illumination in this point. This amount of illumination
then determines final color of image pixel corresponding to the primary ray.

An example of the procedure is depicted in Figure 1.

Figure 1: Recursive Ray Tracing procedure

The scene consists of three spheres, one transparent in the upper right part of the
figure and two opaque in the left part of the figure. There exists one light source in the
scene. Primary ray corresponding to some pixel is traced and found so that it intersects
with transparent sphere. Now, the light ray L0 is traced from the intersection point to the
light source. The ray L0 is not intersecting any object in the scene before reaching the
light source, thus the intersection point is not in shadow with regard to the light source
and local illumination model is applied giving local illumination in the intersection point
coming from the light source. Since the sphere surface is both reflective and transparent,
reflection ray R0 and refraction ray T0 are traced, too. Directions of reflection and
refraction rays are determined by the well-known optical laws established by Fresnel and
Snell respectively. The illumination coming along these rays is calculated recursively.
For example, the ray R0 is intersecting second sphere, sitting in top left corner of the
figure. The light ray L1 is traced from new intersection point towards the light source.
However, this ray is intersecting third sphere before reaching the light source, thus there
is no direct contribution from the light source to the illumination in this intersection
point. But the intersected sphere is reflective, thus new ray R1 is traced in the reflection
direction in order to calculate the illumination coming from this direction. The
illumination calculated in this manner is multiplied by corresponding reflection
coefficients of second and first (transparent) sphere and added to the illumination of the
intersection point of the primary ray and first sphere. The same procedure applies for the
illumination calculated for the refraction ray T0. Thus, the total amount of the

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 128

illumination in the intersection point of the primary ray and first sphere is accumulated
by this recursive procedure and finally this amount of color is assigned to the
corresponding pixel.

The important issue in described procedure is of course the recursion
termination criteria. One possibility is that recursion is limited to a fixed depth, usually 5
levels of recursion. Better solution is an adaptive recursion depth. Since reflection and
refraction coefficients are values in [0,1] range, multiplying the illumination amounts
with these coefficients while propagating the rays is usually causing fast decrease of the
influence of the illuminations calculated in higher recursion depth. Therefore, further
recursion could be avoided without noticeable impact on the final image when the
coefficients product along some recursion path decreases below a predefined value.

Another issue in described procedure is the efficiency. When having intersecting
rays with the scene object as the fundamental algorithm step, it is of utmost importance
to have these intersecting implemented as fast as possible. Two different efficiency
schemes are devised for improving the speed of this aspect of the algorithm:

1. Bounding volume hierarchies ([10]), where each object in the scene is bounded
by the corresponding bounding volume and the hierarchy of these volumes is
created. Boxes are usually used as the bounding volumes, because the cost of
intersecting a ray with a bounding volume must be lower than intersecting a ray
with any of objects in scene, and intersecting a ray with a box is very fast. The
procedure is also devised for the automatic creation of best (with the lowest cost
with regard to the intersection procedure) hierarchies ([7]). Each ray is then
intersected with the hierarchy nodes. The objects are stored in the hierarchy
leafs and a ray is intersected with them only if leafs reached. When a ray is not
intersecting with a node upper in the hierarchy, that means that the ray is
missing all nodes and leafs and the corresponding sub tree. Thus, the significant
savings are achieved because the ray is not directly intersected with many
objects in scene.

2. Voxel grids, where the scene bounding volume is divided into 3D cells (voxels)
of same size and for each voxel all primitives containing at least part of this
voxel are enumerated. A ray is then traced against the grid, using extended
version of the 2D DDA algorithm ([1]). Each time when next voxel traversed by
the ray is determined, the ray is intersected with all objects enumerated for that
voxel (of course, if not already intersected with the given object during traversal
of some earlier voxel). The idea is here to intersect a ray with more promising
objects (objects that are close to the ray path and also close to the ray origin)
earlier and thus again to avoid intersecting with many of objects in scene.

3. PREVIOUS PARALLELIZATION WORK

Lots of the early Ray Tracing algorithm parallelization work was directed to the
parallelization trough implementing the algorithm on specific parallel machines ([3], [5],
[9]). Some work is even invested in designing processors and architectures dedicated for
Ray Tracing ([13]). However, because of the specific nature of this work, this kind of
research was not broadly applicable and thus later efforts were more focused on the
computational nature of the algorithm and more generic parallelization models.

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 129

Data-oriented parallelization was most often used parallelization model for Ray
Tracing algorithm ([11]). With this model, the scene database is divided across
processors. Each processor is performing all calculations related to assigned scene sub-
domain. When a ray is leaving a sub-domain assigned to the given processor, appropriate
control message is generated and passed to the processor owning entering sub-domain for
further processing. Both bounding volume hierarchies and voxel grids as efficiency data
structures are convenient for alike arrangement, but voxel grids have clear advantage that
statistically each part of grid has the same probability of intersecting with a ray, while
with bounding volume hierarchies there is much more probability of being intersected
with rays for the nodes upper in hierarchy.

Alternative parallelization model for Ray Tracing algorithm is the control-
oriented parallelization. With this model, the scene database is residing in the shared
memory and is thus accessible to each processor. This parallelization model was not as
thoroughly researched as data-oriented parallelization primarily because the shared-
memory parallel machines were not commonly available as it was the case with the
distributed memory parallel machines, which are targeted by former model. However,
while new developments are still offering very interesting ideas for the data-oriented
parallelization ([6]), wide availability of the shared-memory machines makes very
appealing to examine Ray Tracing algorithm implementations crafted for this type of
parallel machines and one alike implementation is discussed in this paper.

4. IMPLEMENTATION DETAILS

Since at the moment no commonly accepted public domains or any other type of
supporting libraries for Ray Tracing algorithm exist, we had to develop our Ray Tracer
from scratch. First step during our implementation of Ray Tracing algorithm for
multiprocessor machine was implementation of sequential version of the algorithm. The
decision was made for the NFF (Neutral File Format) input file format, generated by the
SPD (Standard Procedural Database) software ([8]). The SPD software is capable to
generate dozen of the procedural scenes that are used as standard scenes for
benchmarking rendering algorithms. Further, the scenes are generated in mentioned NFF
format that is very easy to parse, so that the render writer could concentrate on the render
and not on the input format intricacies (that is not so often case with other 3D file
formats).

The implementation of the render is conducted in C programming language, but
still according to the principles of the object-oriented design. This was achieved by
strictly following defined set of the object-oriented C programming practices ([16]) and
basic principles of the object-oriented analysis and design ([2]). The sequential render
implementation supports both mentioned efficiency schemes (the bounding volumes
hierarchy and the voxel grid) and is comparable in the performance with the popular
public domain Ray Tracing software (like POVRay) regarding rendering the SPD test
scenes.

After having completed the implementation of the sequential render, we
approached parallelization. Most often used methods of the parallelization for the shared
memory parallel architecture are different threads mechanisms. Since threads API is
standardized through the POSIX standard, POSIX threads are selected for

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 130

implementation. However, another programming paradigm has recently emerged for the
parallel programming on the shared memory parallel machines and this is the OpenMP
mechanism, so we added an OpenMP based implementation too to our render. We named
the render PARRT (PARallel Ray Tracer) and made its source code publicly available
from http://www.nongnu.org/parrt/. The selection between the POSIX
threads and the OpenMP parallel implementation is a compile time option.

The POSIX threads API ([14]) is defined as a set of C language programming
types and procedure calls. All threads within a process share the same address space and
this is how the shared memory paradigm is supported by this API. Very convenient
feature of Ray Tracing algorithm is that there exists no inherent possibility for shared
memory write conflicts during the rendering. Namely, most of the algorithm memory
operations are read accesses and single write access is for storing calculated pixel color
into the final image representation in memory. But even there, each pixel has its own
memory location and if no two processors have assigned the same pixel for the
calculation (and there exist no reasons for alike meaningless duplication of work), there
is no possibility for conflicts even for this operation. In such a way, it is relatively simple
to adapt the sequential implementation for the POSIX thread environment. In order to
accomplish this, a concept of a task is introduced in the PARRT software. The task is a
block of pixels of final image and, instead of calculating pixel illuminations in a large
double loop (over pixels rows and columns of image as a whole), the image is divided
into number of the non-overlapping rectangles (each rectangle corresponding to a task)
and the rendering is accomplished rectangle by rectangle.

When the POSIX threads enabled version of render compiled, a configurable
number of threads is created upon the render launched. Each thread is then accessing the
task queue to pick next rectangle of pixels for rendering. During rendering, threads are
writing calculated pixels colors into final image residing in the shared memory. When
completing the rendering of the current task, a thread is again accessing task queue and
taking next rectangle of pixels to calculate, if any available. The task queue is single data
structure that has to be protected by the locking. The queue is locked when a thread is
taking next task from it, and unlocked as soon as first available task removed from the
queue and assigned to the thread. These operations are lasting for very short time, so
there is no danger of having threads starving for next input and thus the synchronization
between threads is not affecting the parallel performance.

The OpenMP API ([15]) is primarily based on the compiler directives that may
be used to explicitly direct the shared memory parallelism. Thus, while the POSIX
threads API is operating system dependent and requires a POSIX compliant operating
system to run, the OpenMP API is compiler dependent and requires an OpenMP
supporting compiler to compile. An OpenMP support is often implemented in terms of
the POSIX threads, but this is not the requirement. In such a way, it could be stated that
the OpenMP API is more portable than the POSIX threads API, but still there exist no
much compilers supporting OpenMP, so still there is no clean winner between these two
approaches for shared memory paradigm parallel programming and that was the reason
for deciding to support both in the PARRT software.

OpenMP makes it possible to define a region in code that will be executed in
parallel through parallel directive. Further, this directive could be used to specify
which program variables will be shared and which will be private. In our case, the default
was set for each program variable to be shared, except for the task queue. Following

http://www.nongnu.org/parrt/

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 131

OpenMP construct used in the PARRT software is for directive. This is a work-sharing
construct that divides the execution of the enclosed code region among the members of
the team that encounter it. Trough schedule clause of this directive one could describe
how the iterations of the loop are divided among the parallel executions and the dynamic
schedule is selected as most appropriate schedule type for the PARRT. The iterations of
the loop naturally represents solving tasks from the task queue, so first thing to do in the
loop is to pick next available task from queue. Like with the POSIX threads
implementation, this is single place in code where the parallel execution should be
synchronized and with the OpenMP API this is accomplished through critical
directive. This directive is creating a short critical section protecting the queue integrity
and accomplishing the synchronization.

Since the OpenMP implementation for compiler used (Intel C/C++ compiler)
resides internally on the POSIX threads API for its implementation on each platform
used for testing (Linux, Windows), we weren't able to discern any impact of the choice
between the POSIX threads and the OpenMP APIs on the parallelization performance.
On the other side, while both APIs are relatively simple to employ, it could be stated that
OpenMP is certainly easier to use and thus could be recommended over the POSIX
threads API in case supporting compiler provided.

5. RESULTS

In order to present the results of the parallelization procedure, some measures
have to be defined.

Definition 1. Suppose (i) is a number of the execution threads and (ii) n pt is the total
execution time of the parallel version of the algorithm. Then the cost c of the parallel
execution is calculated as:

pc n t= ⋅ (1)

Definition 2. Suppose (i) st is the total execution time of the sequential version of the
algorithm and (ii) is the cost of parallel execution. Then the efficiency of the
parallelization is calculated as:

c e

ste
c

= (2)

The efficiency is value in [0, 1] range and if it is close to 1, then it could be
stated that the parallelization of given algorithm is meaningful.

Before presenting efficiency results, one should mention that no much
difference is discerned in the algorithm performance regarding the efficiency scheme
used. Both bounding volume hierarchy and voxel grid performed similarly in the
sequential, as well as in both parallel versions of the algorithm.

The efficiency results will be presented for the Mount test scene. Table 1 shows
results for the bounding volume hierarchy case, while Table 2 contains results for the
voxel grid case.

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 132

Table 1: Efficiency values for Mount scene and bounding volume hierarchy case
 8x8 16x16 32x32 64x64
2 threads 0.892 0.910 0.921 0.925
4 threads 0.857 0.894 0.904 0.901
8 threads 0.660 0.794 0.864 0.814
16 threads 0.316 0.578 0.777 0.695

Table 2: Efficiency values for Mount scene and voxel grid case
 8x8 16x16 32x32 64x64
2 threads 0.953 0.928 0.964 0.965
4 threads 0.920 0.938 0.951 0.948
8 threads 0.600 0.775 0.880 0.844
16 threads 0.235 0.515 0.744 0.728

Along the columns, efficiency values for different task (pixel rectangle) size are

presented. Along rows, the different number of threads efficiency values is presented.
The number of threads is equal to the number of active processors on corresponding
multiprocessor machines used for testing. Presented results are for POSIX threads
parallel version. As mentioned above, available OpenMP implementation uses POSIX
threads internally, thus giving the same results.

The same results are depicted on Figure 2 and Figure 3.

Figure 2: Efficiency values for Mount scene and bounding volume hierarchy case

From the results presented, it could be noticed that most of the time the
efficiency values are above 0.8, and is considered as a very good result. On the other
side, it is also noticeable that the efficiency values are rapidly dropping when the number
of threads is above 8. This is caused by the fact that memory access becomes a
bottleneck; namely, while there exist no memory conflicts between different threads
(since all memory accesses are read operations), each thread is still accessing different
parts of the scene and thus different areas in the memory. The memory could not serve all
threads at the same time and for this reason the latency is introduced and the performance
is decreasing.

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 133

Fi case

An s of pixels.
This result pertains to 512x512 image size used for testing. Obviously, for lower task size
the cach

o much more work on its last task than some other processors. Thus, at
the end

6. CONCLUSION

This paper examined a Ray Tracing algorithm for the
multiprocessors. Two implementation variations are presented, one using the POSIX
threads

n
efficienc

gure 3: Efficiency values for Mount scene and voxel grid

other interesting result is that the best task size is 32x32 rectangle

e memory of each individual processor is not utilized most efficiently. Parts of
the scene that given processor is accessing are stored in its cache memory and in case of
bigger task size there is better locality and cached data are usable for longer time. When
the task size is small, then this locality is not utilized well and the contents of given
processor cache memory is replaced more often, thus increasing number of the shared
memory accesses and decreasing overall performance. For example, we consistently
measured, using Valgrind ([12]) memory usage analyzer, up to 15% more L1 and up to
10% more L2 cache misses each time when decreasing block size for given test scene on
a 4-way system.

On the other side, when the task size too big, there always exist some processors
that will have to d

of the rendering some processors will be idle while some other processors still
having lots of work to do. This will increase the total execution time and thus decrease
the performance.

n implementation of

API and another one using the OpenMP API, thus covering both most used of
existing methods for parallel programming on the shared memory parallel architecture.

After completing the implementation of sequential and then parallel version of
the algorithm, a number of tests are conducted in order to measure the parallel versio

y and examine the influence of changing working parameters (like task size) on
the performance. The results are presented for a typical test scene, showing that parallel
version achieves very good efficiency up to 8-way multiprocessor systems. For 16-way

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 134

multiprocessor system, the efficiency is rapidly dropping and this is an expected result
for a memory-access intensive application as Ray Tracing.

Still, the performance gains for 2-way, 4-way and 8-way multiprocessor systems
are very

to parallelize PARRT
software

Acknowledgment: Authors are grateful to paper reviewers for very useful suggestions

REFERENCES

[1] Amanatides, J., and Woo, A., "A fast Voxel traversal algorithm for ray tracing", Proceedings

[2] d Design and Analysis with Applications, Addison-Wesley,

[3] riol, T., "Parallel space tracing: An experience on an iPSC hypercube",

[4] pictures", Communications of the ACM,

[5] mage synthesis on the connection machine", Parallel Processing for

[6] uted rendering system", personal communication,

[7] ith, J., and Salmon, J., "Automatic creation of object hierarchies for ray tracing",

[8] vironment", Computer Graphics &

[9] ulti-computer ray tracing", Ray Tracing News, 1 (1989) 8-15.

[11] s, J.B., "Parallel implementation of a ray tracing

[12] algrind: A program supervision framework", Runtime

[13] ata, T., Shirakawa, I., and Omura, K., "LINKS-1: A parallel
pipelined multimicrocomputer system for image creation", Proceedings of 10th IEEE Annual
International Symposium on Computer Architecture, 1983.

 significant. Since the parallelization procedure is relatively simple using both
POSIX threads or OpenMP API once the sequential version of the algorithm structured
properly, it could be certainly recommended approaching this procedure in case one need
to render some scenes using Ray Tracing algorithm in as short time as possible and at the
same time having access to the multiprocessor machine. We further think that our results
are especially interesting in the context of new explicit multi-threading microprocessor
developments ([17]), like Intel HyperThreading architecture.

An interesting direction for further research would be
 for the distributed model of parallel execution. While it could be expected that

the parallelization procedure is more complicated than for the shared memory parallel
execution case, it would be very interesting to compare the results that could be achieved
in a distributed environment with results presented for a shared memory environment.

regarding various improvements over initial version.

of Eurographics 1987, 3-9.
Booch, G., Object-Oriente
Reading, MA, 1994.
Bouatouch, K., and P
New Trends in Computer Graphics, 1988 170-188.
Bui-Tuong, P., "Illumination for computer generated
6 (1975) 311-317.
Crow, F.C., "3D i
Computer Vision and Display, 1 (1988).
Gardener, R., "An internet-based distrib
2004.
Goldsm
Computer Graphics & Applications, 5 (1987) 14-20.
Haines, E., "A proposal for standard graphics en
Applications, 11 (1987) 3-5.
Jevans, D.A.J., "A review of m

[10] Kay, T.L., and Kajiya, J.T., "Ray tracing complex scenes", Proceedings of SIGGRAPH 1986,
in Computer Graphics, 4 (1986) 269-278.
Lee, T.Y., Raghavendra, C.S., and Nichola
algorithm for distributed memory parallel computers", Concurency – Practice and
Experience, 9 (1997) 947-965.
Nethercote, N., and Seward, J., "V
Verification Workshop, 2003.
Nishimura, H., Ohno, H., Kaw

 A. Samardžić, D. Starčević, M. Tuba / An Implementation of Ray Tracing Algorithm 135

[14] "POSIX 1003.1c standard", IEEE, 1995.
Quinn, M.J., "Parallel programming in C with MPI and OpenMP", McGraw-Hill, 2003
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and

[15]
[16] Lorensen, W., "Object-oriented

lewood Cliffs, NJ, 1991.
ing",

[18] ", Communications of the

modeling and design", Prentice Hall, Eng
[17] Ungerer, T., Robič, B. and Šilc, J., "A survey of processors with explicit multithread

ACM Computing Surveys, 1(2003) 29-63.
Whitted, T., "An improved illumination model for shaded display
ACM, 6 (1980) 343-349.

