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Abstract: Ray Tracing is an algorithm for generating photo-realistic pictures of the 3D 
scenes, given scene description, lighting condition and viewing parameters as inputs. The 
algorithm is inherently convenient for parallelization and the simplest parallelization 
scheme is for the shared-memory parallel machines (multiprocessors). This paper 
presents two implementations of the algorithm developed by the authors for alike 
machines, one using the POSIX threads API and another one using the OpenMP API.  
The paper also presents results of rendering some test scenes using these 
implementations and discusses our parallel algorithm version efficiency. 
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1. INTRODUCTION 

Ray Tracing is an advanced image generation algorithm ([18]). The algorithm 
consists of the two phases. First phase concerns the visible surface determination. During 
this phase, imaginary rays are traced from the viewpoint through the various points on 
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the projection plane and intersected with all objects in scene. The closest intersection that 
is in front of the viewpoint determines the visible object along this ray. Second phase of 
the algorithm is conducted then, in order to calculate the illumination at given 
intersection point. In that order, rays are traced from the intersection point to each light 
source in scene. If alike ray is intersecting some object in scene before reaching the 
corresponding light source, then the intersection point is in shade regarding given light 
source. Thus, this light source is giving no contribution to overall illumination in given 
point. Otherwise, local illumination equation ([4]) is applied with regard to given light 
source and its contribution is added to illumination amount in the intersection point. 
Further, if material surface is reflective and/or transparent, reflection and refraction rays 
are traced in reflection and refraction directions in order to estimate global illumination 
influence in given point. 

Because of applying the global illumination model, Ray Tracing algorithm is 
capable to generate much more realistic and attractive images than Z-Buffer algorithm 
and other algorithms presently used for the real-time 3D graphics. However, Ray Tracing 
is also, even with applied efficiency schemes, rather slow in comparison with alike 
algorithms and thus inappropriate for the real-time rendering. Because of this, since 
invention of Ray Tracing algorithm there was strong incentive to speed-up the calculation 
and after crucial algorithm improvement options exercised (through applying mentioned 
and other less used efficiency schemes), the parallelization remained as only viable 
solution. 

Parallelization of the Ray Tracing algorithm for the multiprocessor machines is 
an area that was not much researched. On the other side, alike machines are since 
recently commonly available and that was our motivation to approach a parallel 
implementation of the algorithm for the multiprocessor machines. We expected to 
confirm that similar implementation is reachable and efficient.  We also expected to 
collect some measuring and analyze them in order to be able to point to optimally 
structure parallel implementation. As an aside goal, we expected also to compare 
different known sequential Ray Tracing efficiency schemes regarding their behavior 
under multiprocessor parallelization. 

The rest of this paper is organized as follows: section 2 presents sequential Ray 
Tracing algorithm; section 3 analyzes previous work regarding parallelization of Ray 
Tracing algorithm; section 4 outlines a parallel implementation of the algorithm for the 
shared memory parallel machines; section 5 presents the results obtained by the parallel 
version of the algorithm and makes comparison of sequential and parallel algorithm 
versions performance.  Finally, Section 6 presents the conclusions.  

2. SEQUENTIAL ALGORITHM 

This section more closely examines sequential Ray Tracing algorithm, in order 
to be able to detect and develop parallelization approach. Rays traced from the viewpoint 
are usually denoted primary rays, while rays traced towards light sources and in 
reflection and refraction directions are collectively denoted secondary rays. Illumination 
coming from reflection and refraction rays is calculated recursively, on the same manner 
as for primary rays. This illumination is then multiplied with corresponding reflection 
and refraction factors and added to local illumination calculated for given intersection 
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point, thus giving total amount of illumination in this point. This amount of illumination 
then determines final color of image pixel corresponding to the primary ray. 

An example of the procedure is depicted in Figure 1. 
 

 
Figure 1: Recursive Ray Tracing procedure 

The scene consists of three spheres, one transparent in the upper right part of the 
figure and two opaque in the left part of the figure. There exists one light source in the 
scene. Primary ray corresponding to some pixel is traced and found so that it intersects 
with transparent sphere. Now, the light ray L0 is traced from the intersection point to the 
light source. The ray L0 is not intersecting any object in the scene before reaching the 
light source, thus the intersection point is not in shadow with regard to the light source 
and local illumination model is applied giving local illumination in the intersection point 
coming from the light source. Since the sphere surface is both reflective and transparent, 
reflection ray R0 and refraction ray T0 are traced, too. Directions of reflection and 
refraction rays are determined by the well-known optical laws established by Fresnel and 
Snell respectively. The illumination coming along these rays is calculated recursively. 
For example, the ray R0 is intersecting second sphere, sitting in top left corner of the 
figure. The light ray L1 is traced from new intersection point towards the light source. 
However, this ray is intersecting third sphere before reaching the light source, thus there 
is no direct contribution from the light source to the illumination in this intersection 
point. But the intersected sphere is reflective, thus new ray R1 is traced in the reflection 
direction in order to calculate the illumination coming from this direction. The 
illumination calculated in this manner is multiplied by corresponding reflection 
coefficients of second and first (transparent) sphere and added to the illumination of the 
intersection point of the primary ray and first sphere. The same procedure applies for the 
illumination calculated for the refraction ray T0. Thus, the total amount of the 
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illumination in the intersection point of the primary ray and first sphere is accumulated 
by this recursive procedure and finally this amount of color is assigned to the 
corresponding pixel. 

The important issue in described procedure is of course the recursion 
termination criteria. One possibility is that recursion is limited to a fixed depth, usually 5 
levels of recursion. Better solution is an adaptive recursion depth. Since reflection and 
refraction coefficients are values in [0,1] range, multiplying the illumination amounts 
with these coefficients while propagating the rays is usually causing fast decrease of the 
influence of  the illuminations calculated in higher recursion depth. Therefore, further 
recursion could be avoided without noticeable impact on the final image when the 
coefficients product along some recursion path decreases below a predefined value. 

Another issue in described procedure is the efficiency. When having intersecting 
rays with the scene object as the fundamental algorithm step, it is of utmost importance 
to have these intersecting implemented as fast as possible. Two different efficiency 
schemes are devised for improving the speed of this aspect of the algorithm: 

1. Bounding volume hierarchies ([10]), where each object in the scene is bounded 
by the corresponding bounding volume and the hierarchy of these volumes is 
created. Boxes are usually used as the bounding volumes, because the cost of 
intersecting a ray with a bounding volume must be lower than intersecting a ray 
with any of objects in scene, and intersecting a ray with a box is very fast. The 
procedure is also devised for the automatic creation of best (with the lowest cost 
with regard to the intersection procedure) hierarchies ([7]). Each ray is then 
intersected with the hierarchy nodes. The objects are stored in the hierarchy 
leafs and a ray is intersected with them only if leafs reached. When a ray is not 
intersecting with a node upper in the hierarchy, that means that the ray is 
missing all nodes and leafs and the corresponding sub tree. Thus, the significant 
savings are achieved because the ray is not directly intersected with many 
objects in scene. 

2. Voxel grids, where the scene bounding volume is divided into 3D cells (voxels) 
of same size and for each voxel all primitives containing at least part of this 
voxel are enumerated. A ray is then traced against the grid, using extended 
version of the 2D DDA algorithm ([1]). Each time when next voxel traversed by 
the ray is determined, the ray is intersected with all objects enumerated for that 
voxel (of course, if not already intersected with the given object during traversal 
of some earlier voxel). The idea is here to intersect a ray with more promising 
objects (objects that are close to the ray path and also close to the ray origin) 
earlier and thus again to avoid intersecting with many of objects in scene. 

 
 

3. PREVIOUS PARALLELIZATION WORK 

Lots of the early Ray Tracing algorithm parallelization work was directed to the 
parallelization trough implementing the algorithm on specific parallel machines ([3], [5], 
[9]). Some work is even invested in designing processors and architectures dedicated for 
Ray Tracing ([13]). However, because of the specific nature of this work, this kind of 
research was not broadly applicable and thus later efforts were more focused on the 
computational nature of the algorithm and more generic parallelization models. 
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Data-oriented parallelization was most often used parallelization model for Ray 
Tracing algorithm ([11]). With this model, the scene database is divided across 
processors. Each processor is performing all calculations related to assigned scene sub-
domain. When a ray is leaving a sub-domain assigned to the given processor, appropriate 
control message is generated and passed to the processor owning entering sub-domain for 
further processing. Both bounding volume hierarchies and voxel grids as efficiency data 
structures are convenient for alike arrangement, but voxel grids have clear advantage that 
statistically each part of  grid has the same probability of intersecting with a ray, while 
with bounding volume hierarchies there is much more probability of being intersected 
with rays for the nodes upper in hierarchy. 

Alternative parallelization model for Ray Tracing algorithm is the control-
oriented parallelization. With this model, the scene database is residing in the shared 
memory and is thus accessible to each processor. This parallelization model was not as 
thoroughly researched as data-oriented parallelization primarily because the shared-
memory parallel machines were not commonly available as it was the case with the 
distributed memory parallel machines, which are targeted by former model. However, 
while new developments are still offering very interesting ideas for the data-oriented 
parallelization ([6]), wide availability of the shared-memory machines makes very 
appealing to examine Ray Tracing algorithm implementations crafted for this type of 
parallel machines and one alike implementation is discussed in this paper. 

4. IMPLEMENTATION DETAILS 

Since at the moment no commonly accepted public domains or any other type of 
supporting libraries for Ray Tracing algorithm exist, we had to develop our Ray Tracer 
from scratch. First step during our implementation of Ray Tracing algorithm for 
multiprocessor machine was implementation of sequential version of the algorithm. The 
decision was made for the NFF (Neutral File Format) input file format, generated by the 
SPD (Standard Procedural Database) software ([8]). The SPD software is capable to 
generate dozen of the procedural scenes that are used as standard scenes for 
benchmarking rendering algorithms. Further, the scenes are generated in mentioned NFF 
format that is very easy to parse, so that the render writer could concentrate on the render 
and not on the input format intricacies (that is not so often case with other 3D file 
formats). 

The implementation of the render is conducted in C programming language, but 
still according to the principles of the object-oriented design. This was achieved by 
strictly following defined set of the object-oriented C programming practices ([16]) and 
basic principles of the object-oriented analysis and design ([2]). The sequential render 
implementation supports both mentioned efficiency schemes (the bounding volumes 
hierarchy and the voxel grid) and is comparable in the performance with the popular 
public domain Ray Tracing software (like POVRay) regarding rendering the SPD test 
scenes. 

After having completed the implementation of the sequential render, we 
approached parallelization. Most often used methods of the parallelization for the shared 
memory parallel architecture are different threads mechanisms. Since threads API is 
standardized through the POSIX standard, POSIX threads are selected for 
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implementation. However, another programming paradigm has recently emerged for the 
parallel programming on the shared memory parallel machines and this is the OpenMP 
mechanism, so we added an OpenMP based implementation too to our render. We named 
the render PARRT (PARallel Ray Tracer) and made its source code publicly available 
from http://www.nongnu.org/parrt/. The selection between the POSIX 
threads and the OpenMP parallel implementation is a compile time option. 

The POSIX threads API ([14]) is defined as a set of C language programming 
types and procedure calls. All threads within a process share the same address space and 
this is how the shared memory paradigm is supported by this API. Very convenient 
feature of Ray Tracing algorithm is that there exists no inherent possibility for shared 
memory write conflicts during the rendering. Namely, most of the algorithm memory 
operations are read accesses and single write access is for storing calculated pixel color 
into the final image representation in memory. But even there, each pixel has its own 
memory location and if no two processors have assigned the same pixel for the 
calculation (and there exist no reasons for alike meaningless duplication of work), there 
is no possibility for conflicts even for this operation. In such a way, it is relatively simple 
to adapt the sequential implementation for the POSIX thread environment. In order to 
accomplish this, a concept of a task is introduced in the PARRT software. The task is a 
block of pixels of final image and, instead of calculating pixel illuminations in a large 
double loop (over pixels rows and columns of image as a whole), the image is divided 
into number of the non-overlapping rectangles (each rectangle corresponding to a task) 
and the rendering is accomplished rectangle by rectangle. 

When the POSIX threads enabled version of render compiled, a configurable 
number of threads is created upon the render launched. Each thread is then accessing the 
task queue to pick next rectangle of pixels for rendering. During rendering, threads are 
writing calculated pixels colors into final image residing in the shared memory. When 
completing the rendering of the current task, a thread is again accessing task queue and 
taking next rectangle of pixels to calculate, if any available. The task queue is single data 
structure that has to be protected by the locking. The queue is locked when a thread is 
taking next task from it, and unlocked as soon as first available task removed from the 
queue and assigned to the thread. These operations are lasting for very short time, so 
there is no danger of having threads starving for next input and thus the synchronization 
between threads is not affecting the parallel performance. 

The OpenMP API ([15]) is primarily based on the compiler directives that may 
be used to explicitly direct the shared memory parallelism. Thus, while the POSIX 
threads API is operating system dependent and requires a POSIX compliant operating 
system to run, the OpenMP API is compiler dependent and requires an OpenMP 
supporting compiler to compile. An OpenMP support is often implemented in terms of 
the POSIX threads, but this is not the requirement. In such a way, it could be stated that 
the OpenMP API is more portable than the POSIX threads API, but still there exist no 
much compilers supporting OpenMP, so still there is no clean winner between these two 
approaches for shared memory paradigm parallel programming and that was the reason 
for deciding to support both in the PARRT software. 

OpenMP makes it possible to define a region in code that will be executed in 
parallel through parallel directive. Further, this directive could be used to specify 
which program variables will be shared and which will be private. In our case, the default 
was set for each program variable to be shared, except for the task queue. Following 

http://www.nongnu.org/parrt/
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OpenMP construct used in the PARRT software is for directive. This is a work-sharing 
construct that divides the execution of the enclosed code region among the members of 
the team that encounter it. Trough schedule clause of this directive one could describe 
how the iterations of the loop are divided among the parallel executions and the dynamic 
schedule is selected as most appropriate schedule type for the PARRT. The iterations of 
the loop naturally represents solving tasks from the task queue, so first thing to do in the 
loop is to pick next available task from queue. Like with the POSIX threads 
implementation, this is single place in code where the parallel execution should be 
synchronized and with the OpenMP API this is accomplished through critical 
directive. This directive is creating a short critical section protecting the queue integrity 
and accomplishing the synchronization. 

Since the OpenMP implementation for compiler used (Intel C/C++ compiler) 
resides internally on the POSIX threads API for its implementation on each platform 
used for testing (Linux, Windows), we weren't able to discern any impact of the choice 
between the POSIX threads and the OpenMP APIs on the parallelization performance. 
On the other side, while both APIs are relatively simple to employ, it could be stated that 
OpenMP is certainly easier to use and thus could be recommended over the POSIX 
threads API in case supporting compiler provided. 

5. RESULTS 

In order to present the results of the parallelization procedure, some measures 
have to be defined. 

 
Definition 1. Suppose (i)  is a number of the execution threads and (ii) n pt  is the total 
execution time of the parallel version of the algorithm. Then the cost c of the parallel 
execution is calculated as: 

pc n t= ⋅  (1) 

Definition 2. Suppose (i) st  is the total execution time of the sequential version of the 
algorithm and (ii)  is the cost of parallel execution. Then the efficiency  of the 
parallelization is calculated as: 

c e

ste
c

=  (2) 

The efficiency is value in [0, 1] range and if it is close to 1, then it could be 
stated that the parallelization of given algorithm is meaningful. 

Before presenting efficiency results, one should mention that no much 
difference is discerned in the algorithm performance regarding the efficiency scheme 
used. Both bounding volume hierarchy and voxel grid performed similarly in the 
sequential, as well as in both parallel versions of the algorithm.  

The efficiency results will be presented for the Mount test scene. Table 1 shows 
results for the bounding volume hierarchy case, while Table 2 contains results for the 
voxel grid case. 
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Table 1: Efficiency values for Mount scene and bounding volume hierarchy case 
 8x8 16x16 32x32 64x64 
2 threads 0.892 0.910 0.921 0.925 
4 threads 0.857 0.894 0.904 0.901 
8 threads 0.660 0.794 0.864 0.814 
16 threads 0.316 0.578 0.777 0.695 

 
Table 2: Efficiency values for Mount scene and voxel grid case 
 8x8 16x16 32x32 64x64 
2 threads 0.953 0.928 0.964 0.965 
4 threads 0.920 0.938 0.951 0.948 
8 threads 0.600 0.775 0.880 0.844 
16 threads 0.235 0.515 0.744 0.728 

 
Along the columns, efficiency values for different task (pixel rectangle) size are 

presented. Along rows, the different number of threads efficiency values is presented. 
The number of threads is equal to the number of active processors on corresponding 
multiprocessor machines used for testing. Presented results are for POSIX threads 
parallel version. As mentioned above, available OpenMP implementation uses POSIX 
threads internally, thus giving the same results. 

The same results are depicted on Figure 2 and Figure 3.  
 

Figure 2: Efficiency values for Mount scene and bounding volume hierarchy case 

From the results presented, it could be noticed that most of the time the 
efficiency values are above 0.8, and is considered as a very good result. On the other 
side, it is also noticeable that the efficiency values are rapidly dropping when the number 
of threads is above 8. This is caused by the fact that memory access becomes a 
bottleneck; namely, while there exist no memory conflicts between different threads 
(since all memory accesses are read operations), each thread is still accessing different 
parts of the scene and thus different areas in the memory. The memory could not serve all 
threads at the same time and for this reason the latency is introduced and the performance 
is decreasing. 
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Fi  case 

An s of pixels. 
This result pertains to 512x512 image size used for testing. Obviously, for lower task size 
the cach

o much more work on its last task than some other processors. Thus, at 
the end 

6. CONCLUSION 

This paper examined a Ray Tracing algorithm for the 
multiprocessors. Two implementation variations are presented, one using the POSIX 
threads 

n 
efficienc

gure 3: Efficiency values for Mount scene and voxel grid

other interesting result is that the best task size is 32x32 rectangle

e memory of each individual processor is not utilized most efficiently. Parts of 
the scene that given processor is accessing are stored in its cache memory and in case of 
bigger task size there is better locality and cached data are usable for longer time. When 
the task size is small, then this locality is not utilized well and the contents of given 
processor cache memory is replaced more often, thus increasing number of the shared 
memory accesses and decreasing overall performance. For example, we consistently 
measured, using Valgrind ([12]) memory usage analyzer, up to 15% more L1 and up to 
10% more L2 cache misses each time when decreasing block size for given test scene on 
a 4-way system. 

On the other side, when the task size too big, there always exist some processors 
that will have to d

of the rendering some processors will be idle while some other processors still 
having lots of work to do. This will increase the total execution time and thus decrease 
the performance. 

n implementation of 

API and another one using the OpenMP API, thus covering both most used of 
existing methods for parallel programming on the shared memory parallel architecture. 

After completing the implementation of sequential and then parallel version of 
the algorithm, a number of tests are conducted in order to measure the parallel versio

y and examine the influence of changing working parameters (like task size) on 
the performance. The results are presented for a typical test scene, showing that parallel 
version achieves very good efficiency up to 8-way multiprocessor systems. For 16-way 
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multiprocessor system, the efficiency is rapidly dropping and this is an expected result 
for a memory-access intensive application as Ray Tracing. 

Still, the performance gains for 2-way, 4-way and 8-way multiprocessor systems 
are very

to parallelize PARRT 
software
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