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Abstrak 

Kajian lepas mendedahkan bahawa Autoregresi Eksponen Teritlak Bersyaratkan 

Heteroskedastik (EGARCH) mengatasi Autoregresi Vektor (VAR) apabila data 

menunjukkan heteroskedastisiti. Walau bagaimanapun, penganggaran EGARCH tidak 

cekap apabila data mempunyai kesan keumpilan. Oleh itu, dalam kajian ini, 

kelemahan VAR dan EGARCH dimodel menggunakan Gabungan Hingar Putih 

(CWN). Model CWN dibangunkan dengan mengintegrasikan hingar putih VAR 

dengan EGARCH menggunakan Model Pemurataan Bayesian (BMA) untuk 

meningkatkan anggaran VAR. Pertama, reja piawai bagi ralat EGARCH (varians 

heteroskedastik) telah diuraikan menjadi varians sama dan ditakrifkan sebagai siri 

hingar putih. Kemudian, siri tersebut diubah menjadi model CWN melalui BMA. 

CWN disahkan menggunakan kajian perbandingan berdasarkan simulasi dan data 

sebenar Keluaran Dalam Negara Kasar (GDP) bagi empat buah negara. Data 

disimulasi dengan menggabungkan tiga saiz sampel dengan nilai keumpilan dan 

kepencongan rendah, sederhana, dan tinggi. Model CWN dibandingkan dengan tiga 

model sedia ada (VAR, EGARCH dan Purata Bergerak (MA)). Ralat piawai, log-

kebolehjadian, kriteria maklumat dan ukuran ralat telahan digunakan untuk menilai 

prestasi kesemua model tersebut. Dapatan simulasi menunjukkan bahawa CWN 

mengatasi tiga model yang lain apabila menggunakan saiz sampel 200 dengan 

keumpilan tinggi dan kepencongan sederhana. Keputusan yang sama diperolehi bagi 

data sebenar di mana CWN mengatasi tiga model yang lain dengan keumpilan tinggi 

dan kepencongan sederhana menggunakan GDP Perancis. CWN juga mengatasi tiga 

model yang lain apabila menggunakan data GDP dari tiga negara lain. CWN 

merupakan model yang paling tepat dengan anggaran 70 peratus berbanding dengan 

model VAR, EGARCH dan MA. Dapatan simulasi dan data sebenar ini menunjukkan 

bahawa CWN adalah lebih tepat dan menyediakan alternatif yang lebih baik untuk 

memodelkan data heterokedastik dengan kesan keumpilan. 

 

Kata kunci: Autoregresi Eksponen Teritlak Bersyaratkan Heteroskedastik, 

Autoregresi Vektor, Kesan Keumpilan, Model Pemurataan Bayesian, Gabungan 

Hingar Putih. 
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Abstract 

Previous studies revealed that Exponential Generalized Autoregressive Conditional 

Heteroscedastic (EGARCH) outperformed Vector Autoregression (VAR) when data 

exhibit heteroscedasticity. However, EGARCH estimation is not efficient when the 

data have leverage effect. Therefore, in this study the weaknesses of VAR and 

EGARCH were modelled using Combine White Noise (CWN). The CWN model was 

developed by integrating the white noise of VAR with EGARCH using Bayesian 

Model Averaging (BMA) for the improvement of VAR estimation. First, the 

standardized residuals of EGARCH errors (heteroscedastic variance) were 

decomposed into equal variances and defined as white noise series. Next, this series 

was transformed into CWN model through BMA. The CWN was validated using 

comparison study based on simulation and four countries real data sets of Gross 

Domestic Product (GDP). The data were simulated by incorporating three sample sizes 

with low, moderate and high values of leverages and skewness. The CWN model was 

compared with three existing models (VAR, EGARCH and Moving Average (MA)). 

Standard error, log-likelihood, information criteria and forecast error measures were 

used to evaluate the performance of the models. The simulation findings showed that 

CWN outperformed the three models when using sample size of 200 with high 

leverage and moderate skewness. Similar results were obtained for the real data sets 

where CWN outperformed the three models with high leverage and moderate 

skewness using France GDP. The CWN also outperformed the three models when 

using the other three countries GDP data sets. The CWN was the most accurate model 

of about 70 percent as compared with VAR, EGARCH and MA models. These 

simulated and real data findings indicate that CWN are more accurate and provide 

better alternative to model heteroscedastic data with leverage effect. 

 

Keywords: Exponential Generalized Autoregressive Conditional Heteroscedastic, 

Vector Autoregression, Leverage Effect, Bayesian Model Averaging, Combine White 

Noise. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Sims (1980) introduced Vector Autoregression (VAR) models that provide macro 

econometric system a better execution of the models as choices to simultaneous 

equations with error term called white noise (Harvey). A univariate autoregression is 

defined as a single-variable model in which the current estimation of a variable is 

clarified by its lagged values. A VAR is a k-equation, k-variable direct model in which 

every variable is regressed by its personal lagged values, in addition to present and 

past estimations of the left over k-1 variable. VAR accompany the certification of 

giving a consistent and dependable methodology to information, interpretation, 

forecasting, structural inference and policy examination. The tools that accompany 

VAR are not difficult to use and interpret, to capture the rich dynamics in various time 

series. 

VAR consist of three forms; reduced, recursive and structural (Stock & Watson, 

2001). The reduced form VAR passes on that each variable in the model serve as a 

direct capacity of its own past qualities together with all different variables past values 

that are measured and a serially uncorrelated error term called white noise. Regression 

of ordinary least squares is utilized for the estimation of every model. The surprise 

activities in the variables are the error terms in the regression model following the 

consideration of its previous values. The reduced structure model that contains error 

terms shall be connected crosswise over equations, when diverse variables are joined 
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with one another (Stock & Watson, 2001). The reduced form coefficients which are 

not linear combinations of the structural coefficients are the restricted, reduced form 

that refers to as restricted VAR. The mutually needy variables as functions of the 

predetermined variables is only being expressed as the set of linear equations without 

restriction of the coefficient values in the equations is called unrestricted reduced form 

known as unrestricted VAR (Charemza & Deadman, 1992; 1997). 

The recursive VAR strives to characterize the structure of the model by the 

development of the error term in individual error to be random with the error in the 

past mathematical equations. This is carefully considering a percentage of the 

mathematical equations that are contemporaneous estimations of different variables as 

regressors in evaluating the VAR equations. 

The computation of the Choleski factorization of the reduced form VAR covariance 

matrix is equipped when the recursive VAR which accounts for the reduced structure 

estimates of VAR (Lutkepohl, 2006). Clearly, the variable arrangement changes the 

results of the VAR models, coefficients and residual, having n factorial recursive 

VAR signifying the likely arrangements entirely (Stock & Watson, 2001). 

Structural VAR reveals the contemporaneous relations among the variables using 

economic theory (Bernanke, 1986; Blanchard & Quah, 1989; Sims, 1986). Setting up 

causal relations among variables needs the “identifying assumptions” of structural 

VAR(Stock & Watson, 2001, p. 2).The structural VAR model is rewritten in 

unrestricted VAR to overcome the parameter identification problem, because using 

ordinary least squares (OLS) estimation will yield inconsistent parameter estimation of 
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structural VAR. The reduced form VAR which is unrestricted VAR has an easy 

application for forecasting the variables (Stock & Watson, 2001). 

1.2 Problem Statement 

Vector Autoregression (VAR) is incorporating white noise error ( t ) in the model, 

which assumed zero mean, zero autocovariances at non-zero lags and constant 

variance (Harvey, 1993). The violation of these assumptions contributes to the 

inefficient VAR estimation.  

First, when the mean is not zero, the Ordinary Least Square (OLS) estimation will be 

biased (Kennedy, 2008). This can easily be resolved by removing the non-zero mean 

form the error term and incorporate it in the intercept term in the estimated equation 

(Kennedy, 2008). Taking the expectation of the error term will make mean equal to 

zero (Harvey, 1993).  

Second, when the autocovariances of non-zero lags are not zero (autocorrelation), 

forecasting reliability will be less as the forecasting error terms are liable to increase or 

decrease in size over time (Kelejian & Oates, 1981; Kennedy, 2008; Lazim, 2013). An 

essential assumption in econometric estimation is when the series of error terms at 

different points in time are not related (uncorrelated) to each other, which are violated 

by autocorrelation. Moving Average (MA) with the autocovariances of lags greater 

than specified lags q  are zero (uncorrelated) is employed to resolve the 

autocorrelation problem. The random series are estimated directly from the 

observation, when the parameters are precisely known. The effect of autocorrelation is 



  

4 

 

minimized in the errors, if suitable model is used (Box & Pierce, 1970; Newbold & 

Ganger, 1974). Moving Average model cannot handle the cases of unequal variances 

(heteroscedasticity) but MA can only handle equal variances (white noise) efficiently 

(White, 1980). 

Third, when the variance is not constant and this is also known as heteroscedasticity. 

The existence of heteroscedasticity (unequal variances) leads to inefficient parameters 

and inconsistent covariance matrix estimates in VAR estimation (White, 1980). In 

1982, Engle introduced Autoregressive Conditional Heteroscedasticity (ARCH) model 

to overcome the unequal variances. The ARCH process errors have some properties 

such as; mean zero, serially uncorrelated processes with non-constant variances 

conditional on the past, and constant unconditional variances (Engle, 1982) to resolve 

the heteroscedasticity. ARCH is necessary in order to have good result from the 

estimation of a model, to achieve more reasonable forecast variances and proper 

information for policy makers (Engle, 1982). Bollerslev (1986) also suggested 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to capture the 

volatility persistent, which is flexible to uplift the weakness of fixed lag structure in 

ARCH models. There are excess kurtosis and volatility persistence in GARCH (Vivian 

& Wohar, 2012; Ewing & Malik, 2013). 

 However, the family of GARCH includes integrated GARCH (IGARCH), threshold 

GARCH (TGARCH) and exponential GARCH (EGARCH) solved the effect of the 

excess kurtosis and volatility persistence by capturing the asymmetry of the model. 

The GARCH family models; EGARCH, quadratic GARCH (QGARCH), TGARCH, 
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Glosten, Jagannathan and Runkle GARCH (GJR-GARCH) and asymmetric power 

ARCH (APARCH) use the statistical properties for asymmetric volatility to model the 

leverage effect when restriction is made to satisfy the positivity, stationary and 

restriction of finite fourth order model, but GARCH family cannot handle leverage 

effect(Rodríguez &Ruiz, 2012). 

Previous studies revealed that GARCH family models impose positivity restriction to 

model the leverage effect but EGARCH outperform the other GARCH family models 

with less restriction(most flexible) (Rodríguez &Ruiz, 2012).Modelling the leverage 

effect using EGARCH require stationary and invertibility conditions to hold 

(Hentschel, 1995; McAleer, 2014; McAleer & Hafner, 2014; Martinet & McAleer, 

2016). The general condition of stationary of random coefficient moving average 

(RCMA) time series models are not easy to investigate as the models are non-linear. 

Hence, the derivation of EGRACH from RCMA is not possible. Linear MA ( p ) 

process invertibility conditions are easily established, but the situation in the RCMA 

case is more complicated. The models that are not invertible are not used for 

forecasting, because the white noise terms are to be estimated, which reveal the 

significance of invertibility (Marek, 2005). 

 Furthermore, McAleer and Hafner (2014) introduced a random coefficient complex 

non-linear moving average (RCCNMA) process. The lack of an invertibility condition 

for the returns shocks underlying the EGARCH model results in the non-availability of 

statistical properties for the quasi-maximum likelihood estimator (QMLE) of the 

EGARCH parameters. The derivation of EGARCH from RCCNMA process reveals 
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the lack of statistical properties of the QMLE of EGARCH because the stationary and 

invertibility conditions for the RCCNMA process cannot hold. The class of random 

coefficient linear moving average models is not RCCNMA process. This reveals that 

the EGARCH parameters cannot permit the derivation of statistical properties 

(stationarity and invertibility) from RCCNMA process (Marek, 2005; McAleer and 

Hafner, 2014; Martinet & McAleer, 2016). 

The unavailability of statistical properties for modelling the EGARCH  leverage effect 

of the heteroscedastic data can be improved by decomposing the EGARCH 

standardized residuals  into series of models and using Bayesian Model Averaging 

(BMA) to select the best models. Bayesian Information Criterion (BIC) value will also 

be used in determining the weight in BMA for the combination of the models (Hoeting 

et al., 1999; Shao & Gift, 2014; Hooten & Hobbs, 2015). 

Therefore, there is a crucial need to develop a new model that can solve the challenges 

of the heteroscedastic data with leverage effect. The purpose of this study is to develop 

a new model for the improvement of VAR estimation using EGARCH and BMA 

because heteroscedastic data with leverage effect are not easy to model using 

EGARCH. 

1.3 Objective of the Study 

Based on the purpose of the study which is to develop a new model to improve the 

VAR estimation, the following are the objectives: 

i. to divide the EGARCH standardized residuals into series of models. 

ii. to use BMA to select the best models from the series of models. 
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iii. to develop a new model for the heteroscedastic data with leverage effect. 

iv. to validate the performance of the new model using comparison study based on 

simulated and real data. 

1.4 Significance of the Study 

The new model can provide better alternative to model heteroscedastic data with 

leverage effect to overcome VAR, EGARCH and MA weaknesses by comparison 

study based on simulated and real data. The new model can improve VAR estimation 

using real data which can benefit the econometricians, economists and statistical 

modelling end users. 

1.5 Thesis Outline 

The thesis is divided into six chapters: 

Chapter one is the introduction which includes the background of the study, problem 

statement, objective of the study, significance of the study and thesis outline. 

Chapter two is the review of related literature on the VAR and its weaknesses. The 

ARCH and GARCH family with its weaknesses of errors in the models literature are 

reviewed, while the problem of heteroscedasticity and correlation are enumerated.MA 

process, linear regression model and Bayesian model averaging are discussed.  

Chapter three outline the methodology that describes the main contribution of this 

study. There are ten steps in the development of the new model for the heteroscedastic 

data with leverage effect. 
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Chapter four validates the performances of combine white noise (CWN) conditions 

which are based on different sample sizes, leverages and skewness using simulation. 

The CWN is compared with the three models (VAR, EGARCH and MA) using 

standard error, log-likelihood, information criteria (AIC and BIC)and error measures.  

Chapter five enumerates the performances of CWN using Gross Domestic Product 

(GDP) data of four countries (United States, United Kingdom, Australia and France). 

The CWN is compared with the three models (VAR, EGARCH and MA) using 

standard error, log-likelihood, information criteria (AIC and BIC) and error measures. 

Chapter six summarizes the findings, limitations and suggestion of future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

VAR can only produce efficient estimation when the error terms are white noise errors 

which are not heteroscedastic in nature (Sims, 1980; White, 1980; Qin & Gilbert, 

2001). The error terms of VAR are white noise processes which are serially 

uncorrelated random variables with zero mean, constant variance and zero 

autocovariances at non-zero lags (Harvey, 1993). 

The econometrician beliefs that the theoretical models excesses are complemented by 

implication, the error terms of the estimated models, of which the theory provides 

unfinished explanations of economic systems. Accordingly, the econometrics 

extensive tradition has seen the dynamic evolution of the economy as a driving force 

having relationship directly with the theory (Qin & Gilbert, 2001). 

The conviction that errors exclusively signify that in the generation of business cycles, 

random shocks are responsible for the failure to recognize that the regression residual 

properties are resolved by the empirical model, data samples and process of 

estimation. Alternatively, in economic theory association, “innovation residuals” 

model planned principles are the outcome in errors that cannot be interpreted (Qin & 

Gilbert, 2001, p. 426). The following sections explain the error term in VAR model, 

ARCH, GARCH/GARCH family models, MA, linear regression model and BMA. 
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2.2 Vector Autoregression (VAR) White Noise 

VAR is when current variable is a function of its lagged variable with all different 

lagged variables in the study and serially uncorrelated error term called white noise 

(Harvey, 1993). VAR have assurance of providing a reasonable and convincing 

approach to data description, forecasting, structural inference and policy estimation 

(Stock & Watson, 2001). 

The Cowles Commission researchers have been using VAR-type models in 

econometrics. There is no proposition that the VAR representations are non-structural. 

The Cowles Commission discussed the issues of estimation and identification context 

of the simultaneous equation models, the reduced form, taking an open VAR as the 

most general form (Qin & Gilbert, 2001). Liu (1960) first argued that the simultaneous 

equation model which is a particular form of reduced form as a set of a prior 

restriction which is truly the one that can be obtained as data that are not tampered 

with, which has not losing its originality. 

Sims (1980) VAR methodology wholly integrated the opinion of Liu in his 1960 

paper. Sargent and Sims (1977) introduced a fundamental VAR experiment to 

examine factor estimation in the frequency domain when there is small consistent in a 

prior business cycle theory that produces the cyclical dynamics which reflected in their 

estimated VAR. However, Sims in his well-known 1980 paper shifted back 

consideration to the time domain for the recognition of alternative to conventional 

econometrics with the employment of VAR procedures. He used unrestricted VAR to 

propose variables modelling and stated as follows: 
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 tt exLA )(
 

(2.1) 

Here the matrix polynomial )(LA of order n in ,L tx  is the variable in time t  and 

0)|(...),,|( 1211   tttt xeExxeE  is an innovation process with the magnitude of 

model-derived, the residuals are serially uncorrelated. Sims (1980) expressed te as 

innovation shocks to definite associated modelled variables and named “money 

innovation” as the error term in a money-demand equation (Qin & Gilbert, 2001, p. 

439). 

The errors are interpreted as shocks which are understandable as the unrestricted VAR 

provided the matrix polynomial is invertible and then transformed to the moving 

average representation (MAR); 

 tt eLAx 1)( 
 (2.2) 

where the tx  is the variable in time t  and the error series te are interpreted as shocks 

that employ extensively VAR modellers for policy estimation. Through the conduction 

method of matrix polynomial the main generator of business cycles are the effects of 

the shocks. 

2.2.1 VAR-Real Business Cycles (VAR-RBC) White Noise
 

The Real Business Cycles (RBC) models have been widely implementing impulse 

response estimation, with the view that VAR models are more empirical in data 

estimation while RBC modellers believe in theoretical aspect and as a result, preferred 

to calibrate instead of estimation of the unknown parameters. RBC models regard 
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when the parameters are estimated as employing restricted VAR models (Qin & 

Gilbert, 2001). The specification of the error terms in RBC models arise as 

autoregression (AR) processes with random shocks, and measurement errors, or errors 

of observation, which are initiated out of the need of estimation process and are 

generally developed for the exogenous variables shocks because the total number of 

equations to be estimated are more than the number of exogenous shock terms (Qin & 

Gilbert, 2001).  

The model misspecifications that occurred in omitting variables are not recognized by 

this specification. RBC modellers have a tendency to clarify the discrepancy in the 

models as occurring from insignificant or unexciting parts of the economy, when there 

is a clear difference in the values obtained in simulation and the values obtained in the 

actual data of the model (Kydland & Prescott, 1991). The econometricians have great 

doubt in RBC models that bring this type of clarifications because RBC believed in 

theory instead of estimation (Quah, 1995; Gregory & Smith, 1995). Linkage of 

seemingly contrary procedures with exogenous shocks in impulse response estimation 

indicates the fascinating aspect of the connection of the study for the error terms 

explanation. The shocks in impulse response can be discussed. 

2.2.2 Shocks in Impulse Response 

Impulse response traces out responses of current and future values of each variable to 

a unit increase in the current value of one of the VAR errors. Assumed basic VAR 

model as in equation (2.1) offers a valid economical description of the statistical 

process of which x variables is tracked as the errors in impulse response estimation 
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interpreted as shocks. Whichever model is valid is a subset of unrestricted VAR model 

in equation (2.1). Still, controlling the decision on variables that will be in the vector x 

is the truth. The economist should try to be open as inadequate quantity of sample size 

demand for a very little quantity of variables of choice in practice. Sims (1980) that 

criticized the theory as generating “incredible” restrictions suggested these choices 

(Qin & Gilbert, 2001, p. 440). In addition to genuine “stimuli” the control errors of the

te embraced the innovation part by implication (Qin & Gilbert, 2001, p.440). The 

suggestion of Sims choices now reveal the identification by sign restrictions. 

2.2.3 Identification by Sign Restrictions 

Identification is to examine whether the coefficients of the estimated reduced form 

equation can produce the parameters of the numerical structural equation estimates. If 

the coefficients of the estimated reduced form equation cannot produce the parameters 

of the numerical structural equation estimates, then, it is known as identification 

problem and is regarded as errors in equation (Qin & Gilbert, 2001).Identification is to 

be sure that the equation fits into the data is the exact required equation not any other 

equation or a mixture of other equations together with the required equation (Christ, 

1994). Structural equations can only be estimated if these equations are identified (Qin 

& Gilbert, 2001). 

Kilian and Murphy (2012) observed that the doubtful conventional identifying 

assumptions bring an alternative class of structural VAR models in which structural 

shocks have been identified by restricting the sign of the reactions of chosen model 

variables to structural shocks. VAR models identified based on sign restrictions have 
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no point estimate of the structural impulse response functions. Unlike traditional 

structural VAR models based on short-run restrictions, sign-identified VAR models 

are only set identified. A unique solution are not implied, however, a set of solutions 

that all are equally consistent with the identifying assumptions. 

Faust (1998), Canova and De Nicolo (2002), Uhlig (2005) established this procedure 

for monetary policy using VAR models. For example, Uhlig (2005) proposed that 

when there is no price raise and no increase in non-borrowed reserves for a while 

because of monetary policy shock, a sudden monetary policy reduction is related with 

a raise in the federal funds rate. He indicated that the results from the sign-identified 

models and conventional structural VAR models are different. Sign-identified VAR 

models are becoming more fashionable in many areas and are now useful in empirical 

macroeconomics. VAR model is employed to study fiscal shocks (Canova & Pappa, 

2007; Mountford & Uhlig, 2009; Pappa, 2009), technology shocks (Dedola & Neri, 

2007b), and several shocks in open economies (Canova & De Nicolo, 2002; Scholl & 

Uhlig, 2008), in oil markets (Kilian & Murphy, 2012, 2014), and in labour markets 

(Fujita, 2011), as instance. 

When every identified shock is connected with an exceptional sign pattern, then it 

needs identification in sign-identified models. If sign restrictions are not dynamic that 

is structural shocks are not identified by restricting the sign of the reactions of chosen 

model variables to structural shocks, simply restrict the sign of the coefficients in the 

corresponding structural vector moving average (VMA) representation. Different from 

conventional exclusion restrictions, the economic theory straight away motivates sign 
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restrictions. In addition, though the theoretical justification of the restrictions are 

regularly weak when restricting the sign reactions at longer horizons. 

As the set of sign restrictions are given, considering the reduced form VAR model, the 

vector white noise reduced form innovations with variance-covariance matrix and the 

corresponding structural VAR model innovations. Then, the construction of structural 

impulse response functions with all models fit the data appropriately. 

Various researchers suggested interpreting accordingly a set of acceptable structural 

impulse response functions of the VAR models based on sign restrictions. There are 

two procedures. First procedure is to make the set of acceptable models one using a 

penalty function (Uhlig, 2005). Francis, Owyang, Roush, and DiCecio (2014) 

recognized a technology shock as a shock that maximized the forecast-error variance 

distribution in labour productivity at a finite horizon and suits sign restrictions. Faust 

(1998) appealed to the effects of monetary policy shocks on real result concerning the 

comparable argument. Penalty functions help in providing evidence that some 

outcome were the best result, based on the set of acceptable models, to assess worst 

case (or best case) circumstances. 

Second procedure is to enforce additional restrictions so as to bring low the set of 

acceptable reactions. Comparable impulse responses are obtained when the decrease in 

the set of acceptable models have been reduced to a small number of acceptable 

models that are very simple to interpret. Canova and De Nicolo (2002), and Canova 
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and Paustian (2011) suggested enforcing extra structure in the form of sign restrictions 

on dynamic cross-correlations, to decrease the number of acceptable results. 

These restrictions based on properties of dynamic stochastic general equilibrium 

(DSGE) models; encourage obtaining from data simulated by the DSGE models, the 

DSGE model reactions. In similar work, Kilian and Murphy (2012, 2014) have 

suggested extra identifying restrictions on a structural oil market, VAR model based 

on bounds on price elasticity‟s impact. This has been a special case of enforcing a 

prior distribution on the values of this price elasticity. 

The differentiation between alternative data generating processes and develops sign-

identified  VAR  capability  are  the  enforcement  of  extra  restrictions  that  has  been 

revealed. It is important that the employment of all information to identify structural 

shocks from sign-identified models is not just an alternative. But the possibilities of 

deducing the true structural reactions from sign-identified VAR models can only 

increase on every small number of sign restrictions because of an opinion in the midst 

of a number of applied users that remain doubtful. One absolutely supposed that every 

satisfactory model was possibly a prior to building the posterior distribution of the 

structural reactions in which the opinion is incorrect (Kilian & Murphy, 2012). For 

example, Kilian and Murphy (2012, 2014) expressed that except these reactions can be 

cancelled just by enforcing a bound on the short-run price elasticity of oil supply, oil 

market VAR models identified by sign restrictions may only involve great reactions of 

the real price of oil to oil supply shocks. As such, it has been confirmed with reliable 

judgment in the literature and improper empirical proof that this elasticity is close to 
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zero. They indicated further that neglecting to enforce this extra identifying information, 

may lead researchers to give much weight to oil supply shocks simply because of the 

empirical data estimation. 

Inoue and Kilian (2013) have argued that the usual approach to sign-identified impulse 

response functions required comprehensive economic interpretation and fall short of 

expressing the uncertainty about the structural response functions. Thus, they proposed 

models that allow both the exactly identified and the sign-identified VAR model in the 

estimation. The VAR white noise explanation above leads to the VAR white noise 

application. 

2.2.4 VAR White Noise Application 

Buch, Eickmeier, and Prieto (2014) have discovered that the risk taking of banks may 

affect monetary policy decisions (Rajan, 2006).Particularly on low risk investments, as 

a decrease in the policy rate lowers returns. The bank managers maintained the 

average return on assets, stable; they have reasons to change into high risk credit 

market sections. Banks “search for yield” can weaken financial strength which may be 

encouraged by the expansion of monetary policy (Rajan, 2006, p. 501). VAR is 

employed to carry out the empirical data of United States (US) banks in response to 

financial policy disturbances. The empirical data for the model are gross domestic 

product (GDP) growth, GDP deflator inflation, the monetary policy interest rate, and 

banking factors. Summary of the monetary lending story presented in the federal 

reserve‟s survey of terms of business lending (STBL) is that of banking factors. The 

information obtained by the bank about the credit of the borrower determines the new 
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loan risk, cash flow, credit rating, access to different supplies of funding, management 

quality, collateral, and quality of the guarantor using the STBL questionnaire to 

request for the information. There are organized loans into various risk categories 

based on the reports about the borrowers. Changes across risk categories involve 

changing bank risk taking. Investigation revealed the differences among local bank, 

big bank and foreign banks (Buch et al., 2014). 

The exploitation differences among various banks and loan market sections, revealed 

the effects the financial policy shocks of risk-taking. The discrimination of reactions to 

obtain new loans and loan disbursement through various kinds of banks with series of 

risk categories loan are revealed. The findings revealed that following the expansion 

of financial policy reactions, with the average of sample period, local banks notably 

raise new loans to high risk of the borrowers. The masterpiece of loan supply of local 

banks changes towards giving loans with high risk. Although bulks of the loan 

portfolio of big banks do not shift considerably as more new high risk loans is given 

out (Buch et al., 2014). 

VAR model has great number of pieces of information on banks which permits to 

model the direct relationship between the banking sector and the macro economy. Past 

studies employing panel studies (longitudinal studies) are more restrictive in 

modelling the macroeconomic shocks, but permitted modelling, bank heterogeneity 

which are differences in the levels of bank regulation and competition (Altunbas, 

Gambacorta, & Marques-Ibanez, 2010).  
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VAR model deals with the connections between macroeconomic factors and the 

banking system by observing identified effect, mutually orthogonal and 

macroeconomic shocks. Panel studies usually degenerate risk procedures on interest 

rates monetary policy with supplementary explanatory variables. There is no response 

from banks to the macro economy, while the permission of interest rates and other 

macroeconomic factors have effect on banks, according to the studies. 

Swamy (2014) have argued that in VAR approach estimation, the satisfaction of 

economic logic by the established interdependence and co-movement of the banking 

stability covariates, in the banking dominated emerging economy. With this, the 

continued stability of the banking system is demonstrated in India when compared 

other countries‟ economies. Keeping up economic growth is a reliable and functional 

banking system which is important. 

A reasonable number of literatures trying to reveal the effects of monetary policy 

employing restricted multivariate time series models. The earliest effort came from 

Friedman and Schwartz (1982). They accepted that there is a very good relationship 

between the result and prices in monetary aggregates. They suggested that the 

relationships cannot signify inactive reactions of monetary aggregates to the 

developments in the private sector. However, majorly, there is variation in monetary 

policy effects on the private sector. The declaration is supported with an indication 

that the relationships continue, as the variations in monetary aggregates that can 

forecast the current or the immediately previous expansion in the private sector. This 

is an indication of nonresponsive in the monetary aggregates (Sims & Zha, 2006). 
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Sims and Zha (2006) argued that the error terms (innovations)  display a better 

performance in short-term interest rate policy changes than the error terms in money 

stock in some parts, though this can be called “price puzzle” (p. 234)by interpretation, 

the failing of monetary  reduction clearly created a decline in prices. Sims (1986), with 

various other studies, like (Christiano, Eichenbaum, & Evan, 1996; Gordon & Leeper, 

1994; Bernanke & Mihov, 1998) estimated the  reactions of monetary policy changes 

in interest rates decline, development of the money stock, and  increasing prices for 

the expansion of monetary policy shock, with informal arguments to justify their 

thrive in using restricted VAR time-series models for US data. Cushman and Zha 

(1997) enlarged the study for modelling open economies using VAR. The VAR white 

noise applications of Subsection 2.2.4 revealed the VAR white noise weakness in 

Subsection 2.2.5. 

2.2.5 VAR White Noise Weaknesses 

Cooley and LeRoy (1985) assumed that if the interpretations of VAR models are non-

structural and are equivalent versions of the same model, the observationally 

equivalent versions of a given model have different causal interpretations. The 

important applications of VAR models have this invariance property. 

A theoretical (not based on theory) macro econometrics has been credited for its use in 

analysing causal orderings and policy interventions. The criticism depends on whether 

VAR models are interpreted as structural or non-structural.  If the models are 

structural in nature and interpreted as non-structural, the conclusions are not 

supported. Excluding prior identifying restrictions, when the adopted a theoretical 
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macro econometrics is not arbitrary renormalized with restrictions on error 

distributions, the models are interpreted as structural. The conclusions are not 

supported, if the requirement for theory justification failed. 

Blanchard and Quah (1989) assumed that the unemployment and output dynamics 

provide two types of shocks, the effects of first type of shock on output is  permanent, 

the second shock effects is temporary and the two shocks being interpreted as supply 

and demand shocks. In graphical form the vertical axes denoted simultaneously the log 

of output and the rate of unemployment; the horizontal axis denotes time in quarters. 

The demand shocks have a hump-shaped effect on output and unemployment. They 

concluded that demand shocks with considerable contribution to the fluctuations of 

result at short and medium term horizons, and which after about two or three years the 

unemployment vanishes. The supply shocks have an effect on the level of output 

which cumulated steadily over time. In the base case, the peak response is about eight 

times the initial effect and takes place after eight quarters. The effect decreases to 

stabilize eventually, the long-run impact is roughly estimated for good statistical 

reasons. The effect of supply shocks on result adds up over time to attain a level after 

five years. They identified the dynamic effects of supply and demand shocks on real 

GNP with procedure based on estimation of a bivariate VAR system.  Blanchard and 

Quah concluded that demand shocks majorly drive the result fluctuations as resulted 

from their estimation and identification. The study of Blanchard (1989) concluded that 

the particular identification restrictions imposed on the model result on demand shocks 

is robust and also based on an arbitrary supposition about the moving average 

representation are the results derived from VAR estimated. Lippi and Reichlin (1993, 
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p. 644) argued that Blanchard and Quah's econometric work may be on the "wrong" 

side of the unit circle which leads to a moving average representation equal zero. An 

alternative moving average representation which is equivalent to a given estimated 

VAR is advocated. Lippi and Reichlin (1993) argued that the estimated VAR 

empirical results on nonstandard moving average representations that present 

economically reasonable alternatives to imaginative representations being compared 

with Blanchard and Quah's results. 

Paruolo and Rehbek (1999) revealed that vector autoregressive model approach is 

weak in finding the shock of monetary policy to inflation and economic movement. In 

their results, exchange rate has a significant response on inflation and bank lending 

having significant impact on result, but the interest rate is not significant. No reaction 

to money supply of inflation and result in the model estimation. Paruolo and Rehbek 

(1999) showed that the inconsistent estimation in VAR integration of order two is the 

weak exogeneity wrong assumption of consistency and efficiency of the conditional 

system estimator. The inclusion of drift terms in VAR model does not affect the main 

conclusion, that is, the inclusion or exclusion of drift terms in VAR give the same 

result. In the same way, Atabaev and Ganiyev (2013) have argued that there is 

weakness in the shock of monetary policy to inflation and economic activity. 

Employing VAR estimation and money supply is not responding to inflation and result 

in the estimation. This brings low competition among the banks and the external 

financial have power over capital inflow in the economy of Kyrgyzstan. 
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Gunnemann, Gunnemann, and Faloutsos (2014) have presented Robust Latent 

Autoregression (RLA) model to discover the users‟ base rating behaviour and 

anomalies in rating distributions. Gunnemann et al., (2014) argued that the RLA 

results indicated that the highest error is shown in non-robust VAR and Kalman 

Filtering. Since the unknown structure of the data cannot be identified, for their error 

increases rapidly for a high number of anomalies. RLA does better than the robust 

VAR method and RLA is more robust to the anomalies. RLA has less error compared 

to robust VAR while the non-robust VAR has the highest error. When predicting the 

future rating distribution, any method with a high number of anomalies is more 

challenging. Since the non-robust VAR is having the highest error, this indicated the 

weakness in VAR error terms. 

Gordon and Leeper (1994), Christiano et al. (1996), and Strongin (1995) estimation of 

the big impacts of monetary policy shocks on real result, demanding the history of 

considerable part of variance result. Bernanke and Mihov (1998) in their study argued 

that the majority of its specifications, demand for brief historical post war business 

cycle instabilities, and find out very weak effects of policy innovations. 

Though, Gordon and Leeper (1994), Christiano et al. (1996), and Strongin (1995) 

employed numerous variables and several released suppositions, using a general 

device to acquire identification and claimed that sector changes of the economy 

interrupted the reactions to monetary policy. Bernanke and Blinder (1992), Gordon 

and Leeper (1994), and Christiano et al. (1996) stressed the need for a list of variables 

that reasonably influence policy, with the variables in the inertial-sector block that 
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penetrated the policy response function. Bernanke and Blinder (1992), Gordon and 

Leeper (1994), and Christiano et al. (1996) argued that contemporaneous consequence 

on policy are not presently given in the variables, a contemporaneous reaction to 

policy is also deprived. The studies revealed inconclusive opinions on the economic 

possibility of nonexistence of contemporaneous reactions to policy compared with the 

occurrence of contemporaneous impacts on policy for the variables. 

The Bernanke and Blinder (1992) employed a further difficult identification scheme. It 

is an unreasonable supposition that the public sale of market prices like commodity 

prices is shunned. Gordon and Leeper (1994) examined that the long interest rate has 

no simultaneous reaction to monetary policy. The inaction suppositions raise during 

the literature make sense, yet the argument is that the traditional cost adjustment cost 

and sticky-price models cannot create a stochastic performance that agreed with VAR 

literature suppositions. For correct identification, the permission for a number of 

channels of instant reaction of the private sector to policy shock may be important, 

also even is the indication of the existence of inertia in the private sector.  A structural 

stochastic equilibrium model is presented so as VAR identification scheme generate 

correct results. The restrictions that validated the other identification schemes emerged 

unfair, from the viewpoint of the model used in (Bernanke & Blinder, 1992) study. 

The implication that monetary policy shocks are of less influence in production decline 

in the United States over the used period of sample, though, can be the biggest 

estimated effects. The specifications have the same result, which monetary policy 

reacts to inflationary shocks initiating in the private sector by constricting the money 
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stock. It means, monetary policy powerfully opposed inflationary and deflationary 

demands than it supposed under a rule fixing the amount of money or its growth rate. 

The calculation of the reaction of the economy to inflationary disturbances under the 

supposition that policy reacted to all disturbances not as much as it has historically, 

and concluded that real policy may now react to the price level instabilities reductions 

(Bernanke & Blinder, 1992; Gordon & Leeper, 1994). 

The monetary policy disturbances have very strong effects on prices, very weak 

effects on result. The experimental connection involving high interest rates and 

succeeding low result is in these interpretations because  of  the  principal  source  of  

inflationary  demands,  not  to  contractionary monetary policy itself (Bernanke & 

Blinder, 1992; Christiano et al., 1996). 

The discovery of weak effects and a small historical function for monetary policy in 

producing business cycle instabilities related to monetary policy disturbances; to 

irregular disparity in monetary policy. The outcome appeared that much of the 

practical disparity in monetary policy variables is analytically reacting to the economy 

stand; this is an anticipation of any effective monetary policy. The results are reliable, 

but bad monetary policy, unlike historical, can generate a high degree of unstable 

inflation and simultaneously likely, it also generated a high degree of instability in 

result which attributed to VAR weakness (Bernanke & Blinder, 1992). 

VAR models cannot implement greatly bank disorganised reports (Angeloni, Faia, 

&Lo Duca, 2011; Eickmeier & Hofmann, 2013; Lang & Nakamura, 1995). The 
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univariate regressions (De Nicolo, Dell'Ariccia, Laeven, & Valencia, 2010) cannot 

evaluate heterogeneity (diverse or dissimilar). White (1980) discovered 

heteroscedastic behaviour of error term in the data which cannot be modelled by VAR. 

The heteroscedastic error is enumerated as follows. 

2.3 Autoregressive Conditional Heteroscedastic (ARCH) and Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) Models 

Forecasting models have serious challenges in terms of heteroscedastic errors (White, 

1980; Engle, 1982; Engle, 1983). The Autoregressive Conditional Heteroscedastic 

(ARCH) models overcome these challenges. 

2.3.1 ARCH Model 

Engle (1982) proposed Autoregressive Conditional Heteroscedastic (ARCH) model 

because of time varying volatility. The equations are on normal distribution, 

comparing with change in stock market distribution and fat tail measuring effect, and 

this effect was named ARCH. ARCH models were able to grip group errors and can 

withstand any changes made by economic forecaster. But ARCH cannot handle the 

abnormalities like crashes, mergers, news effect or threshold effects in the financial 

and economic sector.  Bollerslev (1986) introduced generalized ARCH (GARCH) 

tocapture the volatility persistent, which was flexible to the uplift of the weakness of 

ARCH model. 
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2.3.2 GARCH Model 

When the series is heteroscedastic with variance varying over time, which was the 

major application of GARCH, and GARCH permitted large lag structure with 

extended memory. An investigation revealed that there are excess kurtosis and 

volatility persistence in GARCH (Vivian & Wohar, 2012; Ewing & Malik, 2013). 

Hassan, Hossny, Nahavandi, and Creighton (2012) discussed these tests on 

heteroscedastic have not given deviations of the homoscedasticity of the checked time 

series data. In order to support their argument, they proposed Heteroscedasticity 

Variance Index (HVI) that gave more information about the time series behaviour. 

They used linear filtering to obtain local variances and the variance of the local 

variances was as the estimated quantified heteroscedasticity with criticism that there is 

a quadratic boundless function. Hassan, Hossny, Nahavandi, and Creighton (2013) 

modified their 2012 proposition by testing the distance of series of heteroscedastic 

from homoscedasticity using quantifying method. The proposed index of the 

heteroscedasticity is quantified by calculating the average tangent angle of local 

variance function as following; 
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y  is the local tangent angles function of  ),|(2  ty  the length of time 

series is n  and the average local tangent angles of the same function which correlates 

theoretically with the change of local variances is ),(
2

 y
hence quantifies 

heteroscedasticity. The proposed measure has a lower bound of 
00 for a completely 
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homoscedastic dataset and an upper bound asymptote of 
090  for an ultimate 

heteroskedastic dataset. The proposed index and the popular heteroscedasticity results 

indicated consistency. In their estimation, with the employment of local variance 

approach, they failed to determine the current drawback of heteroscedasticity test with 

volatile mean. 

2.3.3 Family of GARCH Model 

ARCH and GARCH models focus on the variances of the error terms that are not 

constant, being known as heteroscedasticity which VAR cannot model efficiently but 

it can only model white noise error term efficiently. ARCH and GARCH models 

correct this heteroscedasticity challenge by modelling the variance (Engle, 2001). 

Engle (1982) and Bollerslev (1986) introduced linear ARCH and GARCH model 

specifications for variance and focus on the magnitude of returns; disregarded the 

information on the direction of returns, and volatility affects the direction of return 

(Nelson, 1991; Hentschel, 1995; Berument, Metin-Ozcan, & Neyapti, 2001). This is 

the adventure of GARCH family. Volatility has to be a shock, which is a reaction to 

the news. The news timing can provide a rise to an expected volatility component, like 

economic announcements, which may not be a shock (Engle, 2001). 

The integrated generalized autoregressive conditional heteroscedastic (IGARCH) 

model shows a similarity with ARIMA (0, 1, 1) model as the definition of an ACF of 

squared sample size, if the data (samples) are stationary in first difference, then the 

model is known as IGARCH (Harvey, 1993). Threshold GARCH (TGARCH) and 
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EGARCH capture the asymmetric effects of positive and negative shocks of the same 

dimension on conditional volatility in various ways. Leverage is a particular case of 

asymmetry. 

2.3.4 EGARCH Model 

Exponential GARCH (EGARCH) uplifted the weaknesses of GARCH which are 

excess kurtosis and volatility persistence. EGARCH is a non-linear model in which the 

conditional variance is able to respond to the asymmetric volatility behaviour (Harvey, 

1993). EGARCH overcame the problem of measuring whether the shocks to 

conditional variance are persistent (Harvey, 1993). Mutungaet al. (2015) emphasized 

that the EGARCH model has the minimum mean square error and mean absolute error 

when compared with Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model; 

this reveals that EGARCH forecast has been more precise.  

Quadratic GARCH (QGARCH), TGARCH, GJR-GARCH, EGARCH and asymmetric 

power ARCH (APARCH) models guarantee positivity of conditional variances, 

stationarity, and existence of fourth-order moments, when the models are restricted. 

APARCH estimates have a very small percentage of the series satisfy by the finite 

kurtosis restriction, while GJR-GARCH and EGARCH estimates have larger 

percentage of the series at the finite kurtosis condition (Nelson, 1991; Hentschel, 

1995; Rodríguez & Ruiz, 2012; McAleer, 2014). 

QGARCH model guarantee positivity of the conditional variances with severe 

restrictions and the asymmetry of QGARCH model have very limited representation in 

practice. The TGARCH asymmetry parameter promised stationary and finite kurtosis 
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with restrictions and these restrictions are not tough on the leverage effect provided 

the persistence is small. GJR-GARCH estimates satisfied the finite kurtosis condition 

when restricted. TGARCH model imposition of restrictions on leverage effect is very 

comparable with EGARCH, but EGARCH has been more flexible in the asymmetric 

response of volatility. The EGARCH models imposed less restriction among the 

GARCH family, which allowing it to be most flexible model (Rodríguez &Ruiz, 

2012).Positivity restriction on the parameters of the model made EGARCH to capture 

the asymmetry, but cannot model the leverage efficiently (Nelson, 1991; Hentschel, 

1995; McAleer, 2014; McAleer & Hafner, 2014; Martinet & McAleer, 2016). 

It has been a known fact, that positive shocks may have less impact on the volatility 

than the negative shocks of the same magnitudes. As both the positive and negative 

shocks are assigned an equal degree of importance in the simple GARCH model 

which cannot remove leverage effect (Nelson, 1991; Hentschel, 1995; McAleer, 2014; 

McAleer & Hafner, 2014; Martinet & McAleer, 2016). Although, Nelson (1991) 

proposed the EGARCH to overcome the leverage effect but it can only capture the 

asymmetric volatility. While a negative shock will add more volatility, as the 

coefficient of the conditional variance will be negative. The positivity restriction 

positioned on each conditional variance follows the simple GARCH specification and 

the conditional variance without restriction necessitated the conditional volatility to be 

negative. Therefore, EGARCH modelling leverage effect is not possible, even; the 

general statistical properties (stationarity and invertibility) to estimate the EGARCH 

parameters to model the leverage effect are lacking (McAleer, 2014; McAleer & 

Hafner, 2014; Martinet & McAleer, 2016). 
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The general condition of stationary of random coefficient moving average (RCMA) 

time series models are not easy to investigate. Linear MA )( p  process invertibility 

conditions are easily established, but the situation in the RCMA case is more 

complicated, because of the non-linear model. The models that are not invertible are 

not used for forecasting because the white noise terms are to be estimated, which has 

revealed the significance of invertibility (Marek, 2005). 

McAleer and Hafner (2014) have introduced a random coefficient complex nonlinear 

moving average (RCCNMA) process. The lack of an invertibility condition for the 

returns shocks underlying the EGARCH model results in the non-availability of 

statistical properties for the quasi-maximum likelihood estimator (QMLE) of the 

EGARCH parameters. The derivation of EGARCH from RCCNMA process revealed 

the lack of statistical properties of the QMLE of EGARCH because the stationary and 

invertibility conditions for the RCCNMA process are not known. The class of random 

coefficient linear moving average models is not RCCNMA process. This reveals that 

the EGARCH parameters cannot permit the derivation of statistical properties 

(stationarity and invertibility) from RCCNMA process (Marek, 2005; McAleer and 

Hafner, 2014; Martinet & McAleer 2016).The error term major challenges are 

heteroscedastic and autocorrelation errors (White, 1980; Kennedy, 2008; Lazim, 

2013). 
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2.3.5 The Effect of Heteroscedastic Errors 

In econometric modelling, the assumption is that error terms have the same(constant) 

variance which is generally called homoscedasticity. When this assumption is violated 

and the error terms are not having the same variance which indicates variances vary 

over time is known as heteroscedasticity (Lazim, 2013). 

In matrix form, the error terms of off-diagonal elements of variance-covariance matrix 

are assumed to be zero; however the diagonal elements are varying in size over time 

with an independent variable. As large as an independent variable, so also the error 

variance will be large (Kennedy, 2008). 

The detection of the heteroscedasticity presence with the use of a modification of 

Bartlett‟s M specification error test (BAMSET) is considered for simple 

heteroscedasticity (Ramsey, 1969). Any model that exhibits heteroscedasticity can be 

detected by a heteroscedasticity discrete outcome model with greater heterogeneous 

flexibility of choice models (Williams, 2009; Savolainen, Mannering, Lord, & 

Quddus, 2011). White (1980) used ordinary least squares (OLS) with additional 

condition to have a consistent estimator of OLS parameter covariance matrix which 

permits to test directly for heteroscedasticity. White emphasized that correct 

inferences and confidence interval are achieved, which permits heteroscedasticity 

consistent covariance matrix, even, when the heteroscedasticity is not totally removed 

in the estimation process. 
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Antoine and Lavergne (2014) proposed a Weighted Minimum Distance (WMD) 

estimator that is consistent and asymptotically normal. WMD estimator does not 

depend on instrumental variables. They argued that without prior knowledge of the 

weakness pattern of identification, Wald testing is considered for estimation and 

heteroscedasticity presence produces robust inference. They recommended that when 

heteroscedasticity is present, WWD or Fuller-Modified version (WMDF) can be used 

for robust inference, that is, insensitive to deviations from the assumptions under 

which it was derived. 

Cribari-Neto and Galva (2003) stated that the unbiased and consistent of parameters 

when using OLS estimation on the vector of regression which display some form of 

heteroscedasticity is still valid, but for inference, the estimated covariance matrix has 

to be consistent. They proposed improved estimators in which the numerical results 

favour modification of HC2 (heteroscedasticity consistent 2) and Heteroscedasticity 

Consistent Covariance Matrix (HCCM) estimator. 

Ahmed, Aslam, and Pasha (2011) revealed that despite the fact that the conventional 

HCCM estimators are obtained from the OLS estimators, the conventional HCCM 

estimators describe more correct inferences in terms of fewer size distortion. The 

available literature advocated that having heteroscedastic regression models, the use of 

the HCCM estimators with many adaptive estimators [e.g., heteroscedasticity 

consistent (HC3)] results in an efficient estimation only. The adaptive estimators 

performed better than OLS estimators, but the tests did not perform admirably well 

with these estimators. However, some weighted versions of HCCMEs are computed, 
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similar to HCCMEs obtained from the OLS residuals, and these are based on the 

residuals of adaptive estimators. The weighted version of HCCM performs well, when 

the original model is transformed in an attempt to remove heteroscedasticity. Correct 

inferences are drawn when the heteroscedasticity consistent covariance matrix 

estimators are used and error terms display heteroscedasticity. 

Uchôa, Cribari-Neto, and Menezes (2014) constructed the heteroscedasticity 

consistent covariance matrix estimators using both unrestricted and restricted residuals 

for inference test in fixed effects regression models under an unknown form of 

heteroscedasticity. They proposed that the test statistic of quasi-t tests used Arellano 

estimator, and consider with and without high leverage data points of the regression 

structures. Their results indicated that the unrestricted residuals and restricted residuals 

tests produce the most accurate asymptotic approximations. But the numerical  

evidence,  when  the  sample  size  is  small,  quasi-t  test  inference  is unreliable. 

Various tests are developed to study the existence of heteroscedastic behaviour; 

Brensch and Pagan (1979), White (1980), Engle (1982), Dovonon and Renault (2013), 

and Chao, Hausman, Newey, Swanson, and Woutersen (2014). These tests clearly 

indicate whether the time series tested has heteroscedastic behaviour or not. The null 

hypothesis of heteroscedasticity is assumed. The existence of heteroscedasticity in a 

series is to accept the null hypothesis, while heteroscedastic series' failure is to reject 

the null hypothesis. The effect of autocorrelation errors in error term can be discussed. 
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2.3.6 The Effect of Autocorrelation 

When the series of error terms in different periods of time are not correlated with each 

other and assume that the present error term is independent of past error terms and 

future error terms. If this assumption is violated, then the error terms are 

autocorrelated or serial correlation exists (Kennedy, 2008; Lazim, 2013). The omitted 

important factors of regression cause the correlation amidst of those that are included 

in the regression which are also important factors; the autocorrelation across the 

periods may be because of omitted important factors should have been in the 

regression model (Greene, 2008). 

In matrix form, the error terms are autocorrelated when the variance-covariance matrix 

with off-diagonal elements of the error term is zero. Three main reasons for 

autocorrelation existence: 

i. the effects of random shocks persisted over one period of time. 

ii. there is likely an influence of positive shock in a previous period activity to 

current periods. 

iii. with closed ties, the effect of random shock in one region may cause changes 

in the next region. 

The autocorrelation in omitting the relevant explanatory variable produce 

autocorrelation shock (Kennedy, 2008). 

First order autocorrelation is taking as the specific type and has been the most 

commonly used among the order of autocorrelations. This is because the variance 

minimization corresponds to first order autocorrelation of zero and to know if the 
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corrections of autocorrelation are suboptimal that directs the avoidable large 

variability (Van Beers, Van der Meer, & Veerman, 2013). First order autocorrelation 

is when error in present period is a function of the error in the past period, that is, the 

present period error is correlated with the past period error. This first order 

autocorrelation occurs when the present period error is equal to the past period error 

plus spherical error (shock) which is written mathematically as: 

 ttt uee  1
 

(2.4) 

where  is a parameter less than one and is called the autocorrelation coefficient and

tu is the spherical error. When  is positive, errors tend to have the same sign as the 

error in the past period (Kelejian & Oates, 1981; Kennedy, 2008). 

The autocorrelation occurrence mark size distortion which suffers with the commonly 

applied approach for testing directional forecasts, but Blaskowitz and Herwartz (2014) 

proposed a bootstrap approach test that reveals the size distortions in small samples 

which are minimized compared with traditional approaches, and bootstrap approach 

holds appealing power. The effects of autocorrelation errors revealed it detection. 

Detecting Autocorrelation 

The error terms have positive autocorrelation when the positive error term in a time 

period is likely to produce another positive error term in subsequent periods and the 

negative error term in a time period is likely to produce another negative error term in 

subsequent periods, then positive autocorrelation can produce cyclical pattern over 

time (Lazim, 2013). 
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The error terms have negative autocorrelation when the positive error term in a period 

of time is likely to produce the negative error term in subsequent periods and the 

negative error term in a period of time is likely to produce the positive error term in 

subsequent periods. Then the negative autocorrelation in error term can produce an 

alternating pattern over time (Kelejian & Oates, 1981; Bowerman, O‟Connell, & 

Koehler, 2005; Kennedy, 2008; Lazim, 2013). 

When the error terms have no positive or negative autocorrelation, then the error terms 

appear in a random pattern over time which signified the error terms are statistically 

independent. There may be less reliable in forecasting as forecasting error terms are 

likely to increase or decrease in size over time, when autocorrelation is positive 

(Kelejian & Oates, 1981; Bowerman, O‟Connell, & Koehler, 2005;Kennedy, 2008; 

Lazim, 2013). Moving average is used to model the autocorrelation error detected. 

2.4 Moving Average (MA) Process 

In time series, moving average process is regarded as linear regression, which is a 

function of the present value of the progression with the present and past white noise 

error terms or random shocks. The progressions are correlated for all lags within the 

specified lags of the progressions, but uncorrelated for all lags greater than the 

specified lags of the progressions (Box & Pierce, 1970; Godfrey, 1978). Durbin (1959) 

proposed a broad approach for theory of testing autocorrelation when the lagged 

dependent variables of the regressors of a regression equation are incorporated 

(Godfrey, 1978). This test is asymptotically corresponding to the suitable Likelihood 

Ratio (LR) test, and testing for the null hypothesis of serially uncorrelated series 
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against the alternative that a steady first order Autoregressive process produced the 

errors of the regression model. In empirical estimation this test is generally employed. 

It has been obvious that the moving average error model of order n  is a more 

reasonable alternative hypothesis than the autoregressive of order one scheme because 

the null hypothesis is that the moving average error are independent and normally 

distributed with zero mean and constant variance (Godfrey, 1978). However, fourth 

order autocorrelation cannot be discovered by this test (Godfrey, 1978). 

Godfrey (1978) suggested large sample tests of the serially uncorrelated supposition 

suitable for the broad alternative hypotheses of autoregressive of order n  and moving 

average error model of order n  errors. These tests contain the properties that are 

asymptotically identical to the corresponding Likelihood Ratio (LR) tests and these 

tests are based on Silvey Lagrange multiplier procedure. It needs no iterative 

computations. The multipliers in these tests have equal asymptotic variance-

covariance matrix under the null hypothesis HO, and the test statistic for the MA 

alternative is precisely equivalent to the test statistic for the AR alternative. The 

Durbin testing method is not equivalent as these tests (Godfrey, 1978). 

Zhang, Jia, and Ding (2012) offered a hierarchical least squares iterative estimation for 

multivariable Box–Jenkins. Ding and Chen (2005) proposed the least squares based 

iterative algorithms for Hammerstein nonlinear autoregressive moving average 

including predetermined variables (ARMAX) systems. A two-stage recursive least 

squares parameter estimation is proposed for result error models and a two-stage least 

squares based iterative identification algorithm is proposed for controlled 
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autoregressive moving average (CARMA) systems. Hu and Ding (2013) have 

suggested the multistage identification approach for feedback nonlinear systems 

employing the hierarchical identification technique, and this approach produced more 

precise parameter estimates following some iterations. When MA minimized the effect 

of autocorrelation errors, the standardized residuals of EGARCH series are modelled 

using linear regression model. 

2.5 Linear Regression Model 

The term regression was first initiated by a British biologist; Francis Galton in 

1908,when he was studying heredity. Linear regression involves the model to be linear 

in regression parameters. Regression estimation is the technique to determine the link 

connecting one or more response variables (equally known as dependent variables, 

explained variables, predicted variables, or regressands, usually denoted by y ) and the 

predictors (equally known as independent variables, explanatory variables, control 

variables, or regressors, generally represented by pxxx ...,,, 21 ). 

The simple linear regression is considered in this study for modelling the linear 

connection between two variables. One is the dependent variable y and the other is the 

independent variable .x  The simple regression model is in the form of the dependent 

variable is a function of constant term, the product of the independent variable with its 

coefficients which is the slope of the regression regarded as middle term plus error 

term. The assumption is that error term is normally distributed with mean zero and a 

constant variance. 
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Simple linear regression is to examine the linear connection between one dependent 

variable and one independent variable. Applications of regression estimation can be 

applied scientifically in various areas like medicine, biology, agriculture, economics, 

engineering, sociology, geology, etc. The principles of regression estimation are: 

i. institute a causal connection between response variable y and regressor .x  

ii. predict y based on the value of .x  

The most essential step is to recognize the real life situation that fall into a specific 

scientific area (Yan & Su, 2009). Bayesian model averaging is used to select the best 

model from the several linear regression models. 

2.6 Bayesian Model Averaging (BMA) 

Bayesian model averaging (BMA) is an approach for variable selection which 

computes the multiple models value so that the suitable model can be selected for a 

given variable outcome (dependent variables). The best model has the lowest BIC and 

highest posterior probability in the BMA output (Raftery, 1995; Raftery, Painter, & 

Volinsky, 2005). 

The characteristics of each model are when a group of predictors (independent 

variables) of the outcome variable (dependent variables) are the application of all 

predictors and given an outcome variable of interest. This produced a posterior 

distribution of the outcome variable which has been a weighted average of the 

posterior distributions of the outcome for every likely model (Raftery, Painter, & 

Volinsky, 2005) 
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Bayesian model averaging (BMA) is basically used to produce the most relevant 

models from the numerous models that have been discussed to achieve the aim of this 

study (this thesis). BMA is used to select the best white noise models in this study. 

Asatryan and Feld (2015) argued that BMA produces a logical method to deal with 

both model and parameter uncertainty in a situation of weak theoretical direction. 

Hoeting, Madigan, Raftery, and Volinsky (1999) investigated the performance of four 

different models: linear regression models, generalized linear models, survival 

estimation and graphical models.  

Theoretically, BMA offers superior average predictive performance when compared 

with any single model selected and this theoretical result connecting different model 

and the types of data is in support of the performance in a range of applications. BMA-

based confidence intervals are superior when calibrated compare with single-model 

based confidence intervals. The posterior effect probabilities are easy to understand, 

and BMA estimation took into account the parameters of interest of model uncertainty. 

Numerous competing models are permitted to be included in the estimation process. 

Bayesian model averaging offers better estimation of variance than the estimation that 

ignored model uncertainty (Hoeting et al., 1999; Shao &Gift, 2014; Hooten & Hobbs, 

2015). Bayesian information criterion (BIC) value is used in determining the weight in 

BMA for the combination.  
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Bayesian Model Averaging (BMA) Weighting 

Selection of model weights needs application of more flexibility and accounting for 

uncertainty parameter. The priors for parameters and priors for models required 

Bayesian multimodel inference for clear specification. Using Akaike information 

criteria (AIC) weighting might favour complex models more heavily than desired, but 

a computational simple method is to use Bayesian information criteria (BIC) weights 

with prior model weights (Link & Barker, 2006).The approximation computation of 

posterior model weights is by using BIC. A set of models and prior probabilities are 

the starting of Bayesian model weighting, provided that the truth model is in the model 

set. In the model set, model weight is regarded as the probability of the truth model. 

This is to say that models are selected and weighted according to high probabilities 

(Link & Barker, 2006). 

The conversion of prior model probabilities to posterior model probabilities are 

through Bayes factors procedure. Model selection and model averaging used posterior 

model probabilities. Bayesian model inference linked logically with the model 

selection and model averaging to obtain good model (Link & Barker, 2006). 

In literature, attribute weighting process for naive Bayes performance is better than 

standard naive Bayes and weighting procedures based on each of them result with the 

same given input data sets (Hall, 2007). 

Jin, Chai, and Si (2004) described collaborative filtering predicts as a particular user 

utility items which is based on various users that are given equal numbers of items for 

rating information. Some years ago, various collaborative filtering algorithms were 
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just beginning (Breese, Heckerman, & Kadie, 1998; Herlocker, Konstan, Borchers, & 

Riedl, 1999; Soboroff & Nicholas, 2000; Resnick, Iacovou, Suchak, Bergstrom, & 

Riedl, 1994; Hofmann & Puzicha, 1999; Fisher et al., 2000; Pennock, Horvitz, 

Lawrence, & Giles, 2000). Normally, they are of two classified classes: algorithms 

model-based and memory-based algorithms (Breese et al., 1998). The training 

database   users were first identify by memory-based algorithms and combine the users 

that were equivalent in terms of rating patterns, this is the obtainable particular user 

forecast (i.e., a test user). The group incorporated Pearson-correlation procedure 

(Resnick et al., 1994), the vector comparison based procedure (Breese et al., 1998), 

with the generalised vector space model expansion (Soboroff & Nicholas, 2000).  

Model-based procedures assembly collectively dissimilar users in the training database 

into a small number of classes based on their rating sample. These procedures first 

group the test user into one of the predefined user classes, so as to predict the rating on 

a particular item from the test user and the targeted item predicted by the rating of the 

predicted class. Algorithms within this group contain Bayesian network procedures 

(Breese et al., 1998) and the model part (Hofmann & Puzicha, 1999). The model-

based procedures have the benefit that only the profiles of models required to be kept 

when judge with the memory-based procedures. While the memory-based procedures 

have regularly easy model-based procedures and involved small calculation offline, 

though, model-based procedures regularly have to go through series of circular 

calculation on generating model profiles. 
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Moreover, the model-based procedures are presuming that a little quantity of classes 

of user for modelling the rating samples of various users is enough which as a result, 

the variety of users are lost. In the end, when the quantity of training users of the 

memory-based procedures is less, tend to perform better than model-based procedures 

(Si &Jin, 2003). As a result of generating suitable bunches of users, ratings by only a 

little quantity of users are adequate. Combination capability of both procedures, hybrid 

procedures such as „Personality Diagnosis‟ procedures (Pennock et al., 2000) is 

advanced, which performed better than the procedures  of various model-based and 

memory-based. In numerous real world applications because of the ease and 

robustness, the memory-based procedures have been extensively utilized. To 

recognize the users in the training database, of which many are identical to the test 

user that answers the memory-based procedures. The resemblance of two dissimilar 

users is regularly calculated for harmonizing the ratings of equal items grouped, given 

by the two users. Items are used with the same significance, for various memory-based 

procedures. Actually, this was not welcome since inconsistencies in various items 

were accounted for. Rating of several items is in another way considered by various 

users while others may be highly privileged by most users 

Logically, in determining the user-similarity with dissimilar ratings, items with same 

ratings will have less impact. As it is, items with a little ratings variance have less 

superior items with big variation ratings (Pennock et al., 2000). 

Though, it may not be automatically accurate, for the complexity in rating an item can 

be from a large variation in the ratings of specified items with various users. In the 
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description of Herlocker et al. (1999), no weighting items directed a little better results 

than employing rating variance for weighting items. For more information, to 

variance, other weights like inverse user frequency (Breese et al., 1998), entropy, and 

mutual information (Yu, Wen, Xu, & Ester, 2001). The results in (Yu et al., 2001) 

indicated that improvement in the performance of collaborative filtering is through 

few weighting schemes for items. One among the reasons is that, a large number of 

present weighting schemes are typically calculated by well-defined functions. There is 

no certainty in the objectives of what the worldwide is trying to accomplish from these 

weighting schemes. 

Jin et al. (2004) introduced the latest leave-one-out (LOO) procedure weighting 

scheme to tackle the challenges. They stressed that the routing behaviour of some part 

of other users must be analogous to the rating behaviour of a personage user. Thus, 

items for a superior weighting scheme convey users of analogous interests nearer and 

temporarily divided users of dissimilar interests further apart. The user distribution is 

to be examined over the item space different perspective. The spanned vector space 

with various items of every user having a place in the space, of which, the projection 

on every axis is indicating the rating of an equivalent item. This item space directed a 

crowded together distribution of user points, it means, numerous user points are being 

bonded closely by every user point. The shape the original user distribution has a high-

quality weighting method for items (i.e., a user distribution that is not employing 

whichever weights for items) to a type of crowded together distribution (Jin et al., 

2004).  
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This idea is presented to maximize the likelihood for every user which is found to be 

appropriate weights of the items to be alike to minimize one of the other users, with a 

probabilistic optimization difficulty. The training users offered the observed ratings 

being employed. This procedure by design calculate the fitting weights for various 

items that are not similar to mainly the early work on weighting schemes which are 

resolute by foreknowledge functions on item weights. The crowding together 

assumption fixed in most models-based procedures are similar to the supposition of 

crowding together for user locations in the item space of the distribution (Jin et al., 

2004). 

One significant characteristic of this procedure is that, the crowded together 

distribution of user rating behaviours gives a low precise supposition. The algorithm 

only required that every user will have a minimum of one user similar to other user, 

not like various model-based procedures that spate users into various disjoint classes. 

As a report, most model-based procedures have to indicate the accurate number of 

crowds together, as this algorithm did not indicate the accurate number of crowds 

together. Dissimilarity is, a discriminative model is a new procedure with the aim of 

giving details of how a number of training users are related and others are not, while 

generative models are mainly model-based procedure with the aim of describing the 

observed ratings of various training users (Ng & Jordan, 2002; Jin et al., 2004). With 

this report, the creation of various users‟ ratings makes most model procedure seek for 

the seeds of crowds together that can be of use. This algorithm examined the weights 

of making every user to be near to the related users from different items and different 

users are separated. The explanation of generative model is that every item of 
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observed ratings is included in the distinguishing user‟s interests that are useless. The 

discriminative model assigned a lot of higher weight to important items. Numerous 

studies discovered that the performance of a discriminative model outweighs a 

generative model performance (Ng & Jordan, 2002). 

2.7 Summary 

VAR  cannot  model  efficiently  the  data  that  is  heteroscedastic  in  nature. ARCH 

model with controlled numbers of lag structure, and GARCH models with large 

numbers of lag structure resolved the heteroscedastic data challenges. When there are 

excess kurtosis and persistence volatility in GARCH, the estimation are not efficient 

and it cannot capture the asymmetric effect of non-linear models. 

The EGARCH/GARCH family uplifted the weaknesses of GARCH, but cannot handle 

the leverage effect which is the major challenge. There are effects of autocorrelation 

errors in the error terms of GARCH family also. When the autocorrelation errors are 

detected, moving average (MA) process minimized the effect of autocorrelation within 

limited lags of MA. 

When these challenges are overcome, the EGARCH/GARCH family cannot handle 

the leverage effect in the heteroscedastic data efficiently which is the major challenge. 

Therefore, there is a need to develop a new approach to resolve the heteroscedasticity 

with leverage effect in Chapter Three. 
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Table 2.1 

Summary of literature review 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

1 Sims 1980 Macroeconomics 

and reality 

Vector 

Autoregression 

(VAR) 

VAR is easy to use 

and interpret for 

forecasting and 

policy making. 

 

2 White 1980 The covariance 

matrix estimator 

and 

heteroscedasticity 

test 

 

Heteroscedasticity   

test 

Correct inferences 

3 Qin and 

Gilbert 2001 

The error term in 

the history 

of time series 

econometrics 

Model 

relationships 

between 

macroeconomic 

time series are 

inexact. VAR 

 

Interpret  errors as 

shocks 

4 Pappa 2009 The effects of 

fiscal shocks on 

employment and 

the real wage. 

 

Keynesian 

models. 

Identify fiscal 

shocks/disturbances. 

5 Kilian and 

Murphy 2012 

Understanding the 

dynamics of oil 

market VAR 

models 

Improved 

identification of 

VAR models 

based on sign 

restrictions 

 

The resulting model 

estimates are 

broadly consistent 

6 Dedola and 

Neri 2007 

The effects of 

technology 

shocks in VAR 

models 

VAR 

 Model based on 

sign restrictions 

Stochastic 

technology 

improvements 

persistently increase 

real wages, 

consumption, 

investment and 

output in the data 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

7 Fuita 2011 Dynamics of 

worker flows 

and vacancies: 

 Evidence from  

the sign 

restriction 

approach 

 

VAR sign 

restriction 

approach 

The dynamic features 

of the US labour 

market. 

8  Scholl and 

Uhlig (2008) 

New evidence 

on the puzzles: 

Results from 

agnostic 

identification on 

monetary policy 

and exchange 

rates 

Provide an 

efficient 

algorithm to 

implement 

sign 

restrictions in 

Markov-

switching 

SVARs. 

 

The forward discount 

puzzle is robust even 

without delayed 

overshooting. 

9 Canova and De 

Nicolo (2002) 

Monetary 

disturbances 

matter for 

business 

fluctuations in 

the G-7 

Unrestricted 

VAR 

Identified monetary 

shocks have reasonable 

properties; 

that they significantly 

contribute to output and 

inflation cycles in all 

G-7 countries 

 

10 Francis, 

Owyang, 

Roush, and 

DiCecio 2014 

A flexible finite-

horizon 

alternative to 

long-run 

restrictions with 

an application to 

technology 

shocks 

Identifying 

shocks 

in VARs 

The robust result that 

hours worked responds 

negatively to positive 

technology shocks. 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

11 Faust (1998) The robustness 

of identified 

VAR 

conclusions 

about money 

Robustness of 

identified 

VAR 

The technique reveals 

only weak support for 

the claim that monetary 

policy shocks 

contribute a small 

portion of the forecast 

error variance of post-

war U.S. 

 

12 Canova and 

Paustian (2011) 

Business cycle 

measurement 

with some 

theory 

The approach 

employs the 

flexibility of 

SVAR 

techniques 

against model 

misspecificati

on, 

The model does not 

require the probabilistic 

structure to be fully 

specified to be 

operative; it shields 

researchers against 

omitted variable biases 

and representation 

problems and requires 

limited computer time. 

 

13 Inoue and 

Kilian (2013 ) 

Inference on 

impulse 

response 

functions in 

structural VAR 

models 

The use of 

Bayesian 

methods 

facilitates the 

interpretation 

of sign-

identified 

VAR models 

This approach has the 

advantage of allowing 

for a unified treatment 

of estimation 

and inference in both 

the exactly identified 

and the sign-identified 

VAR model.  

 

14 Buch, 

Eickmeier, & 

Prieto. (2014). 

Survey-based 

evidence on 

bank risk taking 

Factor-

augmented 

vector 

autoregressive 

model 

(FAVAR) 

Based on results, an 

expansionary monetary 

policy shock, small 

domestic banks 

increase their exposure 

to risk. Large domestic 

banks do not change 

their risk exposure. 

Foreign banks take on 

more risk only, when 

interest rates are „too 

low for too long 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

15 Rajan (2006) Has finance 

made the world 

riskier? 

VAR He suggests market-

friendly policies that 

would reduce the 

incentive of 

intermediary 

managers to take 

excessive risk 

. 

16 Altunbas, 

Gambacorta & 

Marques-Ibanez, 

(2010) 

Bank risk and 

monetary policy 

Growth rate 

model (VAR) 

They find that banks 

characterized 

by lower expected 

default frequency 

are able to offer a 

larger amount of 

credit and to better 

insulate their 

loan supply from 

monetary policy 

changes. 

 

17 Swamy 2014 The 

interrelatedness 

of banking 

stability 

measures 

vector auto 

regression 

(VAR) model 

The model is able to 

capture the 

dynamics of 

banking stability 

with greater and 

appreciable 

accuracy. 

 

18 Sims and Zha 

(2006) 

Does monetary 

policy generate 

recessions? 

Identified 

VAR 

Identifying 

assumptions for 

VAR models can 

be discussed in the 

context of explicit 

DSGE models 

DSGE models that 

fit the data by the 

stiff standards of 

careful time series 

econometrics are 

possible. 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

19 Cooley and 

LeROY (1985) 

A theoretical macro 

econometrics 

VAR versus 

SVAR 

They conclude that 

if the models are 

structural in nature 

and interpreted as 

non-structural, the 

conclusions are not 

supported. 

 

20 Blanchard and 

Quah (1989) 

The dynamic 

effects of aggregate 

demand and supply 

disturbances 

VAR versus 

Model 

distributed lags 

of two 

disturbances 

They conclude that 

unemployment and 

output provide two 

shocks; permanent 

and temporary 

shocks. 

 

21 Paruolo and 

Rahbek (1999) 

Weak exogeneity 

in I(2) VAR 

systems 

VAR VAR is weak in 

finding the shock of 

monetary policy to 

inflation and 

economic 

movement. 

 

22 Engle  (1982)  Autoregressive 

Conditional 

Heteroscedasticity 

(ARCH) with 

estimates of the 

variance of United 

Kingdom inflation 

ARCH ARCH model the 

conditional 

variance. This 

model is used to 

estimate the means 

and variances of 

inflation in the U.K 

 

23 Bollerslev 

(1986) 

Generalized 

Autoregressive 

Conditional 

Heteroscedasticity 

(GARCH) 

GARCH GARCH lag 

structure is flexible 

with long memory. 

It models the 

uncertainty inflation 

rate efficiently 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

24 Ewing and 

Malik (2013) 

Volatility 

transmission 

between gold and 

oil futures under 

structural breaks 

GARCH They investigated 

that there are excess 

kurtosis and 

volatility 

persistence in 

GARCH 

 

25 Hassan, 

Hossny, 

Nahavandi, and 

Creighton 

(2013) 

Quantifying 

heteroscedasticity 

using slope of 

local variances 

index 

Modified 

Heteroscedasticity 

Variance Index 

(HVI) 

Heteroscedasticity 

results indicate 

consistency.  

They failed to 

determine the 

current drawback of 

heteroscedasticity 

test with volatile 

mean. 

 

26 Nelson (1991)  Conditional 

heteroscedasticity 

in asset returns: A 

new approach 

EGARCH EGARCH estimated 

coefficients and that 

may unduly restrict 

the dynamics of the 

conditional variance 

process. 

Interpreting whether 

shocks to 

conditional variance 

"persist" 

 

27 Mutunga, 

Islam and 

Orawo (2015) 

Implementation 

of the estimating 

functions 

approach in asset 

returns volatility 

forecasting using 

first order 

asymmetric 

GARCH models 

EGARCH EGARCH forecast 

is more precise. 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

28 Rodr′iguez  and 

Ruiz (2012) 

Revisiting 

several popular 

GARCH models 

with leverage 

effect: 

Differences and 

similarities 

Comparison of 

GARCH family 

models. 

They show that 

when the parameters 

satisfy the 

positivity, 

stationarity, and 

finite kurtosis 

conditions, the 

dynamics that the 

GJR and GQARCH 

models can 

represent are heavily 

limited while those 

of the TGARCH 

and EGARCH 

models are less 

restricted. EGARCH 

is the most flexible. 

 

29 McAleer (2014) Asymmetry and 

leverage in 

conditional 

volatility models 

GARCH, GJR 

GARCH and 

EGARCH 

He shows that the 

parameters satisfy 

the positivity, 

stationarity, and 

finite kurtosis 

conditions of the 

asymmetry. None of 

the GARCH family 

can model leverage 

effect. 

 

30 Marek (2005)  On invertibility 

of a random 

coefficient 

moving average 

model 

Random 

Coefficient 

Moving 

Average 

(RCMA) model 

Generally, to find 

an invertibility 

condition of 

RCMA(l) model is 

very difficult. 

Non-invertible 

models cannot be 

used for Forecasting 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

31 McAleer and 

Hafner (2014) 

A one line 

derivation of 

EGARCH 

Random 

Coefficient 

Complex 

Nonlinear 

Moving 

Average 

(RCCNMA) 

process. 

The EGARCH 

model can be 

derived 

from RCCNMA 

process; and 

the lack of statistical 

properties of the 

estimators of 

EGARCH under 

general conditions is 

that the stationarity 

and invertibility 

conditions for the 

RCCNMA 

process are not 

known. 

 

32 Martinetand 

McAleer(2016) 

On the 

invertibility of 

EGARCH(p, q) 

EGARCH The statistical 

properties of the 

(Quasi-)Maximum 

Likelihood 

Estimator (QMLE) 

of the EGARCH(p, 

q) parameters are 

not available 

 

33 Lazim (2013) Heteroscedasticity Forecasting 

technique 

Heteroscedasticity 

makes forecasting 

less reliable. 

As large as an 

independent 

variable, so also the 

error variance will 

be large and the less 

the predictable. 
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Table 2.1 continued 

No. Author, year Field of work 
Method used/ 

proposed 
Conclusion/remark 

34 Hoeting, 

Madigan, 

Raftery, and 

Volinsky (1999) 

Bayesian Model 

Averaging 

(BMA): A 

tutorial. 

BMA BMA offers 

superior average 

predictive 

performance when 

compare with any 

single model 

selected. 

BMA estimation 

takes into account 

the parameters of 

interest of model 

uncertainty 

 

35 Link and Barker 

(2006) 

Model weights 

and the 

foundations 

of multimodel 

inference 

BMA weighing BIC weights with 

prior model weights. 

A set of models and 

prior probabilities 

are the starting of 

Bayesian model 

weighting, provided 

that the truth model 

is in the model set. 

models are selected 

and weighted 

according to high 

probabilities 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter explains the outline of the methodology used to achieve the objective of 

the study. The first objective is to develop a new model for the heteroscedastic data 

with leverage effect. The second objective is to validate the performance of the new 

model using comparison study based on simulated and real data. The validation of the 

suitability and appropriateness of the new model using simulated data with different 

sample sizes along with low, moderate and high values of leverages and skewness. 

The validations of the new models using four real data sets were examined.  

The methodology framework in Figure 3.1 summarized the new model development 

which consists of ten steps and the explanation is in Section 3.2. The new model 

derivation is detailed in Subsection 3.2.1. Figure 3.2 which summarized the new 

validation process by using simulated and real data as explained in Section3.3. The 

performance of the new model was compared with the three models (VAR, EGARCH 

and MA) using standard error, log-likelihood, information criteria (AIC and BIC) and 

forecast error measures (Section 3.4). 
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Figure 3.1. Methodology Framework of Combine White Noise (CWN) Model 

Development 

 

Step 11. Obtaining the coefficients of the models using OLS 

Step 3. Estimate EGARCH to obtain the standardized residuals graph 

Step 4. Divide EGARCH standardized residuals of unequal variances into 

equal variances (white noise (WN)) Series 

Step 5. The log-likelihood is maximized by MLE method for sufficiency, 

consistency, efficiency and parameter invariance of the variables 

Step 9. The regression model with ARIMA errors and SARIMA to 

confirm the AR order  

Step 7. Using Bayesian model averaging (BMA) to select the best 

models denoted as white noise (WN) models 

Step 10. Fit AR with ARIMA modelling to further confirm the AR order 

Step 12. Combine white noise (CWN) model 

 

 

Step 6. Fit linear model with WN by MLE and BIC to obtain appropriate 

models. 

Step 8. Fitting linear regression with AR errors to confirm the best WN 

models in AR models 

Step 2. EGARCH Weakness is leverage effect in heteroscedasticity 

 

 

Step 1. VAR white noise weaknesses is heteroscedasticity 

 

Step 0. Data preparation 
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3.2 Model Development 

Figure 3.1 is the outline of the twelve (12) steps in the new model development. The 

data that exhibited heteroscedasticity were considered in the development of the model 

to improve the estimation of the VAR model. 

Step 0: Data preparation was the preliminary stage of making the data ready as 

required for the implementation of step one to step twelve. The simulated data were 

based on EGARCH properties using betategarch package in R software. Some tests 

(mainly Jarque-Bera and ARCH ML tests) and estimation were made on collections of 

real data that were heteroscedastic in nature to obtain the EGARCH among the 

GARCH family models. 

Step 1: VAR white noise estimation is efficient but weak in modelling 

heteroscedasticity. 

Step 2: EGARCH estimation can model heteroscedasticity without leverage effect 

efficiently but cannot model heteroscedasticity with leverage effect. 

Step 3: The EGARCH estimation using heteroscedastic data to obtain the standardized 

residuals in graphical form for further computation in step 4. 

Step 4: The EGARCH estimation of standardized residuals which contained 

heteroscedastic errors (unequal variances) were decomposed into equal variances 

(white noise (WN) series) by regrouping using graphical approach. Then the log-

likelihood was employed to obtain the optimal results of the WN series. 
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Step 5: The log-likelihood was maximized by the maximum likelihood estimation 

(MLE) method for the parameters optimizations. The MLE has the optimal properties 

of the parameter of interest in the MLE estimator was for full information, this was 

called sufficiency; the data asymptotically improved by generation from the parameter 

true value was consistent; when the parameter estimates were attained asymptotically 

was of minimum variance which was called efficiency; and the parameterization 

applied were invariant. When the log-likelihood was obtained, each group of equal 

variance (white noise (WN)) was fitted into regression model to obtain a model which 

is white noise (WN) model. 

Step 6: Fitting of linear models were good model building which requires a grab of 

regression techniques (Stapleton, 2009; Yan & Su, 2009). Therefore, the linear model 

was fitted into the series using MLE and BIC to obtain the fitted WN models. In fitting 

these linear regression models, each WN model has mean zero and constant variance. 

Therefore, log-likelihood was used to compute the posterior model probability and 

Bayesian model averaging (BMA) to obtain the best two WN models from each 

standardized residuals graph of unequal variances. 

Step 7: The Bayesian model averaging (BMA). The posterior model probabilities were 

the weights of the posterior distributions in every WN model in which Bayesian 

inference was based as revealed in Raftery (1995) findings. BIC is the weight. The 

posterior model probability BIC values was calculated as 

 )log(2 npLBIC kk   (3.1) 
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Where L  is the log-likelihood, which is being maximized by the MLE, p is the 

number of parameters in the considered model (k
th

 model) and n is the sample size. 

BIC is approximately equal to marginal (integrated) likelihood (Stanford & Raftery, 

2002; Shao & Gift, 2014). The BIC values are used to calculate the posterior model 

weight (PMW) which is also called posterior model probability (PMP). 

 PMP

 





K

ii k

k

BIC

BIC

1
)5.0exp(

)5.0exp(
 (3.2) 

When the PMPs are obtained, then Bayesian model averaging (BMA) is used to select 

the best WN models with lowest BIC and highest posterior probability values. There 

were K2  certainty and uncertainty WN models to account for, and it summarized the 

best models from which the best two models were selected and considered as the 

overall best two WN models. Fit the linear regression model to confirm the best two 

WN models result of BMA selection. 

Step 8: Fitting linear regression with autoregressive errors to confirm the best two WN 

models, with zero mean and constant variance (Higgins & Bera 1992).Regress the 

models obtained and run the autocorrelation function (ACF) of the model to have the 

order of autoregression (AR). Use regression model with ARIMA errors to obtain the 

order of the two WN models.  

Step 9: The regression model with ARIMA errors and SARIMA. Firstly regress the 

models in step 8, and then run the following ACF of the models. The ACF spike of the 

first lag signified autoregressive (AR) of order one which was statistically significant, 

while the other lags were close to zero. The SARIMA (1, 0, 0) which indicated AR (1) 
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converge with short iteration. Thus, fit AR with ARIMA modelling of time series to 

obtain the AR of each model for attaining the previous values of the regression model 

and good for dynamic forecast. 

Step 10: Fit AR with ARIMA modelling of time series to obtain the AR of each WN 

model for proper accountability of the past values of the regression models. Use 

lowest AIC value to obtain and confirm the right order of AR model. Therefore, OLS 

was employed to obtain the coefficients of the WN models. 

Step 11: Using OLS to obtain the coefficients of the WN models with maximum order 

and without considering the AIC value. OLS has good finite-sample properties when 

compared with Yule-Walker estimator, even, after the bias was corrected. OLS has the 

smallest mean square error for stationary models when compared with bias formula 

and bootstrap procedure (Engsted & Pedersen, 2014). Obtain the CWN model in step 

12 below. 

Step 12: The linear combination of the two WN models results in combine white noise 

(CWN) model. The WN series obtained from the decomposition of the graphical 

standardized residuals of unequal variances in step 4 through step 11 produced two 

WN models which the linear combination was CWN in step 12. CWN and VAR error 

terms are white noise. Therefore CWN can improve the VAR white noise structure. 

Based on all of these steps, the following Subsection discussed the model derivation. 
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Model Derivation 

The developments of the model require the heteroscedastic data that use EGARCH 

information for computation process in step 0to step 2 with respect to the equation 

(3.3). 

The EGARCH model permits the conditional mean of financial returns to be: 

 tttt IyEy   )/( 1  (3.3) 

tt Py log
 
stands for the log difference in prices ),( tp 1tI is the information set at 

time 1t  and the conditional heteroscedasticity is .t  

Step 3: This discloses the EGARCH model for the estimation to obtain the 

standardized residuals graph. 

The EGARCH specification is  

 1||,log||log 111    tttt hzzh  (3.4) 

Where ttt hz  is the standardized shocks, ).,0(~ Aiidzt 1||  is when there is 

stability. The impact is asymmetric if ,0 although, there is existence of leverage if

0 and .  Since both  and must be positive which are the variances of two 

stochastic processes, then, modelling leverage effect is not possible (McAleer, 2014; 

McAleer & Hafner, 2014; Martinet  & McAleer, 2016). Therefore, EGARCH errors 

which have been exhibiting unequal variances (heteroscedastic errors) behaviours in 
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the process of estimation are obtained in graphical form for further computation in 

step 4.  

Step 4: The graph of the standardized residuals of EGARCH which are unequal 

variances are rearranged and grouped into equal variances series to deal with the 

leverage effect of heteroscedastic data. Then, the log-likelihood is employed to obtain 

the optimal results of these equal variances series in step 5. 

Step 5: The log-likelihood is maximized by the maximum likelihood estimation 

(MLE) method. Suppose that iX are independent Bernoulli random variables 

probability distribution that relies on unknown parameter , which can make this 

dependence explicit by writing )( ixf  as );( ixf for which the probability density 

function of each iX is: 

 ii xx

ixf



1

)1();(   (3.5) 

for 0ix  or 1 and .10  The likelihood function )(L is: 

 nn xxxxxx
n

i

ixfL





111

1

)1(...)1()1();()( 2211   (3.6) 

For .10  The exponents is sum up as: 

 ni xnX
L


 )1()(    

The value of   that maximizes the natural logarithm of the likelihood function is: 

 )1log()()log()()(log   ii xnxL  (3.7) 

Differentiate the log-likelihood and set to zero: 
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 0
1

)()(log
















 ii xnxL
 (3.8) 

Multiplying through by :)1(    

 0)()1)((   ii xnx   

Simplify: 

0 iii xnxx   

Hence 

 0 nxi  

Therefore the parameter   estimate is: 

 

n

xi

n

i 1ˆ 


  (3.9) 

The log-likelihood is maximized by MLE method and it has the optimal properties of 

the parameters on equal variances series results for sufficiency, consistency, efficiency 

and constant parameters. Next step reveals the models of these equal variances series 

called white noise (WN) series (Myung, 2003). 

Step 6: Moving average (MA) model is considered as fitted linear model that 

transformed white noise series to white noise (WN) model. Therefore, MA model is 

adapted for the computation of each WN model, whose sum is WN models. 

qtjjqtttY   ,2,1121,11111 ...    

qtjjqtttY   ,2,2221,22122 ...    

   ⁞  
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qtjjqtjjtjjjtjY   ,2,21,1 ... 
  

...,
1

,
1

 





 qtjj

q

j
qtjj

q

j
jtY 

 
(3.10) 

...)()(  tt LBLA 
 

 

...])()([  LBLAt  
(3.11) 

tt QAY 
 

(3.12) 

Then, the invertibility condition is met 

1|| 11   AforQAY tt 
 

 

),,0(~, 2

cttt NVVY  2

c is the sum of equal variances
 (3.13) 

tt VY 
 
is the sum of white noise models 

Step 7: Consider the sum of white noise: 

tt VY 
 (3.14) 

Where ),...( 21 jtttt YYYY  and )...( 21 jtttt VVVV  are the white noise. 

Considering, the best two white noise, 1V and 2V in the overall best models produced 

by the Bayesian model averaging result (Hoeting, Madigan, Raftery, & Volinsky, 

1999; Asatryan & Feld, 2013; Shao & Gift, 2014; Kaplan &Chen, 2014).  

Step 8 to step 12: Explain further progressions of obtaining combine white noise 

model. 

Considering WN (1) model from equation (3.12) for the recursive processes. 
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 ,11  ttt VMVY 
 (3.15) 

where ,)...,,( 1
 kttt YYY tV  is zero mean white noise having a non-singular covariance 

matrix ,V )...,,( 1
 kt  is the mean vector of ,tY )( tYE  for all t with the 

assumption that 0  that is, tY is a zero mean process. K is the number of variables.  

Consider: 

 ,...2,1,0,11   tVMVY ttt  
 

 11  ttt VMYV
 

(3.16) 

By recursive substitution, there are: 
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(3.17) 

If 01 
iM as i  

tY   become the subject of the formula,  

 ,)(
1

1 t

i

it

i

t VYMY  




  
(3.18) 

Equation (3.18) is the infinite order VAR representation of the process. Since
iM1 can 

be zero for i greater than some finite number ,p  the process may be a finite order VAR 

(p). 
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Therefore: 

 
 2

1

,0~, ctt

p

i

itit NVVYY  


  
(3.19) 

,0)|(...)|( 121   ttttt YVEYYVE
 

the combine white noise given the series 

(combine) variables equals zero.  

Since in an original VAR model, ,0)|(...),,|( 121   ttttt XExxE   is in sequence, 

therefore, the combine white noise given the series of the variables in lags equal zero. 

Where ),...( 1 kttt YYY  tV has zero mean of the combine white noise with a non-

singular covariance matrix .V tV which is the error term of combine white noise 

model which are encompassed in VAR representation. Therefore, combine white noise 

can be used to improve the VAR estimation. The derived model can be used for 

validation in Section 3.3. 

Combination of Two Variances of the Combine White Noise Model 

The combination of equal variances is 
2

c  from equation (3.13) in Section 3.2. The 

combine variance of the combine white noise is: 

 ...2

2

2

1

2  c  
(3.20) 

Considering the best two variances in the overall best models produced by the 

Bayesian model averaging result (Hoeting, Madigan, Raftery, & Volinsky, 1999; 

Asatryan & Feld, 2013; Shao & Gift, 2014; Kaplan &Chen, 2014). The two combine 

variance follows: 
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1

2  c  
(3.21) 

The variance of errors, 2
c  in the combine white noise can be written: 

 21

2

2

22

1

22 )1(2)1(  WWWWc   (3.22) 

where the balanced weight specified for the model is W  and   is the intra-class 

correlation coefficient. The least of 
2

c  appearing, when the equation is differentiated 

with respect to W and equate to zero, obtaining the models as follows: 
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 is zero   (turning point) 
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Subsequently, the optimum value of W is: 
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(3.23) 

Where  is the correlation; intra-class correlation coefficient which is used for a 

reliable measurement (Bates & Granger, 1969; McGraw & Wong, 1996; Rodr´ıguez & 

Elo, 2003; Lu, & Shara, 2007; Wallis, 2011; Li, Zeng, Lin, Cazzell & Liu, 2015). 
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The intra-class correlation coefficient (ICC) expressed how powerfully the units in the 

identical group resemble one another. In measuring the same quantity, ICC was 

employed to evaluate the consistency or conformity of measurements made by 

multiple observers. ICC was used for the principal measurement of reliability in 

favour of quantitative measures (Rodr´ıguez & Elo, 2003; Lu, & Shara, 2007; Wallis, 

2011; Li, Zeng, Lin, Cazzell & Liu, 2015). 

ICC employs a pooled mean and standard deviation with the data centred and scaled, 

while every variable was centred and scaled by its own mean and standard deviation in 

Pearson correlation. All measurements were of the same quantity for the pooled 

scaling (Bates & Granger, 1969; McGraw & Wong, 1996; Rodr´ıguez & Elo, 2003; 

Lu, & Shara, 2007; Wallis, 2011; Li, Zeng, Lin, Cazzell & Liu, 2015). 

3.3 Model Validation 

Figure 3.2 outline the combine white noise (CWN) model validation process. The 

CWN model was validated using simulated and real data by comparing CWN with 

VAR, EGARCH and MA. In the validation process, CWN uses the VAR properties 

and procedures in the software because of common properties and their error terms are 

white noise. The Subsections 3.3.1and 3.3.2 discussed the simulated and real data 

processes of the estimation respectively. 
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Figure 3.2. Methodology Framework of CWN Model Validation 

 

 

Validation of combine white noise (CWN) model  
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3.3.1 Data Simulation 

The data were simulated to evaluate the performance of the model with three different 

types of sample size. Ng and Lam (2006) evaluated the MEM-GARCH model to 

obtain the sample sizes by using correlation approach to calculate the effectiveness of 

model estimation (conditional variances). It was discovered that 200 sample size have 

correlation value of 0.4983 and 300 sample size have correlation value of 0.9203; the 

higher the sample size the higher the degree of correlation. In relation to the degree of 

correlation, this study considered 200 sample size as low, 250 sample size as moderate 

and 300 sample size as high values as reported in Table 3.1. The simulated three 

different sample sizes data of EGARCH with different values of leverages and 

skewness offered twenty seven different models to estimate each of EGARH, MA, 

VAR and CWN. These results produced one hundred and eight models different 

estimation. 

Each of these sample size was used for low, moderate and high skewness. Bulmer 

(1979) revealed that the distribution with skewness within zero (0) and half (0.5) was 

fairly symmetrical, the distribution with skewness within 0.5 and one (1) was 

moderate and highly skewness was absolute value greater than one (1) (Piovesana & 

Senior, 2016). Therefore, 0.5 was considered as low skewness, 0.7 as moderate 

skewness and 1.2 as high skewness for this study. Sucarrat (2013) considered 

moderate leverage as 0.02 and strong skewness as 0.8 in simulations of generated data 

as reported in Table 3.1. The detailed analysis was carried out in Chapter Four.  
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Each of these sample size of 200, 250 and 300 simulated data used low, moderate and 

high leverage. Sucarrat (2013) considered 0.02 as moderate leverage for simulation of 

2000 simulated sample size using the betategarch package in R software as reported in 

Table 3.1. Sucarrat and Sucarrat (2013) considered 0.05 as leverage for simulation of 

500 simulated sample size, but did not specify whether 0.05 was low, moderate nor 

high leverage. 

Therefore, in this study, 0.01, 0.05 and 0.09 were used as low, moderate and high 

leverage effect values respectively for the simulation of the data that exhibited 

heteroscedasticity with leverage effect. 

Table 3.1 

Conditions for Data Generation 

    Conditions  

No Authors Criteria Low Moderate High 

1 Ng and Lam (2006) Sample Size 200 . 300 

2 Sucarrat (2013) Leverage  . 0.02 . 

3 Sucarrat (2013) Skewness . 0.8 . 

4 Bulmer (1979) Skewness -0.5 to +0.5 
-1.0 to -0.5 +0.5 

to +1.0 
<  -1.0  or 

>+1.0 

5 
Pioresama and 

Senior (2016)        
Skewness -0.5 to +0.5 

-1.0 to -0.5 +0.5 

to +1.0 
<  -1.0  or 

>+1.0 

 

The validation using simulated data, the estimation of the best models among the 

models including the new model revealed the right sample size with the appropriate 

values of leverage and skewness. The validation of simulated data is in Chapter Four. 
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3.3.2 Real Data 

Real data that exhibited heteroscedastic errors were employed to validate the combine 

white noise model with the parameters being estimated. Four sets of data were 

employed; United States gross domestic product (US GDP), United Kingdom (UK) 

GDP Australia (AU) GDP and France GDP. These data were retrieved from 

DataStream of Universiti Utara Malaysia Library. The data that have heteroscedastic 

errors terms have unequal variances in estimation process. Modelling the asymmetric 

effect of heteroscedastic errors which was non-linear can be with or without leverage 

effect depends on the nature and size of the data. The data distributions have skewness 

since the model was asymmetric. The estimation of EGARCH models with sample 

sizes revealed the skewness and asymmetry with or without leverage effect. The 

validation of real data sets is in Chapter Five. 

3.3.3 Estimation Procedure 

Considering maximum likelihood estimation, when a stationary moving average of 

order one is assumed: 

nty ttt ...,,1,                                   (3.24) 

where t is independent normal random variable of a series with zero mean and constant 

variance, .2 Where the absolute of  is less than one. 
tv2 is the variance matrix of 

nyy ,...,1 where 
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The determinant of this is )1/()1(|| 222   n

nV which tends to )1/(1 2 for large 

.n  Approximately, the inverse of 
nV  is: 
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Hence, the approximate log-likelihood is given by

 
...].22[
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)1log(

2

1
log 2

2
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

  tttt yyyyAL 


 Neglecting 

the term )1log(
2

1 2  because of the small order in n  when compared with Llog

present the maximum likelihood equation approximation: 
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  (3.25) 

This results in unmanageable estimating equation. Thereby, a simple and efficient 

estimation based on autoregression representation is suggested (Durbin, 1959; Harvey 

& Philip, 1979; Myung, 2003).  

Estimation based on the autoregression representation model (3.24) has the infinite 

autoregressive as follows: 

 tttt yyy    ...2

'
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1  
(3.26) 

where 
i

i )('   and what is left after 1k  the terms of the series ...1

'

1  tt yy  is 

,)()...()( 1

1

21

1







  kt

k

ktkt

k yy   



  

76 

 

with variance .222  k  This tends to zero as k  tends to infinite since the absolute value 

of is less than one. Consequentially the finite representation is: 

 tttt yyy    ...2211  
(3.27) 

Taking k adequately large for accuracy, is important, is always in asymptotic arguments 

in respect of its smallness when compared with .n  

Let kaa ,...,1 be the least squares estimators of k ,...,1 which are estimators acquired 

by minimizing .)...( 2
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ktktt
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yyy 
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  kaa ,...,1 are asymptotically normal with 

means k ,...,1 and variance matrix .
1

nvk



tv2 is the variance matrix of .,...,1 ktt yy   

Following, kaa ...,,1  have the asymptotic distribution: 

 
....))((2)()1(

2
exp

)2(

111

1

1

2

1

2

2

1

||
2

1
2

1

kiiii

k

i
ii

k

ik

V

dadaaaa
nn

dP

































 




 



 

(3.28) 

The following relations are satisfied by autoregressive coefficients k ,...,1  

,... 1111201 ccccc kkk  
 

,... 2210211 ccccc kkk  
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These equations are multiplied by ),...,1(2 kiii   each and adding to obtain quadratic 

expression, Q , in the exponent of (3.28) (Durbin, 1959). 
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As k is large, 1 is almost equal to  that results, on setting ,00 
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to a high order of accuracy.  

Estimating  by maximizing the likelihood that was got from the distribution of

kaa ,...,1  as )1/()1(|| 222   k
kV

 of which k  is adequately large for it to be 

approximately equal to )1/(1 2 . The first approximation of maximizing the likelihood 

is proportional to minimizing the quadratic form Q . In differentiating Q  with respect 

to ,  and equating to zero to obtain the estimator of :  
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The maximum likelihood estimator that is obtained from equation (3.25) is not as easy 

as this estimator (Durbin, 1959; Myung, 2003; Chaudhuri, Kakade, Netrapalli, 

Sanghavi, 2015). 

Efficiency of the Estimator 

n/)1( 2
 is the minimum asymptotic variance of consistent estimators of  . Taking 

the asymptotic distribution of kaa ,...,1 , when k is large, to be: 
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equation (3.21) gives Q this can be written in this form: 
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Taking the integral with respect to kaa ,...,1  as: 
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(3.32) 

Differentiate equation (3.32) and divide across with n: 
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and second derivative gives 
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to first order in n. Seeing that
222222 )]/([)/(   QEQE to degree one, and 

employing equation (3.33) to obtain the asymptotic result: 
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Therefore, when k is adequately large, the asymptotic variance of b is: 
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bV
21

)(


  (3.35) 

as nearly as desire (Durbin,1959; Chaudhuri, Kakade, Netrapalli, & Sanghavi, 2015). 

The estimation procedures were used to analyze the heteroscedastic data to make 

appropriate comparison of the CWN with the three models. 

3.4 Comparison Study 

Data simulation and real data were used to compare CWN with the three models 

which were VAR, EGARCH and MA. The following are the outline of the three 

models. 
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VAR Model 

VAR are effectively used to model the multivariate time series data that has white 

noise errors. VAR model can be written as: 

 tptptt yyy    ...11
 (3.36) 

Let ty be a vector of length k.   is the constant, s' are the coefficients and t  is the 

white noise with zero mean and constant variance. 

EGARCH Model 

EGARCH is one of the GARCH family models that have been modelling the 

heteroscedastic error. It can be written as: 

 1||,log||log 111    tttt hzzh  (3.37) 

where ttt hz  is the standardized shocks, ).,0(~ Aiidzt 1||  is when there is 

stability. The impact is asymmetric if ,0 although, there is existence of leverage if

0 and .  Since both  and must be positive which are the variances of 

two stochastic processes, then, modelling leverage effect is not possible (McAleer, 

2014; McAleer & Hafner, 2014; Martinet & McAleer, 2016). 

MA Process 

When a moving average process is finite, it was constantly stationary and the errors 

are white noise. The process can be written as: 

 qtqttttY    ...2211
 (3.38) 
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 is the coefficient of the past error terms and t  is the current error term which is 

white noise. 

The performances of CWN, VAR, EGARCH and MA models were validated using 

standard error, log-likelihood, information criteria and forecast error measures as 

follow: 

Standard Error 

The estimation of standard error of a regression or model is the measurement of the 

error and the smaller the value of standard error, the appropriate the model is. It can be 

as written: 

 
1

)ˆ(
2







n

yy
SE

ii  (3.39) 

where y  is the observation, n is the number of sample size and ŷ  was the predicted 

value. 

Log-Likelihood 

Log-likelihood is data summarizing implement to obtain evidence about unknown 

parameters, which is computational convenience. The highest the value of log-

likelihood considered the best among the models. Mostly, log-likelihood is derived 

from a sample. If an independent sample nxxx ,...,, 21 from a distribution ),|( xf  then 

the log-likelihood is: 



  

82 

 

 )|(log)|(
1

 i

n

i

xfxl 


   

 



n

i

ixl
1

)|(
 

(3.40) 

Where is the product,   is the sum total and   is the parameter (Myung, 2003; 

Park, Simar & Zelenyuk, 2015). 

Information Criteria 

Information criteria are used to select the best among some models with minimum 

values of Akaike information criteria (AIC) and Bayesian information criteria (BIC) 

which are the two information criteria considered in this study. 

Akaike Information Criteria (AIC) 

Snipes and Taylor (2014) revealed that the selection of the best model is resolved by 

the minimum AIC value among the AIC values of the models. AIC can be written as: 

 LKAIC log22   (3.41) 

where L  is the likelihood value and K  is the number of parameters in the model. 

Bayesian Information Criteria (BIC) 

BIC selects the best model with minimum BIC value among the BIC values of the 

models. The parameters are panellized in BIC than AIC (Spiegelhalter, Best, Carlin, & 

Linde, 2014). 

 LnKBIC ln2)ln(   (3.42) 
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where K is the number of free parameters to be estimated, or the number of regressors, 

including the intercept in the estimated model. n  is the number of observations 

(sample size). L  is the likelihood value. 

Forecast Error Measures 

Error measure is a criterion used to express the dissimilarities between poor forecast 

model and good forecast model. The criterion is to have the minimum values of error 

measures (Armstrong, & Collopy, 1992; Lazim, 2013). 

There is no particular error measure that is good enough for good forecast model. 

Forecasters used more than one error measures to achieve the accuracy, reliable and 

consistency of the forecast evaluation results. When a particular model gives minimum 

values in the number of error measures considered, then the model is good for 

forecasting (Armstrong, & Collopy, 1992; Lazim, 2013). Four forecast error measures 

were used in this study; root mean square error (RMSE), mean absolute error (MAE), 

mean absolute percentage error (MAPE), geometric root mean square error (GRMSE). 

Root Mean Square Error 

The root mean square error (RMSE) is the square root of the mean of the square of all 

of the error. RMSE gives equal weight to all the errors at any period of time. RMSE 

formula is: 

 

n

e

RMSE

n

t

t
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2

 
(3.43) 
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where yye ttt ˆ , the actual observed value in time t is yt and yt
ˆ is the fitted value in 

time t . RMSE is considered relevant in decision making (Lazim, 2013). 

Mean Absolute Error 

Mean absolute error (MAE) determines the closeness of the forecasts or predictions of 

the final outcomes in measurement. In time series analysis, the common measure of 

forecast error measure is mean absolute error. The MAE is: 
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 (3.44) 

The average absolute errors is the mean absolute error which is |||| iit yfe  where 

the prediction and the true value are if and iy respectively. The mean absolute error is 

a scale-dependent accuracy measure because the mean absolute error is on same scale 

of data being measured (Chai & Draxler, 2014). 

Mean Absolute Percentage Error 

The mean absolute percentage error (MAPE) measures the prediction exactness of 

forecasting method, even in trend estimation. MAPE measured in series is given as: 

 



n

t

tt

n
MAPE

ye
1

100*)|(
 (3.45) 

where 100*)|( ye tt
is the absolute percentage error computed on the fitted values for 

a forecasting method n  is the number of fitted points (Lazim, 2013). 
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Geometric Root Mean Square Error  

The geometric root mean square error (GRMSE) overcomes the challenges of data 

having outliers to have a good forecast evaluation. When there are large forecast error 

measure terms because of the forecast that are not good, the GRMSE is employed to 

uplift the challenges. The GRMSE is: 

 n
itp

n

t
eGRMSE 2

1

2 )(  (3.46) 

where the number of effective data point is ,n
2

itpe  is the actual observation at time t  

for i series using method p (Fildes, 1992; Fildes, Wei, & Ismail, 2011). 

3.5 Model Accuracy 

Model accuracy is calculated by dividing the logarithm of predicted value with the 

logarithm of actual value which is equal to log (Q) or ln (Q). The result is multiplied 

by one hundred to obtain the percentage of ln (Q) which is also the percentage of 

model accuracy, is dimensionless and used in comparisons across data sets. Logarithm 

is used to take care of the asymmetry challenges. 
2

)(ln Q  is used mostly when the 

data is heteroscedastic to obtain the model accuracy. 

The models accuracy: 

 
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Q ln)ln(  (3.47) 
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  2)]ln()[ln( valuesactualvaluespredicted  

 is the summation of the items. The models satisfied the set of desirable properties 

of most of the model accuracy measures (Törnqvist, P. Vartia, & Y. O. Vartia, 1985; 

Tofallis, 2014).  

3.6 Summary 

The new model called CWN has been derived based on the twelve steps using 

EGARCH and BMA successfully. The developments of CWN for the upliftment of 

the challenges of leverage effect in the heteroscedastic data were discussed. The 

validations of the CWN model through simulated and real data were explained. 

The three different sample sizes of 200, 250 and 300 data were simulated; 200 sample 

size was considered as low, 250 sample size as moderate and 300 sample size as 

high(Ng & Lam, 2006).Each of these sample sizes was used with different values of 

low, moderate and high skewness. The low, moderate and high leverage for each 

sample size were equally examined. The estimation of the simulated data disclosed the 

characteristics of the heteroscedasticity with the new model. Data simulations were 

used to compare CWN with VAR, EGARCH and MA. Chapter Four revealed the 

outcome. 

The validation of the model using real data was explained. Four real datasets were 

used to investigate the performance of the model. Real data were used to compare 
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CWN with VAR, EGARCH and MA. Chapter Five presented the description of the 

validation of the model using real data sets. 

The developments and validations of CWN can overcome the leverage effect in the 

heteroscedastic data. 
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CHAPTER FOUR 

VALIDATION OF COMBINE WHITE NOISE USING SIMULATED 

DATA 

4.1 Introduction 

This chapter detailed the performances of the combine white noise with simulated data 

of three different types of sample sizes. Each of these sample size was used for low, 

moderate and high values of leverages and skewness as explained with the twelve 

steps in Chapter Three, Section 3.2 and Subsection 3.2.1.Section 4.2 described the data 

simulation. The twelve steps were employed in Section 4.3for the description of model 

development process. Section 4.4 described the performance of the validated models 

by comparison with results in Subsections 4.4.1 to 4.4.3. Section 4.5 summarized the 

findings of the simulation study in Section 4.4.  

4.2 Data Simulation 

The data were simulated based on the condition that the intercept ( ) is the long-term 

log-volatility,GARCH parameters ( ) was less than one which indicated stability, 

ARCH parameters (  ) was less than one indicating stationary, degree of freedom(df) 

with different values of leverages ( ) and skewness ( ) as reported in Table 4.1.The 

data were simulated according to the Beta-Skew-t-EGARCH models, that is, the 

EGARCH models with leverages and skewness values using betategarch package in R 

software (Sucarrat, 2013). The estimated parameters for the simulated 200 sample size 

of data were close to the postulated model as were reported in Table 4.1. Postulated 
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model is the model assumed as a basis of an argument. Similar results were obtained 

when 250 and 300 sample sizes were conducted.  

Table 4.1 

The Estimated Parameters of the Simulated Data for Postulated Model with different 

values of Leverages and Skewness of 200 Sample Size for EGARCH Model 

Low leverage and low skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.01 10 0.5 

Estimates -0.06 0.51 0.08 0.01 7.50 0.46 

Low leverage and moderate skewness 

Parameters         df   

Postulate  0.01 0.5 0.1 0.01 10 0.7 

Estimates -0.03 0.69 0.04 -0.03 11.14 0.56 

Low leverage and high skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.01 10 1.2 

Estimates 0.06 0.51 0.05 0.04 7.57 1.21 

Moderate leverage and low skewness 

Parameters         df   

Postulate  0.01 0.5 0.1 0.05 10 0.5 

Estimates -0.09 0.06 0.05 0.07 9.99 0.41 

Moderate leverage and moderate skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.05 10 0.7 

Estimates 0.01 0.63 0.06 0.01 9.99 0.60 

Moderate leverage and high skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.05 10 1.2 

Estimates 0.07 0.51 0.05 0.09 8.04 1.21 

High leverage and low skewness 

Parameters         df   

Postulate  0.01 0.5 0.1 0.09 10 0.5 

Estimates -0.13 0.21 0.05 0.11 9.98 0.40 

High leverage and moderate skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.09 10 0.7 

Estimates 0.01 0.46 0.07 0.05 9.38 0.60 

High leverage and high skewness 

Parameters         df   

Postulate 0.01 0.5 0.1 0.09 10 1.2 

Estimates 0.08 0.52 0.05 0.13 8.78 1.21 
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4.3 Model Development 

Twelve steps were employed for the development of the model. 

Step 1: VAR white noise estimation was efficient but weak in modelling 

heteroscedasticity, the weakness were as reported in Table 4.8 to Table 4.16. 

Step 2: EGARCH estimation modelled heteroscedasticity without leverage effect 

efficiently but weak in modelling the leverage effect in the heteroscedasticity, the 

weakness were as reported in Table 4.8 to Table 4.16.Therefore, the data that 

exhibited heteroscedasticity were simulated, estimated and the graphs of the estimated 

standardized residuals with unequal variances and zero mean were considered in this 

study to resolve the leverage effect challenges. 

Step 3: The simulated data of 200 sample size were estimated to obtain the 

standardized residuals in graphical form. The graphs of standardized residuals 

displayed the error terms of these models for the purpose of this study. The error terms 

have the characteristics of heteroscedasticity with leverage effect(unequal variances), 

which made up the conditional variance challenges in the estimation for 200 sample 

size different values of leverages and different values of skewness as reported in 

Figure 4.1 to Figure4.3. Similar results were obtained when standardized residuals 

graphs of 250 and 300 sample sizes were conducted. 

Step 4: The standardized residuals graphs of unequal variances were decomposed 

(rearranged and grouped) manually into equal variances (white noise) series to 

overcome the leverage effect which were examined by displaying in graphical form. 

The decomposition for low leverage and low skewness have forty equal variances, the 



  

91 

 

low leverage and moderate skewness have forty four equal variances and the low 

leverage and high skewness have forty three equal variances. The decomposition for 

moderate leverage and low skewness have forty equal variances, the moderate 

leverage and moderate skewness have forty five equal variances and the moderate 

leverage and high skewness have forty one equal variances. The decomposition for 

high leverage and low skewness have forty one equal variances, the high leverage and 

moderate skewness have forty four equal variances and the high leverage and high 

skewness have forty three equal variances. Maximum likelihood estimation method 

was applied on each equal variance to obtain the log-likelihood. 

Step 5: The Log-Likelihood 

The log-likelihood was maximized by the maximum likelihood estimation method for 

the number of equal variances in each standardized residual. The estimation of 

maximum likelihood was employed to optimize the parameters for sufficiency, 

consistency, efficiency and invariance parameterization of the equal variances (white 

noise) series. The log-likelihood values were reported in Appendix C. 

Based on the log-likelihood obtained, the number of equal variances (white noise) 

from each standardized residuals were fitted into linear model by MLE and BIC for 

modelling each equal variance. This revealed the equal variance model called white 

noise (WN) model. 
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Figure 4.1.Graphs of Standardized Residuals for Low Leverage and Different Values 

of Skewness 
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Figure 4.2.Graphs of Standardized Residuals for Moderate Leverage and Different 

Values of Skewness 
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Figure 4.3. Graphs of Standardized Residuals for High Leverage and Different Values 

of Skewness 
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Step 6: Fitting Linear Model and BIC 

The linear model was fitted into the series of equal variances (WN) by MLE and BIC 

to obtain the fitted WN models. In fitting these linear models, each WN model has 

mean zero and variance one (constant) and each model was significant. White noise 

assumed zero mean and constant variance. Therefore, WN models with zero mean and 

constant variance confirmed the WN. The standardized residual graphs have zero 

mean. The Bayesian model averaging was used for model selection. 

Step 7: Bayesian Model Averaging (BMA) 

There were K2  certainty and uncertainty models to account for, and for this study K  

were the numbers of equal variances in step 5 that were transformed to models in step 

6by fitting the linear model. Some models were selected out of K2 uncertainty and 

certainty models.  The best models were determined by the lowest BIC and highest 

posterior probability (the correct model) in BMA output. The computer outputs were 

in Appendix D. 

The Appendix D detail were: The column “p!=0” indicated the probability that the 

coefficient for a given predictor is not zero. This indicated that at least one of the best 

models considered in the row directly under the column “p!=0”. The column “EV” 

displayed the BMA posterior distribution mean for each coefficient and the column 

“SD” displayed the BMA posterior distribution standard deviation for each coefficient. 

The posterior probabiliy of quantity of interest was determined by each of the models 

considered when the posterior propability was correct, given that one of the considered 

models was correct.The best five models (discribed as model 1, model 2, model 3, 
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model 4 and model 5)were displayed. The predictors (independent variables)to be 

included in a regression model were determined by BMA. Two best predictors were 

displayed in Appendix D (number 10, number 11 and number 12). 

Appendix D (number 1 to number 9) displayed the numbers of predictors for 200 

sample size. Similar results were computed for 250 and 300 sample sizes. Appendix D 

(number 10) summarized the BMA for 200 sample size. The low leverage and low 

skewness revealed that predictor A has the best model which was in the third model 

discribedas model 3 with minium BICand highest posterior probability values. 

Predictor B has the best model in model 4 which was the best model. The low leverage 

and moderate skewness revealed that predictor Chas the best model inmodel 4 with 

minium BIC and highest posterior probability values. Predictor D has the best model 

in model 3 which was the best model. The low leverage and high skewness revealed 

the best model was in model 3 with minium BIC  and highest posterior probability 

values as predictor E. Predictor F has the best model in model 2 which was the best 

model. 

The moderate leverage and low skewness revealed the best model was in model 3 with 

minium BIC  and highest posterior probability values as predictor G. Predictor H has 

the best model in model 2 which was the best model. The moderate leverage and 

moderate skewness revealed the best model was in model 2 with minium BIC  and 

highest posterior probability values as predictor I. Predictor J has the best model in 

model 3 which was the best model. The moderate leverage and high skewness 

revealed the best model was in model 2 with minium BIC and highest posterior 
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probability values as predictor K. Predictor L has the best model in model 3 which was 

the best model. 

The high leverage and low skewness revealed the best model was in model 3 with 

minium BIC and highest posterior probability values as predictor M. Predictor N has 

the best model in model 2 which was the best model. The high leverage and moderate 

skewness revealed the best model was in model 2 with minium BIC and highest 

posterior probability values as predictor P. Predictor Q has the best model in model 3 

which was the best model. The high leverage and high skewness revealed the best 

model was in model 2 with minium BIC and highest posterior probability values as 

predictor R. Predictor S has the best model in model 3 which was the best model. 

Appendix D (number 11) summarized the BMA for 250 sample size. The low leverage 

and low skewness revealed the best model was in model 3 with minium BIC and 

highest posterior probability values as predictor A1. Predictor B1has the best model in 

model 2 which was the best model. The low leverage and moderate skewness revealed 

the best model was in model 3 with minium BIC and highest posterior probability 

values as predictor C1. Predictor D1 has the best model in model 4 which was the best 

model. The low leverage and high skewness revealed the best model was in model 2 

with minium BIC and highest posterior probability values as predictor E1. Predictor F1 

has the best model in model 3 which was the best model. 

The moderate leverage and low skewness revealed the best model was in model 1 with 

minium BIC and highest posterior probability values as predictor G1. Predictor H1 has 

the best model in model 2 which was the best model. The moderate leverage and 
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moderate skewness revealed the best model was in model 4 with minium BIC and 

highest posterior probability values as predictor I1. Predictor J1 has the best model in 

model 3 which was the best model. The moderate leverage and high skewness 

revealed the best model was in model 2 with minium BIC and highest posterior 

probability values as predictor K1. Predictor L1 has the best model in model 3 which 

was the best model. 

The high leverage and low skewness revealed the best model was in model 3 with 

minium BIC  and highest posterior probability values as predictor M1. Predictor N1 has 

the best model in model 2 which was the best model. The high leverage and moderate 

skewness revealed the best model was in model 3 with minium BIC  and highest 

posterior probability values as predictor P1. Predictor Q1 has the best model in model 2 

which was the best model. The high leverage and high skewness revealed the best 

model was in model 2 with minium BIC  and highest posterior probability values as 

predictor R1. Predictor S1 has the best model in model 3 which was the best model. 

Appendix D (number 12) summarized the BMA for 200 sample size. The low leverage 

and low skewness revealed the best model was in model 3 with minium BIC  and 

highest posterior probability values as predictor A2. Predictor B2has the best model in 

model 2 which was the best model. The low leverage and moderate skewness revealed 

the best model was in model 3 with minium BIC  and highest posterior probability 

values as predictor C2. Predictor D2 has the best model in model 3 which was the best 

model. The low leverage and high skewness revealed the best model was in model 1 
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with minium BIC  and highest posterior probability values as predictor E2. Predictor 

F2 has the best model in model 2 which was the best model. 

The moderate leverage and low skewness revealed the best model was in model 4 with 

minium BIC  and highest posterior probability values as predictor G2. Predictor H2 has 

the best model in model 3 which was the best model. The moderate leverage and 

moderate skewness revealed the best model was in model 3 with minium BIC  and 

highest posterior probability values as predictor I2. Predictor J2 has the best model in 

model 2 which was the best model. The moderate leverage and high skewness 

revealed the best model was in model 2 with minium BIC  and highest posterior 

probability values as predictor K2. Predictor L2 has the best model in model 3 which 

was the best model. 

The high leverage and low skewness revealed the best model was in model 2 with 

minium BIC  and highest posterior probability values as predictor M2. Predictor N2 has 

the best model in model 3 which was the best model. The high leverage and moderate 

skewness revealed the best model was in model 2 with minium BIC  and highest 

posterior probability values as predictor P2. Predictor Q2 has the best model in model 3 

which was the best model. The high leverage and high skewness revealed the best 

model was in model 3 with minium BIC  and highest posterior probabilityvalues as 

predictor R2. Predictor S2 has the best model in model 2 which was the best model. 

Step 8: Fitting Linear Regression with Autoregressive Errors 

Fitting linear regression with autoregressive errors of which 200 were the numbers of 

sample size, with zero mean and variance one for each model to confirm that the white 
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noise models were invertible to AR models (Higgins & Bera 1992). The estimated 

values of the fitted linear regression with autoregressive errors, based on significant 

code asterisk showed the best models for different values of leverages and skewness as 

reported in Appendix E (number 1 to number 9) for 200 sample size. Similar results 

were computed for 250 and 300 sample sizes. The best two models were summarized 

in Appendix E (number 10, number 11 and number 12).These confirmed the best 

selected models by BMA. 

P-values revealed the significant values of each best two models in different values of 

leverages and skewness. The more significant of each of the two models indicated the 

dependent variable for the combine white noise (CWN) in step 12. When the two 

models were having equal significant values as models G  and H  in Appendix E 

(number 10), models 1R  and 1S  in Appendix E (number 11), models 2A  and 2B  in 

Appendix E (number 12) of the three different sample sizes respectively, the best 

which has the minium BIC and highest posterior probability values in step 7 were 

considered as dependent variable. 

Appendix E (number 10) displayed the fitted linear regression with autoregressive 

errors for 200 sample size.The low leverage and low skewness shown that Model 

Awas the dependent variable because its value was more significant than model B. The 

low leverage and moderate skewness shown that Model D was considered as 

dependent variable because its value was more significant than model C. The low 

leverage and high skewness shown that Model F was the dependent variable because 

its value was more significant than model E. 
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The moderate leverage and low skewness shown that Model G and model H were 

having the same value of significant figures, model Hwas considered as dependent 

variable in step 12 because predictor Hvalue was in model 2  step 7 as reported in 

Appedix D (number 10) with minium BIC and high posterior probability values.The 

moderate leverage and moderate skewness shown that Model I  was considered as 

dependent variable because its value was more significant than model J. 

The high leverage and low skewness shown that Model M was considered as 

dependent variable because its value was more significant than model N. The high 

leverage and moderate skewness shown that Model P was considered as dependent 

variable because its value was more significant than model Q. The high leverage and 

high skewness shown that Model S was considered as dependent variable because its 

value was more significant than model R. 

Appendix E (number 11) displayed the fitted linear regression with autoregressive 

errors for 200 sample size. The low leverage and low skewness shown that Model A1 

was considered as dependent variable because its value was more significant than 

model B1. The low leverage and moderate skewness shown that Model C1 was 

considered as dependent variable because its value was more significant than model 

D1. The low leverage and high skewness shown that Model E1 was considered as 

dependent variable because its value was more significant than model F1.  

The moderate leverage and low skewness shown that Model G1 was considered as 

dependent variable because its value was more significant than model H1. The 

moderate leverage and moderate skewness shown that Model J1 was considered as 
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dependent variable because its value was more significant than model I1. The 

moderate leverage and high skewness shown that Model K1 was considered as 

dependent variable because its value was more significant than model L1.  

The high leverage and low skewness shown that Model N1 was considered as 

dependent variable because its value was more significant than model M1. The high 

leverage and moderate skewness shown that model Q1 was considered as dependent 

variable because its value was more significant than model P1. The high leverage and 

high skewness shown that model R1 and model S1 were having the same value of 

significant figures, model R1was considered as dependent variable in step 12 because 

predictor R1 value was in model 2 in step 7 with minium BIC and high posterior 

probability values. 

Appendix E (number 12) displayed the fitted linear regression with autoregressive 

errors for 200 sample size. The low leverage and low skewness shown that model A2 

and model B2 were having the same value of significant figures, model B2 was 

considered as dependent variable because predictor B2 value was in model 2 in step 7 

with minium BIC and high posterior probability values. The low leverage and 

moderate skewness shown that Model C2 was considered as dependent 

variablebecause its value was more significant than model D2. The low leverage and 

high skewness shown that Model F2 was considered as dependent variable because its 

value was more significant than model E2. 

The moderate leverage and low skewness shown that Model H2 was considered as 

dependent variable because its value was more significant than model G2. The 
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moderate leverage and moderate skewness shown that Model I2 was considered as 

dependent variable because its value was more significant than model J2. The 

moderate leverage and high skewness shown that Model K2 was considered as 

dependent variable because its value was more significant than model L2. 

The high leverage and low skewness shown that Model M2 was considered as 

dependent variable because its value was more significant than model N2. The high 

leverage and moderate skewness shown that Model P2was considered as dependent 

variable because its value was more significant than model Q2. The high leverage and 

high skewness shown that Model R2  was considered as dependent variablebecause its 

value was more significant than model S2. 

The SARIMA models were used for the lag selection of autoregressive order of the 

models with Y as dependent variable of a model. 

Step 9: The Regression Model with ARIMA Errors 

Firstly, regress with the models obtained in step 8, and then run the following ACF of 

the models. The ACF spike of the first lag signified autoregressive (AR) of order one 

which was significant, while the rest lags were close to zero which signified that the 

orders were zero. SARIMA (1, 0, 0) indicated AR (1) converge with short iteration. 

Therefore, SARIMA (1, 0, 0) were considered as the best. 

The confirmation of two models from the result of BMA in step 7by fitting the linear 

regression with autoregressive errors in step 8 revealed that the first columns for the 

first model with 200 sample size of leverages and skewness values as shown in Figure 
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4.4 to Figure 4.6which displayed AR order one for the first columns. The second 

columns displayed AR order one for the second models with 200 sample sizes values 

of leverages and skewness. These revealed that all the ARs were of order one as 

displayed in Figure 4.4 to Figure 4.6. This was to confirm the right order, and all the 

models were of order one. 

With these reports, autoregressive model of order one was considered for 200 sample 

size as displayed in Figure 4.4 to Figure 4.6. Therefore, this confirmed the 

autoregressive model of order one [AR (1)] in the following computation. Similar 

results were obtained when 250 and 300 sample sizes were conducted and ARs were 

of order one. 

Step 10: Fit AR with ARIMA Modelling of Time Series 

This was to obtain the autoregressive model (AR) of each model. Use lowest AIC 

value to obtain and confirm the right order of AR model. Only models of lowest AIC 

values were reported which were AR of order one as reported in Table 4.2 to Table 

4.4. The computer outputs were reported in Appendix G for 200 sample size. Similar 

results were computed for 250 and 300 sample sizes. 
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Figure 4.4.The ACF of Low Leverage and different Values of Skewness 
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Figure 4.5. The ACF of Moderate Leverage and different Values of Skewness 
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Figure 4.6.The ACF of High Leverage and different Values of Skewness 
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All the models were having ARIMA (1, 0, 0): AR (1) with the smallest AIC values. Y

was the dependent variable of the AR (1). Ordinary least square (OLS) method was 

used to obtain the coefficients of the models. 

Table 4.2 

Obtaining the AR Order of Each Model for 200 Sample Size 

  Each Model is Order One 

ARIMA Ax   Bx   Yx   Cx   Dx   Yx   
Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 602.47 594.21 675.97 602.47 646.95 675.97 

ARIMA Ex   Fx   Yx   Gx   Hx   Yx   
Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 594.21 646.95 675.97 571.8 623.13 675.97 

ARIMA Ix   Jx   Yx   Kx   Lx   Yx   
Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 655.72 610.03 675.97 627.53 594.21 675.97 

ARIMA Mx   Nx   Yx   Px   Qx   Yx   
Order (1,0,0) (1,0,0) (1,0,0)     (1,0,0) (1,0,0) (1,0,0) 

AIC 623.13 655.72 675.97 623.13 655.72 675.97 

ARIMA Rx   Sx   Yx      
Order (1,0,0) (1,0,0) (1,0,0)    
AIC 2727.17 2727.17 675.97    
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Table 4.3 

Obtaining the AR Order of Each Model for 250 Sample Size 

  Each Model is Order One 

ARIMA 
1Ax   1Bx   1Yx   1Cx   1Dx   1Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2727.17 2744.34 675.97 2720.1 2749.49 675.97 

ARIMA 
1Ex   1Fx   1Yx   1Gx   1Hx   1Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2778.11 2749.49 675.97 2721.1 633.09  675.97 

ARIMA 
1Ix   1Jx   1Yx   1Kx   1Lx   1Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2773.99 2761.73 675.97 2845.17 2758.76 675.97 

ARIMA 
1Mx   1Nx   1Yx   1Px   1Qx   

1Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2720.1 633.09 675.97 2847.7 2806.7 675.97 

ARIMA 
1Rx   1Sx   1Yx      

Order (1,0,0) (1,0,0) (1,0,0)    
AIC 2735.71 2768.72 675.97    

 

Table 4.4 

Obtaining the AR Order of Each Model for 300 Sample Size 

      Each Model is Order One 

ARIMA 
2Ax   2Bx   2Yx   2Cx   2Dx   2Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2720.1 2735.57 675.97 2735.71 2735.57 675.97 

ARIMA 
2Px   2Qx   

2Yx   2Wx   2Zx   2Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2720.1 2735.57 675.97 2727.17 2777.82  675.97 

ARIMA 
2Ax   2Bx   2Yx   2Cx   2Dx   2Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2735.57 2795.3 675.97 2733.88 2721.1 675.97 

ARIMA 
2Px   2Qx   

2Yx   2Wx   2Zx   2Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 2823.76 2720.1 675.97 2847.7 2823.76 675.97 

ARIMA 
2Ax   2Bx   2Yx      

Order (1,0,0) (1,0,0) (1,0,0)    
AIC 2720.51 2845.17 675.97    

Step 11: To obtain the Coefficients of the Model using OLS 
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Using OLS to obtain the coefficients of the AR, maximum order of one andAIC value 

was not applied. OLS has good finite-sample properties when compared with Yule-

Walker estimator, even after the bias was corrected. OLS has the smallest mean square 

error for stationary models when compared with bias formula and bootstrap procedure 

(Engsted & Pedersen, 2014) as reported in Table 4.5 to Table 4.7. 

Table 4.5 

Using OLS to obtain the Coefficients of the Models for200 Sample Size 

Model       Coefficients Maximum order  Sigma^2 estimated Intercept 

A  0.0484 1 1.0330 0.0005 

B  0.0160 1 0.9557 -0.0009 

Y  0.1326 1 1.6770 -0.0003 

C  -0.0309 1 0.9608 7.981e-05 

D  -0.0379 1 0.9604 0.0005 

Y  0.1326 1 1.6770 -0.0003 

E  0.0078 1 0.9449 -0.0008 

F  -0.0379 1 0.9604 0.0005 

Y  0.1326 1 1.6770 -0.0003 

G  0.0139 1 0.9517 0.0008 

H  0.0039 1 1.0030 0.0006 

Y  0.1326 1 1.6770 -0.0003 

I  -0.0379 1 0.9604 0.0005 

J  -0.0269 1 1.0200 0.0011 

Y  0.1326 1 1.6770 -0.0003 

K  -0.0056 1 0.9589 0.0003 

L  -0.0030 1 0.9453 -0.0011 

Y  0.1326 1 1.6770 -0.0003 

M  0.0291 1 1.0510 0.0001 

N  0.0078 1 0.9449 -0.0008 

Y  0.1326 1 1.6770 -0.0003 

P  0.0014 1 1.0770 -0.0007 

Q  0.0291 1 1.0510 0.0001 

Y  0.1326 1 1.6770 -0.0003 

R  0.0102 1 0.9450 -0.0010 

S  -0.0307 1 1.0750 -0.0002 

Y  0.1326   1     1.6770 -0.0003 
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Table 4.6 

Using OLS to obtain the Coefficients of the Models for250 Sample Size 

Model Coefficients Maximum order  Sigma^2 estimated Intercept 

1A   0.0139 1 0.9517 0.0008 

1B  -0.0718 1 0.9663 0.0018 

1Y   0.1326 1 1.6770 -0.0003 

1C   0.0078 1 0.9449 -0.0008 

1D   7e-04 1 0.9741 -0.0006 

1Y   0.1326 1 1.6770 -0.0003 

1E   0.0318 1 1.0030 0.0004 

1F    7e-04 1 0.9741 -0.0006 

1Y   0.1326 1 1.6770 -0.0003 

1G  -0.0030 1 0.9453 -0.0011 

1H  -0.0072 1 1.0170 -0.0010 

1Y   0.1326 1                             1.6770 -0.0003 

1I  -0.0080 1 0.9913 0.0028 

1J  0.0014   1 0.9865 0.0005 

1Y  0.1326   1 1.6770 -0.0003 

1K  -0.0307   1 1.0750 -0.0002 

1L  -0.0200 1 0.9836 0.0003 

1Y  0.1326   1 1.6770 -0.0003 

1M  0.0078   1 0.9449 -0.0008 

1N  -0.0072   1 1.0170 -0.0072 

1Y  0.1326   1 1.6770 -0.0003 

1P  0.0014   1 1.0770 -0.0007 

1Q  0.0484   1 1.0330 0.0005 

1Y  0.1326   1 1.6770 -0.0003 

1R  -0.0309   1 0.9608 7.98e-05 

1S  0.0452   1 0.9934 0.0006 

1Y  0.1326   1 1.6770 -0.0003 
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Table 4.7 

Using OLS to obtain the Coefficients of the Models for 300 Sample Size 

Model Coefficients Maximum order  Sigma^2 estimated Intercept 

2A  0.0078 1 0.9449 -0.0008 

2B  -0.0379 1 0.9604 0.0005 

2Y  0.1326 1 1.6770 -0.0003 

2C  -0.0309 1 0.9608 7.98e-05 

2D  -0.0379 1 0.9604 0.0005 

2Y  0.1326 1 1.6770 -0.0003 

2E  0.0078 1 0.9449 -0.0008 

2F  -0.0379 1 0.9604  0.0006 

2Y  0.1326 1 1.6770 -0.0003 

2G  0.0139 1 0.9517 0.0008 

2H  0.0039 1 1.0030 0.0006 

2Y  0.1326 1 1.6770 -0.0003 

2I  -0.0379 1 0.9604 0.0005 

2J  -0.0269 1 1.0200 0.0010 

2Y  0.1326 1 1.6770 -0.0003 

2K  -0.0056 1 0.9589  0.0003 

2L  -0.0030 1 0.9453 -0.0011 

2Y  0.1326 1 1.6770 -0.0003 

2M  0.0291 1 1.0510 0.0001 

2N  0.0078 1 0.9449 -0.0008 

2Y  0.1326 1 1.6770 -0.0003 

2P  0.0014 1 1.0770 -0.0007 

2Q  0.0291 1 1.0510 0.0001 

2Y  0.1326 1 1.6770 -0.0003 

2R  0.0102 1 0.9450 -0.0010 

2S  -0.0307 1 1.0750 -0.0002 

2Y  0.1326 1 1.6770 -0.0003 
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Step 12: The CWN Model 

A linear combination is one in which each variable is multiplied by a coefficient and 

the products are summed (Bates, Maechler, Bolker & Walker, 2014). The combination 

of two WN models revealed the CWN model. The models combination considered the 

coefficients of the models in Table 4.5 to Table 4.7. The dependent variables were 

revealed in step 8. The predictors in step 7 went through step 8 to step 10 processes of 

transformation and step 11 derived the coefficients of the models. 

The models linear combinations of CWN were: 

tttt ABA   11 048.0016.0
 

(4.1) 

tttt DCD   11 0379.0039.0
 

(4.2) 

tttt EFF   11 0078.00379.0
 

(4.3) 

tttt GHH   11 00139.00039.0
 

(4.4) 

tttt IJI   11 0379.00269.0
 

(4.5) 

tttt KLK   11 0056.0003.0
 

(4.6) 

tttt MNM   11 0291.00078.0
 

(4.7) 

tttt PQP   11 0014.00291.0
 

(4.8) 

tttt RSS   11 0102.00307.0
 

(4.9) 

Equations (4.1) to Equation (4.9) were the CWN models for the different values of 

leverages and skewness of 200 sample size data simulated. 
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Models for 250 Sample Size 

 tttt ABB ,11,11,1,1 0139.00718.0    
(4.10) 

 tttt DCC ,11,11,1,1 0007.00078.0    
(4.11) 

 tttt EFE ,11,11,1,1 0138.00007.0    
(4.12) 

 tttt GHG ,11,11,1,1 003.00072.0    
(4.13) 

 tttt IJJ ,11,11,1,1 008.00014.0    
(4.14) 

 tttt KLK ,11,11,1,1 0307.002.0    
(4.15) 

 tttt MNN ,11,11,1,1 0078.00072.0    
(4.16) 

 tttt PQQ ,11,11,1,1 0014.00484.0    
(4.17) 

 tttt RSR ,11,11,1,1 0309.00452.0    
(4.18) 

Equations (4.10) to Equation (4.18) were the CWN models for the different values of 

leverages and skewness of 250 sample size data simulated. 

Models for 300 Sample Size 

 tttt ABB ,21,21,2,2 078.00379.0    
(4.19) 

 tttt DCC ,21,21,2,2 0379.00309.0    
(4.20) 

 tttt EFF ,21,21,2,2 0078.00379.0    
(4.21) 
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 tttt GHH ,21,21,2,2 0139.00039.0    
(4.22) 

 tttt IJI ,21,21,2,2 0379.00269.0    
(4.23) 

 tttt KLK ,21,21,2,2 0056.0003.0    
(4.24) 

 tttt MNM ,21,21,2,2 0291.00078.0    
(4.25) 

 tttt PQP ,21,21,2,2 0014.00291.0    
(4.26) 

 tttt RSS ,21,21,2,2 0102.00307.0    
(4.27) 

Equations (4.19) to Equation (4.27) were the CWN models for the different values of 

leverages and skewness of 300 sample size data simulated. The parameters of 

simulated data and models can be estimated, to obtain its fitness and perform the 

forecast evaluation by comparison. 

4.4 Models Comparison 

The validation of combine white noise (CWN) model was compared with VAR, 

EGARCH and MA models using simulated data for 200, 250 and 300 sample sizes. 

4.4.1 Results for 200 sample size 

The simulation of 200 sample size with different values of leverages and skewness 

were used for the estimation of CWN, VAR, EGARCH and MA as reported in Table 

4.8 to Table 4.10. The computer output for VAR, EGARCH and MA were in 

Appendix H. Similar results were obtained when computer output for VAR, EGARCH 

and MA were conducted for 250 and 300 sample sizes. 
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Table 4.8 to Table 4.10 presented that CWN have the least values of standard error of 

regression, indicating the reliability of the model. The estimated log-likelihood 

parameter of CWN indicated highest value among the models, revealing a good model 

distribution fit. The Akaike information criteria (AIC) and Bayesian information 

criteria (BIC) with minimum values indicated the best fit of CWN. 

CWN has the least standard error values, highest log-likelihood values and minimum 

information criteria (AIC and BIC) values in 200 sample size with low leverage and 

high skewness among the CWN in Table 4.8. This indicated the best model fit. 

The root mean square error (RMSE) values, mean absolute error (MAE) values, mean 

absolute percentage error (MAPE) values and geometric root mean square error 

(GRMSE) values were forecast error measures that determined the forecast accuracy 

with minimum values when it was compared with the three models for forecasting.  

CWN presented minimum values of forecast error measure among the models; the best 

was in low leverage and high skewness as reported in Table 4.8.Theseshowed that 

CWN was the best among the models as reported in Table 4.8. 

Table 4.9 disclosed that CWN has the best model fit in 200 sample size with moderate 

leverage and moderate skewness with RMSE, MAE and GRMSE minimum forecast 

error measure while MAPE value was high among the CWN. On average, 200 sample 

size with moderate leverage and high skewness were considered as the best forecast as 

reported in Table 4.9. 



  

117 

 

Table 4.10 presented that CWN has the best model fit and best forecast evaluation 

values in 200 sample size with high leverage and moderate skewness, except that 

standard error has the minimum value in 200 sample size with high leverage and low 

skewness. 

Table 4.8 

Sample Size of 200 with Low Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA 

Low leverage and low skewness 

Standard Error             0.1330 1.0070 1.0051 0.9999 

Log-likelihood 138.31 137.63 -269.76 -282.76 

AIC -1.5735 -1.2626 2.7815 2.8476 

BIC -1.4742 -1.0640 2.8973 2.8806 

RMSE 0.1630 1.0063 1.0610 1.0078 

MAE 0.1058 1.7655 1.7208 1.7596 

MAPE 10.670 110.81 275.94   110.97 

GRMSE 0.0024 0.8736 0.4321 0.7448 

 Low leverage and moderate skewness 

Standard Error 0.1242 1.0374 1.0051 1.0012 

Log-likelihood  26.718 -74.666 -269.76 -293.76 

AIC -3.2412  0.8710 2.7815 2.9647 

BIC -3.1419  1.0700 2.8973 2.9380 

RMSE 0.1247 0.7804 0.8179 0.8145 

MAE 0.0623 0.5872 0.6434 0.6430 

MAPE 6.2157 279.42 241.29 228.98 

GRMSE 0.0011 0.4145 0.3466 0.2649 

Low leverage and high skewness 

Standard Error 0.4051 0.0308 0.0307 0.0307 

Log-likelihood 426.08  379.24 420.11 413.85 

AIC -3.8688 -3.6908 4.1518 -4.1185 

BIC -3.7695 -3.4922 4.0360 -4.0855 

RMSE 0.6527 0.0354 0.0356 0.0366 

MAE 0.2588 0.0270 0.0276 0.0284 

MAPE 3.9112 114.15 108.79 112.50 

GRMSE 1.34E-05 0.4597 0.2631 0.5511 
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Table 4.9 

Sample Size of 200 with Moderate Leverage and different Values of Skewness 

Estimation CWN VAR EGARCHMA 

Moderate leverage and low skewness 

Standard Error 0.1282 1.4310 1.4279 1.4233 

Log-Likelihood 259.24  -91.145  -334.48  -353.37 

AIC -3.6822 1.0366  3.4320 3.5537 

BIC -3.5829 1.2352 3.5478 3.5867 

RMSE 0.1504 1.2115 1.2254 1.2118 

MAE 0.0898 0.8751 0.9074 0.8958 

MAPE 9.1120 92.302 97.754 96.246 

GRMSE 0.0021 0.7366 0.4862 0.9097 

Moderate leverage and moderate skewness 

Standard Error 0.0239 1.0359 1.0331 1.0301 

Log-Likelihood 417.94 132.52 -279.36 -288.72 

AIC -7.8471 -1.2111 2.8780 2.9072 

BIC -7.7478 -1.0125 2.9938 2.9402 

RMSE 0.0240 1.0248 0.8180 0.8146 

MAE 0.0116 0.7780 0.6434 0.6430 

MAPE 5.7104 96.180 241.29 228.99 

GRMSE 3.06E-05 0.3772 0.4179 0.2823 

Moderate leverage and high skewness 

Standard Error  0.2502  1.4310 1.2975 1.2951 

Log-Likelihood 253.76 -351.65 -317.24 -339.77 

AIC -0.2413 3.5745 3.2918 3.4450 

BIC -0.1420 3.6407 3.4085 3.4946 

RMSE 0.4098 0.7916 1.3108 1.3012 

MAE 0.3509 0.5987 0.9567 0.9487 

MAPE 1.3992 287.54 118.49 103.47 

GRMSE 0.0002 0.0990 0.3898 0.5566 
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Table 4.10 

Sample Size of 200 with High Leverage and different Values of Skewness 

Estimation CWN VAR EGARCH MA 

High leverage and low skewness 

Standard Error  0.0118 0.0280 0.0279 0.0279 

Log-Likelihood 500.07  431.48 439.85 433.38 

AIC -4.8349 -0.7956 -4.3503 4.3138 

BIC -4.7356 -0.5972 -4.2344 4.2808 

RMSE 0.0124 0.0322 0.0319 0.0317 

MAE 0.0121 0.0247 0.0245 0.0243 

MAPE 1.9950 142.34 119.67 116.90 

GRMSE 3.00E-05 0.4718 0.4064 0.8929 

High leverage and moderate skewness 

Standard Error 0.0959 1.0247 1.0331 1.0301 

Log-Likelihood 651.11 71.815 -279.36 -288.72 

AIC -5.0664 -0.6012 2.8780 2.9072 

BIC -4.9671 -0.4026 2.9938 2.9402 

RMSE 0.0417 0.8154 0.8179 0.8145 

MAE 0.0087 0.6352 0.6434 0.6430 

MAPE 1.0861 229.99 241.29 228.98 

GRMSE 1.63E-05 0.5238 0.5238 0.3380 

High leverage and high skewness 

Standard Error 0.2120 1.4991 1.4977 1.4913 

Log-Likelihood 97.841 -118.55 -353.26 -362.72 

AIC -0.8731 1.3120 3.6207 3.6472 

BIC -0.7738 1.5106 3.7337 3.6801 

RMSE 0.1617 1.7888 1.7956 1.7989 

MAE 0.0349 1.2955 1.2660 1.3016 

MAPE 1.1621 281.98 381.12 272.79 

GRMSE 0.0002 0.8282 0.3553 0.5331 

 

CWN estimation outperformed VAR, EGARCH and MA using three sample sizes.  

CWN has the best fit in 200 sample size with moderate leverage and moderate 

skewness, while the best forecast was in high leverage and moderate skewness.  
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4.4.2 Results for 250 sample size 

The simulation of 250 sample size with leverage and skewness were used for the 

estimation of CWN, VAR, EGARCH and MA as reported in Table 4.11to Table 4.13. 

Table 4.11 to Table 4.13revealed that CWN have the minimum standard error values 

when compared with the three models estimated in this study. The estimated log-

likelihood parameter of CWN indicated highest value among the models, revealing a 

good distribution fit. The information criteria with minimum values of AIC and BIC 

indicated the best fit of CWN among the models.  

The root mean square error (RMSE) values, mean absolute error (MAE) values, mean 

absolute percentage error (MAPE) values and geometric root mean square error 

(GRMSE) values were considered as forecast error measure in this study. CWN 

revealed the minimum values of forecast error measures among the models. These 

revealed that CWN was the best among the models estimated as reported in Table 4.11 

to Table 4.13. 

The CWN showed that the 250 sample size with low leverage and low skewness has 

the best model fit among the CWN in Table 4.11. CWN in Table 4.11 presented that 

the 250 sample size with low leverage and high skewness has the minimum forecast 

error measure values. This offered the least forecast error measure evaluated among 

the CWN in Table 4.11. 

CWN has the best model fit in 250 sample size with moderate leverage and high 

skewness with RMSE, MAE and GRMSE having minimum forecast error measure 
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values while MAPE value was high among the CWN in this Table 4.12. On average, 

250 sample size with moderate leverage and moderate skewness were considered 

having the minimum forecast error measure value as reported in Table 4.12. 

Table 4.11 

Sample Size of 250 with Low Leverage and different Values of Skewness 

Estimation CWN VAR EGARCH MA 

Low leverage and low skewness 

Standard Error 0.0152 1.71127 1.7131 1.7039 

Log-Likelihood 14.010 -110.05 -474.92 -486.97 

AIC -4.9064 0.9804 3.8708 3.9117 

BIC -4.8216 1.1499 3.9697 3.9399 

RMSE 0.1478 1.5260 1.5586 1.5368 

MAE 0.0723 0.9976 1.0523 1.0552 

MAPE 6.0500 112.12 166.95 133.65 

GRMSE 0.0011 0.4660 0.2860 0.4270 

Low leverage and moderate skewness 

Standard Error 0.0190 0.0346 1.0345 0.0345 

Log-Likelihood 602.99 601.73 488.67 488.33 

AIC -4.8594 -4.7368 -3.8689 -3.8906 

BIC -4.7746 -4.5673 -3.7700 -3.8625 

RMSE 0.0172 0.0373 0.0377 0.0371 

MAE 0.0150 0.0281 0.0287 0.0283 

MAPE 4.6671 132.14 100.83 138.78 

GRMSE 0.0015 0.2283 0.2712 0.2516 

Low leverage and high skewness 

Standard Error 0.2257 1.1185 1.1117 1.1087 

Log-Likelihood -42.450 -279.22 -373.49 -379.53 

AIC -0.2751 2.3581 3.0561 3.0522 

BIC -0.1903 2.5286 3.1550 3.0804 

RMSE 0.1518 1.3036 1.3044 1.2982 

MAE 0.0288 0.9805 0.9786 0.9820 

MAPE 0.9009 113.55 101.26 113.72 

GRMSE 0.0002 0.9813 0.1462 0.1703 
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Table 4.12 

Sample Size of 250 with Moderate Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA  

Moderate leverage and low skewness 

Standard Error 0.0153 0.0314 0.0312 0.0311 

Log-Likelihood 564.39 453.23 514.06 513.81 

AIC -4.6738 -3.1947 -4.0728 -4.0945 

BIC -4.5890 -3.3642 -3.9739 -4.0663 

RMSE 0.0135 0.0335 0.0345 0.0336 

MAE 0.0132 0.0251 0.0265 0.0257 

MAPE 1.5127 106.62 100.19 113.44 

GRMSE 0.0002 0.3716 0.2736 0.3809 

Moderate leverage and moderate skewness 

Standard Error 0.2245 1.3033 1.3046 1.2849 

Log-Likelihood -393.30  -410.94 -407.85 -414.23 

AIC 0.1657 3.3971 3.3321 3.3513 

BIC 0.2505 3.5666 3.4310 3.3936 

RMSE 0.0244 0.0252 0.0254 0.0257 

MAE 0.0176 0.0207 0.0210 0.0213 

MAPE 0.9522 225.84 203.24 184.02 

GRMSE 0.0005 0.2658 0.2221 0.2010 

Moderate leverage and high skewness 

Standard Error 0.0456 1.2388 1.2372 1.2110 

Log-Likelihood 710.91 619.09 -395.46 -399.49 

AIC -8.1678 -4.8762 3.2326 3.2329 

BIC -8.0830 -4.7067 3.3315 3.2752 

RMSE 0.0356 1.5521 1.5613 1.5563 

MAE 0.0128 1.2408 1.2414 1.2491 

MAPE 3.1603 108.03 99.940 109.63 

GRMSE 3.64E-05 0.1632 0.1605 0.1587 

 

In Table 4.13, CWN has the best model fit and best forecast error measure values 

in250 sample size with high leverage and high skewness.  

CWN estimation outperformed VAR, EGARCH and MA using three sample sizes. 

CWN has the best fit in 250 sample size with moderate leverage and high skewness, 

while the best forecast was in low leverage and high skewness. 
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Table 4.13 

Sample Size of 250 with High Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA  

High leverage and low skewness 

Standard Error   0.1598  1.7085       1.7097          1.6885   

Log-Likelihood 220.50 -138.80 -69.90 481.68 

AIC -2.6686  1.2113 3.8305 3.8930 

BIC -2.5838  1.3808 3.9294 3.9354 

RMSE 0.0162 0.0267 0.0283 0.0285 

MAE 0.0105 0.0219 0.0232 0.0235 

MAPE 7.3638 433.23 294.35 266.58 

GRMSE 0.0019 0.3506 0.2807 0.3854 

High leverage and moderate skewness 

Standard Error                             0.0278 0.0323 0.0325 0.0328 

Log-Likelihood 542.73 492.80 503.52 500.66 

AIC -4.2950 -3.8980 -3.3056 -3.9892 

BIC -4.2103 -3.7285 -3.4045 -3.9611 

RMSE                 0.0109               0.0280 0.0283 0.0283 

MAE               0.0160               0.0226 0.0232 0.0232 

MAPE               7.4827               230.94 294.35 302.56 

GRMSE               0.0008               0.2083 0.2000 0.2285 

High leverage and high skewness 

Standard Error                             0.0447               1.3845 1.3817 1.3804 

Log-Likelihood 702.57 -49.99 -410.21 -434.07 

AIC -7.9857 0.4819 3.2342 3.2617 

BIC -7.9009 0.6514 3.3331 3.3040 

RMSE 0.0431 1.1663 1.1804 1.1779 

MAE 0.0186 0.8773 0.9013 0.9011 

MAPE 4.6617 105.54 102.06 105.57 

GRMSE     5.97E-05 0.1490 0.0884 0.3612 

 

4.4.3 Results for 300 sample size 

The simulation of 300 sample size data with different values of leverages and 

skewness were used for the estimation of CWN, VAR, EGARCH and MA as reported 

in Table 4.14 to Table4.16. 
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Table 4.14 to Table 4.16 reported that the regression standard errors values of CWN 

have minimum error when compared with the three models estimated in this study. 

The estimated log-likelihood parameter of CWN indicated highest values among the 

models. The information criteria with minimum values of AIC and BIC indicated the 

best fit of CWN among the models. 

The root mean square error (RMSE) values, mean absolute error (MAE) values, mean 

absolute percentage error (MAPE) values and geometric root mean square error 

(GRMSE) values were considered as forecast error measures in this study. CWN 

provided the minimum values of forecast error measure. These showed that CWN 

models were the best among the models estimated as reported in Table4.14 to Table 

4.16. 

CWN has the best model fit in 300 sample size with low leverage and low skewness as 

reported in Table 4.14.MAE, MAPE and GRMSE values have minimum forecast error 

measures in low leverage and high skewness among CWN as reported in Table 4.14. 
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Table 4.14 

Sample Size of 300 with Low Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA 

Low leverage and low skewness 

Standard Error 0.1249 1.6713 1.6881 1.6691 

Log-Likelihood 903.61 333.91 -555.95 -575.94 

AIC -6.0041 -2.1532 3.7655 3.9096 

BIC -5.9298 -2.0047 3.8522 3.8873 

RMSE 0.1253 1.4725 1.5642 1.5639 

MAE 0.0633 1.1327 1.1356 1.1352 

MAPE 6.2777 112.60 99.750 98.940 

GRMSE 0.0011 1.0105 0.5472 0.5515 

Low leverage and moderate skewness 

Standard Error 0.1191 1.3004 1.3061 1.2909   

Log-Likelihood 426.74 -69.060 -488.75 -499.09 

AIC -2.8143 0.5422 3.3161 3.3956 

BIC -2.7401 0.6907 3.4027 3.3734 

RMSE 0.1363 1.2940 1.2972 1.2941 

MAE 0.0743 0.9416 0.9514 0.9525 

MAPE 7.4340 102.46 101.42 104.77 

GRMSE 0.0018 0.3622 0.4123 0.3765 

Low leverage and high skewness 

Standard Error 0.0911 1.2563 1.2575    1.2563   

Log-Likelihood 434.35 -48.380  -479.92 -490.98 

AIC -2.8652  0.4039 3.2570 3.3413 

BIC -2.7909 0.5524 3.3436 3.3191 

RMSE 0.1356 1.1774 1.2001 1.2000 

MAE 0.0615 0.8983 0.9277 0.9278 

MAPE 5.1043 107.55 103.50 101.14 

GRMSE 0.0010 0.3545 0.3537 0.3514 

 

Table 4.15showed that CWN has the best model fit in moderate leverage and low 

skewness, but standard error has the highest value. The best forecast evaluation values 

were in 300 sample size with moderate leverage and moderate skewness. 
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CWN has the best model fit in 300 sample size with high leverage and moderate 

skewness. While the best forecast was in 300 sample size with high leverage and high 

skewness on average as reported in Table 4.16. 

CWN has the best forecast in 300 sample size with high leverage and high skewness 

on average as the best described in Table 4.14 to Table 4.16. 

Table 4.15 

Sample Size of 300 with Moderate Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA 

Moderate leverage and low skewness 

Standard Error    0.1694 1.6470 1.6549 1.6439   

Log-Likelihood 807.35 244.63 -550.26 -571.38 

AIC -5.3602 -1.5560 3.7275 3.8420 

BIC -5.2859 -1.4075 3.8141 3.8791 

RMSE 0.1634 1.5276 1.5529 1.5398 

MAE 0.0890 1.1025 1.1133 1.1138 

MAPE 7.4251 104.61 114.95 97.940 

GRMSE 0.0026 0.5706 0.5033 0.5672 

Moderate leverage and moderate skewness 

Standard Error  0.0978   1.2910 1.2898 1.2786   

Log-Likelihood 493.96               -1.1150 -485.20 -496.23 

AIC -3.2639                0.0878 3.2923 3.3765 

BIC -3.1897  0.2363 3.3789 3.3542 

RMSE 0.0789 1.2895 1.2911 1.2901 

MAE 0.0309 0.9400 0.9486 0.9501 

MAPE 3.8897 121.06 98.628 103.75 

GRMSE 3.14E-05 1.0603 0.3730 0.3551 

Moderate leverage and high skewness 

Standard Error       0.1254   1.2753   1.2805 1.2563   

Log-Likelihood  563.63 72.890 -477.14 -492.59 

AIC -3.7300 -0.4100 3.2603 3.3373 

BIC -3.6557 -0.2608 3.3473 3.3746 

RMSE 0.1130 1.2533 1.2574 1.2971 

MAE 0.0510 0.9349 0.9515 0.9829 

MAPE 5.1075 106.46 101.41 111.67 

GRMSE 0.0007 0.3539 0.4094 0.3424 
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Table 4.16 

Sample Size of 300 with High Leverage and different Values of Skewness 

 Estimation CWN VAR EGARCH MA 

High leverage and low skewness 

Standard Error 0.0249 1.6432 41.653 1.6425 

Log-Likelihood 827.11 268.08 -544.49 -571.13 

AIC -5.4924 -1.7130 3.6889 3.8428 

BIC -5.4181 -1.5644 3.7755 3.8799 

RMSE 0.0221  1.5142 1.5505 1.5391 

MAE 0.0098 1.0737 1.1026 1.1044 

MAPE 4.8911 104.61 113.34 97.180 

GRMSE 2.54E-05 0.5160 0.4781 0.5359 

High leverage and moderate skewness 

Standard Error 0.0266            1.2942          1.2961 1.2846 

Log-Likelihood 867.44 371.86 -481.41 -497.64 

AIC -5.7621 -2.4071 3.2670 3.3488 

BIC -5.6879 -2.2586 3.3536 3.3859 

RMSE 0.0197 1.3090 1.3076 1.2959 

MAE 0.0077 0.9424 0.9543 0.9539 

MAPE 3.8896 98.960 99.840 116.05 

GRMSE 0.0017 0.3185 0.3694 0.3734 

High leverage and high skewness 

Standard Error                        0.0492 1.3103 1.3160 1.3113 

Log-Likelihood 759.88 260.76 -478.54 -503.79 

AIC -5.0426 -1.6639 3.2478 3.3899 

BIC -4.9684 -1.5154 3.3344 3.4270 

RMSE 0.0722 1.3542 1.3481 1.3304 

MAE 0.0306 0.9926 0.9846 0.9659 

MAPE 3.3643 108.96 102.56 122.20 

GRMSE 0.0002 0.4078 0.3781 0.2552 

 

CWN estimation outperformed VAR, EGARCH and MA using three sample sizes.  

CWN has the best fit in 300 sample size with low leverage and low skewness, while 

the best forecast was in high leverage and high skewness. 
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4.5 Summary 

In 200 sample size of simulated data with moderate leverage and moderate skewness 

results, CWN outperformed the VAR,EGARCH and MA with the values of least 

standard error, log-likelihood highest and minimum information criteria, AIC and 

BIC. This made the model to be the best fit among the low, moderate and high values 

of leverages and skewness of the 200 data simulated sample size. The best forecast for 

CWN results were in 200 data simulated sample size with high leverage and moderate 

skewness values of RMSE, MAE, MAPE and GRMSE. 

In 250 sample size of simulated data with moderate leverage and high skewness 

results, CWN outperformed the EGARCH, VAR and MA. The minimum information 

criteria values of AIC, BIC, standard error and log-likelihood highest value revealed 

the best result. This made the model to be the best fit among the low, moderate and 

high values of leverages and skewness of the 250 simulated sample size. The best 

forecast for CWN results were in 250 data simulated sample size with low leverage 

and high skewness minimum values of RMSE, MAE, MAPE and GRMSE. 

In 300 sample size of simulated data with low leverage and low skewness results, 

CWN outperformed the EGARCH, VAR and MA. The minimum information criteria 

values of AIC, BIC and log-likelihood highest value displayed the best result, but the 

lowest standard error value was in low leverage and high skewness. This made the 

model to be the best fit among the low, moderate and high values of leverages and 

skewness of the 300 data simulated sample size. The minimum forecast error measure 
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values of RMSE, MAE, MAPE and GRMSE revealed the best forecast for 300 data 

simulated sample size with high leverage and high skewness values. 

The CWN outperformed the VAR, EGARCH and MA estimation results. The CWN 

have the best result among the models estimated with different values of leverages and 

skewness using the three sample sizes as reported in Table 4.8 to Table 4.16 

The overall best forecast model for CWN result was in 200 data simulated sample size 

with high leverage and moderate skewness which has minimum values of RMSE, 

MAE, MAPE and GRMSE. 

The CWN outperformed the VAR estimation results as CWN were having the best 

results among the VAR models estimated with different values of leverages and 

skewness using the three sample sizes as reported in Table 4.8 to Table 4.16. CWN 

and VAR error terms are white noise. Therefore, CWN can be used to improve VAR 

using the three sample sizes with different values of leverages and skewness. 
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CHAPTER FIVE 

VALIDATION OF COMBINE WHITE NOISE (CWN) MODEL 

USING REAL DATA 

5.1 Introduction 

This chapter explained the development and estimation of combine white (CWN) 

model using real data as described in Chapter Three, Sections 3.2 to 3.3 and 

Subsection 3.3.2. Real data that exhibit heteroscedastic errors were used to validate the 

performance of CWN model as compared to VAR, EGARCH and MA. The four sets 

of data that were used for the validations were United States gross domestic product 

(US GDP), United Kingdom gross domestic product (UK GDP), Australia gross 

domestic product (AU GDP) and France gross domestic product (GDP). These data 

sets were retrieved from DataStream of Universiti Utara Malaysia Library.  

Section 5.2 described the type of real data. The twelve steps were employed in Section 

5.3for the description of model development process. Followed by, Section 5.4 that 

described the performance of the validated models by comparison; the results were in 

Subsection 5.4.1. Subsection 5.4.2explained the reliability of the measurements of 

degree of relationship between the data distribution and using Levene‟s test of equal 

variances to solve the challenges of non-normality in the data distribution. Subsection 

5.4.3 explained the combination of two variances. Then, Section 5.5 explained the 

different values of leverages and skewness. Section 5.6 summarized the findings based 

on the four sets of the real data in Sections 5.4 and 5.5.  
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5.2 Real Data 

Figure 5.1 displayed the quarterly data sets of US GDP, UK GDP, AU GDP and 

France GDP which consist of 220 data point each. US GDP and UK GDP data sets 

started from quarter one 1960 to quarter four 2014, while AU GDP and France GDP 

data sets started from quarter three 1960 to quarter two 2015. The time plot of four 

countries GDP data in level indicated trend behaviour. The slope of the time plot of 

each data varies according to the behaviour of the data sets. The four countries GDP 

data sets have similar characteristics which showed that the data sets were 

heteroscedastic in nature, given the assurance for further tests. Statistics and normality 

tests were conducted to confirm the heteroscedastic nature of the data sets. 

Table 5.1 summarized the statistics and normality tests for the four countries GDP 

which showed that the Jarque-Bera test values were significant. Jarque-Bera test 

revealed the type of data distribution and showed whether the data sets were 

heteroscedastic in nature or not. It indicated non-normal distribution for the four 

countries GDP with kurtosis and skewness which revealed the data sets were 

heteroscedastic in nature. Standard deviation in each distribution was greater than one 

which was an indication of non-normal distribution. These were characteristics of 

heteroscedastic data sets as reported in Table 5.1. 

The behaviours of the level sets of data signified the presence of heteroscedasticity 

and the level data were transformed (from level data series to return series) for 

confirmation.  
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Figure 5.1.The Time Plot of Four GDP Quarterly Data 
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Table 5.1 

Statistical Summary and Normality Tests for the Four Countries Real Data Sets 

 Standard deviation Skewness Kurtosis 
Jarque-

Bera 

US GDP 4026.92 0.3257 1.7447 18.34 

    (0.0001)*** 

UK GDP 95359.32 0.3341 1.7809 17.72 

    (0.0001)*** 

AU GDP 98689.88 0.5403 2.0839 18.40 

    (0.0001)*** 

France GDP 124321.80 -0.0667 1.7959 13.45 

    (0.0012)*** 

P-values ( )     *** significant at 1%,  ** significant at 5%, * significant at 10% 

 

Data Preparation 

The transformation of level data series to return series was through differentiating the 

log of the level data multiply by one hundred (ST=100*dlog (y)) which displayed 

more stationary behaviour empirically (McAleer, 2014; McAleer & Hafner, 2014). 

This was also to observe whether the data exhibited volatility clustering, skewness and 

kurtosis. These were the characteristics of the presence of heteroscedasticity. 

The transformed data sets for three countries GDP revealed that the standard deviation 

values were approaching one, while AU GDP standard deviation value was greater 

than one as showed in Table 5.2. Jarque-Bera test values were highly significant. It 

indicated non-normal distribution for all the data sets. The four countries GDP data 

sets showed that there were excess kurtosis and skewness in the distributions. France 

GDP distribution has the highest values of kurtosis and skewness which could be the 

attribute of leverage effect in the heteroscedastic data. 
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Autoregressive processes were used for the transformed data series (return series) 

computation to obtain ARCH effect and performed ARCH LM tests to know the effect 

of heteroscedasticity. F-Statistic and Obs*R-squared were significant which were 

indications of ARCH presence in the data. The ARCH presence in the data was a 

justification of using GARCH model as GARCH is the generalization of ARCH.  

Table 5.2 displayed the specification of ARCH and GARCH models in which ARCH 

LM tests were significant in three countries GDP as revealed by F-Statistics and 

Observation*R-squared but highly significant in France GDP. 

Table 5.2 

Statistical Summary, Normality and ARCH Tests for the Four Countries Real Data Set 

 

Standard 

deviation Skewness Kurtosis Jarque-Bera  F-Statistic 

Obs*R-

squared 

US GDP 0.8405 -0.3204 4.5160             24.720 1.3727 1.3767 

    (0.0000)*** (0.0406)** (0.0414)** 

UK GDP 0.9669 0.3755 7.0150 152.24                       0.0602                           0.0607                           

    (0.0000)*** (0.0064)*** (0.0053)*** 

AU  GDP 1.0556 0.3647 3.9497 13.090 4.9084 22.580 

    (0.0014)*** (0.0003)*** (0.0004)*** 

France GDP 0.9205 0.7639 22.98 3663.37                               21.0033 71.690 

    (0.0000)*** (0.0000)*** (0.0000)*** 

P-values ( )    *** significant at 1%,  **significant at 5%, *significant at 10% 

Specification of ARCH and GARCH Family Models Using Real Data 

ARCH-Normal distribution specification: ARCH is normally distributed when the 

mean of the variable is zero and autocovariances are zero. The variances were positive 

for all values of alpha which were the coefficients of ARCH in all the four countries 

GDP. The coefficients were highly significant in three countries, while it was not 

significant in AU GDP. France GDP has the minimum information criteria (AIC and 
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BIC) and highest log-likelihood values among the four countries GDP as displayed in 

Table 5.3. 

GARCH-Normal distribution specification: GARCH is normally distributed when the 

mean of the variable is zero and autocovariances are zero. The coefficients of mean 

equations were highly significant but not significant in AU GDP model estimation. 

The coefficients of variance equations were highly significant. The sum of the 

coefficients of mean and variance equations was less than one, it means stationary 

(Bollerslev, 1987) and it was a mean reverting variance process with slowly mean 

reverting (Engle, 2001) in AU GDP and France GDP. While USGDP and UK GDP 

were not stationary since the sum of the coefficients of mean and variance equations of 

each was greater than one and was unstable (Bollerslev, 1986). Volatility persistence 

took place when the addition of the ARCH and GARCH coefficients were close to 

one. France GDP estimation process has the minimum information criteria (AIC and 

BIC) and highest value of log-likelihood. 

TGARCH-Normal distribution specification: The TGARCH is normally distributed 

when the mean of the variable is zero and autocovariances are zero. The coefficients 

of mean equations were highly significant except AU GDP that was not significant. 

The coefficients of variance equations were significant. None of the thresholds of the 

asymmetries of the variance equations were significant. USGDP and UK GDP were 

not stationary, while AU GDP and France GDP were stationary. France GDP has the 

minimum information criteria (AIC and BIC) (AIC and BIC) and highest value of log-

likelihood. 
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Table 5.3 

Specification of ARCH, GARCH and TGARCH Models Using Real Data 

       AIC BIC LL 

US GDP       

ARCH 0.3613 

(0.0000) 

. . 2.3813 2.4434 -255.57 

GARCH 
0.3664 

(0.0000) 

0.8055 

(0.0000) 

. 2.2972 2.3748 -245.40 

TGARCH Normal 0.3783 

(0.0000) 

0.7717 

(0.0000) 

0.1155 

(0.2367) 

2.3017 2.3948 -244.88 

TGARCH Student‟s t 0.3351 

(0.0000) 

0.7670 

(0.0000) 

0.0500 

(0.6747) 

2.2663 2.3750 -240.02 

UK GDP       
ARCH 0.3349 

(0.0003) 

. . 2.6844 2.7465 -288.59 

GARCH 0.4105 

(0.0000) 

0.8962 

(0.0000) 

. 2.5260 2.6037 -270.34 

TGARCH Normal 0.4231 

(0.0000) 

0.9113 

(0.0000) 

-0.0722 

(0.0549) 

2.5244 2.6175 -269.15 

TGARCH Student‟s t 0.2838 

(0.0000) 

0.9027 

(0.0000) 

-0.1328 

(0.1592) 

2.3398 

 

2.4485 -248.04 

AU GDP       
ARCH 0.0135 

(0.8451) 

. . 2.9073 2.9694 -312.10 

GARCH -0.0765 

(0.1573) 

1.0167 

(0.0000) 

. 2.6317 2.7094 -281.86 

TGARCH Normal -0.0423 

(0.4567) 

0.9960 

(0.0000) 

-0.0328 

(0.0724) 

2.6547 2.7479 -283.36 

TGARCH Student‟s t -0.0515 

(0.2422) 

1.0061 

(1.0061) 

  -0.0260 

(0.2591) 

2.6532 2.7619 -282.20 

France GDP 
ARCH 0.4745 

(0.0000) 

. . 1.9446 2.0067 -207.96 

GARCH 0.5123 

(0.0000) 

0.3120 

(0.0000) 

. 1.9229 2.0005 -204.59 

TGARCH Normal 0.4568 

(0.0000) 

0.3758 

(0.0000) 

 -0.2956 

(0.0966) 

1.9274 2.0205 -204.08 

TGARCH Student‟s t 0.5856 

(0.0000) 

0.2221 

(0.2878) 

   0.0687 

(0.8136) 

1.7002 1.8089 -178.09 

P-values ( ), represented the values of ARCH, GARCH, TGARCH Normal and Student‟s t 
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TGARCH-Student‟s t distribution specification: The TGARCH is Student‟s t 

distributed when an additional parameter, called degrees of freedom, which changes 

its shape from standard normal distribution. The coefficients of mean equations were 

highly significant except AU GDP that was not significant. The coefficients of 

variance equations were highly significant in US GDP and UK GDP, while AU GDP 

and France GDP were not significant. None of the thresholds of the asymmetries of 

the variance equations were significant. France has the minimum information criteria 

(AIC and BIC) and highest value of log-likelihood. 

EGARCH-Normal distribution specification: EGARCH is normally distributed when 

the mean of the variable is zero and autocovariances are zero. The coefficients of 

mean equations were highly significant except AU GDP that was not significant. The 

coefficients of variance equations were highly significant in three countries, while AU 

GDP was not significant. There were stabilities because the coefficient of the past log 

term was less than one, but AU GDP was not stable. France GDP has the minimum 

information criteria (AIC and BIC) and highest value of log-likelihood as described in 

Table 5.4. 

EGARCH-Student‟s t distribution specification: The EGARCH is Student‟s t 

distributed when an additional parameter, called degrees of freedom, which changes 

its shape from standard normal distribution (shape).The coefficients of mean equations 

were significant except in AU GDP. Almost all the coefficients of variance equations 

were significant. The excess kurtosis can relaxed the assumption that the conditional 

returns were normally distributed with the assumption that the returns followed a 



  

138 

 

Student‟s t distribution of fat tails (Bollerslev, 1987; Harvey & Sucarrat, 2014). The 

stabilities conditions were met as the past log term value for each of the three 

countries model was less than one. The stability was not met in AU GDP because the 

coefficient of the past log term value was greater than one. There were asymmetries 

effects in UKGDP and AU GDP model estimation. There were existence of leverage 

effects in USGDP and France GDP. France GDP has the minimum information 

criteria (AIC and BIC) and highest value of log-likelihood in the estimation. 

EGARCH-Generalized error distribution specification: EGARCH is the generalized 

error distributed when the symmetrical unimodal member of the exponential family, 

locates the mode of the distribution, and defines the dispersion of the distribution 

which controls the skewness. The coefficients of mean equations were significant 

except AU GDP. Most of the coefficients of variance equations were significant. The 

stabilities conditions were met except AU GDP which the coefficient of the past log 

term was greater than one. There was asymmetry effect in UK GDP. There were 

existence of leverage effects in US GDP, AU GDP and France GDP. France GDP has 

the minimum information criteria (AIC and BIC) and highest value of log-likelihood. 
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Table 5.4 

Specification of EGARCH Models Using Real Data 

         AIC BIC LL 

UK GDP        
 

EGARCH 

Normal 
0.3627 

 

0.2991 

 

. 0.9364 

 

2.2949 2.3725 -245.14 

 (0.0000) (0.0002)  (0.0000)    

EGARCH 

Student‟s t  
0.3277 

 

0.3206 

 

-0.0656 

 

0.8915 

 

2.2678 2.3764 -240.19 

 (0.0000) (0.0163) (0.3964) (0.0000)    

EGARCH 

GED 
0.3044 

 

0.3244 

 

-0.0883 

 

0.8916 

 

2.2645 2.3732 -239.83 

 (0.0000) (0.0223) (0.2909) (0.0000)    

UK GDP        
EGARCH 

Normal 
0.4036 

 

0.2448 

 

. 0.9857 

 

2.5169 2.5955 -269.34 

 (0.0000) (0.0000)  (0.0000)    

EGARCH 

Student‟s t  
0.2913 

 

0.2182 

 

0.0933 

 

0.9900 

 

2.3515 2.4601 -249.31 

 (0.0000) (0.0106) (0.1228) (0.0000)    

EGARCH 

GED 
0.3188 

 

0.1896 

 

0.0619 

 

0.9876 

 

2.3790 2.4877 -252.31 

 (0.0000) (0.017) (0.2853) (0.0000) . . . 

AU GDP        
EGARCH 

Normal 
-0.0526 

 

-0.0107 

 

. 1.0118 

 

2.6400 2.7178 -282.75 

 (0.3690) (0.8116)  (0.0000)    

EGARCH 

Student‟s t 
-0.0462 

(0.4481) 

-0.0157 

(0.8111) 

  0.0203 

(0.4224) 

1.0106 

(0.0000) 

2.6532 2.7619 -282.20 

        

EGARCH 

GED 
-0.0042 

 

0.1177 

 

-0.0201 

 

1.0276 

 

2.8115 2.9202 -299.45 

 (0.9402) (0.0000) (0.3909) (0.0000)    

France GDP 
EGARCH 

Normal 
0.5748 

 

0.9482 

 

        .     0.7299 

 

1.8575 1.9507 -196.47 

 (0.0000) (0.0000)  (0.0000)    

EGARCH 

Student‟s t 
0.5839 

 

0.4966 

 

-0.1223 

 

0.6544 

 

1.7018 1.8104 -178.49 

 (0.0000) (0.0018) (0.1715) (0.0000)    

EGARCH 

GED 
0.5378 

 

0.7243 

 

-0.0113 

 

0.6875 

 

1.7230 1.8317 -180.81 

 (0.0000) (0.0000) (0.8843) (0.0000)    
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The ARCH and GARCH family models were considered for the estimation in this 

study. EGARCH model with generalized error distribution for USGDP, and EGARCH 

model with Student‟s t distribution were selected for UK GDP, AU GDP and France 

GDP with values of minimum information criteria (AIC and BIC) and highest log-

likelihood (Almeida & Hotta, 2014) as reported in Table 5.4.  

Therefore, EGARCH which showed the standardized residuals of unequal variances 

which was heteroscedastic in nature was used for the development of the model.  

5.3 Model Development 

Twelve steps were employed for the development of the models.  

Step 1: VAR white noise estimation was efficient but weak in modelling 

heteroscedasticity, the weakness were as reported in Table 5.10. 

Step 2: EGARCH estimation modelled heteroscedasticity without leverage effect 

efficiently but weak in modelling the leverage effect in the heteroscedasticity, the 

weakness were as reported in Table 5.10. 

Therefore, the data sets that exhibit heteroscedasticity were simulated, estimated and 

the graphs of the estimated standardized residuals with unequal variances and zero 

mean were considered in this study to resolve the leverage effect challenges. 

Step 3:The estimation of EGARCH model with generalized error distribution for 

USGDP and EGARCH model with Student‟s t distribution for UK GDP, AU GDP and 

France GDP were selected to obtain the standardized residuals in graphical form.  
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The graphs of standardized residuals displayed the error terms of EGARCH models 

for the purpose of this study. The error terms have the characteristics of 

heteroscedasticity with leverage effect (unequal variances), which made up the 

conditional variance challenges in the estimation processes as reported in Figure 5.2. 

The irregular movement in the standardized residuals graphs revealed the unequal 

variances of the heteroscedastic behaviours. 

Step 4: Graphs the standardized residuals with unequal variances and zero mean. 

The standardized residuals graphs of unequal variances were decomposed into equal 

variances by rearrangement. 

The standardized residuals of unequal variances for US GDP were decomposed 

(rearranged and grouped) manually into equal variances to overcome the leverage 

effect. Forty six equal variances were obtained. UK GDP standardized residuals were 

rearranged and grouped manually into unequal variances and there were forty two 

equal variances. The standardized residuals of AU GDP were rearranged and grouped 

manually into equal variances. There were forty three equal variances obtained from 

the decomposition of the standardized residuals. Forty one equal variances were 

obtained from the rearranged and grouped manually of standardized residuals of 

France GDP. Then, maximum likelihood estimation method was applied on each equal 

variance to obtain the log-likelihood. 

Step 5: The Log-Likelihood 

The log-likelihood was maximized by the maximum likelihood estimation method for 

the number of equal variances in each data. The estimation of maximum likelihood 
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was employed for sufficiency, consistency, efficiency and invariance parameterization 

of the variables that is, the equal variances series. The log-likelihood values were 

reported in Table 5.5. 
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U V represented Unequal Variances  

Figure 5.2.Graphs of Standardized Residuals for the Four Countries GDP 
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The log-likelihood were obtained, therefore, the number of equal variances for each 

data were fitted into linear model for modelling each equal variance. This revealed the 

equal variance model which is known as white noise (WN) model. 

Table 5.5 

The Log-Likelihood Values for Real Data 

The log-likelihood values of 46 equal variances for US GDP 
-336.96 -316.13 -323.23 -311.15 -303.51 -301.02 

-305.21 -304.45 -312.37 -315.65 -300.62 -306.49 

-307.55 

-332.68 

-325.56 

-314.61 

-306.47 

-324.95 

-319.86 

-314.67 

 307.51 

 312.07 

-324.03 

-311.71 

-319.87 -302.40 -303.62 -325.78  322.77 -320.04 

-280.92 -312.75 -315.61 -310.27 -319.22 -307.02 

-299.20 -305.31 -326.84 -307.77 -317.05 -339.26 

-315.89 -311.74 -292.93 -330.01   

The log-likelihood values of 42 equal variances for UK GDP 
-304.49 -310.65 -317.68 -327.68 -318.53 -311.53 

-309.68 -315.40 -308.23 -319.72 -325.96 -284.02 

-302.04 -303.99 -297.92 -314.74 -314.44 -305.62 

-311.45 -319.65 -310.42 -319.29 -288.65 -321.13 

-312.28 -289.96 -311.51 -328.83 -320.06 -323.16 

-321.01 -319.78 -293.71 -299.77 -313.98 -314.26 

-324.36 -314.25 -304.68 -302.43 -316.50 -314.73 

The log-likelihood values of forty-three equal variances for AU GDP 
-304.94 -322.88 -287.19 -299.12 -299.77 -296.52 

-332.98 -309.33 -320.99 -294.04 -307.10 -319.86 

-313.99 -303.70 -285.96 -300.80 -319.56 -322.76 

-311.41 -311.48 -313.37 -315.79 -293.04 -317.11 

-312.26 -324.01 -321.22 -323.92 -321.94 -315.80 

-314.01    -297.40   -297.14    -310.77   -299.30 -310.91 

-306.87    -305.57   -313.36    -311.22   -321.54 -324.28 

-317.40 
     

The log-likelihood values of forty-one equal variances for France GDP 
-299.63        -309.29          -318.16        -321.73          -309.49          -304.24 

-318.88        -319.36          -297.45       -299.58            -311.90         -320.82 

-322.99         -285.08          -294.42        -302.66          -303.02         -309.51 

-312.25         -315.83          -315.38        -333.21          -308.63         -279.96 

-327.88         -299.00          -316.30        -325.28          -303.63         -283.97 

-331.54         -288.75          -288.72        -323.35          -312.66         -314.07 

-330.14         -332.29          -312.19        -322.88          -315.49 

Step 6: Fitting Linear Model into the white noise by MLE and BIC  
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The linear model was fitted into the series of equal variances (WN) by MLE and BIC 

to obtain the fitted WN models. In fitting these linear models, each WN model has 

mean zero and variance one (constant), and each model was significant. White noise 

assumed zero mean and constant variance. Therefore, WN models with zero mean and 

constant variance confirmed the graphical equal variances with zero mean. 

The equal variances models were the white noise (WN) models with significant 

coefficients, significant constant terms, and BIC values, zero mean and constant 

variance. Therefore, use   the log-likelihood to compute the Bayesian model 

averaging. 

Step 7: Bayesian Model Averaging (BMA) 

There were K2 certainty and uncertainty models to account for, and for this study, K

is the number of equal variances models (WN models) obtained in step 6, which were 

forty-six, forty two, forty three and forty one for US GDP, UK, AU GDP and France 

GDP countries data sets respectively (Hoeting et al., 1999; Shao & Gift, 2014; Hooten 

& Hobbs, 2015). Some models were selected out of 462 , 422 , 432 and 
412 uncertainty 

and certainty models for each country. Summary of the best models were shown and 

the best models for US GDP, UK GDP, AU GDP and France GDP computations were 

as reported in Table 5.6. 

The Table 5.6 summarized BMA results details were: The column “p!=0” indicated 

the probability that the coefficient for a given predictor is not zero. This indicated that 

at least one of the best models considered in the row directly under the column “p!=0”.  
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The column “EV” displayed the BMA posterior distribution mean for each coefficient 

and the column “SD” displayed the BMA posterior distribution standard deviation for 

each coefficient. The posterior probabiliy of quantity of interest was determined by 

each of the models considered in the study when the posterior propability was correct, 

given that one of the considered models was correct.The best five models (discribed as 

model 1, model 2, model 3, model 4 and model 5)were displayed. The predictors 

(independent variables) to be included in a regression model were determined by 

BMA. Two best predictors were displayed in Table 5.6. 

Table 5.6 summarized the BMA for US GDP, UK GDP, AU GDP and France GDP. 

US GDP revealed the best model was the first model discribed as model 1 with 

minium BIC  and highest posterior probability values as predictor A. Predictor B has 

the best model in model 1  which was the best model. UK GDP revealed the best 

model was in model 2 with minium BIC  and highest posterior probability values as 

predictor C. Predictor D has the best model in model 3 which was the best model. The 

AU GDP revealed the best model was in model 1 with minium BIC  and highest 

posterior probability values as predictor E. Predictor F has the best model in model 2 

which was the best model. The France GDP revealed the best model was in model 1 

with minium BIC  and highest posterior probability values as predictor E. Predictor F 

has the best model in model 2 which was the best model. 

Step 8: Fitting Linear Regression with Autoregressive Errors 

Fitting linear regression with autoregressive errors which were 220 number of sample 

sizes, with zero mean and variance one (Higgins & Bera 1992). The estimated values 
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of the fitted linear regression with autoregressive errors, based on significant code 

asterisk showed the selected best models. The best models for each country GDP were 

reported in Table 5.7.  

P-values in Table 5.7 displayed the significant values of each best two models in the 

four countries model estimation. The more significant out of the two models indicated 

the dependent variable for the combine white noise in step 12. Where the two models 

were having equal significant values as in models A and B in Table 5.7, the overall 

best model for US GDP which was A model in step 7 was considered as the dependent 

variables in step 10 for the combine white noise model. 
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Table 5.6 

BMA Summary for Real Data 

Predictor p!=0    EV SD model 1 Model 2 model 3 model 4 model 5 

US GDP 

Intercept 100 1.0070 0.0621 1.0105 1.0026 1.0032 1.0105 1.0185 

A 61 9.75e-02 0.0926 0.1632 . . 0.1489 0.1661 

B 66 1.04e-01 0.0903 0.1616 0.1481 . . 0.1608 

UK GDP 

Intercept 100 1.0817 0.1491 1.0707 1.0892 1.0827 1.0998 1.0687 

C 40 0.1304 0.1834        . 0.3259        . 0.3111       . 

D 34 0.1066 0.1726        .        . 0.3233 0.3077       . 

AU GDP 

Intercept   100 1.17E-01 0.0621 0.1204 0.1164 0.1173 0.1263 0.1224 

E 87 1.49E-01 0.0813 0.1671 0.1741 0.1718 0.1719 0.1796 

F 36 5.10E-02 0.0794        . 0.1451        . 0.1519       . 

France GDP 

Intercept 100 1.63E-02 0.0114 0.0160 0.0172 0.0170 0.0170 0.0169 

G 69 1.20e-01 0.0996 0.1807 0.1686        . 0.1739       . 

H 38 5.83e-02 0.0867        . 0.1455        .        . 0.1601 

nVar    3 2 1 2 4 

r
2
    0.8180 0.8130 0.8080 0.8120 0.8210 

BIC    -358.8 -357.7 -357.6 -357.4 -357.2 

post prob    0.087 0.052 0.048 0.045 0.040 

nvar, r
2 
, BIC and post prob values were reported for US GDP in Table 5.6. 
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Table 5.7 

Confirmation of the Fitted Linear Regression with Autoregressive Errors Using Real 

Data 

Model Estimate Std. Error t value Pr(>|t|) 

US GDP     

(Intercept) 1.01e+00 2.37e-17 4.28e+16 <2e-16 *** 

A 1.48e-01 2.40e-17 6.17e+15 <2e-16 *** 

B 2.03e+00 2.52e-17 8.07e+16 <2e-16 *** 

UK GDP     
(Intercept)      1.0998             0.1471          7.474              1.89e-12 *** 

C 0.3077             0.1473          2.089              0.0378 *   

D 0.3111             0.1446          2.151              0.0326 *   

AU GDP     

(Intercept)    0.1263 0.0617 2.048 0.0418 * 

P 0.1719 0.0615 2.793 0.0057 ** 

Q -0.1114 0.0581 -1.917 0.0566. 

France GDP     

(Intercept)    0.0399     0.0649 0.615    0.5391   

W 0.1686     0.0690    2.446    0.0153 * 

X -0.1114 0.0581 -1.917 0.0566. 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 Residual standard error: 0.9630 

 on 173 degrees of freedom Multiple R-squared:  0.8457,    Adjusted R-squared:  0.8047 

F-statistic: 20.62 on 46 and 173 DF,  p-value: <2.2e-16. 

The footnotes were reported for US GDP in Table 5.7. 

The SARIMA models were used for the lag selection of the autoregressive order of the 

models. Y was dependent variable of a model. 

Step 9: The Regression Model with ARIMA Errors 

Firstly, regress the models in step 8, and then run the following ACF of the models. 

The ACF spike of the first lag signified autoregressive (AR) of order one for all the 

data sets which were statistically significant, while the rest lag were close to zero. The 

SARIMA (1, 0, 0) which indicated AR (1) converged with short iteration. Therefore 

SARIMA (1, 0, 0) were considered as the best. The computer outputs of SARIMA 

were in Appendix F. 
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The confirmation of two models from the result of BMA in step 7 by fitting the linear 

regression with autoregressive errors in step 8showed that the first columns for the 

first model with US Figure 5.3 displayed AR order one. While the second columns for 

the second model with US presented AR order one. These revealed that all the ARs 

were of order one as displayed in Figure 5.3. 

With these reports, autoregressive model of order one was considered as shown in 

Figure 5.3.The other three countries GDP estimation process displayed similar figures 

of order one. Therefore, this confirmed the autoregressive model of order one [AR (1)] 

in the following computation. 

Step 10: Fit AR using ARIMA Modelling of Time Series  

This was to obtain the AR of each model. Use lowest AIC value to obtain and confirm 

the right order of AR model. Only models of lowest AIC values were reported which 

were AR model of order one as reported in Table 5.8. 

Table 5.8 showed WQPDCBAYYYY ,,,,,,,,,, 4321 and Z were having ARIMA (1, 0, 

0): AR (1) with the smallest AIC values indicating model of order one. The dependent 

variable of the model was Y. Then, ordinary least square method was used to obtain 

the coefficient of the models. 
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Figure 5.3.The ACF of Real Data Sets 

Step 11: To obtain the Coefficients of the Model using OLS 

Using OLS to obtain the coefficients of the AR, maximum order of one and AIC value 

was not considered. OLS has good finite-sample properties when compared with Yule-

Walker estimator, even, after the bias was corrected. OLS has the smallest mean 
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square error for stationary models when compared with bias formula and bootstrap 

procedure (Engsted & Pedersen, 2014). These revealed the coefficients of the models 

as reported in Table 5.9. 

Table 5.8 

Obtaining the AR Order of Each Model 

Each Model is Order One 
ARIMA Ax   Bx   1Yx   Cx   Dx   2Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 635.19 666.02 921.55 626.89 637.54 591.61 

ARIMA Px   Qx   
3Yx   Wx   Zx   4Yx   

Order (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

AIC 628.94 651.32 591.61 602.47 594.21 675.97 

Table 5.9 

Using OLS to obtain the Coefficients of the Models 

Model Coefficients Maximum order Sigma^2 estimated Intercept 

A  -0.0694 1 0.9767 -0.0020 

B  0.0482 1 0.8901 -0.0039 

1Y  0.0396 1 3.7610 -0.0083 

C  -0.1078 1 0.9690 -0.0087 

D  0.0078 1 1.0380 -0.0007 

2Y  0.1459 1 0.8370 0.0044 

P  -0.0059 1 0.9973 0.0020 

Q  -0.1118 1 1.1020 0.0025 

3Y            0.1459 1               0.8368         0.0044 

W  0.0484 1 1.0330 0.0005 

Z  0.0160 1 0.9557 -0.0009 

4Y  0.1326 1 1.6770 -0.0003 
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Step 12: The Model 

A linear combination is one in which each variable is multiplied by a coefficient and 

the products are summed (Bates, Maechler, Bolker & Walker, 2014). The combination 

of two WN models revealed the CWN model. The models combination considered the 

coefficients of the models in Table 5.9. The dependent variables were revealed in step 

8. The predictors in step 7 went through step 8 to step 10 processes of transformation 

and step 11 derived the coefficients of the models. 

The models linear combinations of CWN were: 

 tttt ABA   11 0694.00482.0
 

(5.5) 

 tttt DCD   11 0078.01078.0
 

(5.6) 

 tttt QPP   11 1118.00059.0
 

(5.7) 

 tttt ZWW   11 016.00484.0
 

(5.8) 

The Equation (5.5) to Equation (5.8) were the CWN models derived for each of the 

four countries. The models can now be estimated, to obtain its fitness and perform the 

forecast evaluation by comparison. 

5.4 Models Comparison 

The estimation of combine white noise (CWN) model was compared with VAR, 

EGARCH and MA models using four countries GDP. 
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5.4.1 Results of the Real Data 

Table 5.10 summarized the real data tests and estimation for CWN having the least 

standard error of regression values. CWN have the highest log-likelihood values and 

indicated good distribution fit. AIC value and BIC value revealed the minimum 

information criteria (AIC and BIC) and best fit of CWN among the models. 

Considering CWN estimation; least standard error, minimum information criteria (AIC 

and BIC) values of AIC, BIC and highest value of log-likelihood were revealed 

Using Australia GDP. The Jarque-Bera of residual normality tests were significant and 

indicated non-normality of the data distribution. Then, Levene‟s test for equal 

variances was conducted in Section 5.4.2 to justify the equal variances of CWN. 

The dynamic forecast evaluation revealed that CWN has the minimum forecast error 

measures values of root mean square error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE) and geometric root of mean square error (GRMSE) 

among the models. These were forecast error measures that determined the forecast 

accuracy when it was compared with other models for forecasting. The model that has 

the minimum forecast error measure values revealed the best forecast accuracy as 

reported in Table5.10.Considering the estimation of CWN; the minimum forecast error 

measure values of RMSE and MAE were revealed for Australia GDP, the minimum 

forecast error measure value of MAPE was for United States GDP and the minimum 

value of GRMSE was for France GDP. The CWN estimated results outperformed the 

VAR estimated as reported in Table 5.10.  
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Table 5.10 

Summary of the Four Countries GDP Tests and Estimation 

 Estimation CWN VAR EGARCH MA 

US Summary 

Standard Error 0.3926 68.999 0.7904 65.791 

Log-Likelihood 63.320 -1167.9 -239.83 -1226.1 

AIC -0.5235 10.775 2.2645 11.224 

BIC -0.4306 10.961 2.3732 11.271 

Normality Tests Not Normal Not Normal Not Normal Not Normal 

RMSE 0.4828 312.08 0.6628 305.84 

MAE 0.1140 244.14 0.4691 237.82 

MAPE 1.3871 1.7039 147.66 1.6582 

GRMSE 0.0588 24.837 0.2287 0.2569 

Normality Tests Not Normal Not Normal Normal Not Normal 

UK Summary 

    Standard Error 0.1955 2209.8 0.9685 1.2047 

Log-Likelihood 383.16 -1606.9 -249.31 -1969.8 

AIC -3.4444 14.785 2.3515 18.099 

BIC -3.3515 14.971 2.4601 18.146 

Normality Tests Not Normal Not Normal Not Normal Not Normal 

RMSE 0.1673 35951 0.6534 2465.6 

MAE 0.0400 30655 0.4088 1584.5 

MAPE 1.4280 8.4933 169.70 137.81 

GRMSE 0.0197 1.1262 0.2042 693.77 

Normality Tests Not  Normal Not Normal Normal Not Normal 

AU Summary 

Standard Error 0.0451 1519.9 1.0597 0.0105 

Log-Likelihood 699.81 -1211.9 -282.20 -1914.4 

AIC -6.3362 11.178 2.6532 17.510 

BIC -6.2433 11.364 2.7619 17.557 

Normality Tests Not Normal Not Normal Normal Normal 

RMSE 0.0403 53254      0.4899 2328.7 

MAE 0.0109  46227      0.3665 1915.1 

MAPE 1.8160 15.617      107.61 0.6225 

GRMSE 0.0050  675.92  0.2133 0.0021 

Normality Tests Not  Normal Not Normal Normal Not Normal 
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Table 5.10 continued 

France Summary 

    Standard Error 0.0601 2121.9 1.0579 2086.2 

Log-Likelihood 515.95 -1464.0 -178.49 -1983.1 

AIC -4.6571 13.479 1.7018 18.138 

BIC -4.5642 13.665 1.8104 18.184 

Normality Tests Not Normal Not Normal Not Normal Not Normal 

RMSE 0.0532 2401.7 1.3941 1892.5 

MAE 0.0145 1689.6 0.6684 1068.5 

MAPE 1.8169 0.9997 100.07 0.6656 

GRMSE 0.0021 152.52 0.3192 620.93 

Normality Tests Not Normal Not Normal Not Normal Not Normal 

 

5.4.2 Intra-class Correlation Coefficient and Levene’s Test 

CWN was not normally distributed as reported in Table 5.10.The Intra-class 

correlation coefficients (ICC) was used to test the reliability of the measurements of 

degree of relationship between the data distribution(Caceres, Hall, Zelaya, F. 

Williams, & Mehta, 2009; Li, Zeng, Lin, Cazzell & Liu, 2015) and the relationships 

were poor as reported in Appendix B. This can be as a result of the data sets were not 

normally distributed, but passed the Levene‟s test.  

An independent samples test was conducted to test whether the CWN data sets have 

equal variances or not. The test revealed that the variability in the distribution of the 

two data sets was no significantly different with the value which was greater than the 

p-value of 0.05when the two data sets were having equal variances. US GDP, AU 

GDP and France GDP were having equal variances as the p-values were greater than 

significant value of 0.05, while UK GDP has unequal variances because the p-value 

was less than significant value of 0.05 (Lim & Loh, 1996; Boos & Brownie, 2004; 

Bast et al., 2015)as reported in Appendix B. Therefore, combine variance which 
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revealed less value than each of the variances in the combine white noise estimation 

that were employed. 

5.4.3 Combination of Two Variances of the Combine White Noise Model 

In US GDP estimation process, the standard errors of dependent variables A and B 

were used to calculate the variances of each: variance of A was 0.0550, and B variance 

was 0.0004. Obtaining combine variance, 
2
c  of the combine white noise, where K is 

the balanced weight and  is the correlation, but used intra-class correlation for 

reliability measurements. The explanations were in Chapter Three, Section 3.2 and 

Subsection 3.2.1 with equation (3.19) to equation (3.22) (Bates & Grangers, 1969; 

Caceres, Hall, Zelaya, F. Williams, & Mehta, 2009). 

Then; 
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    = 0.0004 

This was the combine variance which was less than each of the variances, indicated 

that combine variance is more appropriate. Following the estimation computational 

procedure above; the combine variance of UK GDP, AU GDP and France GDP values 

were 0.0036, 0.0022 and 0.0026 respectively. The processes of estimation 
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computations have shown that US GDP has the least combine variance among the 

countries GDP. 

The values of combine variances were the smallest variances. Therefore, the combine 

white noise (equal variance) error term was encompassed in the vector auto regression 

(VAR) model for estimation. The inversion of MA (1) process to AR infinite, was in 

accordance with the multiple series encompassed. The results of CWN showed that the 

data distributions were not normal, but passed the Levene‟s test of equal variances. 

The different values of leverages and skewness were discussed. 

5.5 Leverage and Skewness for the Four Countries GDP 

The outperformed CWN among the models were used for the four countries 

transformed data sets which displayed that there were low leverage and low skewness 

for US GDP. There were high leverage and moderate skewness for France data 

distribution and estimation. The leverages range of values was determined by the 

numbers of data that exhibited leverage effect in the estimation. Three countries were 

having low skewness while France has moderate skewness in the distribution. AU 

GDP and UK GDP were asymmetric in this study as reported in Table 5.11. 
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Table 5.11 

Leverage and Skewness for the Four Countries GDP 

 Asymmetry Leverage Skewness 

Transformed data    

US GDP . -0.0883 -0.3204 

UKGDP 0.0933 . 0.3755 

AU GDP 0.0203 . 0.3647 

France GDP . -0.1223 0.7639 

5.6 Model Accuracy 

 CWN outperformed the three models (VAR, EGARCH and MA) using the four 

countries data sets for the model accuracy in percentage form when the data sets were 

heteroscedastic in nature. Percentage of accuracy of VAR was the least, while MA and 

EGARCH percentages were low because of low leverage and low skewness displayed 

using US GDP. VAR and MA were having the least percentages of accuracy with 

higher percentage of accuracy for EGARCH because of the high leverage and 

moderate skewness using France GDP as reported in Table 5.11 to Table 5.12. The 

percentages of model accuracy for VAR and MA were high in UK GDP and AU GDP 

as compared with that of US GDP and France GDP; this was because UK GDP and 

AU GDP have no leverage effect (asymmetry).UK GDP and AU GDP were 

asymmetric with low skewness which revealed the high percentages of accuracy for 

MA model as compared with EGARCH model. CWN have the highest percentages of 

accuracy and were the most accurate models as reported in Table 5.12. 
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Table 5.12 

Model Accuracy in percentages for the Four Countries GDP 

Four Countries 

GDP 
CWN VAR EGARCH MA 

US GDP 63% 1% 37% 25% 

UK GDP 70% 31% 19% 47% 

AU GDP 69% 2% 47% 49% 

France GDP 69% 1% 64% 1% 

 

5.7 Summary 

Among the models estimated for the four countries GDP, CWN presented the least 

standard error, the minimum information criteria (AIC and BIC)of AIC, BIC and log-

likelihood highest values using Australia GDP. RMSE and MAE minimum forecast 

error measure values were for Australia GDP, the minimum MAPE values was for 

United Kingdom GDP and GRMSE was having the minimum value using France 

GDP. The results of CWN showed that none of the data distributions were normal, but 

United States GDP, Australia GDP and France GDP passed the Levene‟s test of equal 

variances. 

CWN outperformed VAR, EGARCH and MA in all the four countries GDP discussed 

in this study. CWN outperformed the VAR in the four different countries GDP in both 

model fit and forecasting. CWN and VAR error terms were white noise. This was an 

assurance that CWN can be used to improve the VAR estimation as reported in 

Table5.10. 

CWN was the most accurate model when compared with VAR, EGARCH and MA 

models as reported in Table 5.12. CWN outperformed the three models using other 
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indicators of model performance which were standard error, log-likelihood, 

information criteria (AIC and BIC) and forecast error measures. 

The estimation of CWN outperformed the EGARCH whether the heteroscedastic data 

contains leverage effect or not. There were leverage effect in United States GDP and 

France GDP. There were asymmetric in the United Kingdom GDP and Australia GDP 

data distributions. Therefore, the countries real data sets that have leverage effects 

showed that CWN outperformed the three models with high leverage and moderate 

skewness using France GDP. 

 



  

161 

 

CHAPTER SIX 

CONCLUSION 

6.1 Introduction 

This Chapter summarizes the development of the model, validation of CWN using 

simulated and real data in Section 6.2. Section 6.3 reveals the limitation and future 

research. 

6.2 Summary 

The estimation of VAR and GARCH family models are inefficient when the 

heteroscedastic data have leverage effect which has motivated this study in creating 

new model by improving vector auto regression (VAR) estimation through combining 

the white noise. Thus, this new model is named combine white noise (CWN) model. 

The derivation of CWN involves twelve steps. 

The first step to third step are for the collections of heteroscedastic data which are the 

weaknesses of VAR and EGARCH, then, use EGARCH estimation to obtain 

standardized residuals graph of unequal variances. The fourth step sort out by 

decomposition(rearrangement and grouping) manually the standardized residuals 

graph of unequal variances into equal variances series. The fifth step is the application 

of log-likelihood which is maximized by maximum likelihood estimation (MLE) 

procedure to obtain optimal results of sufficiency, consistency, efficiency and 

parameter invariant of the unequal variances series which are also called white noise 

(WN) series. The sixth step describes the transformation of WN series into WN model 
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using linear model. The seventh step Bayesian moving average (BMA) is used to 

obtain the best two WN models for each group as explained in fifth and sixth steps. 

The eighth step confirms the best two WN models for each group in seventh step using 

linear regression with auto regression errors. The ninth step regress the models in the 

eighth step and obtain the models order using regression model with ARIMA error. 

The tenth step fit the auto regression (AR) using ARIMA modelling of time series to 

obtain the AR of each model. The eleventh step finds the coefficients of the models 

using ordinary least square (OLS). The twelfth step obtains combine white noise 

(CWN) model using linear combination approach. It is named CWN because it is 

derived from the white noise (equal variances) obtained in the EGARCH standardized 

residuals of unequal variances. Thus, the validations processes are examined using 

simulated and real data. 

The validation of the performance of combine white noise model with simulation was 

carried out with three different sample sizes in connection with the low, moderate and 

high values of leverages and skewness in ordered form. Combine white noise 

performed well in validation process.  

The simulated data of 200 sample size with high leverage and moderate skewness has 

the best forecast model among the different values of leverages and skewness, while 

the simulated data fit the best model with moderate leverage and moderate skewness. 

The 250 sample size of simulated data with moderate leverage and high skewness fit 

the best model among the different values of leverages and skewness, while the 

simulated data for the best forecast model was in low leverage and high skewness. The 
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300 sample size of simulated data with low leverage and low skewness fit the best 

model among the different values of leverages and skewness, while the simulated data 

for the best forecast model was in high leverage and high skewness. 

 The validation of the performance of the combine white noise (CWN) model using 

real data was implemented. The model estimation for the four countries GDP 

disclosed that CWN have least standard error, the minimum information criteria (AIC 

and BIC)of AIC, BIC and log-likelihood highest values using Australia GDP. The four 

GDP were not normally distributed. RMSE and MAE minimum forecast error measure 

values were disclosed using Australia GDP for CWN estimation, the minimum MAPE 

values was for United Kingdom GDP and GRMSE was having the minimum value for 

France GDP. The four countries used the equal number of sample size. 

Heteroscedastic data with leverage effects were discovered in United States GDP and 

France GDP. While Australia GDP and United Kingdom GDP revealed that the 

heteroscedastic data did not contain leverage effects. The behaviours of the 

heteroscedastic data presented the outcomes of the estimation; France GDP has the 

highest values of kurtosis and skewness in the transformed data distribution. The 

results of CWN showed that France GDP with high leverage and moderate skewness 

outperformed the US GDP with low leverage and low skewness. 

The CWN outperformed the VAR estimated values in the four different countries. 

Equally, CWN outperformed VAR in simulation processes. This provided the 

assurance that CWN can be used to improve the VAR estimation. The results of 
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simulated and real data application revealed that CWN model is suitable in modelling 

heteroscedastic data when compared with the three models.  

 CWN result presented the overall best forecast model with high leverage and 

moderate skewness of 200 sample size using simulated data. CWN reported the 

overall best forecast model with high leverage and moderate skewness using real data 

that have leverage effects. 

CWN reported the most accurate model with about 70 percent as compared with VAR, 

EGARCH and MA models. CWN outperformed the three models using other 

indicators of model performance which were standard error, log-likelihood, 

information criteria (AIC and BIC) and forecast error measures. 

Therefore, CWN model was developed for modelling the heteroscedastic data with 

leverage effect efficiently by decomposing (dividing) EGARCH standardized residuals 

into series of models and using BMA to select the best models from the series of 

models. The validation of the performance of CWN with the three models using 

comparison study was revealed based on simulated and real data. CWN can improve 

VAR estimation using real data which can benefit the econometricians, economists 

and statistical modelling end users. 

6.3 Limitations and Future Research 

The combine white noise (CWN) model has successfully outperformed the three 

models (VAR, EGARCH and MA) estimated based on simulated and real data studies. 

The main challenge is the process of obtaining white noise series from the 
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standardized residuals of the EGARCH which is time consuming. Therefore, further 

study will be conducted to simplify the process in ensuring the future innovation in 

automating this new model to be embedded in software.  
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Appendix A 

GDP Real Data 

1. Quarterly United States Gross Domestic Product (US GDP) Data for fifty five years  

Year/ 

Quarterly   GDP 

Year/ 

Quarterly    GDP 

Year/ 

Quarterly    GDP 

Year/ 

Quarterly   GDP 

1960Q1 3123.2 1968Q3 4599.3 1977Q1 5799.2 1985Q3 7655.2 
1960Q2 3111.3 1968Q4 4619.8 1977Q2 5913.0 1985Q4 7712.6 
1960Q3 3119.1 1969Q1 4691.6 1977Q3 6017.6 1986Q1 7784.1 
1960Q4 3081.3 1969Q2 4706.7 1977Q4 6018.2 1986Q2 7819.8 
1961Q1 3102.3 1969Q3 4736.1 1978Q1 6039.2 1986Q3 7898.6 
1961Q2 3159.9 1969Q4 4715.5 1978Q2 6274.0 1986Q4 7939.5 
1961Q3 3212.6 1970Q1 4707.1 1978Q3 6335.3 1987Q1 7995.0 
1961Q4 3277.7 1970Q2 4715.4 1978Q4 6420.3 1987Q2 8084.7 
1962Q1 3336.8 1970Q3 4757.2 1979Q1 6433.0 1987Q3 8158.0 
1962Q2 3372.7 1970Q4 4708.3 1979Q2 6440.8 1987Q4 8292.7 
1962Q3 3404.8 1971Q1 4834.3 1979Q3 6487.1 1988Q1 8339.3 
1962Q4 3418.0 1971Q2 4861.9 1979Q4 6503.9 1988Q2 8449.5 
1963Q1 3456.1 1971Q3 4900.0 1980Q1 6524.9 1988Q3 8498.3 
1963Q2 3501.1 1971Q4 4914.3 1980Q2 6392.6 1988Q4 8610.9 
1963Q3 3569.5 1972Q1 5002.4 1980Q3 6382.9 1989Q1 8697.7 
1963Q4 3595.0 1972Q2 5118.3 1980Q4 6501.2 1989Q2 8766.1 
1964Q1 3672.7 1972Q3 5165.4 1981Q1 6635.7 1989Q3 8831.5 
1964Q2 3716.4 1972Q4 5251.2 1981Q2 6587.3 1989Q4 8850.2 
1964Q3 3766.9 1973Q1 5380.5 1981Q3 6662.9 1990Q1 8947.1 
1964Q4 3780.2 1973Q2 5441.5 1981Q4 6585.1 1990Q2 8981.7 
1965Q1 3873.5 1973Q3 5411.9 1982Q1 6475.0 1990Q3 8983.9 
1965Q2 3926.4 1973Q4 5462.4 1982Q2 6510.2 1990Q4 8907.4 
1965Q3 4006.2 1974Q1 5417.0 1982Q3 6486.8 1991Q1 8865.6 
1965Q4 4100.6 1974Q2 5431.3 1982Q4 6493.1 1991Q2 8934.4 
1966Q1 4201.9 1974Q3 5378.7 1983Q1 6578.2 1991Q3 8977.3 
1966Q2 4219.1 1974Q4 5357.2 1983Q2 6728.3 1991Q4 9016.4 
1966Q3 4249.2 1975Q1 5292.4 1983Q3 6860.0 1992Q1 9123.0 
1966Q4 4285.6 1975Q2 5333.2 1983Q4 7001.5 1992Q2 9223.5 
1967Q1 4324.9 1975Q3 5421.4 1984Q1 7140.6 1992Q3 9313.2 
1967Q2 4328.7 1975Q4 5494.4 1984Q2 7266.0 1992Q4 9406.5 
1967Q3 4366.1 1976Q1 5618.5 1984Q3 7337.5 1993Q1 9424.1 
1967Q4 4401.2 1976Q2 5661.0 1984Q4 7396.0 1993Q2 9480.1 
1968Q1 4490.6 1976Q3 5689.8 1985Q1 7469.5 1993Q3 9526.3 
1968Q2 4566.4 1976Q4 5732.5 1985Q2 7537.9 1993Q4 9653.5 
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Quarterly United States Gross Domestic Product (US GDP) Data for fifty five years 

continued 

 

  Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly   GDP 

1994Q1 9748.2 1999Q2 11962.5 2004Q3 13830.8 2009Q4 14541.9 
1994Q2 9881.4 1999Q3 12113.1 2004Q4 13950.4 2010Q1 14604.8 
1994Q3 9939.7 1999Q4 12323.3 2005Q1 14099.1 2010Q2 14745.9 
1994Q4 10052.5 2000Q1 12359.1 2005Q2 14172.7 2010Q3 14845.5 
1995Q1 10086.9 2000Q2 12592.5 2005Q3 14291.8 2010Q4 14939.0 
1995Q2 10122.1 2000Q3 12607.7 2005Q4 14373.4 2011Q1 14881.3 
1995Q3 10208.8 2000Q4 12679.3 2006Q1 14546.1 2011Q2 14989.6 
1995Q4 10281.2 2001Q1 12643.3 2006Q2 14589.6 2011Q3 15021.1 
1996Q1 10348.7 2001Q2 12710.3 2006Q3 14602.6 2011Q4 15190.3 
1996Q2 10529.4 2001Q3 12670.1 2006Q4 14716.9 2012Q1 15275.0 
1996Q3 10626.8 2001Q4 12705.3 2007Q1 14726.0 2012Q2 15336.7 
1996Q4 10739.1 2002Q1 12822.3 2007Q2 14838.7 2012Q3 15431.3 
1997Q1 10820.9 2002Q2 12893.0 2007Q3 14938.5 2012Q4 15433.7 
1997Q2 10984.2 2002Q3 12955.8 2007Q4 14991.8 2013Q1 15538.4 
1997Q3 11124.0 2002Q4 12964.0 2008Q1 14889.5 2013Q2 15606.6 
1997Q4 11210.3 2003Q1 13031.2 2008Q2 14963.4 2013Q3 15779.9 
1998Q1 11321.2 2003Q2 13152.1 2008Q3 14891.6 2013Q4 15916.2 
1998Q2 11431.0 2003Q3 13372.4 2008Q4 14577.0 2014Q1 15831.7 
1998Q3 11580.6 2003Q4 13528.7 2009Q1 14375.0 2014Q2 16010.4 
1998Q4 11770.7 2004Q1 13606.5 2009Q2 14355.6 2014Q3 16205.6 
1999Q1 11864.7 2004Q2 13706.2 2009Q3 14402.5 2014Q4 16293.7 
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2.   Quarterly United Kingdom Gross Domestic Product (UK GDP) Data for fifty five 

years  

 

 Year/ 

Quarterly  GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

1960Q1 119158 1968Q3 158159 1977Q1 163732 1985Q3 223107 
1960Q2 118220 1968Q4 158979 1977Q2 166606 1985Q4 224158 
1960Q3 120089 1969Q1 157884 1977Q3 169572 1986Q1 225834 
1960Q4 120819 1969Q2 161652 1977Q4 170207 1986Q2 228391 
1961Q1 122782 1969Q3 163263 1978Q1 170314 1986Q3 229928 
1961Q2 123267 1969Q4 164771 1978Q2 174840 1986Q4 234262 
1961Q3 122633 1970Q1 163732 1978Q3 175260 1987Q1 236229 
1961Q4 122412 1970Q2 166606 1978Q4 178032 1987Q2 239505 
1962Q1 123001 1970Q3 169572 1979Q1 186968 1987Q3 245364 
1962Q2 124166 1970Q4 170207 1979Q2 187241 1987Q4 248254 
1962Q3 124919 1971Q1 170314 1979Q3 185345 1988Q1 252941 
1962Q4 124416 1971Q2 174840 1979Q4 184558 1988Q2 254603 
1963Q1 125097 1971Q3 175260 1980Q1 179528 1988Q3 258558 
1963Q2 130461 1971Q4 178032 1980Q2 182105 1988Q4 260772 
1963Q3 131075 1972Q1 186968 1980Q3 183246 1989Q1 261846 
1963Q4 134096 1972Q2 187241 1980Q4 180483 1989Q2 263514 
1964Q1 134864 1972Q3 185345 1981Q1 180603 1989Q3 263651 
1964Q2 137228 1972Q4 184558 1981Q2 177509 1989Q4 263719 
1964Q3 137740 1973Q1 179528 1981Q3 176931 1990Q1 265371 
1964Q4 139872 1973Q2 182105 1981Q4 179080 1990Q2 266644 
1965Q1 139483 1973Q3 183246 1982Q1 182043 1990Q3 263704 
1965Q2 139602 1973Q4 180483 1982Q2 181669 1990Q4 262665 
1965Q3 140784 1974Q1 180603 1982Q3 184000 1991Q1 261838 
1965Q4 141663 1974Q2 177509 1982Q4 188037 1991Q2 261442 
1966Q1 141872 1974Q3 176931 1983Q1 188138 1991Q3 260779 
1966Q2 142667 1974Q4 179080 1983Q2 186977 1991Q4 261240 
1966Q3 143183 1975Q1 182043 1983Q3 188264 1992Q1 261346 
1966Q4 142577 1975Q2 181669 1983Q4 191472 1992Q2 261067 
1967Q1 144536 1975Q3 184000 1984Q1 192949 1992Q3 262816 
1967Q2 146529 1975Q4 188037 1984Q2 195341 1992Q4 264742 
1967Q3 147194 1976Q1 158159 1984Q3 197898 1993Q1 266762 
1967Q4 147960 1976Q2 158979 1984Q4 199843 1993Q2 268180 
1968Q1 153354 1976Q3 157884 1985Q1 198861 1993Q3 270418 
1968Q2 152761 1976Q4 161652 1985Q2 207589 1993Q4 272389 
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Quarterly United Kingdom Gross Domestic Product (UK GDP) Data for fifty five 

years continued 

 

  Year/        

Quarterly        GDP 

Year/ 

Quarterly      GDP 

Year/ 

Quarterly      GDP 

Year/ 

Quarterly    GDP 

1994Q1 275836 1999Q2 319560 2004Q3 376942 2009Q4 391685 
1994Q2 279116 1999Q3 324767 2004Q4 378470 2010Q1 393678 
1994Q3 282336 1999Q4 329111 2005Q1 381142 2010Q2 397525 
1994Q4 283840 2000Q1 332555 2005Q2 385058 2010Q3 400096 
1995Q1 284637 2000Q2 334960 2005Q3 389023 2010Q4 400195 
1995Q2 285751 2000Q3 336221 2005Q4 394268 2011Q1 402341 
1995Q3 288862 2000Q4 337211 2006Q1 396566 2011Q2 403260 
1995Q4 290247 2001Q1 341026 2006Q2 398553 2011Q3 406068 
1996Q1 293666 2001Q2 343637 2006Q3 399251 2011Q4 406008 
1996Q2 294490 2001Q3 345468 2006Q4 402258 2012Q1 406283 
1996Q3 295521 2001Q4 346546 2007Q1 405329 2012Q2 405560 
1996Q4 296474 2002Q1 348115 2007Q2 407767 2012Q3 408938 
1997Q1 297909 2002Q2 350978 2007Q3 411205 2012Q4 407557 
1997Q2 301318 2002Q3 354058 2007Q4 413131 2013Q1 409985 
1997Q3 303490 2002Q4 357286 2008Q1 414424 2013Q2 412620 
1997Q4 307560 2003Q1 360733 2008Q2 413465 2013Q3 415577 
1998Q1 309517 2003Q2 365803 2008Q3 406584 2013Q4 417265 
1998Q2 311857 2003Q3 370428 2008Q4 397522 2014Q1 420091 
1998Q3 314098 2003Q4 374127 2009Q1 390406 2014Q2 423249 
1998Q4 317295 2004Q1 375324 2009Q2 389388 2014Q3 426022 
1999Q1 318806 2004Q2 376455 2009Q3 390167 2014Q4 428347 
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3.    Quarterly Australia Gross Domestic Product (AU GDP) Data for fifty five years  

 

 Year/ 

Quarterly  GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

Year/ 

Quarterly GDP 

1960Q3 62699 1969Q1 93056 1977Q3 124632 1986Q1 160962 
1960Q4 62391 1969Q2 94927 1977Q4 124221 1986Q2 160681 
1961Q1 62420 1969Q3 96497 1978Q1 125099 1986Q3 161140 
1961Q2 61661 1969Q4 98681 1978Q2 126118 1986Q4 163738 
1961Q3 61314 1970Q1 100712 1978Q3 128077 1987Q1 165301 
1961Q4 62081 1970Q2 102754 1978Q4 129122 1987Q2 168137 
1962Q1 63864 1970Q3 102569 1979Q1 132635 1987Q3 171077 
1962Q2 65094 1970Q4 103033 1979Q2 130506 1987Q4 174366 
1962Q3 65610 1971Q1 104275 1979Q3 131781 1988Q1 175224 
1962Q4 66768 1971Q2 104745 1979Q4 134307 1988Q2 175811 
1963Q1 68278 1971Q3 108033 1980Q1 134898 1988Q3 177124 
1963Q2 67373 1971Q4 107666 1980Q2 135231 1988Q4 179544 
1963Q3 70159 1972Q1 106369 1980Q3 136029 1989Q1 181572 
1963Q4 71638 1972Q2 108774 1980Q4 138348 1989Q2 185374 
1964Q1 71569 1972Q3 108196 1981Q1 138871 1989Q3 186661 
1964Q2 73362 1972Q4 109307 1981Q2 140977 1989Q4 186430 
1964Q3 73820 1973Q1 112153 1981Q3 143892 1990Q1 187981 
1964Q4 75876 1973Q2 112380 1981Q4 143269 1990Q2 188081 
1965Q1 76488 1973Q3 113533 1982Q1 142109 1990Q3 187067 
1965Q2 77689 1973Q4 116324 1982Q2 143358 1990Q4 188029 
1965Q3 77511 1974Q1 116330 1982Q3 142456 1991Q1 185693 
1965Q4 77662 1974Q2 113955 1982Q4 140178 1991Q2 185172 
1966Q1 77415 1974Q3 115442 1983Q1 138772 1991Q3 185757 
1966Q2 78474 1974Q4 115443 1983Q2 138449 1991Q4 186175 
1966Q3 80749 1975Q1 115866 1983Q3 142754 1992Q1 187862 
1966Q4 81234 1975Q2 119545 1983Q4 144818 1992Q2 189180 
1967Q1 84393 1975Q3 118291 1984Q1 148331 1992Q3 190794 
1967Q2 84272 1975Q4 116453 1984Q2 149866 1992Q4 194658 
1967Q3 85912 1976Q1 121621 1984Q3 151245 1993Q1 196472 
1967Q4 86611 1976Q2 122005 1984Q4 152282 1993Q2 197362 
1968Q1 85818 1976Q3 123044 1985Q1 154754 1993Q3 197472 
1968Q2 89147 1976Q4 124072 1985Q2 158237 1993Q4 201303 
1968Q3 90328 1977Q1 123363 1985Q3 160243 1994Q1 204882 
1968Q4 93674 1977Q2 125146 1985Q4 159842 1994Q2 207148 
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Quarterly Australia Gross Domestic Product (AU GDP) Data for fifty five years 

continued 

      Year/ 

      Quarterly     GDP 

 Year/ 

    Quarterly       GDP 

Year/ 

Quarterly   GDP 

Year/ 

Quarterly      GDP 

   1994Q3 209087 1999Q4 258749 2005Q1 305482 2010Q2 352372 
   1994Q4 210231 2000Q1 260643 2005Q2 307082 2010Q3 354131 
   1995Q1 210744 2000Q2 262675 2005Q3 310839 2010Q4 358039 
   1995Q2 212214 2000Q3 262854 2005Q4 313150 2011Q1 356698 
   1995Q3 215944 2000Q4 261697 2006Q1 313828 2011Q2 361486 
   1995Q4 217011 2001Q1 265039 2006Q2 314635 2011Q3 365720 
   1996Q1 221027 2001Q2 266972 2006Q3 317949 2011Q4 369377 
   1996Q2 221541 2001Q3 270001 2006Q4 322966 2012Q1 373199 
   1996Q3 224250 2001Q4 272834 2007Q1 327956 2012Q2 375378 
   1996Q4 225878 2002Q1 275108 2007Q2 330675 2012Q3 377463 
   1997Q1 226534 2002Q2 279434 2007Q3 333118 2012Q4 379566 
   1997Q2 233386 2002Q3 280491 2007Q4 335004 2013Q1 380471 
   1997Q3 233340 2002Q4 282770 2008Q1 339193 2013Q2 383444 
   1997Q4 236606 2003Q1 282866 2008Q2 340345 2013Q3 384740 
   1998Q1 239213 2003Q2 285042 2008Q3 342712 2013Q4 388070 
   1998Q2 241212 2003Q3 289448 2008Q4 339942 2014Q1 391553 
   1998Q3 245592 2003Q4 294214 2009Q1 343341 2014Q2 393991 
   1998Q4 249099 2004Q1 296426 2009Q2 345003 2014Q3 395491 
   1999Q1 251023 2004Q2 298099 2009Q3 346396 2014Q4 397658 
   1999Q2 252217 2004Q3 300683 2009Q4 348902 2015Q1 401153 
   1999Q3 254503 2004Q4 302837 2010Q1 350233 2015Q2 401816 
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4.    Quarterly France Gross Domestic Product (France GDP) Data for fifty five years  

 

  Year/ 

 Quarter 

  

GDP 

Year/ 

Quarter 

 

GDP 

Year/ 

Quarter 

 

GDP 

Year/ 

Quarter 

   

 GDP 

1960Q3 114272 1969Q1 181172 1977Q3 258288 1986Q1 308498 
1960Q4 115484 1969Q2 184946 1977Q4 260391 1986Q2 311999 
1961Q1 117087 1969Q3 187464 1978Q1 263824 1986Q3 313604 
1961Q2 117833 1969Q4 190293 1978Q2 266635 1986Q4 313910 
1961Q3 118947 1970Q1 193239 1978Q3 268767 1987Q1 314745 
1961Q4 121035 1970Q2 196425 1978Q4 271679 1987Q2 318759 
1962Q1 123534 1970Q3 198435 1979Q1 274054 1987Q3 321141 
1962Q2 125407 1970Q4 201057 1979Q2 275524 1987Q4 325800 
1962Q3 127832 1971Q1 204266 1979Q3 279153 1988Q1 330048 
1962Q4 129202 1971Q2 206415 1979Q4 279886 1988Q2 332798 
1963Q1 128484 1971Q3 209240 1980Q1 282924 1988Q3 336774 
1963Q2 133793 1971Q4 211233 1980Q2 280863 1988Q4 339979 
1963Q3 138086 1972Q1 213576 1980Q3 281356 1989Q1 344994 
1963Q4 138138 1972Q2 215401 1980Q4 280938 1989Q2 348237 
1964Q1 141087 1972Q3 218493 1981Q1 281911 1989Q3 351547 
1964Q2 142709 1972Q4 221923 1981Q2 283496 1989Q4 354986 
1964Q3 144026 1973Q1 225800 1981Q3 285546 1990Q1 358597 
1964Q4 146064 1973Q2 229431 1981Q4 287243 1990Q2 359991 
1965Q1 146929 1973Q3 233036 1982Q1 289498 1990Q3 361148 
1965Q2 149422 1973Q4 235602 1982Q2 291545 1990Q4 360888 
1965Q3 151584 1974Q1 239572 1982Q3 291900 1991Q1 360956 
1965Q4 153851 1974Q2 241254 1982Q4 293485 1991Q2 363503 
1966Q1 155281 1974Q3 243506 1983Q1 294469 1991Q3 364800 
1966Q2 157638 1974Q4 239287 1983Q2 294824 1991Q4 366789 
1966Q3 159611 1975Q1 237727 1983Q3 295123 1992Q1 369983 
1966Q4 160759 1975Q2 237076 1983Q4 296693 1992Q2 369878 
1967Q1 163358 1975Q3 237162 1984Q1 298517 1992Q3 369322 
1967Q2 165188 1975Q4 242059 1984Q2 299362 1992Q4 368319 
1967Q3 167210 1976Q1 244436 1984Q3 301262 1993Q1 366004 
1967Q4 168891 1976Q2 247810 1984Q4 301260 1993Q2 366572 
1968Q1 173102 1976Q3 250549 1985Q1 302019 1993Q3 367791 
1968Q2 164395 1976Q4 252236 1985Q2 304422 1993Q4 368427 
1968Q3 177107 1977Q1 255139 1985Q3 306359 1994Q1 370297 
1968Q4 179393 1977Q2 255962 1985Q4 307560 1994Q2 374699 
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Quarterly France Gross Domestic Product (France GDP) Data for fifty five years continued 

Year/ 

 Quarterly 

 

GDP 

Year/ 

Quarterly 

 

GDP 

Year/ 

 Quarterly 

 

 GDP 

Year/ 

Quarterly  
GDP 

1994Q3 377229 1999Q4 433082 2005Q1 477175 2010Q2 497884 

1994Q4 380473 2000Q1 438491 2005Q2 478415 2010Q3 500788 

1995Q1 382227 2000Q2 441746 2005Q3 480972 2010Q4 503409 

1995Q2 384168 2000Q3 444561 2005Q4 484669 2011Q1 509219 

1995Q3 384439 2000Q4 448322 2006Q1 487849 2011Q2 508803 

1995Q4 385122 2001Q1 451268 2006Q2 492945 2011Q3 509799 

1996Q1 387505 2001Q2 451408 2006Q3 492913 2011Q4 511046 

1996Q2 388449 2001Q3 452756 2006Q4 496738 2012Q1 511258 

1996Q3 390330 2001Q4 451864 2007Q1 500164 2012Q2 509776 

1996Q4 390729 2002Q1 454400 2007Q2 503460 2012Q3 511124 

1997Q1 392332 2002Q2 457117 2007Q3 505475 2012Q4 511075 

1997Q2 396680 2002Q3 458387 2007Q4 506852 2013Q1 511761 

1997Q3 399759 2002Q4 457818 2008Q1 509256 2013Q2 515619 

1997Q4 403777 2003Q1 458113 2008Q2 506482 2013Q3 515016 

1998Q1 406967 2003Q2 457916 2008Q3 505031 2013Q4 516114 

1998Q2 411283 2003Q3 461191 2008Q4 497016 2014Q1 515222 

1998Q3 414149 2003Q4 465244 2009Q1 489186 2014Q2 514610 

1998Q4 417290 2004Q1 468149 2009Q2 488813 2014Q3 515823 

1999Q1 419674 2004Q2 471646 2009Q3 489482 2014Q4 516402 

1999Q2 423406 2004Q3 473663 2009Q4 492688 2015Q1 519856 

1999Q3 428117 2004Q4 476863 2010Q1 494954 2015Q2 519796 
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Appendix B 

Intra-class correlation coefficient and Levene’s Test Real Data 

1. Intra-class correlation coefficient for USGDP 

 

Intraclass 

Correlation
a
 

95% Confidence Interval F Test with True Value  

 Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 
.01

b
 -.12 .14 1.02 22 22 .44 

Average 

Measures 
.02

c
 -.28 .25 1.02 22 22 .44 

A two-way mixed effects model where people effects are random and measures effects are 

fixed. 

A Type C intra-class correlation coefficients using a consistent definition-the between- 

measure variance are excluded from the denominator variance. 

b. The estimator is the same, whether the interaction effect is present or not. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable 

otherwise. 

 

 

 

Levene‟s Test for Equal Variances Independent Samples Test for US GDP 

 Independent samples test  

 

Levene's Test 

for Equality 

of Variances 

…………… 

 

 

 

t-test for Equality of Means 

……………………………………………………………………… 

 

       

95% 

Confidence 

Interval of the 

Difference 

……………….. 

 
F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

 

1.414 0.235 2.159 438 0.031 0.059 0.027 0.005 0.113 

Equal 

variances 

not assumed 

  2.159 255.24 0.032 0.059 0.027 0.005 0.113 
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2. Intra-class correlation coefficient for UK GDP 

 

Intraclass 

Correlation
a
 

95% Confidence Interval F Test with True Value  

 Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 
-.014

b
 -.146  .118   .972   219   219 .583 

Average 

Measures 
-.029 -.341   .211   .972   219   219 .583 

A two-way mixed effects model where people effects are random and measures effects 

are fixed. 

a. Type C intra-class correlation coefficients using a consistent definition-the between-measure  

variances are excluded from the denominator variance. 

b. The estimator is the same, whether the interaction effect is present or not. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable 

otherwise. 

 

 

Levene‟s test for equal variances Independent Samples Test for UK GDP 

              Independent samples test  

 

Levene's 

Test for 

Equality of 

Variances 

…………… 

 

 

 

t-test for Equality of Means 

……………………………………………………………………… 

 

       

95% 

Confidence 

Interval of the 

Difference 

……………….. 

 
F Sig. t   df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

 

  5.504 ..019   1.133      438 .258 .015 .014 -.011 .042 

Equal 

variances 

not assumed 

  

  1.133  255.50 .258 .015 .014 -.011 .042 
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3.  Intra-class correlation coefficient for AU GDP 

 

Intraclass 

Correlation
a
 

95% Confidence Interval F Test with True Value  

 Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 
.020

b
  -.112  .152 1.042  219  219 .381 

Average 

Measures 
.040

c
  -.252  .264 1.042  219  219  .381 

A two-way mixed effects model where people effects are random and measures 

effects are fixed. 

a. Type C intra-class correlation coefficients using a consistent definition-the between-

measure variance are excluded from the denominator variance. 

b. The estimator is the same, whether the interaction effect is present or not. 

c. This estimate is computed assuming the interaction effect is absent, because it is not 

estimable otherwise.  

 

 

 

 

Levene‟s test for equal variances Independent Samples Test for AU GDP 

              Independent samples test  

 

Levene's 

Test for 

Equality of 

Variances 

…………… 

 

 

 

t-test for Equality of Means 

……………………………………………………………………… 

 

       

95% 

Confidence 

Interval of the 

Difference 

……………….. 

 
F Sig. t   df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

 

.045 .833 -2.994 438 .003 -.014 .005 -.023 -.005 

Equal 

variances 

not 

assumed 

  

-2.994 424.76 .003 -.014 .005 -.023  -.005 

 

 

 

 

 



  

190 

 

4. Intra-class correlation coefficient for France GDP 

 

Intraclass 

Correlation
a
 

95% Confidence Interval F Test with True Value  

 Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 
.016

b
  -.116  .148 1.033  219  219 .405 

Average 

Measures 
.032

c
  -.262 .258 1.033  219  219 .405 

A two-way mixed effects model where people effects are random and measures 

effects are fixed. 

a. Type C intra-class correlation coefficients using a consistent definition-the between-

measure variance are excluded from the denominator variance. 

b. The estimator is the same, whether the interaction effect is present or not. 

c. This estimate is computed assuming the interaction effect is absent, because it is not 

estimable otherwise.  

 

 

 

Levene‟s test for equal variances Independent Samples Test for France GDP 

              Independent samples test  

 

Levene's 

Test for 

Equality of 

Variances 

…………… 

 

 

 

t-test for Equality of Means 

……………………………………………………………………… 

 

       

95% 

Confidence 

Interval of the 

Difference 

……………….. 

 
F Sig. t   df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

 

.271 .603 2.684 438 .008 .020 .008 .005 .035 

Equal 

variances 

not 

assumed 

  

2.684 373.49 .008 .020 .008 .005  .035 
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Appendix C 

The Log-likelihood 

1. The Log-Likelihood Values for 200 Sample size of Low Leverage and 

different Values of Skewness 

Low leverage and low skewness for 40 equal variances 

-1480.69 -1476.68  -1454.77    -1341.02     -1458.05 -1448.52    

-1360.76 -1347.23 -1336.74 -1362.25 -1407.78 -1433.82 

-1374.86 -1318.28 -1383.83  -1437.41    -1397.73 -1430.27 

-1396.86 -1361.00 -1362.71 -1327.10    -1394.40 -1440.67   

-1381.62 -1334.76 -1432.11 -1429.17   -1392.74 -1413.88 

-1368.69 -1278.90 -1389.05 -315.431 -1433.04 -1403.91 

-1300.23 -1417.90 -1374.60    -1323.74   

Low leverage and moderate skewness for 44 equal variances 

-1408.88 -1412.84 -1417.85 -1305.38 -1361.89 -1402.64 

-1400.01 -1325.60 -1378.95 -1442.18 -1279.72 -1433.54 

-1406.93 -1429.50 -1348.56 -1353.01 -1323.97 -1331.18 

-1304.29 -1386.27 -1367.69 -1381.06 -1331.04 -1371.04 

-1352.89 -1404.61 -1392.78 -1411.30 -1367.00 -1336.88 

-1321.96 -1361.73 -1357.76 -326.07 -1334.46 -1278.75 

-1429.75 -1335.85 -1210.69 -1393.98 -1378.41 -1404.55 

-1462.58 -1394.88 

    Low leverage and high skewness for 43 equal variances 

-1408.88 -1408.88 -1417.85 -1305.38 -1361.89 -1402.64 

-1400.01 -1325.60 -1378.95 -1442.18 -1279.72 -1433.54 

-1406.93 -1429.50 -1348.56 -1353.01 -1323.97 -1331.18 

-1304.29 -1386.27 -1367.69 -1381.06 -1331.04 -1371.04 

-1411.21 -1366.90 -1336.03 -1322.11 -1359.97 -1357.66 

-1443.71 -1333.36 -1278.70 -317.01 -1335.13 -1208.27 

-1394.36 -1379.15 -1404.40 -1462.98 -1395.24 -1439.32 

-1402.98 
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2. The Log-Likelihood Values for 200 Sample size of Moderate Leverage and 

different Values of Skewness 

Moderate leverage and low skewness for 40 equal variances 

-1321.80 -1328.98 -1433.48 -1345.96 -1356.46 -2172.37 

-1422.38 -1396.74 -1428.70 -1343.75 -1389.54 -1286.90 

-1329.06 -1384.08 -1368.80 -1405.64 -1360.08 -1456.30 

-1401.54 -1275.89 -1294.41 -1426.36 -1383.56 -1421.46 

-1313.38 -1323.85 -1423.28 -1376.72 -1455.41 -1384.32 

-1335.79 -1383.15 -1365.69 -303.93 -1408.91 -1352.43 

-1307.73 -1375.32 -1361.76 -1496.46 

  Moderate leverage and moderate skewness for 45 equal variances 

-1430.34 -1631.54 2817.20 -1408.94 -1402.86 -1365.49 

-1437.46 -1395.26 -1403.64 -1442.39 -1323.14 -1432.56 

-1387.93 -1366.33 -1368.59 -1395.98 -1416.47 -1273.47 

-1394.08 -1333.64 -1394.20 -1384.32 -1366.24 -1412.68 

-1336.02 -1339.85 -1370.12 -1332.26 -1332.99 -1350.02 

-1337.44 -1391.55 -1393.67 -307.17 -1326.93 -1282.96 

-1338.00 -1392.69 -1283.39 -1336.35 -1416.69 -1359.39 

-1380.94 -1342.92 -1361.48 

   Moderate leverage and high skewness for 41 equal variances 

-1350.24 -1353.32 -1358.54 -1368.06 -1293.26 -1339.24 

-1324.88 -1437.11 -1410.32 -1365.82 -1354.34 -1412.71 

-1337.87 -1429.30 -1363.61 -1375.96 -1370.92 -1372.37 

-1358.24 -1393.90 -1304.10 -1393.50 -1401.12 -1409.85 

-1396.00 -1458.76 -1350.42 -1450.58 -1421.99 -1375.44 

-1401.42 -1290.98 -1405.77 -304.96 -1274.79 -1329.78 

-1324.23 -1390.19 -1448.74 -1355.07 -1393.68 
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3. The Log-Likelihood Values for200 Sample size of High Leverage and different 

Values of Skewness 

High leverage and low skewness for 41 equal variances 

-1408.88 -1412.48 -1417.85 -1305.38 -1361.89 -1402.64 

-1400.01 -1325.60 -1378.95 -1442.18 -1279.72 -1433.54 

-1406.93 -1429.50 -1348.56 -1353.01 -1323.97 -1331.18 

-1304.29 -1386.27 -1367.69 -1381.06 -1331.04 -1371.04 

-1352.89 -1404.61 -1392.78 -1411.30 -1367.00 -1336.88 

-1321.96 -1361.73 -1357.76 -326.07 -1334.46 -1278.75 

-1429.75 -1335.85 -1210.69 -1393.98 -1378.41 

 High leverage and moderate skewness for 44 equal variances 

-1408.876 -1402.668 -1396.69 -1403.38 -1399.27 -1325.87 

-1377.588 -1441.646 -1279.49 -1434.55 -1406.82 -1428.66 

-1349.202 -1353.458 -1323.84 -1330.25 -1303.92 -1386.74 

-1368.038 -1381.240 -1331.04 -1371.68 -1352.92 -1405.82 

-1393.210 -1411.105 -1366.66 -1336.61 -1322.01 -1361.76 

-1357.083 -1444.048 -1334.38 -286.13 -1429.24 -1335.51 

-1211.513 -1393.551 -1379.15 -1404.97 -1462.81 -1394.86 

-1439.359 -1402.866 

    High leverage and high skewness for 43 equal variances 

-1385.99 -1387.98 -1396.69 -1403.38 -1399.27 -1325.87 

-1377.59 -1441.65 -1279.49 -1434.55 -1406.82 -1428.66 

-1349.20 -1353.46 -1323.84 -1330.25 -1303.92 -1386.74 

-1368.04 -1381.24 -1331.04 -1371.68 -1352.92 -1405.82 

-1393.21 -1411.11 -1366.66 -1336.61 -1322.01 -1361.76 

-1357.08 -1444.05 -286.13 -1334.38 -1429.24 -1335.51 

-1211.51 -1393.55 -1379.15 -1404.97 -1462.81 -1394.86 

-1439.36 
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4. The Log-Likelihood Values for 250 Sample size of Low Leverage and 

different Values of Skewness 

Low leverage and low skewness for 45 equal variances 

-1476.42 -1462.35 1449.84 -1342.84 -1425.49 -1404.73 

-1370.48 -1444.24 -1347.29 -1405.56 -1375.90 -1445.99 

-1369.85 -1347.22 -1443.71 -1393.35 -1364.73 -1415.22 

-1324.51 -1407.95 -1330.58 -1346.45 -1372.82 -1386.91 

-1473.02 -1386.46 -1390.39 -1345.02 -1382.86 -1397.24 

-1308.67 -1376.17 -1417.94 -1417.94 -1405.89 -1325.59 

-1431.57 -1391.72 -1422.62 -1369.12 -1436.26 -1344.94 

-1398.69 -1371.16 -1357.20 

   Low leverage and moderate skewness for 48 equal variances 

-1407.61 -1407.61 -1335.67 -1337.59 -1378.93 -1378.93 

-1351.28 -1366.68 -1375.19 -1453.98 -1390.95 -1331.27 

-1405.29 -1347.73 -1405.82 -1343.84 -1402.93 -1320.52 

-1370.74 -1300.55 -1294.20 -1354.28 -1361.77 -1398.92 

-1390.28 -1402.72 -1297.32 -1370.12 -1343.01 -1409.22 

-1409.10 -1388.73 -1360.61 -1380.25 -1386.09 -1372.22 

-1367.02 -1451.00 -1407.49 -1411.59 -1444.01 -1453.08 

-1430.76 -1447.09 -1331.38 -1377.92 -1388.95 -1383.34 

Low leverage and high skewness for 46 equal variances 

-1344.60 -1341.42 -1357.34 -1370.40 -1383.75 -1415.46 

-1456.02 -1467.32 -1365.12 -1439.89 -1369.30 -1389.48 

-1368.49 -1410.85 -1358.19 -1390.97 -1348.24 -1367.83 

-1343.96 -1333.13 -1441.47 -1432.94 -1356.90 -1334.62 

-1363.72 -1372.48 -1414.15 -1335.40 -1369.83 -1398.17 

-1315.44 -1388.40 -1316.32 -1412.34 -1420.00 -1442.26 

-1347.41 -1397.39 -1448.18 -1362.22 -1476.07 -1396.27 

-1408.75 -1343.07 -1427.53 -1403.37 
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5. The Log-Likelihood Values for 250 Sample size of Moderate Leverage and 

different Values of Skewness 

Moderate leverage and low skewness for 43 equal variances 

-1344.60 -1454.77 -1357.34 -1370.40 -1383.75 -1415.46 

-1456.02 -1467.32 -1365.12 -1439.89 -1369.30 -1389.48 

-1368.49 -1410.85 -1358.19 -1390.97 -1348.24 -1367.83 

-1343.96 -1333.13 -1441.47 -1432.94 -1356.90 -1334.62 

-1363.72 -1372.48 -1414.15 -1335.40 -1369.83 -1398.17 

-1315.44 -1388.40 -1345.30 -1316.32 -1420.00 -1442.26 

-1347.41 -1397.39 -1448.18 -1362.22 -1476.07 -1396.27 

-1408.75 

     Moderate leverage and moderate skewness for 44 equal variances 

-1344.60 -1362.64 -1357.34 -1370.40 -1383.75 -1415.46 

-1456.02 -1467.32 -1365.12 -1439.89 -1369.30 -1389.48 

-1368.49 -1410.85 -1358.19 -1390.97 -1348.24 -1367.83 

-1343.96 -1333.13 -1441.47 -1432.94 -1356.90 -1334.62 

-1363.72 -1372.48 -1414.15 -1335.40 -1369.83 -1398.17 

-1315.44 -1388.40 -1316.32 -1343.45 -1420.00 -1442.26 

-1347.41 -1397.39 -1448.18 -1362.22 -1476.07 -1396.27 

-1408.75 -1343.07 

    Moderate leverage and high skewness for 47 equal variances 

-1427.49 -1412.44 -1402.22 -1444.17 -1347.17 -1406.17 

-1376.46 -1446.62 -1370.01 -1347.84 -1444.47 -1393.43 

-1364.33 -1415.83 -1325.51 -1407.05 -1330.57 -1345.81 

-1372.90 -1388.71 -1474.44 -1387.07 -1390.94 -1345.32 

-1382.90 -1396.40 -1308.09 -1376.15 -1417.32 -1312.86 

-1407.16 -1326.70 -1431.08 -1315.43 -1422.65 -1369.19 

-1436.45 -1344.93 -1399.09 -1368.21 -1357.47 -1407.62 

-1362.91 -1306.98 -1336.63 -1294.68 -1377.99 
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6. The Log-Likelihood Values for250 Sample size of High Leverage and different 

Values of Skewness 

High leverage and low skewness for 45 equal variances 

-1344.60 -1376.12 -1403.83 -1320.06 -1370.01 -1381.98 

-1414.84 -1457.44 -1467.61 -1365.63 -1439.53 -1369.84 

-1389.64 -1368.31 -1411.06 -1353.17 -1391.26 -1348.86 

-1368.90 -1343.72 -1332.86 -1441.77 -1434.17 -1357.19 

-1336.29 -1363.71 -1370.32 -1414.27 -1335.40 -1370.57 

-1398.01 -1315.59 -1389.22 -1428.42 -1315.64 -1387.49 

-1420.34 -1441.32 -1348.31 -1397.39 -1448.25 -1362.21 

-1476.26 -1408.75 -1343.24 

   High leverage and moderate skewness for 45 equal variances 

-1427.49 -1454.77 -1439.62 -1370.89 -1443.11 -1347.00 

-1406.16 -1376.50 -1446.76 -1370.04 -1347.84 -1443.65 

-1392.93 -1364.83 -1415.83 -1324.39 -1408.00 -1330.34 

-1346.67 -1372.88 -1387.12 -1474.32 -1385.94 -1390.88 

-1344.99 -1382.90 -1397.95 -1308.87 -1376.06 -1417.60 

-1313.34 -1407.43 -1391.68 -1381.62 -1368.67 -1436.86 

-1344.37 -1399.69 -1371.16 -1357.69 -1407.73 -1362.94 

-1306.79 -1337.25 -1294.48 

   High leverage and high skewness for 47 equal variances 

-1379.13 -1480.69 -1394.25 -1375.10 -1331.24 -1404.70 

-1347.66 -1406.57 -1343.14 -1401.56 -1320.40 -1371.05 

2618.47 -1294.89 -1354.46 -1362.15 -1398.84 -1391.12 

-1402.92 -1298.17 -1373.02 -1342.79 -1408.54 -1408.92 

-1390.65 -1361.80 -1444.40 -1305.33 -1379.34 -1441.76 

-1381.61 -1386.65 -1372.51 -1360.76 -1450.87 -1408.22 

-1412.28 -1453.44 -1365.96 -1445.84 -1430.44 -1447.20 

-1331.22 -1379.46 -1389.03 -1383.19 -1373.61 
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7. The Log-Likelihood Values for 300 Sample size of Low Leverage and 

different Values of Skewness 

Low leverage and low skewness for 47 equal variances 

-1449.13 -1399.32 -1394.84 -1317.98 -1420.62 -1403.50 

-1415.72 -1390.95 -1282.88 -1382.19 -1364.68 -1433.95 

-1399.91 -1427.60 -1335.89 -1374.00 -1366.63 -1375.77 

-1400.46 -1419.56 -1417.26 -1431.12 -1404.96 -1373.84 

-1380.23 -1425.37 -1375.77 -1332.12 -1418.60 -1362.49 

-1409.64 -1439.96 -1376.34 -1371.56 -1364.44 -1436.93 

-1384.66 -1373.25 -1346.16 -1364.31 -1280.63 -1343.02 

-1372.25 -1500.61 -1373.78 -1382.99 -1360.86 

 Low leverage and moderate skewness for 50 equal variances 

-1306.99 -1353.52 -1378.54 -1327.48 -1408.10 -1392.01 

-1416.21 -1378.69 -1288.34 -1357.94 -1326.05 -1295.02 

-1438.07 -1389.06 -1401.19 -1380.88 -1379.24 -1328.29 

-1416.33 -1340.48 -1374.88 -1390.38 -1440.00 -1325.27 

-1346.95 -1346.95 -1370.90 -1356.91 -1385.36 -1369.31 

-1350.87 -1335.04 -1462.98 -1422.27 -1327.27 -1366.74 

-1431.89 -1418.18 -1419.37 -1352.77 -1422.06 -1383.04 

-1351.20 -1395.04 -1374.63 -1315.81 -1334.19 -1348.69 

-1316.41 -1404.21 

    Low leverage and high skewness for 47 equal variances 

-1401.78 -1404.26 -1409.82 -1392.05 -1431.27 -1336.96 

-1390.71 -1391.46 -1396.57 -1340.16 -1403.45 -1328.80 

-1329.79 -1454.00 -1489.80 -1324.30 -1371.81 -1325.84 

-1329.59 -1309.90 -1403.35 -1374.27 -1441.11 -1452.95 

-1307.99 -1401.02 -1439.82 -1358.96 -1395.44 -1378.61 

-1393.29 -1341.44 -1368.14 -1345.74 -1300.91 -1417.67 

-1395.25 -1332.23 -1459.85 -1365.93 -1422.39 -1357.87 

-1399.57 -1424.61 -1449.96 -1413.98 -1370.72 
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8. The Log-Likelihood Values for 300 Sample size of Moderate Leverage and 

different Values of Skewness 

Moderate leverage and low skewness 48 for equal variances 

-1401.78 -1406.23 -1409.82 -1392.05 -1431.27 -1336.96 

-1390.71 -1391.46 -1396.57 -1340.16 -1403.45 -1328.80 

-1329.79 -1454.00 -1489.80 -1324.30 -1371.81 -1325.84 

-1329.59 -1309.90 -1403.35 -1374.27 -1441.11 -1452.95 

-1307.99 -1401.02 -1358.52 -1395.53 -1378.65 -1393.76 

-1341.92 -1365.62 -1300.98 -1325.73 1397.76 -1332.23 

-1460.17 -1365.99 -1423.36 -1357.83 -1399.86 -1421.59 

-1449.67 -1413.92 -1370.40 -1372.82 -1355.10 -1314.33 

Moderate leverage and moderate skewness for 51 equal variances 

     -1359.06 -410.37 -421.69 -407.53 -422.06 -460.75 

-428.60 -443.11 -415.40 -430.32 -416.07 -423.06 

-427.00 -426.03 -431.54 -417.84 -419.94 -422.36 

-424.51 -398.89 -412.60 -421.19 -426.36 -443.51 

-423.21 -422.15 -417.75 -407.21 -448.65 -428.87 

-437.08 -413.84 -429.38 -433.78 -425.49 -407.68 

-423.95 -422.39 -422.26 -432.18 -401.32 -441.32 

-420.62 -440.28 -433.93 -428.04 -442.41 -433.20 

-414.68 -442.46 -428.46 

   Moderate leverage and high skewness for 47 equal variances 

-416.20 -437.85 -438.52 -417.78 -423.85 -429.66 

-426.76 -416.77 -655.41 -415.49 -417.71 -420.56 

-427.05 -668.16 -424.57 -416.73 -435.10 -416.52 

-426.10 -436.33 -402.39 -415.68 -421.58 -439.07 

-427.29 -421.25 -417.80 -393.54 -410.72 -431.46 

-414.86 -428.28 -429.11 -416.25 -438.87 -399.22 

-434.10 -407.85 -429.15 -437.20 -420.03 -426.93 

-432.78 -442.17 -421.82 -428.92 -427.69 
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9. The Log-Likelihood Values for 300 Sample size of High Leverage and 

different Values of Skewness 

High leverage and low skewness for 40   equal variances 

-426.76 -414.65 -418.47 -415.49 -417.71 -420.56 

-427.05 -416.91 -442.57 -396.44 -426.49 -443.74 

-399.74 -404.00 -452.18 -439.41 -435.16 -435.99 

-417.41 -434.47 -436.70 -433.33 -450.40 -444.39 

-425.41 -443.59 -406.79 -413.50 -416.52 -415.65 

-417.24 -405.84 406.96 424.24 -431.31 -451.18 

-442.24 -427.99 -417.23 -426.51 

  High leverage and moderate skewness for 48 equal variances 

-425.16 -434.30 -398.94 -437.01 -428.13 -449.72 

-418.42 -419.69 -418.81 -434.81 -426.88 -447.61 

-422.00 -440.23 -398.68 -450.71 -410.75 -420.49 

-434.14 -422.02 -423.96 -434.07 -418.28 -399.58 

-433.49 -402.81 -419.39 -420.25 -425.14 -419.55 

-436.41 -416.14 -390.02 -421.14 -431.79 -422.74 

-400.69 -431.13 -421.66 -431.29 -430.91 -421.57 

-429.60 -403.06 -441.50 -420.79 -425.11 -421.01 

High leverage and high skewness for 48 equal variances  

-437.37 -425.88 -435.10 -416.63 -442.75 -424.32 

-408.40 -416.70 -423.93 -444.38 -441.90 -408.01 

-433.50 -410.75 -409.97 -415.31 -422.31 -424.49 

-422.95 -421.61 -436.30 -438.30 -418.37 -421.34 

-434.46 -420.30 -417.30 -424.44 -440.11 -420.00 

-408.21 -430.97 -422.50 -440.60 -434.92 -407.27 

-425.67 -417.38 -408.68 -405.74 -432.78 -423.69 

-424.52 -418.99 -415.39 -393.91 -433.12 -430.97 
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Appendix D 

Bayesian Model Averaging (BMA) Simulation Output 

1. Low Leverage and Low Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 Model 2 model 3 model 4 model 5 

Intercept 100 7.19E-03 0.007 0.007 0.0081 0.0076 0.0075 0.0074 

X1 2.1 3.68E-05 0.0036 . . 

 

. . 

x2 2.1 4.19E-05 0.0041 . . 

 

. . 

X3 2.1 4.57E-05 0.0044 . . 

 

. . 

X4 2.1 4.71E-05 0.0046 . . 

 

. . 

X5 2.1 5.39E-05 0.0052 . . 

 

. . 

X6 2.1 6.33E-05 0.0043 . . 

 

. . 

X7 2.1 6.56E-05 0.0063 . . 

 

. . 

X8 2.1 7.23E-05 0.0049 . . . 

 

. 

x9 2.2 8.06E-05 0.0045 . . 

 

. . 

X10 2.1 9.49E-05 0.0065 . . . . . 

X11 2.1 1.01E-04 0.0069 . . . . . 

X12 2.1 1.09E-04 0.0074 . . . . . 

X13 2.2 1.21E-04 0.0047 . . . . . 

X14 2.2 1.30E-04 0.0056 . . . . . 

X15 2.2 1.39E-04 0.0078 . . . . . 

X16 2.1 1.52E-04 0.0104 . . . . . 

X17 2.2 1.71E-04 0.0083 . . . . . 

X28 2.2 -5.39E-04 0.0163 . . . . -0.0246 

X29 2.2 -3.98E-04 0.0135 . . . . . 

X30 2.2 -3.37E-04 0.0083 . . -0.0151 . . 

X31 2.2 -2.65E-04 0.0090 . . . 

 

. 

X32 2.2 -2.29E-04 0.0073 . . 

 

. . 

X33 2.2 -2.07E-04 0.0055 . . . 0.9358 . 

x34 2.2 -1.73E-04 0.0074 . . 

 

. . 

X35 2.2 -1.62E-04 0.0049 . . . . . 

X36 2.2 -1.43E-04 0.0056 . . . . . 

X37 2.1 -1.26E-04 0.0122 . . . . . 

X38 2.2 -1.20E-04 0.0052 . . . . . 

X40 2.1 -9.43E-05 0.0091 . . . . . 

nVar 

   

0 0 1 1 1 

r2 

   

0 0.012 0 0 0 

BIC 

   

0 2.9141 5.2163 5.228 5.2463 

post prob 

   

0.302 0.07 0.031 0.022 0.022 
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2. .Low Leverage and Moderate Skewness of 200 Sample Size 

Predictor p!=0 EV     SD model 1 model 2 model 3 Model 4 model 5 

Intercept 100 9.86E-03 0.0096 0.0095 0.0114 0.0102   0.0101 0.0099 

X1 2 4.41E-05 0.0044 . . . . . 

x2 2 5.27E-05 0.0053 . . . . . 

X3 2 5.74E-05 0.0058 . . . . . 

X4 2 6.11E-05 0.0062 . . . . . 

X5 2 7.02E-05 0.0071 . . . . . 

X6 2 7.58E-05 0.0076 . . . . . 

X7 2 7.90E-05 0.0079 . . . . . 

X8 2 8.24E-05 0.0083 . . . . . 

x9 2 9.03E-05 0.0091 . . . . . 

X10 2 9.54E-05 0.0068 . . . . . 

X11 2 1.05E-04 0.0106 . . . . . 

X12 2 1.12E-04 0.0080 . . . . . 

X13 2 1.20E-04 0.0070 . . . . . 

X14 2 1.27E-04 0.0090 . . . . . 

X15 2 1.43E-04 0.0050 . . . . 0.0071 

X17 2 1.75E-04 0.0101 . . . . . 

X31 2 -5.12E-04 0.0153 . . . -0.0251 . 

X32 2 -4.17E-04 0.0114 . . -0.0203 

 

. 

X33 2 -3.31E-04 0.0125 . . . . . 

x34 2 -2.75E-04 0.0159 . . . . . 

X35 2 -2.48E-04 0.0094 . . . . . 

X36 2 -2.17E-04 0.0097 . . . . . 

X37 2 -1.95E-04 0.0087 . . . . . 

X38 2 -1.75E-04 0.0101 . . . . . 

X39 2 -1.65E-04 0.0062 . . . . . 

X40 2 -1.48E-04 0.0086 . . . . . 

X41 2 -1.35E-04 0.0136 . . . . . 

X42 2 -1.26E-04 0.0127 . . . . . 

X44 2 -9.48E-05 0.0095 . . . . . 

nVar 

   

0 0 1 1 1 

r2 

   

0 0.019 0 0 0 

BIC 

   

0 1.372 5.2283 5.2403 5.2563 

post prob 

   

0.28 0.141 0.02 0.02 0.02 
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3. .Low Leverage and High Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 0.0173 0.0172 0.017 0.0182 0.0181 0.0181 0.0179 

X5 2.3 0.0002 0.0133 . . . . . 

X6 2.3 0.0003 0.0123 . . . . . 

X7 2.3 0.0003 0.0142 . . . . . 

X8 2.3 0.0003 0.0215 . . . . . 

x9 2.3 0.0004 0.0168 . . . . . 

X10 2.3 0.0004 0.0258 . . . . . 

X11 2.3 0.0004 0.0170 . . . . . 

X12 2.3 0.0005 0.0152 . . . . 0.0224 

X13 2.3 0.0006 0.0161 . . 0.0258 . . 

X14 2.3 0.0007 0.0238 . . . . . 

X15 2.3 0.0008 0.0517 . . . . . 

X16 2.3 0.0010 0.0336 . . . . . 

X17 2.3 0.0014 0.0375 . . . 0.0603 . 

X18 2.3 0.0021 0.0544 . 0.0909 . . . 

x19 2.3 0.0041 0.1342 . . . . . 

X20 2.3 -0.0041 0.1274 . . . . . 

x21 2.3 -0.0020 0.0713 . . . . . 

x22 2.3 -0.0013 0.0617 . . . . . 

X23 2.3 -0.0010 0.0416 . . . . . 

X24 2.3 -0.0008 0.0306 . . . . . 

X25 2.3 -0.0007 0.0238 . . . . . 

X26 2.3 -0.0006 0.0264 . . . . . 

X27 2.3 -0.0005 0.0231 . . . . . 

X28 2.3 -0.0004 0.0185 . . . . . 

X29 2.3 -0.0004 0.0153 . . . . . 

X30 2.3 -0.0004 0.0168 . . . . . 

X31 2.3 -0.0003 0.0128 . . . . . 

X32 2.3 -0.0003 0.0142 . . . . . 

x34 2.3 -0.0003 0.0172 . . . . . 

X38 2.3 -0.0002 0.0136 . . . . . 

nVar 

   

0 1 1 1 1 

r2 

   

0 0 0 0 0 

BIC 

   

0 5.2283 5.2343 5.2343 5.2463 

post prob 

   

0.317 0.023 0.023 0.023 0.023 
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4. .Moderate Leverage and Low Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 1.63E-02 0.0114 0.0160 0.0172 0.0170 0.0170 0.0169 

X1 2.2 8.74E-05 0.0059 . . . . 

 X5 2.2 1.28E-04 0.0086 . . . . 

 X6 2.3 1.59E-04 0.0062 . . . . 

 X7 2.2 1.81E-04 0.0086 . . . . 

 X10 2.2 2.26E-04 0.0107 . . . . 

 X11 2.2 2.41E-04 0.0115 . . . . 

 X12 2.3 2.64E-04 0.0089 . . . . 

 X13 2.3 2.85E-04 0.0095 . . . . 

 X14 2.3 3.18E-04 0.0081 . . . . 

 X16 2.3 3.66E-04 0.0142 . . . . 

 X17 2.3 4.06E-04 0.0157 . . . . 

 x19 2.3 5.39E-04 0.0148 . . . . 

 X20 2.3 6.10E-04 0.0236 . . . . 

 x21 2.2 7.17E-04 0.0481 . . . . 

 x22 2.3 9.64E-04 0.0228 . . . . 

 X23 2.4 1.34E-03 0.0259 . . 0.0567 . 

 X24 2.3 1.97E-03 0.0417 . . . . 

 X25 2.3 3.70E-03 0.1240 . . . . 

 X26 2.3 -3.74E-03 0.1120 . . . . 

 X27 2.3 -1.87E-03 0.0560 . . . . -0.0564 

X28 2.4 -1.33E-03 0.0268 . . . . 

 X29 2.3 -9.75E-04 0.0217 . . . . 

 X30 2.4 -8.24E-04 0.0147 . -0.0344 . . 

 X31 2.3 -6.36E-04 0.0161 . . . . 

 X32 2.3 -5.63E-04 0.0119 . . . . 

 X33 2.4 -5.03E-04 0.0097 . . . -0.0213 

 x34 2.3 -4.33E-04 0.0097 . . . . 

 X35 2.3 -3.77E-04 0.0103 . . . . 

 X36 2.3 -3.54E-04 0.0079 . . . . 

 X37 2.2 -3.02E-04 0.0143 . . . . 

 nVar 

   

o 1 1 1 1 

r2 

   

0 0.001 0.001 0.001 0.001 

BIC 

   

0 5.1463 5.1703 5.1703 5.1703 

post prob 

   

0.314 0.024 0.024 0.024 0.02 
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5.  Moderate Leverage and Moderate Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 9.19E-03 0.0091 0.0090 0.0096 0.0096 0.0095 0.0095 

X7 2.3 8.91E-05 0.0059 . . . . . 

X12 2.3 1.29E-04 0.0070 . . . . . 

X13 2.3 1.39E-04 0.0065 . . . . . 

X14 2.3 1.50E-04 0.0063 . . . . . 

X15 2.3 1.58E-04 0.0105 . . . . . 

X16 2.3 1.71E-04 0.0114 . . . . . 

X17 2.3 1.88E-04 0.0102 . . . . . 

X18 2.3 2.07E-04 0.0112 . . . . . 

x19 2.3 2.30E-04 0.0125 . . . . . 

X20 2.3 2.60E-04 0.0122 . . . . . 

x21 2.3 2.93E-04 0.0195 . . . . . 

x22 2.3 3.58E-04 0.0118 . . . . . 

X23 2.3 4.40E-04 0.0124 . . . 0.0190 . 

X24 2.3 5.37E-04 0.0178 . . . . . 

X25 2.3 7.05E-04 0.0270 . . . . . 

X26 2.3 1.07E-03 0.0377 . . . . . 

X27 2.3 2.11E-03 0.0810 . . . . . 

X28 2.3 -2.22E-03 0.0596 . -0.0957 . . . 

X29 2.3 -1.11E-03 0.0298 . . -0.0479 . . 

X30 2.3 -7.16E-04 0.0237 . . . . . 

X31 2.3 -5.45E-04 0.0161 . . . . -0.0237 

X32 2.3 -4.26E-04 0.0151 . . . . . 

X33 2.3 -3.63E-04 0.0107 . . . . . 

x34 2.3 -2.97E-04 0.0140 . . . . . 

X35 2.3 -2.64E-04 0.0101 . . . . . 

X36 2.3 -2.33E-04 0.0098 . . . . . 

X37 2.3 -2.11E-04 0.0081 . . . 

 

. 

X38 2.3 -1.95E-04 0.0065 . . . . . 

X39 2.3 -1.72E-04 0.0094 . . . . . 

X40 2.3 -1.59E-04 0.0086 . . . . . 

nVar 

   

0.0000 1.0000 1.0000 1.0000 1.0000 

r2 

   

0.0000 0.0000 0.0000 0.0000 0.0000 

BIC 

   

0.0000 5.2343 5.2343 5.2403 5.2463 

post prob 

   

0.3170 0.0230 0.0230 0.0230 0.0230 
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6.  Moderate Leverage and High Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 9.19E-03 0.0091 0.0090 0.0096 0.0096 0.0095 0.0095 

X7 2.3 8.91E-05 0.0059 . . . . . 

X12 2.3 1.29E-04 0.0070 . . . . . 

X13 2.3 1.39E-04 0.0065 . . . . . 

X14 2.3 1.50E-04 0.0063 . . . . . 

X15 2.3 1.58E-04 0.0105 . . . . . 

X16 2.3 1.71E-04 0.0114 . . . . . 

X17 2.3 1.88E-04 0.0102 . . . . . 

X18 2.3 2.07E-04 0.0112 . . . . . 

x19 2.3 2.30E-04 0.0125 . . . . . 

X20 2.3 2.60E-04 0.0122 . . . . . 

x21 2.3 2.93E-04 0.0195 . . . . . 

x22 2.3 3.58E-04 0.0118 . . . . . 

X23 2.3 4.40E-04 0.0124 . . . 0.0190 . 

X24 2.3 5.37E-04 0.0178 . . . . . 

X25 2.3 7.05E-04 0.0270 . . . . . 

X26 2.3 1.07E-03 0.0377 . . . . . 

X27 2.3 2.11E-03 0.0810 . . . . . 

X28 2.3 -2.22E-03 0.0596 . -0.0957 . . . 

X29 2.3 -1.11E-03 0.0298 . . -0.0479 . . 

X30 2.3 -7.16E-04 0.0237 . . . . . 

X31 2.3 -5.45E-04 0.0161 . . . . -0.0237 

X32 2.3 -4.26E-04 0.0151 . . . . . 

X33 2.3 -3.63E-04 0.0107 . . . . . 

x34 2.3 -2.97E-04 0.0140 . . . . . 

X35 2.3 -2.64E-04 0.0101 . . . . . 

X36 2.3 -2.33E-04 0.0098 . . . . . 

X37 2.3 -2.11E-04 0.0081 . . . 

 

. 

X38 2.3 -1.95E-04 0.0065 . . . . . 

X39 2.3 -1.72E-04 0.0094 . . . . . 

X40 2.3 -1.59E-04 0.0086 . . . . . 

nVar 

   

0.0000 1.0000 1.0000 1.0000 1.0000 

r2 

   

0.0000 0.0000 0.0000 0.0000 0.0000 

BIC 

   

0.0000 5.2343 5.2343 5.2403 5.2463 

post prob 

   

0.3170 0.0230 0.0230 0.0230 0.0230 
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7.  High Leverage and Low Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 9.70E-03 0.0096 0.0095 0.0101 0.0101 0.0101 0.0101 

X1 2.2 5.37E-05 0.0051 . . . . . 

X4 2.2 6.71E-05 0.0063 . . . . . 

X8 2.3 1.04E-04 0.0056 . . . . . 

X10 2.3 1.37E-04 0.0065 . . . . . 

X11 2.3 1.44E-04 0.0096 . . . . . 

X12 2.3 1.57E-04 0.0074 . . . . . 

X13 2.3 1.68E-04 0.0091 . . . . . 

X14 2.3 1.83E-04 0.0086 . . . . . 

X15 2.3 1.98E-04 0.0108 . . . . . 

X16 2.3 2.20E-04 0.0103 . . . . . 

X17 2.3 2.44E-04 0.0115 . . . . . 

x19 2.3 3.21E-04 0.0114 . . . . . 

X20 2.3 3.63E-04 0.0198 . . . . . 

x22 2.3 5.75E-04 0.0170 . . . . . 

X23 2.3 7.80E-04 0.0210 . 0.0337 . . . 

X24 2.3 1.13E-03 0.0375 . . . . . 

X25 2.3 2.25E-03 0.0796 . . . . . 

X26 2.3 -2.21E-03 0.0931 . . . . . 

X27 2.3 -1.11E-03 0.0465 . . . . . 

X28 2.3 -7.80E-04 0.0210 . . -0.0337 . . 

X29 2.3 -5.71E-04 0.0178 . . . . . 

X30 2.3 -4.68E-04 0.0126 . . . -0.0202 . 

X31 2.3 -3.90E-04 0.0105 . . . . -0.0168 

X32 2.3 -3.31E-04 0.0093 . . . . . 

X33 2.3 -2.83E-04 0.0094 . . . . . 

x34 2.3 -2.50E-04 0.0089 . . . . . 

X35 2.3 -2.27E-04 0.0075 . . . . . 

X36 2.3 -2.03E-04 0.0078 . . . . . 

X37 2.3 -1.80E-04 0.0120 . . . . . 

X39 2.3 -1.44E-04 0.0096 . . . . . 

nVar 

   

0.0000 1.0000 1.0000 1.0000 1.0000 

r2 

   

0.0000 0.0000 0.0000 0.0000 0.0000 

BIC 

   

0.0000 5.2343 5.2343 5.2343 5.2343 

post prob 

   

0.3170 0.0230 0.0230 0.0230 0.0230 
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8. High Leverage and Moderate Skewness of 200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 1.15E-02 0.0081 0.0113 0.0118 0.0118 0.0118 0.0117 

X4 2.1 8.89E-05 0.0053 . . . . . 

X5 2.1 1.00E-04 0.0060 . . . . . 

X6 2.1 1.04E-04 0.0088 . . . . . 

X7 2.1 1.09E-04 0.0065 . . . . . 

X8 2.1 1.19E-04 0.0101 . . . . . 

X11 2.1 1.52E-04 0.0064 . . . . . 

X15 2.1 2.04E-04 0.0077 . . . . . 

X16 2.1 2.18E-04 0.0131 . . . . . 

X17 2.1 2.40E-04 0.0144 . . . . . 

X18 2.1 2.76E-04 0.0088 . . . . . 

x19 2.1 3.06E-04 0.0116 . . . . . 

X20 2.1 3.47E-04 0.0147 . . . . . 

x21 2.1 4.14E-04 0.0132 . . . . . 

x22 2.1 4.89E-04 0.0185 . . . . . 

X23 2.2 6.43E-04 0.0157 . 0.0295 . . . 

X24 2.1 8.22E-04 0.0284 . . . . . 

X25 2.1 1.23E-03 0.0426 . . . . . 

X26 2.1 2.47E-03 0.0852 . . . . . 

X27 2.2 -2.52E-03 0.0710 . . . . . 

X28 2.2 -1.29E-03 0.0314 . . -0.0590 . . 

X29 2.2 -8.39E-04 0.0237 . . . . . 

X30 2.1 -6.20E-04 0.0199 . . . . . 

X31 2.1 -4.99E-04 0.0150 . . . . . 

X32 2.2 -4.22E-04 0.0113 . . . . -0.0195 

X33 2.1 -3.47E-04 0.0147 . . . . . 

x34 2.1 -3.06E-04 0.0116 . . . . . 

X35 2.1 -2.74E-04 0.0095 . . . . . 

X36 2.2 -2.55E-04 0.0065 . . . -0.0118 . 

X37 2.1 -2.24E-04 0.0077 . . . . . 

X38 2.1 -2.00E-04 0.0120 . . . . . 

nVar 

   

0.0000 1.0000 1.0000 1.0000 1.0000 

r2 

   

0.0000 0.0000 0.0000 0.0000 0.0000 

BIC 

   

0.0000 5.6198 5.6198 5.6258 5.6348 

post prob 

   

0.3620 0.0220 0.0220 0.0220 0.0220 
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9.  High Leverage and Low Skewness of  200 Sample Size 

Predictor p!=0 EV SD model 1 model 2 model 3 model 4 model 5 

Intercept 100 0.0233 0.0179 0.0227 0.0243 0.0252 0.0263 0.0242 

X1 2.5 -0.0016 0.0170 . . . . . 

x2 2.7 -0.0017 0.0162 . . . . . 

X3 2.3 -0.0013 0.0169 . . . . . 

X4 2 -0.0011 0.0215 . . . . . 

X5 2 -0.0011 0.0224 . . . . . 

X6 2.3 -0.0013 0.0163 . . . . . 

X7 2.2 -0.0012 0.0168 . . . . . 

x9 2 -0.0010 0.0207 . . . . . 

X13 2 -0.0009 0.0191 . . . . . 

X14 2 -0.0008 0.0181 . . . . . 

X15 2 -0.0007 0.0162 . . . . . 

X24 2.1 -0.0034 0.0522 . . . . . 

X26 2.3 -0.0029 0.0351 . . . . . 

X27 2.5 -0.0029 0.0303 . . . . . 

X28 2.1 -0.0022 0.0340 . . . . . 

X29 2.6 -0.0028 0.0274 . . . . . 

X30 3.2 -0.0033 0.0258 . . . -0.1043 . 

X31 2.7 -0.0026 0.0246 . . . . . 

X32 2.6 -0.0025 0.0241 . . . . . 

X33 2.4 -0.0017 0.0196 . . . . . 

x34 2.3 -0.0021 0.0250 . . . . . 

X35 3.3 -0.0030 0.0225 . . -0.0909 . . 

X36 2.2 -0.0019 0.0265 . . . . . 

X37 2.2 -0.0018 0.0242 . . . . . 

X38 2.8 -0.0024 0.0213 . . . . -0.0851 

X39 2.3 -0.0019 0.0222 . . . . . 

X40 2.4 -0.0019 0.0218 . . . . . 

X41 2.6 -0.0021 0.0210 . . . . . 

X43 7.1 -0.0060 0.0260 . -0.0855 . . . 

nVar 

   

0.0000 2.0000 2.0000 2.0000 1.0000 

r2 

   

0.0700 0.0820 0.0750 0.0750 0.0750 

BIC 

   

-9.1664 -6.5237 -4.9892 -4.9200 -4.6695 

post prob 

   

0.2650 0.0710 0.0330 0.0320 0.0280 
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10. BMA Summary for 200 Sample Size Simulated Data 

Predictor p!=0    EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Low leverage and low skewness 

Intercept 100 7.19E-03 0.0070 0.0070 0.0081 0.0076 0.0075 0.0074 

A 2.2 -3.37E-04 0.0083 . . -0.0151 . . 

B 2.2 -2.07E-04 0.0055 . . . 0.9358 . 

Low leverage and moderate skewness 

Intercept 100 9.86E-03 0.0096 0.0095 0.0114 0.0102   0.0101 0.0099 

C    2 -5.12E-04 0.0153 . . . -0.0251 . 

D    2 -4.17E-04 0.0114 . . -0.0203 . . 

Low leverage and high skewness 

Intercept 100 0.0173 0.0172 0.017 0.0182 0.0181 0.0181 0.0179 

E 2.3 0.0006 0.0161 . . 0.0258 . . 

F 2.3 0.0021 0.0544 . 0.0909 . . . 

Moderate leverage and low skewness 

Intercept 100 1.63E-02 0.0114 0.0160 0.0172 0.0170 0.0170 0.0169 

G  2.4 1.34E-03 0.0259 . . 0.0567 . . 

H  2.4 -8.24E-04 0.0147 . 0.0344 . .          . 

Moderate leverage and moderate skewness 

Intercept 100 9.19E-03 0.0091 0.0090 0.0096 0.0096 0.0095 0.0095 

I  2.3 -2.22E-03 0.0596 . 0.0957 . . . 

J  2.3 -1.11E-03 0.0298 . . -0.0479 . . 

Moderate leverage and high skewness 

Intercept 100 9.19E-03 0.0091 0.0090 0.0096 0.0096 0.0095 0.0095 

K  2.3 -2.22E-03 0.0596 . 0.0957 . . . 

L  2.3 -1.11E-03 0.0298 . . -0.0479 . . 

High leverage and low skewness 

Intercept 100 9.70E-03 0.0096 0.0095 0.0101 0.0101 0.0101 0.0101 

M  2.3 7.80E-04 0.0210 . 0.0337 . . . 

N  2.3 -7.80E-04 0.0210 . . -0.0337 . . 

High leverage and moderate skewness 

Intercept 100 1.15E-02 0.0081 0.0113 0.0118 0.0118 0.0118 0.0117 

P  2.2 6.43E-04 0.0157 . 0.0295 . . . 

Q  2.2 -1.29E-03 0.0314 . . -0.0590 . . 

High leverage and high skewness 

Intercept 100 0.0233 0.0179 0.0227 0.0243 0.0252 0.0263 0.0242 

R 3.3 -0.0030 0.0225 . . -0.0909 . . 

S 7.1 -0.0060 0.0260 . 0.0855 . . . 
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11. BMA Summary for 250 Sample Size Simulated Data 

Predictor p!=0    EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Low leverage and low skewness 

Intercept 100 1.39E-02 0.0097 0.0136 0.0146 0.0144 0.0144 0.0143 

1A
 2.3 -8.11E-04 0.0171 . . -0.0359 . . 

1B  2.3 -5.60E-04 0.0103 . 0.0243 . . . 

Low leverage and moderate skewness 

Intercept 100 0.0135 0.0096 0.0132 0.0136 0.0154 0.0142 0.0152 

1C  2.6 -0.0012 0.0111 . . -0.0474 .          . 

1D  2.2    -0.0008 0.0091 . . . -0.0371          . 

Low leverage and high skewness 

Intercept 100 0.0128 0.0142 0.0127 0.0145 0.0141 0.0134 0.0139 

1E  3.1 -0.0019 0.0154 . 0.0610 . . . 

1F   3 -0.0018 0.0149 . . -0.0587 . . 

Moderate leverage and low skewness 

Intercept 100 5.83E-03 0.0077 0.0057 0.0062 0.0061 0.0060 0.0060 

1G  100 -2.49E-01 0.0490 -0.2494 0.2489 -0.2490 -0.2491 -0.2491 

1H  2.3 -2.36E-04 0.0072 . 0.0104        . . . 

Moderate leverage and moderate skewness 

Intercept 100 8.87E-03 0.0088 0.0088 0.0086 0.0091 0.0082 0.0097 

1I  2.4 -2.26E-04 0.0055 . . . -0.0204 . 

1J  2.4 -3.65E-04 0.0068 . . -0.0261 . . 

Moderate leverage and high skewness 

Intercept 100 0.0130 0.0129 0.0128 0.0136 0.0135 0.0135 0.0134 

1K  2.2 0.0015 0.0428 . 0.0678 . . . 

1L  2.2 -0.0030 0.0915 . . -0.1345 . . 

High leverage and low skewness 

Intercept 100 6.12E-03 0.0061 0.0060 0.0065 0.0064 0.0064 0.0063 

1M  2.2 -3.56E-04 0.0097 . . -0.0160 . . 

1N  2.3 -2.44E-04 0.0059 . 0.0108 . . . 

High leverage and moderate skewness 

Intercept 100 8.98E-03 0.0089 0.0088 0.0094 0.0093 0.0092 0.0092 

1P    2.2 -6.92E-04 0.0196 . . -0.0311 . . 

1Q    2.2 -5.25E-04 0.0139 . 0.0235 . . . 

High leverage and high skewness 

Intercept 100 0.0130 0.0129 0.0128 0.0136 0.0135 0.0135 0.0135 

1R  2.2 -0.0030 0.0832 . 0.1362 . .          . 

1S  2.2 -0.0015 0.0442 . . -0.0675 . . 
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12. BMA Summary for 300 Sample Size Simulated Data 

Predictor p!=0    EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Low leverage and low skewness 

Intercept 100 5.78E-03 0.0057 0.0057 0.0061 0.0060 0.0060 0.0060 

2A  2.2 -1.30E-03 0.0371 . . -0.0601 . . 

2B  2.2 -2.63E-04 0.0069 . 0.0121 . . . 

Low leverage and moderate skewness 

Intercept 100 0.0163 0.0114 0.0160 0.0170 0.0170 0.0168 0.0168 

2C  2.2 0.0008 0.0150 . 0.0340 . . . 

2D  2.2 -0.0008 0.0150 . . -0.0340 . . 

Low leverage and high skewness 

Intercept 100 -6.4E-19 0.0120 -1.3E-18 3.4E-19 2.8E-19 1.9E-18 -1.3E-18 

2E  2.2 3.1E-20 0.0115 . 1.4E-18 . . . 

2F  100 9.05E-01 0.1301 9.1E-01 9.1E-01 9.1E-01 9.1E-01 9.1E-01 

Moderate leverage and low skewness 

Intercept 100 6.08E-03 0.0060 0.0060 0.0059 0.0066 0.0064 0.0064 

2G  1.9 -1.20E-03 0.0358 . . . -0.0638 . 

2H  1.9 -2.09E-04 0.0051 . . -0.0109 . . 

Moderate leverage and moderate skewness 

Intercept 100 9.84E-03 0.0098 0.0097 0.0103 0.0102 0.0102 0.0102 

2I  2.2 4.42E-04 0.0127 . . 0.0205 . . 

2J  2.2 -5.59E-04 0.0151 . 0.0258 . . . 

Moderate leverage and high skewness 

Intercept 100 1.29E-02 0.0128 0.0127 0.0136 0.0135 0.0133 0.0133 

2K  2.2 5.89E-04 0.0155 . 0.0271 . . . 

2L  2.2 9.77E-04 0.0264 . . 0.0451 . . 

High leverage and low skewness 

Intercept 100 7.48E-03 0.0074 0.0073 0.0079 0.0079 0.0078 0.0078 

2M  2.2 -1.70E-03 0.0449 . 0.0786 . . . 

2N  2.2 -2.84E-04 0.0075 . . -0.0131 . . 

High leverage and moderate skewness 

Intercept 100 7.81E-03 0.0078 0.0077 0.0083 0.0082 0.0081 0.0081 

2P  2.2 -1.81E-03 0.0443 . 0.0830 . . . 

2Q  2.2 -3.55E-04 0.0096 . . -0.0164 . . 

High leverage and high skewness 

Intercept 100 0.0136 0.0135 0.0133 0.0143 0.0142 0.0141 0.0165 

2R  2.2 0.0008 0.0213 . . 0.0355 .          . 

2S  2.2 0.0016 0.0408 . 0.0714 . .          . 
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Appendix E 

Fitting Linear Regression with Autoregressive errors Output 

1. Low Leverage and Low Skewness of 200 Sample Size 

Model Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.03 0.07 0.42 0.681 

X1 0.13 0.08 1.73 0.084 . 

X2 -0.15 0.07 -2.12 0.035 * 

X3 0.05 0.07 0.71 0.482 

X4 0.04 0.07 0.62 0.534 

X5 -0.02 0.07 -0.26 0.803 

X6 0.10 0.07 1.33 0.191 

X7 -0.10 0.07 -1.37 0.167 

X8 0.01 0.07 0.11 0.914 

X9 -0.04 0.08 -0.53 0.602 

X10 0.01 0.08 0.14 0.892 

X11 -0.06 0.07 -0.80 0.431 

X12 -0.08 0.07 -1.14 0.256 

X13 0.04 0.07 0.56 0.581 

X14 -0.04 0.08 -0.55 0.582 

X15 0.06 0.08 0.76 0.018 * 

X16 -0.07 0.07 -0.96 0.344 

X17 -0.09 0.07 -1.25 0.213 

X18 -0.03 0.07 -0.41 0.691 

X19 -0.08 0.07 -1.12 0.257 

X20 0.07 0.07 1.05 0.304 

X21 -0.06 0.07 -0.91 0.373 

X22 -0.04 0.06 -0.70 0.490 

X23 -0.04 0.07 -0.49 0.634 

X24 0.02 0.08 0.23 0.823 

X25 -0.03 0.07 -0.49 0.628 

X26 0.17 0.08 2.15 0.032 * 

X27 0.09 0.07 1.29 0.200 

X28 -0.10 0.07 -1.39 0.171 

X29 -0.13 0.07 -1.75 0.081 . 

X30 0.06 0.08 0.76 0.454 

X31 0.13 0.07 1.97 0.051 . 

X32 0.06 0.08 0.75 0.464 

X33 0.17 0.08 2.15 0.036 * 

X34 -0.05 0.07 -0.75 0.462 
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Low Leverage and Low Skewness continued 

X35 0.02 0.07 0.30 0.759 

X36 -0.12 0.07 -1.75 0.081 . 

X37 -0.05 0.07 -0.78 0.444 

X38 0.05 0.06 0.78 0.445 

X39 -0.03 0.07 -0.44 0.663 

X40 0.00 0.06 -0.03 0.971 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9671 on 179 degrees of freedom 

Multiple R-squared:  0.03031,   Adjusted R-squared:  0.02586  

F-statistic: 6.813 on 1 and 179 DF,  p-value: 0.009676 
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2. Low Leverage and Moderate Skewness of 200 Sample Size 

 Model Estimate Std. Error t value    Pr(>|t|) 

(Intercept) 0.03 0.07 0.42 0.681 

X1 0.14 0.08 1.72   0.084 

X2 -0.15 0.07 -2.12    0.054 * 

X3 0.05 0.07 0.71 0.483 

X4 0.04 0.07 0.62 0.534 

X5 -0.02 0.07 -0.26 0.800 

X6 0.10 0.07 1.33 0.188 

X7 -0.10 0.07 -1.37 0.172 

X8 0.01 0.07 0.11 0.913 

X9 -0.04 0.08 -0.53 0.603 

X10 0.01 0.08 0.14 0.890 

X11 -0.06 0.07 -0.80 0.434 

X12 -0.08 0.07 -1.14 0.258 

X13 0.04 0.07 0.56 0.581 

X14 -0.04 0.08 -0.55 0.581 

X15 0.13 0.07 1.97    0.048 * 

X16 -0.07 0.07 -0.96 0.343 

X17 -0.09 0.07 -1.25 0.205 

X18 -0.03 0.07 -0.41 0.694 

X19 -0.08 0.07 -1.12 0.262 

X20 0.07 0.07 1.05 0.303 

X21 -0.06 0.07 -0.91 0.369 

X22 -0.04 0.06 -0.70 0.490 

X23 -0.04 0.07 -0.49 0.634 

X24 0.02 0.08 0.23 0.824 

X25 -0.03 0.07 -0.49 0.631 

X26 0.15 0.07 2.07    0.054 * 

X27 0.09 0.07 1.29 0.202 

X28 -0.10 0.07 -1.39 0.173 

X29 -0.13 0.07 -1.74 0.081  

X30 0.06 0.08 0.76 0.447 

X31 0.13 0.07 1.97 0.052  

X32 0.06 0.08 0.75 0.461 

X33 0.17 0.08 2.15    0.053 * 

X34 -0.05 0.07 -0.75 0.462 

X35 0.02 0.07 0.30 0.762 

X36 -0.12 0.07 -1.75  0.083 
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Low Leverage and Moderate Skewness continued 

X37 -0.05 0.07 -0.78 0.444 

X38 0.05 0.06 0.78 0.435 

X39 -0.03 0.07 -0.44 0.661 

X40 0.06 0.08 0.75 0.042* 

X41 -0.06 0.07 -0.84 0.400 

X42 0.05 0.06 0.81 0.421 

X43 0.17 0.07 2.40   0.051* 

X44 0.09 0.07 1.25 0.213 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9708 on 175 degrees of freedom 

Multiple R-squared:  0.02282,   Adjusted R-squared:  0.01834  

F-statistic:  5.09 on 1 and 175 DF,  p-value: 0.02505 
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3. Low Leverage and High Skewness of 200 Sample Size 

Model Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.03 0.07 0.42 0.681 

X1 0.04 0.07 0.56 0.051* 

X2 -0.15 0.07 -2.12 0.064 * 

X3 0.09 0.07 1.25 0.214 

X4 0.11 0.08 1.42 0.163 

X5 -0.02 0.07 -0.26 0.804 

X6 0.10 0.07 1.33 0.189 

X7 -0.10 0.07 -1.37 0.169 

X8 0.01 0.07 0.11 0.912 

X9 -0.04 0.08 -0.53 0.601 

X10 0.01 0.08 0.14 0.890 

X11 -0.06 0.07 -0.80 0.432 

X12 -0.08 0.07 -1.14 0.261 

X13 -0.04 0.07 -0.41 0.042* 

X14 -0.04 0.08 -0.55 0.582 

X15 0.16 0.08 2.08 0.061 * 

X16 -0.07 0.07 -0.96 0.344 

X17 -0.09 0.07 -1.25 0.213 

X18 -0.03 0.07 -0.41 0.691 

X19 -0.08 0.07 -1.12 0.264 

X20 0.07 0.07 1.05 0.300 

X21 -0.06 0.07 -0.91 0.371 

X22 -0.04 0.06 -0.70 0.491 

X23 -0.04 0.07 -0.49 0.634 

X24 0.02 0.08 0.23 0.822 

X25 -0.03 0.07 -0.49 0.628 

X26 0.15 0.07 2.07 0.055 * 

X27 0.09 0.07 1.29 0.204 

X28 -0.10 0.07 -1.39 0.171 

X29 -0.13 0.07 -1.75 0.082  

X30 0.06 0.08 0.76 0.454 

X31 0.13 0.07 1.97 0.051  

X32 0.06 0.08 0.75 0.464 

X33 0.17 0.08 2.15 0.053 * 

X34 -0.05 0.07 -0.75 0.463 

X35 0.02 0.07 0.30 0.761 

X36 -0.12 0.07 -1.75 0.082  

X37 -0.05 0.07 -0.78 0.444 

X38 0.05 0.06 0.78 0.441 
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Low Leverage and High Skewness continued 

X39 -0.03 0.07 -0.44 0.657 

X40 0.00 0.06 -0.03 0.969 

X41 -0.06 0.07 -0.84 0.400 

X42 0.05 0.06 0.81 0.421 

X43 0.17 0.07 1.40 0.085. 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9799 on 176 degrees of freedom 

Multiple R-squared:  0.003934,  Adjusted R-squared:  0.002912  

F-statistic: 3.847 on 1 and 176 DF,  p-value: 0.05012 
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4. Moderate Leverage and Low Skewness of 200 Sample Size 

Model Estimate Std. Error t value    Pr(>|t|) 

(Intercept)  0.03 0.07 0.42 0.681 

X1 0.11 0.08 1.62    0.082 . 

X2 -0.15 0.07 -2.12     0.048 * 

X3 0.05 0.07  0.71 0.484 

X4 0.04 0.07  0.62 0.534 

X5 -0.02 0.07 -0.26 0.801 

X6 0.10 0.07  1.33 0.193 

X7 -0.10 0.07 -1.37 0.168 

X8 0.01 0.07  0.11 0.907 

X9 -0.04 0.08 -0.53 0.604 

X10 0.01 0.08  0.14 0.891 

X11 -0.06 0.07 -0.80 0.432 

X12 -0.08 0.07 -1.14 0.255 

X13 0.04 0.07  0.56 0.581 

X14 -0.04 0.08 -0.55 0.582 

X15 -0.04 0.07  -0.49     0.041 * 

X16 -0.07 0.07 -0.86 0.354 

X17 -0.09 0.07 -1.25 0.215 

X18 -0.03 0.07 -0.41 0.692 

X19 -0.08 0.07 -1.12 0.261 

X20 0.07 0.07 1.05 0.301 

X21 -0.06 0.07 -0.91 0.367 

X22 -0.04 0.06 -0.70 0.488 

X23 -0.04 0.07 -0.49 0.634 

X24 0.02 0.08  0.23 0.821 

X25 -0.03 0.07 -0.49 0.633 

X26 
0.15 0.07  2.07     0.047 * 

X27 0.09 0.07 1.29 0.204 

X28 -0.10 0.07 -1.39 0.169 

X29 -0.13 0.07 -1.75        0.084  

X30 0.06 0.08  0.76 0.041* 

X31 0.13 0.07  1.97        0.053  

X32 0.06 0.08  0.75 0.458 

X33 0.17 0.08  2.14 0.051 * 

X34 -0.06 0.07 -0.76 0.457 

X35 0.02 0.07  0.31 0.664 
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Moderate Leverage and Low Skewness continued 

X36 
-0.06 0.07 -0.84 0.400 

X37 0.05 0.06  0.81 0.421 

X38 0.17 0.07  1.40   0.062 * 

X39 0.09 0.07  1.25 0.214 

X40 0.11 0.08  1.42 0.161 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9671 on 179 degrees of freedom 

Multiple R-squared:  0.03031,   Adjusted R-squared:  0.02586  

F-statistic: 6.813 on 1 and 179 DF,  p-value: 0.009676 
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5. Moderate Leverage and Moderate Skewness of 200 Sample Size 

Model Estimate Std. Error t value  Pr(>|t|) 

 (Intercept)     0.03 0.07 0.42 0.681 

X1 0.13 0.08 1.63 0.081  

X2 -0.15 0.07 -2.12 .  0.042 * 

X3 0.05 0.07 0.71 0.483 

X4 0.04 0.07 0.62 0.533 

X5 -0.02 0.07 -0.26 0.804 

X6 0.10 0.07 1.33 0.187 

X7 -0.10 0.07 -1.37 0.166 

X8  0.01 0.07 0.11 0.914 

X9 -0.04 0.08 -0.53 0.601 

X10  0.01 0.08 0.14 0.891 

X11 -0.06 0.07 -0.80 0.434 

X12 -0.08 0.07 -1.14 0.258 

X13  0.04 0.07 0.56 0.581 

X14 -0.04 0.08 -0.55 0.581 

X15 -0.10 0.07 -1.39    0.022 * 

X16 -0.07 0.07 -0.96 0.335 

X17 -0.09 0.07 -1.25 0.214 

X18 -0.03 0.07 -0.41 0.691 

X19 -0.08 0.07 -1.12 0.256 

X20  0.07 0.07 1.05 0.302 

X21 -0.06 0.07 -0.91 0.371 

X22 -0.04 0.06 -0.70 0.490 

X23 -0.04 0.07 -0.49 0.634 

X24  0.02 0.08 0.23 0.821 

X25 -0.03 0.07 -0.49 0.633 

X26 -0.13 0.07 -1.75    0.042 * 

X27  0.09 0.07 1.29 0.201 

X28 -0.10 0.07 -1.39 0.172 

X29 -0.13 0.07 -1.72   0.084  

X30  0.06 0.08 0.76 0.452 

X31  0.13 0.07 1.97   0.057  

X32  0.06 0.08 0.75 0.459 

X33  0.17 0.08 2.15    0.053 * 

X34 -0.05 0.07 -0.75 0.457 

X35  0.02 0.07 0.30 0.755 

X36 -0.12 0.07 -1.75   0.083  

X37 -0.05 0.07 -0.78 0.444 

X38  0.05 0.06 0.78 0.444 
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Moderate Leverage and Moderate Skewness continued 

X39 -0.03 0.07 -0.44 0.658 

X40  0.01 0.06 -0.03 0.970 

X41 -0.06 0.07 -0.84 0.402 

X42 0.05 0.06 0.81 0.421 

X43 0.18 0.07 1.40    0.052 * 

X44 0.09 0.07 1.25 0.309 

X45 0.11 0.08 1.42 0.161 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9409 on 174 degrees of freedom 

Multiple R-squared:  0.2674,    Adjusted R-squared:  0.07795  

F-statistic: 1.411 on 45 and 174 DF,  p-value: 0.06087 
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6. Moderate Leverage and High Skewness of 200 Sample Size 

Model Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.03 0.07   0.42 0.681 

X1 0.05 0.06   0.72 0.435 

X2 0.17 0.07   1.40    0.052 * 

X3 0.10 0.07   1.35 0.231 

X4 0.11 0.08   1.42 0.164 

X5 -0.02 0.07 -0.26 0.801 

X6 0.10 0.07   1.33 0.188 

X7 -0.10 0.07 -1.37 0.167 

X8 0.01 0.07   0.11 0.908 

X9 -0.04 0.08 -0.53 0.601 

X10 0.01 0.08   0.14 0.891 

X11 -0.06 0.07 -0.80 0.432 

X12 -0.08 0.07 -1.14 0.264 

X13              0.04 0.07   0.56 0.582 

X14 0.16 0.08 -0.55 0.581 

X15 -0.10 0.07 -1.39    0.021 * 

X16 -0.07 0.07 -0.85 0.363 

X17 -0.09 0.07 -1.25 0.212 

X18 -0.03 0.07 -0.41 0.689 

X19 -0.08 0.07 -1.12 0.257 

X20 0.07 0.07 1.05 0.304 

X21 -0.06 0.07 -0.91 0.371 

X22 -0.04 0.06 -0.70 0.490 

X23 -0.04 0.07 -0.49 0.633 

X24 0.02 0.08   0.23 0.823 

X25 -0.03 0.07 -0.49 0.628 

X26 0.15 0.07   2.07 0.045 * 

X27 0.09 0.07   1.29 0.204 

X28 -0.10 0.07 -1.39 0.166 

X29 -0.13 0.07  -1.55   0.085  

X30         -0.13 0.07  -1.75 0.043 

X31 0.13 0.07   1.97   0.052  

X32 0.06 0.08   0.75 0.464 

X33 0.17 0.08   2.05    0.053 * 

X34 -0.05 0.07 -0.75 0.455 

X35 0.02 0.07 0.30 0.761 

X36 -0.12 0.07 1.75  0.081. 
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Moderate Leverage and High Skewness continued 

X37 -0.05 0.07 -0.78 0.443 

X38 0.05 0.06 0.78 0.444 

X39 -0.03 0.07 -0.44 0.658 

X40   0.00 0.06 -0.03 0.965 

X41 -0.06 0.07 -0.84 0.400 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9599 on 178 degrees of freedom 

Multiple R-squared:  0.04903,   Adjusted R-squared:  0.04027  

F-statistic: 5.594 on 2 and 178 DF,  p-value: 0.004276 
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7. High Leverage and Low Skewness of 200 Sample Size 

Model Estimate      Std. Error  t value   Pr(>|t|) 

Intercept) 0.03 0.07 0.42 0.681 

X1 0.13 0.08 0.75 0.215 

X2 -0.15 0.07 -2.12    0.045 * 

X3 0.05 0.07 0.71 0.482 

X4 0.04 0.07 0.62 0.534 

X5 -0.02 0.07 -0.26 0.802 

X6 0.10 0.07 1.33 0.190 

X7 -0.10 0.07 -1.37 0.172 

X8 0.01 0.07 0.11 0.905 

X9 -0.04 0.08 -0.53 0.604 

X10 0.01 0.08 0.14 0.890 

X11 -0.06 0.07 -0.80 0.432 

X12 -0.08 0.07 -1.14 0.263 

X13 0.04 0.07 0.56 0.581 

X14 -0.04 0.08 -0.55 0.582 

X15 0.16 0.08 2.08    0.046 * 

X16 -0.07 0.07 -0.96 0.344 

X17 -0.09 0.07 -1.25 0.214 

X18 -0.03 0.07 -0.41 0.687 

X19 -0.08 0.07 -1.12 0.258 

X20 0.07 0.07 1.05 0.301 

X21 -0.06 0.07 -0.91 0.369 

X22 -0.04 0.06 -0.70 0.490 

X23 -0.04 0.07 -0.49 0.032* 

X24 0.05 0.06 0.81 0.421 

X25 -0.03 0.07 -0.49 0.633 

X26 0.15 0.07 2.07 0.048 * 

X27 0.09 0.07 1.29 0.201 

X28 -0.10 0.07 -1.39 0.043* 

X29 -0.13 0.07 -1.75 0.082  

X30 0.06 0.08 0.76 0.454 

X31 0.13 0.07 1.97 0.054  

X32 0.06 0.08 0.75 0.463 

X33 0.17 0.08 1.25     0.051 * 

X34 -0.05 0.07 -0.75 0.458 

X35 0.02 0.07 0.30 0.764 

X36 -0.12 0.07 -1.75  0.084  

X37 -0.05 0.07 -0.78 0.443 

X38 0.11 0.08 1.42 0.164 
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High Leverage and Low Skewness continued 

X39 -0.03 0.07 -0.44 0.661 

X40 0.00 0.06 -0.03 0.972 

X41 0.09 0.07 1.25 0.215 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9599 on 178 degrees of freedom 

Multiple R-squared:  0.04903,   Adjusted R-squared:  0.04027  

F-statistic: 5.594 on 2 and 178 DF,  p-value: 0.004276 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

226 

 

8. High Leverage and Moderate Skewness of 200 Sample Size 

Model Estimate      Std. Error  t value   Pr(>|t|) 

Intercept) 0.03 0.07 0.42 0.681 

X1 0.15 0.08 1.67  0.081  

X2 -0.15 0.07 -2.32 0.046 * 

X3 0.05 0.07 0.71 0.482 

X4 0.04 0.07 0.62 0.534 

X5 -0.02 0.07 -0.26 0.801 

X6 0.10 0.07 1.33 0.190 

X7 -0.10 0.07 -1.37 0.174 

X8 0.01 0.07 0.11 0.914 

X9 -0.04 0.08 -0.53 0.602 

X10 0.01 0.08 0.14 0.889 

X11 -0.06 0.07 -0.80 0.433 

X12 -0.08 0.07 -1.14 0.261 

X13 0.04 0.07 0.56 0.582 

X14 -0.04 0.08 -0.55 0.578 

X15 -0.04 0.07 -0.49    0.046 * 

X16 -0.07 0.07 -0.96 0.344 

X17 -0.09 0.07 -1.25 0.213 

X18 -0.03 0.07 -0.41 0.690 

X19 -0.08 0.07 -1.12 0.264 

X20 0.07 0.07 1.05 0.300 

X21 -0.06 0.07 -0.91 0.372 

X22 -0.04 0.06 -0.70 0.491 

X23 -0.04 0.07 -0.49 0.636 

X24 0.02 0.08 0.23 0.823 

X25 -0.03 0.07 -0.49 0.628 

X26 0.15 0.07 2.07    0.046 * 

X27 0.09 0.07 1.29 0.202 

X28 -0.10 0.07 -1.39 0.042 * 

X29 -0.13 0.07 -1.75 0.082  

X30 0.06 0.08 0.76 0.449 

X31 0.13 0.07 1.97 0.054  

X32 0.06 0.08 0.75 0.464 

X33 0.17 0.08 2.15 0.043 * 

X34 -0.05 0.07 -0.75 0.455 

X35 0.02 0.07 0.30 0.757 

X36 -0.12 0.07 -1.75 0.084  

X37 -0.05 0.07 -0.78 0.444 

X38 0.05 0.06 0.78 0.445 
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High Leverage and Moderate Skewness continued 

X39 -0.03 0.07 -0.44 0.657 

X40 0.00 0.06 -0.03 0.968 

X41 -0.06 0.07 -0.84 0.400 

X42 0.05 0.06 0.81 0.424 

X43 0.11 0.08 1.42 0.163 

X44 0.09 0.07 1.25 0.211 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9708 on 175 degrees of freedom 

Multiple R-squared:  0.02282,   Adjusted R-squared:  0.01834  

F-statistic:  5.09 on 1 and 175 DF,  p-value: 0.02505 
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9. High Leverage and High Skewness of 200 Sample Size 

Model Estimate      Std. Error t value   Pr(>|t|) 

Intercept) 0.03 0.07 0.42 0.681 

X1 0.12 0.08 1.75 0.081  

X2 -0.15 0.07 -2.42 0.046 * 

X3 0.05 0.07 0.71 0.482 

X4 0.04 0.07 0.62 0.534 

X5 -0.02 0.07 -0.26 0.898 

X6 0.10 0.07 1.33 0.193 

X7 -0.10 0.07 -1.37 0.173 

X8 0.01 0.07 0.11 0.912 

X9 -0.04 0.08 -0.53 0.600 

X10 0.01 0.08 0.14 0.893 

X11 -0.06 0.07 -0.80 0.432 

X12 -0.08 0.07 -1.14 0.258 

X13 0.04 0.07 0.56 0.579 

X14 -0.04 0.08 -0.55 0.582 

X15 0.16 0.08 2.02 0.045 * 

X16 -0.07 0.07 -0.96 0.344 

X17 -0.09 0.07 -1.25 0.216 

X18 -0.03 0.07 -0.41 0.693 

X19 -0.08 0.07 -1.12 0.264 

X20 0.07 0.07 1.05 0.300 

X21 -0.06 0.07 -0.91 0.371 

X22 -0.04 0.06 -0.70 0.489 

X23 -0.04 0.07 -0.49 0.635 

X24 0.02 0.08 0.23 0.821 

X25 -0.03 0.07 -0.49 0.634 

X26 0.15 0.07 2.07    0.047 * 

X27 0.09 0.07 1.29 0.203 

X28 -0.10 0.07 -1.39 0.172 

X29 -0.13 0.07 -1.75  0.082  

X30 0.02 0.07 0.30 0.042* 

X31 0.13 0.07 1.97    0.051  

X32 0.06 0.08 0.75 0.464 

X33 0.17 0.08 2.15 0.051 * 

X34 -0.05 0.07 -0.75 0.458 

X35 0.17 0.07 2.40 0.021* 

X36 -0.12 0.07 -1.75  0.081  

X37 -0.05 0.07 -0.78 0.445 

X38 0.05 0.06 0.78 0.444 
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High Leverage and High Skewness continued 

X39 0.09 0.07 1.25 0.215 

X40 0.00 0.06 -0.03 0.973 

X41 -0.06 0.07 -0.84 0.400 

X42 0.05 0.06 0.81 0.424 

X43 0.09 0.07 1.25 0.211 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 0.9799 on 176 degrees of freedom 

Multiple R-squared:  0.003934, Adjusted R-squared:  0.002912  

F-statistic: 3.847 on 1 and 176 DF,  p-value: 0.05012 
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10. Summary of the Fitted Linear Regression with Autoregressive Errors using 200 

Sample Size 

Model Estimate   Std. Error t value Pr(>|t|) 

Low leverage and low skewness 

(Intercept)  0.03 0.07 0.42 0.68 

A  0.06 0.08 0.76 0.02 * 

B  0.17 0.08 2.15 0.03 * 

Low leverage and  moderate skewness 

(Intercept) 0.03 0.07 0.42 0.68 

C 0.13 0.07 1.97 0.05 * 

D 0.06 0.08 0.75 0.04 * 

Low leverage and high skewness 

(Intercept) 0.03 0.07 0.42 0.68 

E 0.04 0.07 0.56 0.05 * 

F -0.03 0.07   -0.41 0.04 * 

Moderate leverage and low skewness 

(Intercept)   0.03 0.07 0.42 0.68 

G -0.04 0.07   -0.49 0.04 * 

H  0.06 0.08    0.76 0.04* 

Moderate leverage and moderate skewness 

(Intercept)      0.03 0.07 0.42 0.68 

I     -0.10 0.07 -1.39 0.02 * 

J   -0.13 0.07 -1.75 0.04 * 

Moderate leverage and high skewness 

(Intercept)    0.03 0.07 0.42 0.68 

K   -0.10 0.07 -1.39 0.02 * 

L   -0.13 0.07 -1.75   0.04 * 

High leverage and low skewness 

(Intercept) 0.03 0.07 0.42 0.68 

M   -0.04 0.07 -0.49 0.03 * 

N   -0.10 0.07 -1.39 0.04 * 

High leverage and moderate skewness 

(Intercept) 0.03 0.07 0.42 0.68 

P   -0.04 0.07 -0.49  0.03 * 

Q   -0.10 0.07 -1.39  0.0.4 * 

High leverage and high skewness 

Intercept) 0.03 0.07 0.42 0.68 

R 0.02 0.07 0.30 0.04 * 

S 0.17 0.07 2.40 0.02 * 
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11. Summary of the Fitted Linear Regression with Autoregressive Errors using 250 

Sample Size 

Model      Estimate Std. Error t value Pr(>|t|) 

Low leverage and low skewness 

(Intercept) 0.03 0.07 0.42           0.68 

1A  0.17 0.08 2.15 0.03 * 

1B  0.02 0.07 0.30 0.02 * 

Low leverage and moderate skewness 

(Intercept)          0.03 0.07 0.42 0.68 

1C          -0.12 0.07           -1.75    0.03 * 

1D          -0.06 0.07            -0.84    0.04 * 

Low leverage and high skewness 

(Intercept)           0.03 0.07 0.42 0.68 

1E          -0.05 0.07           -0.78    0.03 * 

1F          -0.06 0.07           -0.84    0.04 * 

Moderate leverage and low skewness 

(Intercept)  0.03            0.07                            0.42 0.68 

1G  -0.03 0.07 -0.41    0.02 * 

1H  -0.05 0.07 -0.75    0.03 * 

Moderate leverage and moderate skewness 

 (Intercept)   0.03            0.07                     0.42 0.68 

1I  0.13 0.08 1.73    0.03 * 

1J  0.09 0.07 1.25    0.02 * 

Moderate leverage and high skewness 

(Intercept) 0.03            0.07                                0.42 0.68 

1K  -0.08 0.07 -1.12    0.02 * 

1L  -0.06 0.07 -0.91    0.03 * 

High leverage and low skewness 

(Intercept)  0.03              0.07 0.42 0.68 

1M  -0.05 0.07 -0.75    0.04 * 

1N  -0.12 0.07 -1.75   0.03 * 

High leverage and moderate skewness 

(Intercept) 0.03           0.07                0.42 0.68 

1P  0.15           0.07  2.07    0.04 * 

1Q  0.09           0.07 1.29    0.02 * 

High leverage and high skewness 

Intercept)          0.03           0.07                  0.42 0.68 

1R          -0.04           0.06 -0.70    0.04 * 

1S          -0.04           0.07 -0.49     0.04 * 
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12. Summary of the Fitted Linear Regression with Autoregressive Errors using 300 

Sample Size 

Model    Estimate Std. Error t value  Pr(>|t|) 

Low leverage and low skewness 

(Intercept) 0.03 0.07 0.42 0.68 

2A  0.06 0.08 0.75    0.04 * 

2B           -0.12 0.07           -1.75    0.04 * 

Low leverage and moderate skewness 

(Intercept) 0.03 0.07 0.42 0.68 

2C            -0.04 0.07         -0.49    0.03 * 

2D  0.06 0.08 0.75    0.04 * 

Low leverage and high skewness 

(Intercept) 0.03 0.07 0.42 0.68 

2E  0.01 0.08 0.14    0.04 * 

2F           -0.03 0.07          -0.49   0.03 * 

Moderate leverage and low skewness 

(Intercept)             0.03                0.07            0.42 0.68 

2G  0.06 0.08 0.76    0.04 * 

2H  0.02 0.07 0.30   0.03 * 

Moderate leverage and moderate skewness 

 (Intercept)    0.03               0.07 0.42 0.68 

2I  0.02 0.08 0.23    0.02 * 

2J  0.06 0.08 0.75    0.04 * 

Moderate leverage and high skewness 

(Intercept)          0.03 0.07             0.42 0.68 

2K          -0.07 0.07 -0.96    0.03 * 

2L          -0.03 0.07 -0.41 0.04* 

High leverage and low skewness 

Intercept) 0.03                0.07 0.42 0.68 

2M  0.13 0.07 1.97   0.03 * 

2N           -0.12  0.07          -1.75   0.04 * 

High leverage and moderate skewness 

(Intercept)            0.03               0.07            0.42 0.68 

2P  0.09 0.07 1.29    0.02 * 

2Q  0.13 0.07 1.97   0.04 * 

High leverage and high skewness 

Intercept) 0.03 0.07 0.42 0.68 

2R  -0.09 0.07 -1.25    0.04 * 

2S  -0.08 0.07 -1.12    0.03 * 
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Appendix F 

The SARIMA Model Output 

US GDP 

FOR Y=A 

adjreg1 = sarima (y, 1, 0, 0, xreg = x); this is considered for this study.  AR(1) 

initial value 0.663160  

iter   2 value 0.662375 

iter   3 value 0.662373 

iter   4 value 0.662371 

iter   4 value 0.662371 

iter   4 value 0.662371 

final value 0.662371  

converged 

 

initial value 0.661860  

iter   2 value 0.661854 

iter   3 value 0.661851 

iter   3 value 0.661851 

iter   3 value 0.661851 

final  value 0.661851  

converged 

 

Y=B 

adjreg = sarima (y, 1, 0, 0, xreg = x); this is considered for this study. AR(1) 

initial value 0.663160  

iter   2 value 0.662375 

iter   3 value 0.662373 

iter   4 value 0.662371 

iter   4 value 0.662371 

iter   4 value 0.662371 

final value 0.662371  

converged 

 

initial value 0.661860  

iter   2 value 0.661854 

iter   3 value 0.661851 

iter   3 value 0.661851 

iter   3 value 0.661851 

final value 0.661851  

converged 

 

 UK GDP 

Y=C 

adjreg = sarima (y, 1, 0, 0, xreg = x); this is considered for this study. AR(1) 

initial value 0.791950  

iter   2 value 0.780303 
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iter   3 value 0.780218 

iter   4 value 0.780186 

iter   5 value 0.780186 

iter   5 value 0.780186 

iter   5 value 0.780186 

final value 0.780186  

converged 

 

initial value 0.778065  

iter   2 value 0.778064 

iter   3 value 0.778063 

iter   4 value 0.778063 

iter   4 value 0.778063 

iter   4 value 0.778063 

final value 0.778063  

converged 

 

Y=D 

adjreg = sarima(y, 1, 0,0,  xreg = x); this is considered for this study. AR(1) 

initial value 0.789797  

iter   2 value 0.780195 

iter   3 value 0.779809 

iter   4 value 0.779785 

iter   5 value 0.779778 

iter   5 value 0.779778 

iter   5 value 0.779778 

final value 0.779778  

converged 

 

initial value 0.779815  

iter   2 value 0.779815 

iter   2 value 0.779815 

iter   2 value 0.779815 

final value 0.779815  

converged 

 

AU GDP 

Y=P 

adjreg1 = sarima (y, 1, 0, 0, xreg = x); this is considered for this study.  AR(1) 

initial value -0.078320  

iter   2 value -0.089107 

iter   3 value -0.089109 

iter   4 value -0.089110 

iter   4 value -0.089110 

iter   4 value -0.089110 

final value -0.089110  

converged 

 

initial value -0.087981  

iter   2 value -0.087992 
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iter   3 value -0.088001 

iter   3 value -0.088001 

iter   3 value -0.088001 

final value -0.088001  

converged 

 

 

Y=Q 

adjreg = sarima (y, 1, 0, 0, xreg = x); this is considered for this study. AR(1) 

initial value 0.663160  

iter   2 value 0.662375 

iter   3 value 0.662373 

iter   4 value 0.662371 

iter   4 value 0.662371 

iter   4 value 0.662371 

final value 0.662371  

converged 

 

initial value 0.661860  

iter   2 value 0.661854 

iter   3 value 0.661851 

iter   3 value 0.661851 

iter   3 value 0.661851 

final value 0.661851  

converged 

 

 

France GDP 

Y=W 

adjreg = sarima(y, 1, 0,0,  xreg = x) ; this is considered for this study. AR(1) 

initial value  0.778937 

iter  2 value 0.778936 

iter  3 value 0.778936 

iter  4 value 0.778936 

iter  4 value 0.778936 

iter  4 value 0.778936 

final value 0.778936  

converged 

 

initial value 0.776859 

iter   2 value 0.776858 

iter   2 value 0.776858 

iter   3 value 0.776858 

iter   3 value 0.776858 

iter   3 value 0.776858 

final value 0.776858  

converged 
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Y=X 

adjreg = sarima(y, 1, 0,0,  xreg = x) ; this is considered for this study. AR(1) 

initial value 0.774611 

iter  2 value 0.771018 

iter  3 value 0.769513 

iter  4 value 0.769370 

iter  4 value 0.769370 

iter  4 value 0.769370 

final value 0.769370  

converged 

 

initial value 0.793377 

iter   2 value 0.793297 

iter   3 value 0.793296 

iter   3 value 0.793296 

iter   3 value 0.793296 

final value 0.793296  

converged 
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Appendix G 

Fit AR with ARIMA Modelling Time Series 

1. Low Leverage and Low Skewness of 200 Sample Size 

arima(x = X26, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0832     -0.040 

s.e.  0.0670      0.069 

sigma^2 estimated as 0.881:  log likelihood = -298.24,  aic = 602.47 

 

arima(x = X15, order = c(1, 0, 0)) 

Coefficients: 

          ar1 intercept 

      -0.0546    -0.0646 

s.e.   0.0688     0.0589 

sigma^2 estimated as 0.8485:  log likelihood = -294.1,  aic = 594.21 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

2. Low Leverage and Moderate Skewness of 200 Sample Size 

  arima(X26, order = c(1,0,0)) 

Call: 

arima(x = X26, order = c(1, 0, 0)) 
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Coefficients: 

         ar1 intercept 

      0.0832     -0.040 

s.e.  0.0670      0.069 

sigma^2 estimated as 0.881:  log likelihood = -298.24,  aic = 602.47 

 

  arima(X40, order = c(1,0,0)) 

Call: 

arima(x = X40, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.1468    -0.0488 

s.e.  0.0666     0.0820 

sigma^2 estimated as 1.078:  log likelihood = -320.47,  aic = 646.95 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

3. Low Leverage and High Skewness of 200 Sample Size 

  arima(X15, order = c(1,0,0)) 

Call: 

arima(x = X15, order = c(1, 0, 0)) 

Coefficients: 

          ar1 intercept 

      -0.0546    -0.0646 

s.e.   0.0688     0.0589 
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sigma^2 estimated as 0.8485:  log likelihood = -294.1,  aic = 594.21 

 

  arima(X40, order = c(1,0,0)) 

Call: 

arima(x = X40, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.1468    -0.0488 

s.e.  0.0666     0.0820 

sigma^2 estimated as 1.078:  log likelihood = -320.47,  aic = 646.95 

 

 

4. Moderate Leverage and Low Skewness of 200 Sample Size 

  arima(X30, order = c(1,0,0)) 

Call: 

arima(x = X30, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0983    -0.0901 

s.e.  0.0669     0.0654 

sigma^2 estimated as 0.7663:  log likelihood = -282.9,  aic = 571.8 

 

  arima(X23, order = c(1,0,0)) 

Call: 

arima(x = X23, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0245     0.1381 

s.e.  0.0682     0.0680 

sigma^2 estimated as 0.9678:  log likelihood = -308.56,  aic = 623.13 

 

  arima(y, order = c(1,0,0)) 

Call: 



  

240 

 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

5. Moderate Leverage and Moderate Skewness of 200 Sample Size 

  arima(X28, order = c(1,0,0)) 

Call: 

arima(x = X28, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0618     0.0565 

s.e.  0.0673     0.0761 

sigma^2 estimated as 1.122:  log likelihood = -324.86,  aic = 655.72 

 

 

  arima(X29, order = c(1,0,0)) 

Call: 

arima(x = X29, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.1212    -0.0287 

s.e.  0.0672     0.0732 

sigma^2 estimated as 0.9118:  log likelihood = -302.02,  aic = 610.03 

 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 
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        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

6. Moderate Leverage and High Skewness of 200 Sample Size 

  arima(X35, order = c(1,0,0)) 

Call: 

arima(x = X35, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.1308    -0.0064 

s.e.  0.0669     0.0770 

sigma^2 estimated as 0.9873:  log likelihood = -310.76,  aic = 627.53 

 

  arima(X15, order = c(1,0,0)) 

Call: 

arima(x = X15, order = c(1, 0, 0)) 

Coefficients: 

          ar1 intercept 

      -0.0546    -0.0646 

s.e.   0.0688     0.0589 

sigma^2 estimated as 0.8485:  log likelihood = -294.1,  aic = 594.21 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 
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7. High Leverage and Low Skewness of 200 Sample Size 

  arima(X23, order = c(1,0,0)) 

Call: 

arima(x = X23, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0245     0.1381 

s.e.  0.0682     0.0680 

sigma^2 estimated as 0.9678:  log likelihood = -308.56,  aic = 623.13 

 

  arima(X28, order = c(1,0,0)) 

Call: 

arima(x = X28, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0618     0.0565 

s.e.  0.0673     0.0761 

sigma^2 estimated as 1.122:  log likelihood = -324.86,  aic = 655.72 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

8. High Leverage and Moderate Skewness of 200 Sample Size 

  arima(X23, order = c(1,0,0)) 
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Call: 

arima(x = X23, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0245     0.1381 

s.e.  0.0682     0.0680 

sigma^2 estimated as 0.9678:  log likelihood = -308.56,  aic = 623.13 

 

  arima(X28, order = c(1,0,0)) 

Call: 

arima(x = X28, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0618     0.0565 

s.e.  0.0673     0.0761 

sigma^2 estimated as 1.122:  log likelihood = -324.86,  aic = 655.72 

 

  arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97 

 

 

9. High Leverage and High Skewness of 200 Sample Size 

  arima(x35, order = c(1,0,0)) 

Call: 

arima(x = x35, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0138    -0.0425 
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s.e.  0.0320     0.0317 

sigma^2 estimated as 0.9514:  log likelihood = -1360.58,  aic = 2727.17 

 

  arima(x30, order = c(1,0,0)) 

Call: 

arima(x = x30, order = c(1, 0, 0)) 

Coefficients: 

         ar1 intercept 

      0.0039    -0.0525 

s.e.  0.0320     0.0322 

sigma^2 estimated as 1.002:  log likelihood = -1385.91,  aic = 2777.82 

 

arima(y, order = c(1,0,0)) 

Call: 

arima(x = y, order = c(1, 0, 0)) 

Coefficients: 

        ar1 intercept 

      0.132    -0.0142 

s.e.  0.070     0.1051 

sigma^2 estimated as 1.668:  log likelihood = -334.99,  aic = 675.97> 
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Appendix H 

EGARCH, VAR and MA Computer Output for 200 Simulated Data 

1. EGARCH estimation N=200(0.01 low leverage and 0.5 low skewness) 

Dependent Variable: Y   

Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/15/17   Time: 10:27   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 26 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -0.000134 0.062959 -0.002124 0.9983 

AR(1) 0.002396 0.073010 0.032815 0.9738 
     
      Variance Equation   
     
     C(3) -0.651026 0.290762 -2.239035 0.0252 

C(4) 0.688630 0.270382 2.546878 0.0109 
C(5) 0.071728 0.125992 0.569308 0.5691 
C(6) -0.425210 0.223455 -1.902884 0.0571 

     
     T-DIST. DOF 7.354583 3.892371 1.889486 0.0588 
     
     R-squared -0.005128     Mean dependent var -0.072121 

Adjusted R-squared -0.010230     S.D. dependent var 1.000000 
S.E. of regression 1.005102     Akaike info criterion 2.781458 
Sum squared resid 199.0154     Schwarz criterion 2.897303 
Log likelihood -269.7550     Hannan-Quinn criter. 2.828343 
Durbin-Watson stat 1.966213    

     
     Inverted AR Roots       .00   
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2. EGARCH forecast N=200(0.01 low leverage and 0.5 low skewness) 

-3

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50

EGARCHF ± 2 S.E.

Forecast: EGARCHF

Actual: D01

Forecast sample: 1 50

Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 1.061001

Mean Absolute Error      0.720844

Mean Abs. Percent Error 275.9369

Theil Inequality Coefficient  0.812123

     Bias Proportion         0.083719

     Variance Proportion  0.906895

     Covariance Proportion  0.009386
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3. MA estimation N=200(0.01 low leverage and 0.5 low skewness) 

Dependent Variable: Y   
Method: Least Squares   
Date: 08/15/17   Time: 10:25   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 5 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.071917 0.071774 -1.001992 0.3176 

MA(1) 0.015207 0.071082 0.213932 0.8308 
     
     R-squared 0.000192     Mean dependent var -0.071946 

Adjusted R-squared -0.004858     S.D. dependent var 0.997487 
S.E. of regression 0.999907     Akaike info criterion 2.847641 
Sum squared resid 197.9632     Schwarz criterion 2.880624 
Log likelihood -282.7641     Hannan-Quinn criter. 2.860989 
F-statistic 0.038025     Durbin-Watson stat 2.002003 
Prob(F-statistic) 0.845594    

     
     Inverted MA Roots      -.02   
     
      

 

4. MA estimation N=200(0.01 low leverage and 0.5 low skewness 

-3

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50

MAF ± 2 S.E.

Forecast: MAF

Actual: D01

Forecast sample: 1 50

Included observations: 50

Root Mean Squared Error 1.007804

Mean Absolute Error      0.759568

Mean Abs. Percent Error 110.9657

Theil Inequality Coefficient  0.975212

     Bias Proportion         0.000000

     Variance Proportion  0.999983

     Covariance Proportion  0.000017
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5. VAR estimation N=200(0.01 low leverage and 0.5 low skewness) 

 
 Vector Autoregression Estimates  
 Date: 08/15/17   Time: 10:48  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X15 X26 
    
    Y(-1)  0.012751 -0.002319  0.007566 
  (0.07160)  (0.00787)  (0.00467) 
 [ 0.17809] [-0.29468] [ 1.62083] 
    

X15(-1) -0.295836 -0.016021  0.015777 
  (0.65122)  (0.07159)  (0.04245) 
 [-0.45428] [-0.22380] [ 0.37162] 
    

X26(-1) -0.034475  0.047702  0.053849 
  (1.08989)  (0.11981)  (0.07105) 
 [-0.03163] [ 0.39815] [ 0.75788] 
    

C -0.074679 -0.014675  0.015034 
  (0.07400)  (0.00813)  (0.00482) 
 [-1.00914] [-1.80392] [ 3.11615] 
    
     R-squared  0.001227  0.001514  0.016719 

 Adj. R-squared -0.014139 -0.013847  0.001591 
 Sum sq. resids  197.7570  2.389742  0.840483 
 S.E. equation  1.007045  0.110703  0.065652 
 F-statistic  0.079857  0.098586  1.105182 
 Log likelihood -281.7453  157.6321  261.6060 
 Akaike AIC  2.871812 -1.544041 -2.589005 
 Schwarz SC  2.938010 -1.477844 -2.522808 
 Mean dependent -0.072121 -0.013568  0.015075 
 S.D. dependent  1.000000  0.109944  0.065704 

    
     Determinant resid covariance (dof 

adj.)  5.35E-05  
 Determinant resid covariance  5.03E-05  
 Log likelihood  137.6262  
 Akaike information criterion -1.262575  
 Schwarz criterion -1.063983  
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6. VAR estimation N=200(0.01 low leverage and 0.5 low skewness) 

-4

-3

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50

AF ± 2 S.E.

Forecast: AF

Actual: A

Forecast sample: 1 50

Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 1.006279

Mean Absolute Error      0.765508

Mean Abs. Percent Error 110.8082

Theil Inequality Coefficient  0.861777

     Bias Proportion         0.000000

     Variance Proportion  0.741081

     Covariance Proportion  0.258919
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7. EGARCH estimation N=200(0.01 low leverage and 0.7 moderate skew) 

Dependent Variable: Y   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/15/17   Time: 12:00   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 26 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -0.000134 0.062959 -0.002124 0.9983 

AR(1) 0.002396 0.073010 0.032815 0.9738 
     
      Variance Equation   
     
     C(3) -0.651026 0.290762 -2.239035 0.0252 

C(4) 0.688630 0.270382 2.546878 0.0109 
C(5) 0.071728 0.125992 0.569308 0.5691 
C(6) -0.425210 0.223455 -1.902884 0.0571 

     
     T-DIST. DOF 7.354582 3.892372 1.889486 0.0588 
     
     R-squared -0.005128     Mean dependent var -0.072121 

Adjusted R-squared -0.010230     S.D. dependent var 1.000000 
S.E. of regression 1.005102     Akaike info criterion 2.781458 
Sum squared resid 199.0154     Schwarz criterion 2.897303 
Log likelihood -269.7550     Hannan-Quinn criter. 2.828343 
Durbin-Watson stat 1.966213    

     
     Inverted AR Roots       .00   
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8. EGARCH estimation N=200(0.01 low leverage and 0.7 moderate skewness) 

-2

-1

0

1

2

5 10 15 20 25 30 35 40 45 50

EF ± 2 S.E.

Forecast: EF

Actual: E

Forecast sample: 1 50

Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.817929

Mean Absolute Error      0.643386

Mean Abs. Percent Error 241.2879

Theil Inequality Coefficient  0.894688

     Bias Proportion         0.000022

     Variance Proportion  0.983621

     Covariance Proportion  0.016357
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9. MA estimation N=200(0.01 low leverage and 0.7 moderate skewness) 

Dependent Variable: Y   
Method: Least Squares   
Date: 08/15/17   Time: 12:04   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 5 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.071917 0.071774 -1.001992 0.3176 

MA(1) 0.015207 0.071082 0.213932 0.8308 
     
     R-squared 0.000192     Mean dependent var -0.071946 

Adjusted R-squared -0.004858     S.D. dependent var 0.997487 
S.E. of regression 1.001224     Akaike info criterion 2.964712 
Sum squared resid 197.9632     Schwarz criterion 2.938023 
Log likelihood -293.7614     Hannan-Quinn criter. 2.860989 
F-statistic 0.038025     Durbin-Watson stat 2.002003 
Prob(F-statistic) 0.845594    

     
     Inverted MA Roots      -.02   
     
      

 
 

10. MA forecast N=200(0.01 low leverage and 0.7 moderate skewness) 

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50

EF ± 2 S.E.

Forecast: EF

Actual: E

Forecast sample: 1 50

Included observations: 50

Root Mean Squared Error 0.814519

Mean Absolute Error      0.642980

Mean Abs. Percent Error 228.9763

Theil Inequality Coefficient  0.902757

     Bias Proportion         0.000004

     Variance Proportion  0.999232

     Covariance Proportion  0.000764
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11. VAR estimation N=200(0.01 low leverage and 0.7 moderate skewness) 

 Vector Autoregression Estimates  
 Date: 08/15/17   Time: 12:32  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X15 X40 
    
    Y(-1)  0.076830 -0.006286 -0.024217 
  (0.07300)  (0.00778)  (0.01336) 
 [ 1.05250] [-0.80789] [-1.81295] 
    

X15(-1)  0.279240 -0.009248  0.045712 
  (0.67450)  (0.07190)  (0.12342) 
 [ 0.41400] [-0.12862] [ 0.37036] 
    

X40(-1)  0.054526  0.013259  0.012550 
  (0.39414)  (0.04201)  (0.07212) 
 [ 0.13834] [ 0.31559] [ 0.17401] 
    

C  0.064551 -0.013498  0.021204 
  (0.07464)  (0.00796)  (0.01366) 
 [ 0.86483] [-1.69655] [ 1.55246] 
    
     R-squared  0.007633  0.003729  0.016833 

 Adj. R-squared -0.007634 -0.011598  0.001708 
 Sum sq. resids  209.8620  2.384442  7.027122 
 S.E. equation  1.037408  0.110580  0.189833 
 F-statistic  0.499965  0.243300  1.112896 
 Log likelihood -287.6567  157.8530  50.31222 
 Akaike AIC  2.931223 -1.546262 -0.465449 
 Schwarz SC  2.997420 -1.480065 -0.399252 
 Mean dependent  0.067286 -0.013568  0.019095 
 S.D. dependent  1.033471  0.109944  0.189995 

    
     Determinant resid covariance (dof 

adj.)  0.000452  
 Determinant resid covariance  0.000425  
 Log likelihood -74.66667  
 Akaike information criterion  0.871022  
 Schwarz criterion  1.069613  
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12. VAR forecast N=200(0.01 low leverage and 0.7 moderate skewness) 
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VARF ± 2 S.E.

Forecast: VARF

Actual: P

Forecast sample: 1 50

Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.780438

Mean Absolute Error      0.587197

Mean Abs. Percent Error 279.4167

Theil Inequality Coefficient  0.709514

     Bias Proportion         0.000005

     Variance Proportion  0.513424

     Covariance Proportion  0.486571
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13. EGARCH estimation N=200(0.01 low leverage and 1.2 high skewness) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Dependent Variable: Y   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/15/17   Time: 13:51   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 36 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000166 0.002246 0.074121 0.9409 

AR(1) 0.075662 0.061852 1.223273 0.2212 
     
      Variance Equation   
     
     C(3) -1.695535 0.955355 -1.774770 0.0759 

C(4) -0.281114 0.151754 -1.852437 0.0640 
C(5) 0.244701 0.097572 2.507886 0.0121 
C(6) 0.725740 0.145519 4.987254 0.0000 

     
     T-DIST. DOF 21.06627 32.22258 0.653774 0.5133 
     
     R-squared -0.002631     Mean dependent var -0.001434 

Adjusted R-squared -0.007721     S.D. dependent var 0.030628 
S.E. of regression 0.030746     Akaike info criterion -4.151830 
Sum squared resid 0.186223     Schwarz criterion -4.035985 
Log likelihood 420.1071     Hannan-Quinn criter. -4.104945 
Durbin-Watson stat 2.026715    

     
     Inverted AR Roots       .08   
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14. EGARCH forecast N=200(0.01 low leverage and 1.2 high skewness) 
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15. MA estimation N=200(0.01 low leverage and 1.2 high skewness) 

Dependent Variable: Y 
Method: Least Squares   
Date: 08/15/17   Time: 13:55   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 6 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.001634 0.002257 -0.724188 0.4698 

MA(1) 0.039377 0.072363 0.544166 0.5869 
     
     R-squared 0.001377     Mean dependent var -0.001612 

Adjusted R-squared -0.003667     S.D. dependent var 0.030654 
S.E. of regression 0.030710     Akaike info criterion -4.118510 
Sum squared resid 0.186734     Schwarz criterion -4.085527 
Log likelihood 413.8510     Hannan-Quinn criter. -4.105163 
F-statistic 0.272943     Durbin-Watson stat 1.961176 
Prob(F-statistic) 0.601948    

     
     Inverted MA Roots      -.04   
     
      

 

16. MA forecast N=200(0.01 low leverage and 1.2 high skewness) 
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Root Mean Squared Error 0.036549

Mean Absolute Error      0.028429

Mean Abs. Percent Error 112.5024

Theil Inequality Coefficient  0.932325

     Bias Proportion         0.000033

     Variance Proportion  0.997941

     Covariance Proportion  0.002026
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17. VAR estimation N=200(0.01 low leverage and 1.2 high skewness) 

 Vector Autoregression Estimates  
 Date: 08/15/17   Time: 15:46  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X1 X13 
    
    Y(-1)  0.036652  0.129652 -0.321973 
  (0.07260)  (0.95597)  (0.40856) 
 [ 0.50485] [ 0.13562] [-0.78807] 
    

X1(-1)  0.001338 -0.015487 -0.009272 
  (0.00544)  (0.07162)  (0.03061) 
 [ 0.24602] [-0.21624] [-0.30293] 
    

X13(-1)  0.000220 -0.047227 -0.025913 
  (0.01270)  (0.16724)  (0.07147) 
 [ 0.01734] [-0.28239] [-0.36256] 
    

C -0.001317 -0.051668 -0.029205 
  (0.00223)  (0.02941)  (0.01257) 
 [-0.58968] [-1.75698] [-2.32376] 
    
     R-squared  0.001588  0.000735  0.004251 

 Adj. R-squared -0.013772 -0.014638 -0.011068 
 Sum sq. resids  0.185440  32.15383  5.872918 
 S.E. equation  0.030838  0.406068  0.173544 
 F-statistic  0.103387  0.047833  0.277485 
 Log likelihood  411.9752 -101.0028  68.16507 
 Akaike AIC -4.100253  1.055305 -0.644875 
 Schwarz SC -4.034056  1.121502 -0.578678 
 Mean dependent -0.001434 -0.049749 -0.027638 
 S.D. dependent  0.030628  0.403128  0.172592 

    
     Determinant resid covariance (dof 

adj.)  4.72E-06  
 Determinant resid covariance  4.44E-06  
 Log likelihood  379.2361  
 Akaike information criterion -3.690815  
 Schwarz criterion -3.492223  
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18. VAR forecast N=200(0.01 low leverage and 1.2 high skewness) 
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Root Mean Squared Error 0.035432

Mean Absolute Error      0.027026

Mean Abs. Percent Error 114.1529

Theil Inequality Coefficient  0.867052

     Bias Proportion         0.000015

     Variance Proportion  0.744255

     Covariance Proportion  0.255730
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19. EGARCH estimation N=200 (0.05 moderate leverage and 0.5low skewnessness) 

Dependent Variable: Y   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 08/15/17   Time: 17:38   

Sample (adjusted): 2 200   

Included observations: 199 after adjustments  

Convergence achieved after 26 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) 

+ C(5) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     C 0.042887 0.078677 0.545110 0.5857 

AR(1) -0.077203 0.069344 -1.113333 0.2656 

     
      Variance Equation   

     
     C(3) -0.131057 0.064260 -2.039459 0.0414 

C(4) 0.209730 0.113059 1.855045 0.0636 

C(5) -0.059643 0.078296 -0.761763 0.4462 

C(6) 0.960517 0.045534 21.09467 0.0000 

     
     T-DIST. DOF 5.123388 1.792701 2.857916 0.0043 

     
     R-squared 0.009150     Mean dependent var 0.020159 

Adjusted R-squared 0.004120     S.D. dependent var 1.430806 

S.E. of regression 1.427856     Akaike info criterion 3.431959 

Sum squared resid 401.6382     Schwarz criterion 3.547804 

Log likelihood -334.4799     Hannan-Quinn criter. 3.478844 

Durbin-Watson stat 2.052602    

     
     Inverted AR Roots      -.08   
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20. EGARCH forecast N=200 (0.05 moderate leverage and 0.5low skewness) 

-3

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50

EGARCHF ± 2 S.E.

Forecast: EGARCHF

Actual: A

Forecast sample: 1 50

Adjusted sample: 2 50
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Root Mean Squared Error 1.225355

Mean Absolute Error      0.907402
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     Covariance Proportion  0.000739
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21. MA ESTIMATION N=200 (0.05 moderate leverage and 0.5 low skewness) 

Dependent Variable: Y   

Method: Least Squares   

Date: 08/15/17   Time: 17:43   

Sample: 1 200    

Included observations: 200   

Convergence achieved after 7 iterations  

MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.016384 0.088393 0.185355 0.8531 

MA(1) -0.122339 0.070562 -1.733789 0.0845 

     
     R-squared 0.011957     Mean dependent var 0.016314 

Adjusted R-squared 0.006967     S.D. dependent var 1.428243 

S.E. of regression 1.423259     Akaike info criterion 3.553725 

Sum squared resid 401.0817     Schwarz criterion 3.586708 

Log likelihood -353.3725     Hannan-Quinn criter. 3.567073 

F-statistic 2.396124     Durbin-Watson stat 1.973783 

Prob(F-statistic) 0.123233    

     
     Inverted MA Roots       .12   

     
      

 

 

 

22. MA forecast N=200 (0.05 moderate leverage and 0.5 low skewness) 
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Root Mean Squared Error 1.211821

Mean Absolute Error      0.895799

Mean Abs. Percent Error 96.24596

Theil Inequality Coefficient  0.969925

     Bias Proportion         0.000000

     Variance Proportion  0.999987

     Covariance Proportion  0.000012
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23. VAR estimation N=200 (0.05 moderate leverage and 0.5 low skewness) 

 Vector Autoregression Estimates  

 Date: 08/15/17   Time: 18:01  

 Sample (adjusted): 2 200  

 Included observations: 199 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X15 X30 

    
    Y(-1) -0.096363  0.000771  0.003290 

  (0.07151)  (0.00553)  (0.00733) 

 [-1.34758] [ 0.13935] [ 0.44891] 

    

X15(-1) -0.907070 -0.016690  0.034672 

  (0.92724)  (0.07175)  (0.09502) 

 [-0.97825] [-0.23261] [ 0.36488] 

    

X30(-1) -0.091227  0.021311 -0.045206 

  (0.70050)  (0.05420)  (0.07179) 

 [-0.13023] [ 0.39317] [-0.62972] 

    

C  0.011936 -0.014479  0.033519 

  (0.10471)  (0.00810)  (0.01073) 

 [ 0.11399] [-1.78698] [ 3.12372] 

    
     R-squared  0.014939  0.001082  0.004069 

 Adj. R-squared -0.000216 -0.014286 -0.011253 

 Sum sq. resids  399.2914  2.390778  4.193420 

 S.E. equation  1.430961  0.110727  0.146645 

 F-statistic  0.985776  0.070386  0.265560 

 Log likelihood -351.6592  157.5890  101.6801 

 Akaike AIC  3.574465 -1.543608 -0.981710 

 Schwarz SC  3.640662 -1.477411 -0.915513 

 Mean dependent  0.020159 -0.013568  0.031658 

 S.D. dependent  1.430806  0.109944  0.145827 

    
     Determinant resid covariance (dof adj.)  0.000533  

 Determinant resid covariance  0.000502  

 Log likelihood -91.14510  

 Akaike information criterion  1.036634  

 Schwarz criterion  1.235225  
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24. VAR forecast N=200 (0.05 moderate leverage and 0.5 low skewness) 
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Root Mean Squared Error 1.211501

Mean Absolute Error      0.875070

Mean Abs. Percent Error 92.30211

Theil Inequality Coefficient  0.855060

     Bias Proportion         0.000001

     Variance Proportion  0.730045

     Covariance Proportion  0.269955
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25. EGARCH estimation N=200(0.05 moderate leverage and 0.7moderate skewness) 

Dependent Variable: Y   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 08/13/17   Time: 08:53   

Sample (adjusted): 2 200   

Included observations: 199 after adjustments  

Convergence achieved after 14 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) 

+ C(5) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     C 0.059694 0.081798 0.729773 0.4655 

AR(1) 0.112505 0.079966 1.406908 0.1595 

     
      Variance Equation   

     
     C(3) -0.189064 0.211801 -0.892650 0.3720 

C(4) 0.193144 0.171285 1.127612 0.2595 

C(5) -0.375537 0.104848 -3.581735 0.0003 

C(6) -0.235592 0.221063 -1.065719 0.2866 

     
     T-DIST. DOF 335.2047 11955.46 0.028038 0.9776 

     
     R-squared 0.005690     Mean dependent var 0.067286 

Adjusted R-squared 0.000642     S.D. dependent var 1.033471 

S.E. of regression 1.033139     Akaike info criterion 2.877968 

Sum squared resid 210.2730     Schwarz criterion 2.993813 

Log likelihood -279.3579     Hannan-Quinn criter. 2.924854 

Durbin-Watson stat 2.060796    

     
     Inverted AR Roots       .11   
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26. EGARCH forecast N=200 (0.05 moderate leverage and 0.7 moderate skewness) 
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27. MA estimation N=200(0.05 moderate leverage and 0.7 moderate skewness) 

Dependent Variable: Y   

Method: Least Squares   

Date: 08/13/17   Time: 09:25   

Sample: 1 200    

Included observations: 200   

Convergence achieved after 4 iterations  

MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.066745 0.078613 0.849032 0.3969 

MA(1) 0.079587 0.071083 1.119625 0.2642 

     
     R-squared 0.006429     Mean dependent var 0.067154 

Adjusted R-squared 0.001411     S.D. dependent var 1.030872 

S.E. of regression 1.030145     Akaike info criterion 2.907225 

Sum squared resid 210.1173     Schwarz criterion 2.940209 

Log likelihood -288.7225     Hannan-Quinn criter. 2.920573 

F-statistic 1.281215     Durbin-Watson stat 1.993045 

Prob(F-statistic) 0.259042    

     
     Inverted MA Roots      -.08   

     
      

 

 

28. MA forecast N=200 (0.05 moderate leverage and 0.7 moderate skewness) 
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Root Mean Squared Error 0.814555

Mean Absolute Error      0.643030
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     Bias Proportion         0.000005

     Variance Proportion  0.999995
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29. VAR estimation N=200(0.05 moderate leverage and 0.7 moderate skewness) 

 Vector Autoregression Estimates  

 Date: 08/13/17   Time: 09:38  

 Sample (adjusted): 2 200  

 Included observations: 199 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X15 X26 

    
    Y(-1)  0.075080 -0.006080 -0.000514 

  (0.07192)  (0.00767)  (0.00459) 

 [ 1.04398] [-0.79224] [-0.11205] 

    

X15(-1)  0.267607 -0.010096  0.016639 

  (0.67367)  (0.07189)  (0.04298) 

 [ 0.39724] [-0.14044] [ 0.38714] 

    

X26(-1)  0.856890  0.054471  0.052127 

  (1.12323)  (0.11987)  (0.07166) 

 [ 0.76288] [ 0.45443] [ 0.72742] 

    

C  0.052642 -0.014092  0.014552 

  (0.07612)  (0.00812)  (0.00486) 

 [ 0.69154] [-1.73473] [ 2.99637] 

    
     R-squared  0.010489  0.004275  0.003536 

 Adj. R-squared -0.004734 -0.011044 -0.011794 

 Sum sq. resids  209.2580  2.383136  0.851752 

 S.E. equation  1.035914  0.110550  0.066091 

 F-statistic  0.689007  0.279050  0.230638 

 Log likelihood -287.3700  157.9076  260.2809 

 Akaike AIC  2.928341 -1.546810 -2.575687 

 Schwarz SC  2.994538 -1.480612 -2.509490 

 Mean dependent  0.067286 -0.013568  0.015075 

 S.D. dependent  1.033471  0.109944  0.065704 

    
     Determinant resid covariance (dof adj.)  5.63E-05  

 Determinant resid covariance  5.30E-05  

 Log likelihood  132.5011  

 Akaike information criterion -1.211067  

 Schwarz criterion -1.012475  
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30. VAR forecast N=200(0.05 moderate leverage and 0.7 moderate skewness) 
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Forecast: VARYF

Actual: Y

Forecast sample: 1 200

Adjusted sample: 2 200

Included observations: 199

Root Mean Squared Error 1.024781

Mean Absolute Error      0.777904

Mean Abs. Percent Error 96.17985

Theil Inequality Coefficient  0.881693

     Bias Proportion         0.003763

     Variance Proportion  0.774255

     Covariance Proportion  0.221982
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31. EGARCH estimation N=200(0.05 moderate leverage and 1.2 high skewness) 

Dependent Variable: Y   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 08/15/17   Time: 20:28   

Sample (adjusted): 2 198   

Included observations: 197 after adjustments  

Convergence achieved after 24 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) 

+ C(5) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     C 0.039898 0.080255 0.497144 0.6191 

AR(1) -0.053838 0.076905 -0.700062 0.4839 

     
      Variance Equation   

     
     C(3) -0.116174 0.180892 -0.642231 0.5207 

C(4) 0.470653 0.239169 1.967872 0.0491 

C(5) -0.302460 0.138965 -2.176517 0.0295 

C(6) 0.478044 0.307003 1.557132 0.1194 

     
     T-DIST. DOF 6.667645 3.488071 1.911556 0.0559 

     
     R-squared -0.000733     Mean dependent var 0.137013 

Adjusted R-squared -0.005865     S.D. dependent var 1.293745 

S.E. of regression 1.297533     Akaike info criterion 3.291818 

Sum squared resid 328.3006     Schwarz criterion 3.408480 

Log likelihood -317.2440     Hannan-Quinn criter. 3.339043 

Durbin-Watson stat 2.043412    

     
     Inverted AR Roots      -.05   
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32. EGARCH Forecast N=200 (0.05 moderate leverage and 1.2 high skewness) 
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Root Mean Squared Error 1.310817

Mean Absolute Error      0.956724

Mean Abs. Percent Error 118.4882
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     Bias Proportion         0.000056

     Variance Proportion  0.998823

     Covariance Proportion  0.001122
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33. MA estimation N=200(0.05 moderate leverage and 1.2 high skewness) 

Dependent Variable: Y   

Method:  Least Squares   

Date: 08/15/17   Time: 20:31   

Sample (adjusted): 3 198   

Included observations: 196 after adjustments  

Convergence achieved after 5 iterations  

MA Backcast: 2    

Instrument specification: C   

Lagged dependent variable & regressors added to instrument list 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.138510 0.084129 1.646390 0.1013 

MA(1) -0.091104 0.071729 -1.270117 0.2056 

     
     R-squared 0.007652     Mean dependent var 0.138906 

Adjusted R-squared 0.002537     S.D. dependent var 1.296784 

S.E. of regression 1.295138     Akaike info criteria 3.445014 

Sum squared resid 325.4123     Schwarz criteria 3.494603 

Log likelihood -339.7712     Hannan-Quinn criter. 0.728171 

F-statistic 0.728171 Durbin-Watson stat 1.986564 

Prob(F-statistic) 0.393477       

     
     Inverted MA Roots       .09   

     
      

 

34. MA Forecast N=200(0.05 moderate leverage and 1.2 high skewness) 
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Forecast sample: 1 50

Included observations: 49

Root Mean Squared Error 1.301238

Mean Absolute Error      0.948659

Mean Abs. Percent Error 103.4675

Theil Inequality Coefficient  0.983480

     Bias Proportion         0.000922

     Variance Proportion  0.996204

     Covariance Proportion  0.002874
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35. VAR estimationN=200(0.05 moderate leverage and 1.2 high skewness) 

 Vector Autoregression Estimates  

 Date: 08/15/17   Time: 18:01  

 Sample (adjusted): 2 200  

 Included observations: 199 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X15 X30 

    
    Y(-1) -0.096363  0.000771  0.003290 

  (0.07151)  (0.00553)  (0.00733) 

 [-1.34758] [ 0.13935] [ 0.44891] 

    

X15(-1) -0.907070 -0.016690  0.034672 

  (0.92724)  (0.07175)  (0.09502) 

 [-0.97825] [-0.23261] [ 0.36488] 

    

X30(-1) -0.091227  0.021311 -0.045206 

  (0.70050)  (0.05420)  (0.07179) 

 [-0.13023] [ 0.39317] [-0.62972] 

    

C  0.011936 -0.014479  0.033519 

  (0.10471)  (0.00810)  (0.01073) 

 [ 0.11399] [-1.78698] [ 3.12372] 

    
     R-squared  0.014939  0.001082  0.004069 

 Adj. R-squared -0.000216 -0.014286 -0.011253 

 Sum sq. resids  399.2914  2.390778  4.193420 

 S.E. equation  1.430961  0.110727  0.146645 

 F-statistic  0.985776  0.070386  0.265560 

 Log likelihood -351.6592  157.5890  101.6801 

 Akaike AIC  3.574465 -1.543608 -0.981710 

 Schwarz SC  3.640662 -1.477411 -0.915513 

 Mean dependent  0.020159 -0.013568  0.031658 

 S.D. dependent  1.430806  0.109944  0.145827 

    
     Determinant resid covariance (dof adj.)  0.000533  

 Determinant resid covariance  0.000502  

 Log likelihood -91.14510  

 Akaike information criterion  1.036634  

 Schwarz criterion  1.235225  
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36. VAR forecast N=200(0.05 moderate leverage and 1.2 high skewness 
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Forecast: VARF

Actual: P

Forecast sample: 1 50

Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.791565

Mean Absolute Error      0.598730

Mean Abs. Percent Error 287.5479

Theil Inequality Coefficient  0.745013

     Bias Proportion         0.000004

     Variance Proportion  0.573649

     Covariance Proportion  0.426347
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37. GARCH estimation N=200(0.09 high leverage and 0.5 low skewness) 

Dependent Variable: Y   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/16/17   Time: 07:05   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 50 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000364 0.002049 0.177405 0.8592 

AR(1) 0.100261 0.051974 1.929076 0.0537 
     
      Variance Equation   
     
     C(3) -1.695209 0.857571 -1.976758 0.0481 

C(4) -0.364154 0.140392 -2.593830 0.0095 
C(5) 0.228315 0.095214 2.397912 0.0165 
C(6) 0.724207 0.127756 5.668674 0.0000 

     
     T-DIST. DOF 20.13125 28.31180 0.711055 0.4771 
     
     R-squared -0.000624     Mean dependent var -0.001484 

Adjusted R-squared -0.005704     S.D. dependent var 0.027825 
S.E. of regression 0.027905     Akaike info criterion -4.350280 
Sum squared resid 0.153396     Schwarz criterion -4.234435 
Log likelihood 439.8529     Hannan-Quinn criter. -4.303395 
Durbin-Watson stat 2.011708    

     
     Inverted AR Roots       .10   
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38. GARCH forecast  N=200(0.09 high leverage and 0.5 low skewness) 
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Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.031946

Mean Absolute Error      0.024493

Mean Abs. Percent Error 119.6734

Theil Inequality Coefficient  0.949640

     Bias Proportion         0.000031

     Variance Proportion  0.990683

     Covariance Proportion  0.009287
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39. MA estimationN=200(0.09 high leverage and 0.5 low skewness) 

Dependent Variable: Y   
Method: Least Squares   
Date: 08/16/17   Time: 07:07   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 6 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.001682 0.002113 -0.795687 0.4272 

MA(1) 0.073305 0.072104 1.016669 0.3106 
     
     R-squared 0.004641     Mean dependent var -0.001644 

Adjusted R-squared -0.000386     S.D. dependent var 0.027847 
S.E. of regression 0.027853     Akaike info criterion -4.313832 
Sum squared resid 0.153602     Schwarz criterion -4.280849 
Log likelihood 433.3832     Hannan-Quinn criter. -4.300485 
F-statistic 0.923289     Durbin-Watson stat 1.966967 
Prob(F-statistic) 0.337785    

     
     Inverted MA Roots      -.07   
     
      

 

40. MA forecast N=200(0.09 high leverage and 0.5 low skewness) 
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Root Mean Squared Error 0.031678

Mean Absolute Error      0.024308

Mean Abs. Percent Error 116.9023

Theil Inequality Coefficient  0.953415

     Bias Proportion         0.000000

     Variance Proportion  0.999954

     Covariance Proportion  0.000046
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41. VAR estimation N=200(0.09 high leverage and 0.5 low skewness) 

 Vector Autoregression Estimates  
 Date: 08/16/17   Time: 07:32  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X23 X28 
    
    Y(-1)  0.066716 -0.046404  0.393600 
  (0.07254)  (0.06841)  (0.21978) 
 [ 0.91970] [-0.67835] [ 1.79087] 
    

X23(-1)  0.041009  0.131080  0.190500 
  (0.07520)  (0.07092)  (0.22785) 
 [ 0.54530] [ 1.84829] [ 0.83607] 
    

X28(-1) -0.000226  0.015224 -0.043920 
  (0.02344)  (0.02211)  (0.07103) 
 [-0.00962] [ 0.68862] [-0.61836] 
    

C -0.001086 -0.006854  0.018723 
  (0.00210)  (0.00198)  (0.00638) 
 [-0.51622] [-3.45349] [ 2.93660] 
    
     R-squared  0.005724  0.022677  0.020568 

 Adj. R-squared -0.009572  0.007642  0.005499 
 Sum sq. resids  0.152423  0.135548  1.399161 
 S.E. equation  0.027958  0.026365  0.084706 
 F-statistic  0.374228  1.508229  1.364973 
 Log likelihood  431.4840  443.1586  210.8957 
 Akaike AIC -4.296322 -4.413654 -2.079354 
 Schwarz SC -4.230125 -4.347457 -2.013157 
 Mean dependent -0.001484 -0.007538  0.016080 
 S.D. dependent  0.027825  0.026466  0.084940 

    
     Determinant resid covariance (dof 

adj.)  3.88E-09  
 Determinant resid covariance  3.65E-09  
 Log likelihood 431.48   
 Akaike information criterion -0.7956  
 Schwarz criterion -0.5974  
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42. MA estimation N=200(0.09 high leverage and 0.5 low skewness) 
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Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.032216

Mean Absolute Error      0.024667

Mean Abs. Percent Error 142.3351

Theil Inequality Coefficient  0.859572

     Bias Proportion         0.000010

     Variance Proportion  0.750625

     Covariance Proportion  0.249365
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43. GARCH estimation N=200(0.09 high leverage and 0.5 low skewness) 

Dependent Variable: Y   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/16/17   Time: 08:36   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 14 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.059694 0.081798 0.729775 0.4655 

AR(1) 0.112505 0.079966 1.406903 0.1595 
     
      Variance Equation   
     
     C(3) -0.189063 0.211803 -0.892639 0.3721 

C(4) 0.193143 0.171286 1.127604 0.2595 
C(5) -0.375537 0.104848 -3.581717 0.0003 
C(6) -0.235592 0.221064 -1.065715 0.2866 

     
     T-DIST. DOF 334.9883 11940.08 0.028056 0.9776 
     
     R-squared 0.005690     Mean dependent var 0.067286 

Adjusted R-squared 0.000642     S.D. dependent var 1.033471 
S.E. of regression 1.033139     Akaike info criterion 2.877969 
Sum squared resid 210.2730     Schwarz criterion 2.993813 
Log likelihood -279.3579     Hannan-Quinn criter. 2.924854 
Durbin-Watson stat 2.060795    

     
     Inverted AR Roots       .11   
     
      

 

 

 

 

 

 

 

 

 



  

281 

 

44. EGARCH forecast  N=200(0.09 high leverage and 0.7 moderate skewness) 
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Actual: A
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Adjusted sample: 2 50

Included observations: 49

Root Mean Squared Error 0.817929

Mean Absolute Error      0.643386

Mean Abs. Percent Error 241.2879

Theil Inequality Coefficient  0.894688

     Bias Proportion         0.000022

     Variance Proportion  0.983621

     Covariance Proportion  0.016357
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45. MA estimation N=200 (0.09 high leverage and 0.7 moderate skewness) 

Dependent Variable: Y   
Method: Least Squares   
Date: 08/16/17   Time: 08:44   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 4 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.066745 0.078613 0.849032 0.3969 

MA(1) 0.079587 0.071083 1.119625 0.2642 
     
     R-squared 0.006429     Mean dependent var 0.067154 

Adjusted R-squared 0.001411     S.D. dependent var 1.030872 
S.E. of regression 1.030145     Akaike info criterion 2.907225 
Sum squared resid 210.1173     Schwarz criterion 2.940209 
Log likelihood -288.7225     Hannan-Quinn criter. 2.920573 
F-statistic 1.281215     Durbin-Watson stat 1.993045 
Prob(F-statistic) 0.259042    

     
     Inverted MA Roots      -.08   
     
      

 

 
46. MA forecast N=200(0.09 high leverage and 0.7 moderate skewness) 
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Root Mean Squared Error 0.814519
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     Bias Proportion         0.000004

     Variance Proportion  0.999232

     Covariance Proportion  0.000764
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47. VAR estimation N=200 (0.09 high leverage and 0.7 moderate skewness) 

 Vector Autoregression Estimates  
 Date: 08/16/17   Time: 09:03  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X28 X33 
    
    Y(-1)  0.061035  0.001933 -0.000611 
  (0.07120)  (0.00492)  (0.00985) 
 [ 0.85728] [ 0.39286] [-0.06206] 
    

X28(-1)  1.694881 -0.023155 -0.041185 
  (1.03855)  (0.07179)  (0.14363) 
 [ 1.63196] [-0.32254] [-0.28674] 
    

X33(-1)  0.831829 -0.011992 -0.020462 
  (0.52070)  (0.03599)  (0.07201) 
 [ 1.59752] [-0.33319] [-0.28414] 
    

C  0.029177  0.010386  0.020969 
  (0.07421)  (0.00513)  (0.01026) 
 [ 0.39317] [ 2.02472] [ 2.04315] 
    
     R-squared  0.031837  0.001649  0.000879 

 Adj. R-squared  0.016942 -0.013710 -0.014492 
 Sum sq. resids  204.7434  0.978283  3.916153 
 S.E. equation  1.024679  0.070830  0.141714 
 F-statistic  2.137472  0.107384  0.057179 
 Log likelihood -285.1998  246.4997  108.4866 
 Akaike AIC  2.906531 -2.437183 -1.050117 
 Schwarz SC  2.972728 -2.370986 -0.983920 
 Mean dependent  0.067286  0.010050  0.020101 
 S.D. dependent  1.033471  0.070349  0.140698 

    
     Determinant resid covariance (dof 

adj.)  0.000104  
 Determinant resid covariance  9.75E-05  
 Log likelihood  71.81507  
 Akaike information criterion -0.601156  
 Schwarz criterion -0.402565  
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48. VAR forecast  N=200 (0.09 high leverage and 0.7 moderate skewness) 
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Included observations: 49

Root Mean Squared Error 0.815445

Mean Absolute Error      0.635168

Mean Abs. Percent Error 229.9929

Theil Inequality Coefficient  0.865169

     Bias Proportion         0.000001

     Variance Proportion  0.839008

     Covariance Proportion  0.160991
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49. EGARCH estimation N=200 (0.09 high leverage and 1.2 high skewness) 

Dependent Variable: Y   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 08/16/17   Time: 09:24   
Sample (adjusted): 2 200   
Included observations: 199 after adjustments  
Convergence achieved after 17 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-
1))) + C(5) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.020993 0.092883 0.226011 0.8212 

AR(1) -0.099867 0.075201 -1.328010 0.1842 
     
      Variance Equation   
     
     C(3) -0.051734 0.071413 -0.724428 0.4688 

C(4) 0.142972 0.114151 1.252477 0.2104 
C(5) -0.001957 0.077030 -0.025411 0.9797 
C(6) 0.923481 0.110526 8.355313 0.0000 

     
     T-DIST. DOF 7.895627 5.181577 1.523788 0.1276 
     
     R-squared 0.010973     Mean dependent var 0.029784 

Adjusted R-squared 0.005953     S.D. dependent var 1.502179 
S.E. of regression 1.497701     Akaike info criterion 3.620747 
Sum squared resid 441.8925     Schwarz criterion 3.736592 
Log likelihood -353.2643     Hannan-Quinn criter. 3.667632 
Durbin-Watson stat 2.021259    

     
     Inverted AR Roots      -.10   
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50. EGARCH forecast  N=200 (0.09 high leverage and 1.2 high skewness) 
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51. MA estimation N=200 (0.09 high leverage and 1.2 high skewness) 

Dependent Variable: Y   
Method: Least Squares   
Date: 08/16/17   Time: 09:26   
Sample: 1 200    
Included observations: 200   
Convergence achieved after 7 iterations  
MA Backcast: 0    

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.026671 0.090165 0.295803 0.7677 

MA(1) -0.145768 0.070557 -2.065941 0.0401 
     
     R-squared 0.014861     Mean dependent var 0.027471 

Adjusted R-squared 0.009886     S.D. dependent var 1.498757 
S.E. of regression 1.491331     Akaike info criterion 3.647164 
Sum squared resid 440.3653     Schwarz criterion 3.680147 
Log likelihood -362.7164     Hannan-Quinn criter. 3.660512 
F-statistic 2.986887     Durbin-Watson stat 1.953649 
Prob(F-statistic) 0.085500    

     
     Inverted MA Roots       .15   
     
      

 

 

52. MA forecast  N=200 (0.09 high leverage and 1.2 high skewness) 
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Root Mean Squared Error 1.798919

Mean Absolute Error      1.301575

Mean Abs. Percent Error 272.7882

Theil Inequality Coefficient  0.857448

     Bias Proportion         0.000000

     Variance Proportion  0.995753

     Covariance Proportion  0.004246
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53. VAR estimation N=200 (0.09 high leverage and 1.2 high skewness) 

 Vector Autoregression Estimates  
 Date: 08/16/17   Time: 09:40  
 Sample (adjusted): 2 200  
 Included observations: 199 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     Y X30 X35 
    
    Y(-1) -0.102344 -0.001940  0.005068 
  (0.07105)  (0.00695)  (0.00572) 
 [-1.44047] [-0.27899] [ 0.88634] 
    

X30(-1) -0.068993 -0.047167 -0.020079 
  (0.73120)  (0.07156)  (0.05884) 
 [-0.09436] [-0.65913] [-0.34123] 
    

X35(-1) -1.129529 -0.027219 -0.012485 
  (0.88841)  (0.08695)  (0.07149) 
 [-1.27140] [-0.31305] [-0.17463] 
    

C  0.047915  0.033524  0.012731 
  (0.10933)  (0.01070)  (0.00880) 
 [ 0.43824] [ 3.13304] [ 1.44700] 
    
     R-squared  0.019188  0.003169  0.004604 

 Adj. R-squared  0.004099 -0.012166 -0.010710 
 Sum sq. resids  438.2219  4.197208  2.837929 
 S.E. equation  1.499097  0.146711  0.120638 
 F-statistic  1.271653  0.206670  0.300654 
 Log likelihood -360.9161  101.5903  140.5292 
 Akaike AIC  3.667499 -0.980807 -1.372152 
 Schwarz SC  3.733696 -0.914610 -1.305955 
 Mean dependent  0.029784  0.031658  0.012060 
 S.D. dependent  1.502179  0.145827  0.119997 

    
     Determinant resid covariance (dof 

adj.)  0.000702  
 Determinant resid covariance  0.000661  
 Log likelihood -118.5458  
 Akaike information criterion  1.312018  
 Schwarz criterion  1.510609  
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54. VARforecast  N=200 (0.09 high leverage and 1.2 high skewness) 
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Included observations: 49

Root Mean Squared Error 1.788754

Mean Absolute Error      1.295542

Mean Abs. Percent Error 281.9767

Theil Inequality Coefficient  0.815128

     Bias Proportion         0.000001

     Variance Proportion  0.800990

     Covariance Proportion  0.199008
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Appendix I 

Code for CWN Estimation 

The pseudo code for the R software functions for CWN. 

library(MTS) 

library(mnormt) 

function (da, q = 1, include.mean = T, fixed = NULL, beta = NULL,  

    sebeta = NULL, prelim = F, details = F, thres = 2)  

{ 

    if (!is.matrix(da))  

        da = as.matrix(da) 

    nT = dim(da)[1] 

    k = dim(da)[2] 

    if (q < 1)  

        q = 1 

    kq = k * q 

    THini <- function(y, x, q, include.mean) { 

        ############# 

        ############ 

        ############ 

       ############ 

        nT = dim(y)[1] 

        k = dim(y)[2] 

        ist = 1 + q 

        ne = nT - q 

        if (include.mean) { 

            xmtx = matrix(1, ne, 1) 

        } 

        else { 

            xmtx = NULL 

        } 

        ymtx = y[ist:nT, ] 

        for (j in 1:q) { 
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            xmtx = cbind(xmtx, x[(ist - j):(nT - j), ]) 

        } 

        xtx = crossprod(xmtx, xmtx) 

        xty = crossprod(xmtx, ymtx) 

        xtxinv = solve(xtx) 

        beta = xtxinv %*% xty 

        resi = ymtx - xmtx %*% beta 

        sse = crossprod(resi, resi)/ne 

        dd = diag(xtxinv) 

        sebeta = NULL 

        for (j in 1:k) { 

            se = sqrt(dd * sse[j, j]) 

            sebeta = cbind(sebeta, se) 

        } 

        THini <- list(estimates = beta, se = sebeta) 

    } 

    if (length(fixed) < 1) { 

        m1 = VARorder(da, p=1, result = FALSE) 

        porder = m1$aicor 

        if (porder < 1)  

            porder = 1 

############### 

############### 

        x = m2$residuals 

        m3 = THini(y, x, q, include.mean) 

        beta = m3 

        sebeta = m3 

        nr = dim(beta)[1] 

        if (prelim) { 

            fixed = matrix(0, nr, k) 

            for (j in 1:k) { 

                tt = beta[, j]/sebeta[, j] 

                idx = c(1:nr)[abs(tt) >= thres] 

                fixed[idx, j] = 1 
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            } 

        } 

        if (length(fixed) < 1) { 

            fixed = matrix(1, nr, k) 

        } 

    } 

    else { 

        nr = dim(beta)[1] 

    } 

    par = NULL 

    separ = NULL 

    fix1 = fixed 

    VMAcnt = 0 

    ist = 0 

    if (include.mean) { 

        jdx = c(1:k)[fix1[1, ] == 1] 

        VMAcnt = length(jdx) 

        if (VMAcnt > 0) { 

            par = beta[1, jdx] 

            separ = sebeta[1, jdx] 

        } 

        TH = -beta[2:(kq + 1), ] 

        seTH = sebeta[2:(kq + 1), ] 

        ist = 1 

    } 

    else { 

        TH = -beta 

        seTH = sebeta 

    } 

    for (j in 1:k) { 

        idx = c(1:(nr - ist))[fix1[(ist + 1):nr, j] == 1] 

        if (length(idx) > 0) { 

            par = c(par, TH[idx, j]) 

            separ = c(separ, seTH[idx, j]) 
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        } 

    } 

    ParMA <- par 

    LLKvma <- function(par, zt = zt, q = q, fixed = fix1, include.mean = include.mean) { 

        k = ncol(zt) 

        nT = nrow(zt) 

        mu = rep(0, k) 

        icnt = 0 

        VMAcnt <- 0 

        fix <- fixed 

        iist = 0 

        if (include.mean) { 

            iist = 1 

            jdx = c(1:k)[fix[1, ] == 1] 

            icnt = length(jdx) 

            VMAcnt <- icnt 

            if (icnt > 0)  

                mu[jdx] = par[1:icnt] 

        } 

        for (j in 1:k) { 

            zt[, j] = zt[, j] - mu[j] 

        } 

        kq = k * q 

        Theta = matrix(0, kq, k) 

        for (j in 1:k) { 

            idx = c(1:kq)[fix[(iist + 1):(iist + kq), j] == 1] 

            jcnt = length(idx) 

            if (jcnt > 0) { 

                Theta[idx, j] = par[(icnt + 1):(icnt + jcnt)] 

                icnt = icnt + jcnt 

            } 

        } 

        TH = t(Theta) 

        if (q > 1) { 
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            tmp = cbind(diag(rep(1, (q - 1) * k)), matrix(0,  

                (q - 1) * k, k)) 

            TH = rbind(TH, tmp) 

        } 

        mm = eigen(TH) 

        V1 = mm 

        P1 = mm 

        v1 = Mod(V1) 

        ich = 0 

        for (i in 1:kq) { 

            if (v1[i] > 1)  

                V1[i] = 1/V1[i] 

            ich = 1 

        } 

        if (ich > 0) { 

            P1i = solve(P1) 

            GG = diag(V1) 

            TH = Re(P1 %*% GG %*% P1i) 

            Theta = t(TH[1:k, ]) 

            ist = 0 

            if (VMAcnt > 0)  

                ist = 1 

            for (j in 1:k) { 

                idx = c(1:kq)[fix[(ist + 1):(ist + kq), j] ==  

                  1] 

                jcnt = length(idx) 

                if (jcnt > 0) { 

                  par[(icnt + 1):(icnt + jcnt)] = TH[j, idx] 

                  icnt = icnt + jcnt 

                } 

            } 

        } 

        at = mFilter(zt, t(Theta)) 

        sig = t(at) %*% at/nT 
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        ll = dmvnorm(at, rep(0, k), sig) 

        LLKvma = -sum(log(ll)) 

        LLKvma 

    } 

    cat("Number of parameters: ", length(par), "\n") 

    cat("initial estimates: ", round(par, 4), "\n") 

    lowerBounds = par 

    upperBounds = par 

    npar = length(par) 

    mult = 2 

    if ((npar > 10) || (q > 2))  

        mult = 1.2 

    for (j in 1:npar) { 

        lowerBounds[j] = par[j] - mult * separ[j] 

        upperBounds[j] = par[j] + mult * separ[j] 

    } 

    cat("Par. Lower-bounds: ", round(lowerBounds, 4), "\n") 

cat("Par. Upper-bounds: ", round(upperBounds, 4), "\n") 

    if (details) { 

        fit = nlminb(start = ParMA, objective = LLKvma, zt = da,  

            fixed = fixed, include.mean = include.mean, q = q,  

            lower = lowerBounds, upper = upperBounds, control = list(trace = 3)) 

    } 

    else { 

        fit = nlminb(start = ParMA, objective = LLKvma, zt = da,  

            fixed = fixed, include.mean = include.mean, q = q,  

            lower = lowerBounds, upper = upperBounds) 

    } 

    epsilon = 1e-04 * fit$par 

    npar = length(par) 

    Hessian = matrix(0, ncol = npar, nrow = npar) 

    for (i in 1:npar) { 

        for (j in 1:npar) { 

            x1 = x2 = x3 = x4 = fit 
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            x1[i] = x1[i] + epsilon[i] 

            x1[j] = x1[j] + epsilon[j] 

            x2[i] = x2[i] + epsilon[i] 

            x2[j] = x2[j] - epsilon[j] 

            x3[i] = x3[i] - epsilon[i] 

            x3[j] = x3[j] + epsilon[j] 

            x4[i] = x4[i] - epsilon[i] 

            x4[j] = x4[j] - epsilon[j] 

            Hessian[i, j] = (LLKvma(x1, zt = da, q = q, fixed = fixed,  

                include.mean = include.mean) - LLKvma(x2, zt = da,  

                q = q, fixed = fixed, include.mean = include.mean) -  

                LLKvma(x3, zt = da, q = q, fixed = fixed, include.mean = include.mean) +  

                LLKvma(x4, zt = da, q = q, fixed = fixed, include.mean = include.mean))/(4 *  

                epsilon[i] * epsilon[j]) 

        } 

    } 

    est = fit$par 

    cat("Final   Estimates: ", est, "\n") 

    se.coef = sqrt(diag(solve(Hessian))) 

    tval = fit$par/se.coef 

    matcoef = cbind(fit$par, se.coef, tval, 2 * (1 - pnorm(abs(tval)))) 

    dimnames(matcoef) = list(names(tval), c(" Estimate", " Std. Error",  

        " t value", "Pr(>|t|)")) 

    cat("\nCoefficient(s):\n") 

    printCoefmat(matcoef, digits = 4, signif.stars = TRUE) 

    cat("---", "\n") 

    cat("Estimates in matrix form:", "\n") 

    icnt = 0 

    ist = 0 

    cnt = NULL 

    if (include.mean) { 

        ist = 1 

        cnt = rep(0, k) 

        secnt = rep(1, k) 
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        jdx = c(1:k)[fix1[1, ] == 1] 

        icnt = length(jdx) 

        if (icnt > 0) { 

            cnt[jdx] = est[1:icnt] 

            secnt[jdx] = se.coef[1:icnt] 

            cat("Constant term: ", "\n") 

            cat("Estimates: ", cnt, "\n") 

        } 

    } 

    cat("MA coefficient matrix", "\n") 

    TH = matrix(0, kq, k) 

    seTH = matrix(1, kq, k) 

    for (j in 1:k) { 

        idx = c(1:kq)[fix1[(ist + 1):nr, j] == 1] 

        jcnt = length(idx) 

        if (jcnt > 0) { 

            TH[idx, j] = est[(icnt + 1):(icnt + jcnt)] 

            seTH[idx, j] = se.coef[(icnt + 1):(icnt + jcnt)] 

            icnt = icnt + jcnt 

        } 

    } 

    icnt = 0 

    for (i in 1:q) { 

        cat("MA(", i, ")-matrix", "\n") 

        theta = t(TH[(icnt + 1):(icnt + k), ]) 

        print(theta, digits = 3) 

        icnt = icnt + k 

    } 

    zt = da 

    if (include.mean) { 

        for (i in 1:k) { 

            zt[, i] = zt[, i] - cnt[i] 

        } 

    } 
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    at = mFilter(zt, t(TH)) 

    sig = t(at) %*% at/nT 

    cat(" ", "\n") 

    cat("Residuals cov-matrix:", "\n") 

    print(sig) 

    dd = det(sig) 

    d1 = log(dd) 

    aic = d1 + 2 * npar/nT 

    bic = d1 + log(nT) * npar/nT 

    cat("----", "\n") 

    cat("aic= ", aic, "\n") 

    cat("bic= ", bic, "\n") 

    Theta = t(TH) 

    if (include.mean) { 

        TH = rbinds(cnt, TH) 

        seTH = rbind(secnt, seTH) 

    } 

VMA<list(data=da,MAorder=q,cnst=include.mean,coef=TH,se=seTH,residuals=at,Sigma=sig,

aic=aic,bic=bic) 
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