
Yugoslav Journal of Operations Research
22 (2012), Number 2, 225-246
DOI: 10.2298/YJOR100927020F

TWO GENETIC ALGORITHMS FOR THE BANDWIDTH
MULTICOLORING PROBLEM

Jasmina FIJULJANIN
Faculty of Matematics

University of Belgrade, Belgrade, Serbia
fjasmina@yahoo.com

Received: September 2010 / Accepted: August 2012

Abstract: In this paper the Bandwidth Multicoloring Problem (BMCP) and the
Bandwidth Coloring Problem (BCP) are considered. The problems are solved by two
genetic algorithms (GAs) which use the integer encoding and standard genetic operators
adapted to the problems. In both proposed implementations, all individuals are feasible
by default, so search is directed into the promising regions. The first proposed method
named GA1 is a constructive metaheuristic that construct solution, while the second
named GA2 is an improving metaheuristic used to improve an existing solution. Genetic
algorithms are tested on the publicly-available GEOM instances from the literature.
Proposed GA1 has achieved a much better solution than the calculated upper bound for a
given problem, and GA2 has significantly improved the solutions obtained by GA1. The
obtained results are also compared with the results of the existing methods for solving
BCP and BMCP.

Keywords: Evolutionary computation, graph coloring problem, combinatorial optimization.

MSC: 90C59, 68T20.

1. INTRODUCTION

1.1. Problem definitions

The vertex coloring problem on graphs (VCP) is a well-known NP-complete
problem that has been studied extensively. The first coloring algorithms date back to the
1960s [10, 39] and since then, important progress has been made. Nowadays literature
contains a great number of heuristic algorithms that belong to three main solution

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26814319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Jasmina Fijuljanin / GA for the BMCP 226

approaches: sequential construction (very fast methods but not particularly efficient),
metaheuristics (tabu search [3, 12, 15, 17], simulated annealing [6, 20], iterated local
search [7, 9], variable neighborhood search [2, 18], genetic algorithm [11, 16]) and
hybrid approaches [17, 34]).

Given an undirected graph G(V,E) with vertex set V and edge set E, the
classical vertex coloring problem on graphs (VCP) is to assign a color to each vertex so
that no two adjacent vertices have the same color and the total number of different colors
is minimized.

In the bandwidth coloring problem (BCP) distance constraints are imposed
between adjacent vertices, replacing the difference constraints. A distance (,)d i j is
defined for each edge { },i j E∈ , and the absolute value of the difference between the
colors assigned to i and j must be at least equal to this distance.

In the multicoloring problem (MCP) a positive weight ()k i is defined for each
vertex i V∈ , representing the number of colors that must be assigned to vertex i , so that
for each { },i j E∈ the intersection of the color sets assigned to vertices i and j is
empty. Both (,)d i j and ()k i are positive integers.

The bandwidth multicoloring problem (BMCP) is the combination of the above
two problems. In BCP and BMCP graph can contain loops and the absolute value of the
difference between each two colors assigned to a vertex i with a loop should not be
smaller than (,)d i i .

BCP, MCP and BMCP are NP-hard because they generalize VCP. VCP instance
is a BMCP instance where all the distances are equal to 1 and each vertex must receive
only one color. The BCP where the distances between adjacent vertices are the same,

(,)d i j T= for any edge { },i j E∈ is also known as T – Coloring.
BMCP can be more formally defined in the following way: find the minimal

number k such that for each i V∈ there exists a subset { }() 1,2,...,S i k⊂ for which

() ()S i k i= (where |A| denotes the cardinality of set A), and for each { },i j E∈ ,

each ()p S i∈ and each ()q S j∈ it follows (,)p q d i j− ≥ . BMCP has special cases:
BCP (The Bandwidth Coloring Problem), MCP (The Multicoloring Problem), VCP (The
Vertex Coloring Problem).

When () 1k i = for each i V∈ then BMCP is reduced to BCP, i.e. to the problem
of finding the minimal number k such that there exists a mapping : {1, 2,..., }r V k→
such that for each { , }i j E∈ , it follows | () () | (,)r i r j d i j− ≥ .

In MCP, multiple colors can be assigned to each node. In this model, for graph
G(V,E) with node weights ()k i for each i V∈ , find a minimum k and subsets

{ }() 1,2,...,S i k⊂ such that | () | ()S i k i= for each i V∈ and () ()S i S i∩ =∅ for each
{ , }i j E∈ .

In the VCP, one color is assigned to each node in the graph, and the colors for
adjacent nodes must be different. For graph G(V,E), find a minimum k , and a mapping

{ }: 1,...,r V k→ such that () ()r i r j≠ for each edge { },i j E∈ .

 Jasmina Fijuljanin / GA for the BMCP 227

The Multi-Coloring Problem can be used to schedule jobs with different time
requirements, where the set of colors assigned to a node corresponds to resources
assigned to a job. Each node demands a set of colors to be assign to it, ensuring that its
neighbors receive disjoint sets (see [28]).

The organization of exams at an university can be seen as the graph coloring
problem. Each examination needs a time slot, and the university wants to organize as
many examinations in parallel as possible, without exceeding the availability of
classrooms, in order to reduce the number of time slots (see [30]).

The next related problem is the frequency assignment problem (FAP). It
concerns the allocation of frequencies to transmitters with the aim of avoiding or
minimizing interference. FAP can be considered as BMCP. BMCP corresponding to the
minimum span frequency assignment problem (MS-FAP), the problem where the span,
i.e. the range of frequencies, has to be minimized [28].

1.2. Previous work

From its beginning, the Vertex graph coloring problem is constantly studied and
there are many methods for obtaining solutions. In this paper, only the most important
methods are listed.

The sequential coloring approaches are the simplest heuristic methods for the
VCP. The vertices are sorted and the top vertex is labeled (colored) with number one.
The remaining vertices are considered in order. Each vertex is labeled with the first color,
which has no adjacent vertices already labeled with this color. Several different schemes
have been used for the initial ordering. The first who had success in solving the Graph
coloring problem using this method are Welsh and Powell in 1967 [39]. These methods
can be easily implemented and are fast, but often produce solutions that are far from
optimal. Lim proposed in [25] several methods to adjust the method based on sequential
coloring.

Different heuristic approaches were proposed for MS-FAP, like greedy
algorithms, local search, tabu search, simulated annealing, constraint programming
approaches and genetic algorithm. Representing real MS-FAP cases arising in
telecommunications, most of these papers describe algorithms designed to solve
instances with a special structure. Those are the well studied Philadelphia instances,
firstly proposed by Anderson [1] in 1973. That is the multicoloring version of the
problem because in all these instances n is equal to 21, and each transmitter (i.e. vertex)
must receive a large number of frequencies (i.e. colors).

Computational Symposium on Graph Coloring and its Generalizations was
organized in 2002 in order to promote computational research on these problems [38]. A
new set of instances for VCP, BCP, MCP and BMCP were presented during the
symposium.

At the computational symposium, Phan and Skiena [33] proposed to solve VCP
and BCP by means of a general heuristic, called Discropt (designed for ‘‘black box
optimization’’), adapted to the specific coloring problems. Also, to solve generalized
graph coloring problems, Prestwich [35] proposed a combination of local search and
constraint propagation in a method called FCNS (Forward Checking Neighborhood
Search).

 Jasmina Fijuljanin / GA for the BMCP 228

Method for solving VCP, BCP, MCP and BMCP which combine hill-climbing
techniques and squeaky wheel optimization was proposed by Lim in [26].

The sequential method is an adaptation of the well-known DSATUR algorithm
[5] for the VCP. In this algorithm vertices are selected at each stage based on its score or
saturation degree — the number of distinctly colored adjacent vertices. A vertex with the
maximum saturation degree is selected and labeled with the first legal color.
Combination of DSATUR and tabu search methodologies was proposed by Malaguti and
Toth in [29].

One of the important methods for solving the graph coloring problems is
GRASP (Greedy Randomized Adaptive Search Procedure). GRASP is an iterative
process where each iteration consists of two phases: construction and local search. The
construction phase builds a feasible solution, whose neighborhood is explored until a
local optimum is found after the application of the local search phase. The detailed
description of GRASP and its properties is out of this paper scope and can be found in
[37]. GRASP in combination with tabu search is used by Marti, Gortazar and Duarte in
[31] for solving the BCP.

It is known that the graph set T-coloring problem (GSTCP) generalizes the
classical graph coloring problem. In [8], they presented an experimental study of local
search algorithms for solving general and large size instances of the GSTCP.

In [13], for solving BCP and BMCP an approximation algorithm based on
Irregular Cellular Learning Automata is proposed. The multicoloring problem is first
simplified as a vertex coloring problem, where each vertex is colored by only one color.
Learning automaton is assigned to each vertex of the resultant graph. At each stage, each
learning automaton randomly chooses its action according to its action-probability
vector. The proposed algorithm is repeated until all cells are rewarded.

In [29], some generalizations of the vertex coloring problem, where distance
constraints are imposed between adjacent vertices (Bandwidth Coloring Problem - BCP)
and each vertex has to be colored with more than one color (Bandwidth Multicoloring
Problem - BMCP) are considered. An evolutionary metaheuristic approach for the first
problem, combining an effective tabu search algorithm with population management
procedures is proposed. After a simple transformation, the approach can be applied to the
second problem.

Generalization of the graph coloring problem assumes that a strictly positive
integer weight iω is associated with each vertex i V∈ . An interval coloring of G is a
function I that assigns an interval ()I i of iω consecutive integers (called colors) to
each vertex i V∈ so that () ()I i I i∩ =∅ for all edges { },i j E∈ . The interval coloring
problem means to determine an interval coloring that uses as few colors as possible. In
[4] Bouchard, Čangalović and Hertz proved that an optimal solution of the interval
coloring problem can be obtained by solving a series of bandwidth coloring problems.
Computational experiments got demonstrate that such a reduction can help in solving
larger instances or obtaining better upper bounds on the optimal solution value of the
interval coloring problem.

The paper is organized as follows: Section 2 describes mathematical formulation
of considered problem. Section 3 presents a short description of Genetic algorithms.
Section 4 describes constructive metaheuristic, named GA1, which construct solution,
while in Section 5, an improving metaheuristic named GA2 is given. Computational

 Jasmina Fijuljanin / GA for the BMCP 229

experiments on BCP and BMCP instances from the literature are presented in Section 6.
Section 7 resumes the results of this work.

2. MATHEMATICAL FORMULATION

In [28] we can see an Integer Linear Programing (ILP) for BCP. In this case,
more than n colors may be needed. Let { }1, 2,...,H t= be the set of available colors
(where t represents an upper bound on the value of the maximum color used). Consider
the binary variable ihx having value 1 if vertex i is colored with color h , h H∈ ,
otherwise 0ihx = , and the binary variables hy having value 1 if color h is used,
otherwise 0hy = . Then the model reads:

min k (1)

hk y h h H≥ ⋅ ∈ (2)

1h H ihx i V∈∑ = ∈ (3)

{ } { }1 , , , (,) 1,..., (,) 1ih jlx x i j E h H l h d i j h d i j+ ≤ ∈ ∈ ∈ − + + + (4)

,ih hx y i V h H≤ ∈ ∈ (5)

{ }0,1 ,ihx i V h H∈ ∈ ∈ (6)

{ }0,1hy h H∈ ∈ (7)

The objective function (1) in conjunction with constraints (2) asks for

minimizing the maximum color used. Constraints (3) show that every vertex i in the
graph must receive one color. Constraints (4) state that the absolute value of the
difference between the colors assigned to vertices i and j must be at least equal to

(,)d i j . Constraints (5) assure that if a vertex i uses a color h, the color h results as used.
The integrality of the variables imposes (6) and (7).

3. GENETIC ALGORITHMS

Genetic algorithms (GAs) are problem-solving metaheuristic methods rooted in
mechanisms of evolution and natural genetics. In the last three decades, GAs have
emerged as effective, robust optimization and search methods. The main idea was
introduced by John Holland [19].

The GA work with a population of individuals, each representing a possible
encoded solution to a given problem. The representation is the genetic code of an
individual and it is often a binary string, although other alphabets or higher cardinality
can be used.

Initial population is either randomly or heuristically generated. The individuals
in the population pass through a procedure of simulated “evolution” by means of
randomized processes of selection, crossover and mutation. To determine qualities of

 Jasmina Fijuljanin / GA for the BMCP 230

individuals from current population, a fitness function is used. Higher chances for
survival and reproduction have the individuals with higher fitness value. Best-fitted
individuals are selected in different ways. The most often used is tournament selection.

Recombination of genetic material by exchanging portions between the parents,
with the chance that good solutions can generate even better ones, provides the crossover
operator. Sporadic and random changes that modify individual`s genetic material with
some small probability cause mutation. Mutation should prevent premature convergence
of the GA to suboptimal solutions.

There are different policies for generation replacement. Certain numbers of
individuals (elite individuals) may skip selection or even all genetic operators going
directly into the next generation. This approach is named the steady-state generation
replacement policy with elitist strategy. It preserves good individuals from the past
generations.

Implementing the GA usually involves the following steps: evaluating the
fitness of all individuals in a population, selecting the best-fitted individuals and creating
a new population by performing crossover and mutation operators although there can be
many modifications of the GA.

Experimental results on various optimization problems show that GA often
produces high quality solutions in a reasonable time [21, 24, 32].

Algorithm 1: The scheme of the GA implementation

Input()
Init()
while not FinishGA() do
 for i := (Nelite + 1) to Npop do
 if Contain (cache, i) then
 obji := From_Cache(i)
 else
 obji := Objective_Function(i)
 Put_Into_Cache(i, obji)
 if Full(cache) then
 Remove_LRU_Block()
 endif
 endif
 endfor
 Fitness_Function()
 Selection()
 Crossover()
 Mutation()
endwhile
Output()

In Algorithm 1, the general outline of GA implementation is given. Npop denotes

the overall number of individuals in the population, Nelite is a number of elite individuals,
and i and iobj are the individual and its objective value, respectively (also can be seen in
[22, 23]). Here, evaluated objective values are stored in a hash-queue data structure,
created by the use of Least Recently Used (LRU) caching strategy. When the same code

 Jasmina Fijuljanin / GA for the BMCP 231

is obtained again, its objective value is taken from the hash-queue table, instead of
recalculating its objective function.

Caching technique investigates whether the Cache memory contains individual.
In that case, objective value is directly taken from the Cache memory, otherwise, the
objective value is calculated and the pair (individual, objective value) is stored in the
Cache memory (Put_Into_Cache(i, obji)). If the Cache memory is full (if Full(cache)),
in order to make space for the new entry, the last recently used block is removed
(Remove_LRU_Block()) from cache memory.

4. GA1 IMPLEMENTATION

In GA1, the maximal number of possible colors are fixed during the search
process. That number is obtained by a greedy algorithm before search process. Each
individual in GA1 is a sequence of integer numbers. The fitness function value is defined
as the maximal color used in the corresponding coloring. GA1 implementation will be
described only for general problem BMCP, as for all node weights equal to 1 it can be
applied to BCP.

4.1. Greedy algorithm for computing upper bound

Greedy algorithm takes a sequence of ‘split nodes’ and assign colors to them
greedily. Colors are assigned one by one for each node. The details of this algorithm are
presented in Algorithm 2.

Algorithm 2 Greedy Algorithm which Assigns Colors
for i:= 1 to m do
c[i] := −1
end for
for i := 1 to m do
 forbidden_set := ∅
 u := p[i]
 v := get_original_node(u)
 for each node s that adjacent to u do
 if c[s] ≠ −1 then
 t := get original node(s)
 a := Max{0, c[s] − d(v, t) + 1}
 b :=c[s] + d(v, t) − 1
 forbidden_set := forbidden_set ∪[a..b]
 end if
 end for
 c[u] := Min{r, r∈N, r∉ forbidden_set}
end for

Here, n is the number of nodes in the original graph; (,)d i j is the weight of

edge { }, ,i j m is the number of nodes after splitting; []1..p m is the priority sequence for

 Jasmina Fijuljanin / GA for the BMCP 232

the m nodes [](1p u= implies node u has the highest priority); []1..c m records the
assigned colors, and the function gets the original node(u) to be returned to the node v in
the original graph such that u is split from v. This is a standard greedy procedure, which
also can be found in [27].
Example 1: This example shows how to find the maximum number of colors that can be
used by the Greedy algorithm in the case of the graph from Figure 1.

Greedy algorithm:
I node: two colors on minimum distance 2 between each other: 1, 3
II node: three colors on minimum distance 2 between each other and distance at

least 1 from colors of I node: 2, 4, 6
III node: one color on distance at least 2 from colors of I node (1,3) and on

distance at least 3 from colors of II node (2,4,6): 9
IV node: two colors on minimum distance 1 between each other, on distance at

least 2 from colors of II node (2,4,6) and on distance at least 2 from colors of III node
(9): 11, 12.

The maximum number of colors that can be used is 12.

4.2. Representation and objective function

The proposed GA1 first counts the maximum number of colors that can be used,
(this is also found in the master thesis in [14]). The number of colors is obtained using
the greedy algorithm. Than for each node subsidiary colors are assigned. Instead on the
original graph, this algorithm is applied to an auxiliary graph obtained from the original
one by replacing each node i, where () 1k i > , with the complete subgraph on ()k i
nodes and all edge distances equal to (,)d i i (in the case when there is no a loop at node,

(,) 1d i i =).
The encoding scheme is defined in the following way: greedy algorithm getting

the maximum number of colors that can be used, let that number be t. The code in GA1 is
defined for a given ordering of nodes as a sequence of ()

i V

k i
∈
∑ integers from the set

{ }1,2,..., t . In such a code, numbers on positions from (1) 1k i − + to (1) ()k i k i− +
correspond to node i where (0) 0k = .

’Decoding’ technique, which for the given code finds the corresponding feasible
coloring of the graph, can be described as follows:

Step 1: for the current node i V∈ and each { }1,2,..., ()j k i∈ , the technique finds a

sequence of all colors from { }1,2,..., t that are ”free” to be assigned to vertex i , i.e. the
colors which are not in conflict with those already assigned. (A color a of vertex i is not
in conflict with already assigned colors if (,)a p d i l− ≥ for each already colored
vertex l adjacent to i and all colors p associated to l . If i l= and there is not a loop at i ,
then (,) 1d i i =). Then, the technique considers gene r on position (1)k i j− + in the
individual code and assigns the r-th color from the sequence of free colors to vertex i .

 Jasmina Fijuljanin / GA for the BMCP 233

If for a current sequence C of colors r C> , then the technique assigns to

vertex i the modr C -th color from C.

If 0C = or in the current C, it is impossible to find the r-the color which is not
in conflict with already assigned colors, the code is incorrect and the
corresponding individual is eliminated from the current generation.

Step 2: The technique updates a set of free colors and goes to Step 1 to consider the next
node from V as the current one. Otherwise, if the considered node is the last one, the
technique stops.

The fitness function of an individual is the maximal color used in the coloring
obtained by the decoding technique applied to this individual.

Example 2: This example shows how the proposed GA1 decodes a given code for
BMCP on the graph from Figure 1.
BMCP is a graph coloring problem where to each node a positive number is assigned that
represents the number of colors that must be assigned to each node respecting the given
distance (,)d i j between colors assigned to adjacent nodes, and respecting the given
distance (,)d i i between colors assigned to the same node.

Figure 1: Graph for BMCP

In Example 1, greedy algorithm determinates the maximum number of colors
that can be used.

Now, when we know that the number of colors that can be used is 12, for the
genetic code: 4, 3, 3, 2, 1, 3, 1, 1, the colors proposed by GA1 will be assigned in the
following way:

I node:
I color: all colors are free: 1,2,3,4,5,6,7,8,9,10,11,12, 4-th free color is 4
II color: free colors are: 1,2,3,5,6,7,8,9,10,11,12, 3-rd free color on distance

at least 2 from I color is 6

 Jasmina Fijuljanin / GA for the BMCP 234

II node:
I color: free colors are: 1,2,3,5,7,8,9,10,11,12, 3-rd free color on distance at

least 1 from colors of I node is 3
II color: free colors are: 1,5,7,8,9,10,11,12, 2-nd free color on distance at

least 2 from I color and on distance at least 1 from colors of I node is 5
III color: free colors are: 1,7,8,9,10,11,12, 1-st free color on distance at least

2 from first two colors and on distance at least 1 from colors of I node is 1
III node:

I color: free colors are: 8,9,10,11,12, 3-rd free color (on distance at least 2
from colors of I node and on distance at least 3 from colors of II node) is 10

IV node:
I color: free colors are: 7,8,12, 1-st free color (on distance at least 2 from

colors II and III nodes) is 7
II color: free colors are: 8,12, 1-sr free is 8.

So, c(1)=4,6; c(2)=3,5,1; c(3)=10; c(4)=7,8 fitness function selects the
maximum of these values, that is 10, which means that 10 colors is sufficient for graph
coloring.

4.3. Genetic Operators

Selection operator: According to individual value of fitness function, the
selection operator chooses the individuals that will produce offspring in the next
generation. Low fitness-valued individuals have less chance to be selected than high
fitness-valued ones. Tournaments are imposed competitions between two or more
individuals who will participate in the next generation. The size of a tournament is a
given integer parameter, which in same cases can be a limiting factor. Tournament
candidates are randomly chosen from the current population. Only the winner of the
tournament can participate in the crossover. The selection operator is applied Nnnel times
on the set of all Npop individuals in the population to choose the Nnnel parents for
crossover.

In proposed GA1, an improved tournament selection operator is used, known as
the fine-grained tournament selection – FGTS. This operator uses a real (rational)
parameter Ftur which denotes the desired average tournament size. The first type of
tournaments is held k1 times and its size is [Ftur], while the second type is performed k2

times with [Ftur] + 1 individuals participating, so [] []1 2 1tur tur
tur

nnel

k F k F
F

N
⋅ + ⋅ +

≈ .

In the GA1 implementation Ftur is set to 5.4 value. FGTS is applied to Nnnel = 50
non-elitist individual, tournaments are held 1 30k = and 2 20k = times with sizes 5 and
6, respectively. Running time for the FGTS operator is ()nnel turO N F⋅ . In practice, Nnnel

and Ftur are considered to be constant, not depending on problem size, so overall time
complexity of selection operator is constant.

Crossover operator: All non-elitist individuals chosen to produce offspring for
the next generation are randomly paired for exchanging genes in [Nnnel/2] pairs.
Crossover operator is applied to selected parents producing two offspring. In the
proposed GA1, the one – point crossover is used. If the length of genetic code of parents
is l, then we choose positive number k from the interval [0, l-1]. All genes in parent`s

 Jasmina Fijuljanin / GA for the BMCP 235

genetic codes starting from 1k + to 1l − exchange their positions. Probability of the
crossover operator is 0.85crossp = . It means that approximately 85% pairs of individuals
exchange their genetic material.

Mutation operator: During the GA1 execution, it may happen that all
individuals in the population have the same gene on a certain position. This gene is called
frozen. If the number of frozen genes is l, the search space becomes l! time smaller and
the possibility of a premature convergence rapidly increases. The selection and crossover
operators cannot change the bit value of any frozen gene. The basic mutation rate is often
too small to restore lost subregions of the search space. If the basic mutation rate is
increased significantly, a genetic algorithm becomes a random search.

Mutation operator is modified so that frozen genes are mutated with one
mutation level and non-frozen genes with another. If n is the total number of used colors
then:

non-frozen genes: first gene is mutated with 0.2/n, second with 0.1/n, etc.
frozen genes: gene is mutated with 0.5/n, second with 0.25/n, etc.

So, we can conclude that the level of mutation for frozen genes is 2.5 time higher
comparing to non-frozen ones.

4.4. Other GA1 aspects

In the GA1, initial population, which has 150 individuals randomly selected,
provides maximal diversity of genetic material. One-third of the population, i.e. 50
individuals, are non-elite and the rest (100 of them) are elite individuals. In GA1
implementation, so called elitist strategy is applied that enables direct passing of the elite
individuals into the next generation. The genetic operators are applied to the rest of the
population.

In order to avoid premature convergence and to provide the maximal diversity
of genetic material, duplicated individuals are removed from the population. Setting their
fitness value to zero, they lose the opportunity to appear in the next generation.

If the individuals with the same fitness value that have similar genetic code are
dominant in the population, the possibility of a premature convergence rapidly increases.
For that reason, it is useful to limit the number of their appearance to some constant Nrv.
In GA1 implementation, the maximal allowed number of individuals with the same
objective value is Nrv = 40.

4.5. Caching GA

The main purpose of caching is to avoid recalculating objective values of
individuals appearing again during the GA run, and to optimize run-time performance of
GA1. Evaluated objective values are stored in a hash-queue data structure, created by
Least Recently Used (LRU) caching strategy. If the same code is obtained again, its
objective value is taken from the hash-queue table, instead of recalculating its objective
function.

Caching technique investigates whether the cache memory contains an
individual. In that case, objective value is directly taken from the cache memory.
Otherwise, the objective value is calculated and the pair (individual, objective value) is

 Jasmina Fijuljanin / GA for the BMCP 236

stored in the cache memory. If the cache memory is full, in order to make space for the
new entry, the last recently used block is removed from it.

The number of cached objective values in hash-queue table is limited to
5000cacheN = in the GA1 implementation ([14]).

5. GA2 IMPLEMENTATION

The experimental results show that GA1 (constructive strategy) is not time
consuming, but the solutions are quite different from those, so far, best known in the
literature. Therefore, in this section, GA2 (improving strategy) will be presented that
improves the existing solutions. Note that GA2 does not need complete solution but only
solution value, using it as an upper bound. Therefore, GA2 can be used on any upper
bound given in the literature. But for the sake of a fair comparison, in this paper GA2 is
used only to improve solutions given by GA1 (or its own solution value).

In GA2, genetic code is of the same length as that of GA1, but the objective
function is defined in a totally different way.

5.1. Encoding and objective function

Each code is defined as in GA1, and the only difference is that it contains
integers only from { }1, 2,..., cn , where cn is the total number of the currently used colors.
Unlike GA1, where the objective function represents the maximum number of used
colors, in GA2 implementation number cn of used colors is fixed and initialized to a
given upper bound minus one, and objective function represents the total level of
infeasibility, infeas.

There are two types of the infeasibility levels for a vertex: with respect to its
adjacent vertices, and with respect to this vertex itself, what will be illustrated in
Example 3.

Example 3 Let u , v be nodes; ()c u , ()c v represent the colors assigned to the nodes u
and v ; (,)d u v the minimum distance between colors assigned to nodes u and v

() 5c u =
() 7c v = => infeas = 2 (c(u) and c(v) are on distance 2 and according
(,) 4d u v = (,) 4d u v = , they should spread 2, so infeas = 2)
() 5c u =
() 5c v = => infeas = 4 (c(u) and c(v) are on distance 0 and according
(,) 4d u v = (,) 4d u v = , they should spread 4, so infeas = 4)

As GA2 is developed for BMCP, infeasibility can occur with respect to a vertex

itself, i.e. if this vertex has the weight greater than 1, some of its colors can be the same.
So, if for vertex u its weight () 3k u = and colors 3, 5, 5 are associated to this vertex, then
the infeasibility level of u with respect to itself is equal to 1(infeas = 1).

 Jasmina Fijuljanin / GA for the BMCP 237

Before the GA2 execution, the number of colors, nc in use, must be given. It can
be done in two ways:

1) nc takes the value of greedy algorithm`s upper bound minus 1
2) nc takes the value of GA1 solution minus 1

For gene value r from the genetic code, a corresponding color is taken. If r is at
position (1)k i j− + of the code, then r is the j- th color assigned to vertex i in the
coloring corresponding to the code. If r > nc, then we modify r to a random number from
1 to nc, update that gene in the genetic code and assign that color to the node i. For each
node, we count the infeasibility level with respect to its adjacent nodes as well as to the
node itself. Then the objective function value infeas of the genetic code is equal to the
sum of infeasibility levels over all the nodes.

More formally, let (), ,S i i V∈ be sets of colors assigned to vertices i in the
coloring defined by an individual code. Then, the infeasibility level ()infeas i of vertex

i is the sum of values { }max 0, (,)d i j p q− − over all vertices j adjacent to i , i j≠ , and

all ()p S i∈ and all ()q S j∈ , and, in case when () 1k i > ,of values

{ }max 0, (,)d i i p q− − over all , ()p q S i∈ , where (,) 1d i i = if there is not a loop at

vertex i . Let us mention that, for () 1k i > , it is supposed that some of ()k i members in
()S i can be equal. Now, the objective function value for the individual code could be

defined as ()
i V

infeas i
∈
∑ .

When, in the population, the objective value of an individual becomes zero, it
means that a new solution is obtained. This new solution is, by default, better than the
previous, so it should be saved. Then the number of used colors cn is subtracted by
1(1)c cn n= − .

Now, when nc is subtracted by 1 for all individuals in the population (elite and
non-elite) objective value must be computed again. From these reasons, in GA2, caching
technique is not used.

5.2. Local search

In order to reduce the level of infeasibility, local search is applied. For each
node, we try to change one of the assigned colors. The objective value for particular
individual is remembered, and the level of infeasibility subtracted from that value only
for that node. This is done in such a way that for particular node we are looking adjacent
nodes.

If in the coloring defined by an individual code color, ()p S i∈ , already
assigned to a vertex i , is replaced with the color { }1, 2,..., , ,ck n k p∈ ≠ then the new
objective function value (,)infeas i k is equal to

{ }
{ }

{ }
{ }: , () () \

(,) max 0, (,) max 0, (,)
j i j V q S j q S i p

i j

infeas i k s d i j k q d i i k q
∈ ∈ ∈

≠

= + − − + − −∑ ∑ ∑

where

 Jasmina Fijuljanin / GA for the BMCP 238

{ }
{ }

{ }
{ }: , () ()\

() max 0, (,) max 0, (,)
j i j V q S j q S i p

i j

s infeas i d i j p q d i i p q
∈ ∈ ∈

≠

= − − − − − −∑ ∑ ∑

If
{ }

*

1,...,
(,) min (,)

ck n
infeas i k infeas i k

∈
= and *(,) ()infeas i k infeas i< , then the

objective function value of the individual code can be improved by replacing color p of
vertex i with color *k .

For given vertex i and its color p, value *(,)infeas i k can be obtained by a
procedure which determines a sequence (), 1,2,..., cz k k n= , as follows:

Initially, ()z k s= for each { }1,2,..., ck n∈ .
For each vertex j adjacent to vertex i , j i≠ , and each ()q S j∈ , values of ()z k

are transformed in the following way:
For { } { }max 1, (,) 1 min (,) 1, cq d i j k q d i j n− + ≤ ≤ + − ,

{ }() () max 0, (,)z k z k d i j k q= + − − , while for other k value, ()z k is not
changed.

If () 1k i > , then for each ()q S i∈ , values of ()z k are additionally transformed
such as for { } { }max 1, (,) 1 min (,) 1, cq d i i k q d i i n− + ≤ ≤ + −

{ }() () max 0, (,)z k z k d i i k q= + − − , while for other k, value ()z k is not
changed.

The final value of ()z k obtained by this procedure is equal to (,)infeas i k for
each { }1,2,..., ck n∈ . Therefore,

{ }
* *

1,...,
(,) () min ()

ck n
infeas i k z k z k

∈
= = .

If there is no improvement when color p of vertex i is replaced with color *k ,
the local search procedure continues with a new vertex.

The resulting value entered in genetic code and for the following similar
individual, the value doesn`t have to be counted again. In this way, we are saving time. In
the second case, we see that by changing one color, we do not get a better solution (ie.
this is a local minimum).

Example 4: Let (2) 5, (3) 4, (2,3) 3 15c c d ov= = = = , infeas(2,3)=2
For node 3 without color 5, the total level of infeasibility is 13, candidates for colors of
node 2 are:

1, 2, 3, 4, 5, 6, 7, 8, …, 20.

At the beginning, members of the series z are all the same.

z: 13, 13, 13, 13, 13, 13, 13, 13, …

 Jasmina Fijuljanin / GA for the BMCP 239

Series z for the given values is changing in the following way:

z: 13, 14, 15, 16, 15, 14, 13, 13, …

Now, consider all edges where node 2 takes part. Let, for example, c(5)=2,
d(2,5)=4. For these values, we have

z: 16, 18, 18, 18, 16, 14, 13, 13, …

Now, we are looking for minimum of the series z. That is 13, so we take color 7
or color 8.

5.3. Genetic Operators

The FGTS selection operator was also used in GA2 method, with the same value
of Ftour parameter (Ftur = 5.4).

GA2 uses one – point crossover like GA1 with the same probability pcross = 0.85.
Mutation operator is the same as for the GA1, but the mutation rates are different. Note
that, unlike GA1, mutation rates are constant. If n is the total number of used colors, then:

non-frozen genes: genes are mutated with 0.4/n
frozen genes: genes are mutated with 1.0/n

5.4. Other GA2 aspects

Other aspects of GA2 are the same as for GA1:
• The population size is 150 individuals
• In GA2 is also applied elitist strategy
• One hundred elite individuals and 50 non-elite ones
• Duplicated individuals are removed from population
• Limiting the number of individuals with the same objective value (Nrv = 40)
In GA2 the caching is not applied, because the objective function depends on

the number of used colors.

6. EXPERIMENTAL RESULTS

This section presents the computational results for BCP and BMCP. The GAs
tests were performed on an Intel Core 2 Duo 3.0 GHz with 4 GB memory, under
Windows 7 operating system. The stopping criterion was the maximum number of
generations equal to 2000, or at most 5000 generations without improvement of the
objective value. Both GAs have been run 20 times for each instance, and the results are
summarized in Table 1(for BCP) and Table 2 (for BMCP).

The algorithms were coded in C programming language. The GAs are tested on
GEOM instances (presented in [38]) available in the literature. A characteristic of these
instances is that the number of graphs nodes are contained in their name. Note that the
optimal solutions for these problems are not known in literature.

The tables (Table 1 and Table 2) contain the following data, by columns:
- the first three columns contain the test instance name, the number of nodes

(n) and edges (m), respectively;
- the fourth column Greedy contains solution obtained by greedy algorithm

 Jasmina Fijuljanin / GA for the BMCP 240

- the fifth column GA1 shows solution obtained by proposed GA1 ;
- the average running time t is given in the sixth column ;
- the seventh column GA2 shows solution obtained by proposed GA2 ;
- the average execution time t is given in the eighth column ;
- GA2 is applied once again, using solution values from the seventh column

minus one as upper bounds. In the last two columns, GA2a and t is
presented given solution values and corresponding running times.

Table 1 Results for BCP

Inst

n m Greedy GA1 T
(sec)

GA2 t
(sec)

GA2a t
(sec)

GEOM20 20 40 25 21 0.682 21 0.05 21 0.01
GEOM20a 20 57 28 21 1.196 20 0.03 20 0.11
GEOM20b 20 52 17 14 0.604 13 2.62 13 1.36
GEOM30 30 80 34 32 0.916 28 0.13 28 0.06
GEOM30a 30 111 32 28 2.106 27 0.20 27 0.31
GEOM30b 30 111 28 26 1.249 26 26.24 26 2.27
GEOM40 40 118 34 30 1.66 28 0.09 28 0.08
GEOM40a 40 186 49 40 3.572 37 12.12 37 0.83
GEOM40b 40 197 41 36 2.131 33 72.18 33 8.78
GEOM50 50 177 34 30 4.382 28 1.26 28 1.28
GEOM50a 50 288 60 53 5.796 50 2.79 50 7.36
GEOM50b 50 299 55 43 3.434 37 120.64 35 14.33
GEOM60 60 245 41 34 5.189 33 0.91 33 3.09
GEOM60a 60 339 61 55 7.24 51 123.79 50 17.20
GEOM60b 60 426 64 51 5.346 43 192.18 43 21.34
GEOM70 70 337 47 42 6.413 38 125.82 38 15.42
GEOM70a 70 529 73 65 9.424 63 5.32 62 6.38
GEOM70b 70 558 77 60 7.478 50 232.91 49 55.36
GEOM80 80 429 52 45 8.768 41 0.51 41 18.67
GEOM80a 80 692 80 69 13.983 66 273.72 65 47.33
GEOM80b 80 743 99 73 10.938 65 479.78 65 40.05
GEOM90 90 531 54 49 9.683 46 1.70 46 5.25
GEOM90a 90 879 81 75 17.239 68 305.19 67 56.30
GEOM90b 90 950 110 86 16.493 75 863.86 75 57.25
GEOM100 100 645 58 55 12.501 52 2.57 50 4.97
GEOM100a 100 1092 97 83 20.564 74 370.76 72 48.77
GEOM100b 100 1150 122 93 17.312 78 588.82 77 119.77
GEOM110 110 748 58 57 13.444 52 259.95 50 45.84
GEOM110a 110 1317 98 88 28.91 80 629.47 77 140.05
GEOM110b 110 1366 122 98 25.194 85 848.37 85 94.39
GEOM120 120 893 73 66 17.115 60 31.59 60 36.47
GEOM120a 120 1554 108 100 29.815 88 244.67 87 152.63
GEOM120b 120 1611 124 106 27.951 92 1706.23 91 166.95

From the results presented in Table 1 and Table 2, it can be seen that GA1 has

achieved a much better solution than the calculated upper bound for a given problem.
Executing of GA1 was relatively short, where even the large-scaled problem instances
worked less than half an hour.

 Jasmina Fijuljanin / GA for the BMCP 241

Table 2 Results for BMCP

Inst
 n m Greedy GA1 t

(sec) GA2 t
(sec) GA2a t

(sec)
GEOM20 20 40 195 150 14.074 149 93.06 149 123.86
GEOM20a 20 57 201 178 18.459 171 132.66 170 157.88
GEOM20b 20 52 47 45 1.708 44 10.17 44 10.11
GEOM30 30 80 214 168 27.519 161 248.31 160 153.66
GEOM30a 30 111 292 234 70.929 214 470.17 212 429.24
GEOM30b 30 111 88 80 5.87 77 35.53 77 34.45
GEOM40 40 118 226 180 60.739 170 518.30 168 392.48
GEOM40a 40 186 297 246 109.84 223 1148.09 215 994.56
GEOM40b 40 197 121 82 8.754 75 82.92 75 96.44
GEOM50 50 177 271 243 113.607 227 617.63 226 823.41
GEOM50a 50 288 440 370 309.143 323 2392.80 323 1739.73
GEOM50b 50 299 126 99 14.258 88 129.22 88 129.78
GEOM60 60 245 312 268 166.331 262 818.02 258 902.33
GEOM60a 60 339 460 399 417.723 368 3276.33 365 3542.70
GEOM60b 60 426 161 134 26.998 121 286.94 120 196.25
GEOM70 70 337 374 304 231.641 275 2823.52 273 1784.50
GEOM70a 70 529 577 508 601.959 480 2646.17 476 3438.47
GEOM70b 70 558 176 142 36.051 126 377.66 126 301.05
GEOM80 80 429 513 421 528.526 391 2721.73 390 1857.09
GEOM80a 80 692 461 411 620.676 374 3269.56 374 3064.03
GEOM80b 80 743 179 162 50.136 141 454.75 140 946.39
GEOM90 90 531 418 363 569.227 335 2669.81 335 2635.58
GEOM90a 90 879 485 430 845.052 380 3796.58 380 4154.56
GEOM90b 90 950 210 180 80.652 158 529.51 155 514.05
GEOM100 100 645 503 449 870.236 425 3070.92 421 3261.30
GEOM10a 100 1092 626 541 1399.933 460 5856.17 458 9502.08

GEOM100b 100 1150 243 198 88.188 169 1045.89 168 603.34
GEOM110 110 748 483 434 957.523 397 4365.64 387 4465.73
GEOM110a 110 1317 662 585 2485.472 502 12105.00 501 10054.41
GEOM110b 110 1366 297 240 132.244 215 1257.47 209 1232.95
GEOM120 120 893 515 458 1174.291 420 5543.78 412 6226.78
GEOM120a 120 1554 702 649 2711.486 561 16376.59 559 19254.63
GEOM120b 120 1611 268 225 153.825 196 906.84 196 857.13

GA2 improve the solutions obtained by GA1 for almost all instances. Note that

the time required to obtain the result using GA2 is much longer then for GA1. The reason
is relatively time consuming procedure of local search in GA2. A very interesting feature
of applying GA2 once again is the improvement of many solution values. The
explanation can be that because GA2 uses only upper bound value, not complete
solution, so the initial solution in the next GA2 running is usually completely different
from the last GA2 final solution.

Although the optimal solution for these instances is not known so far, from
experimental results presented in Tables 1 – 4, it can be concluded that the proposed
approaches are very successful in solving the large-scale problem instance for graphs up
to 120 vertices and up to 1611 edges.

 Jasmina Fijuljanin / GA for the BMCP 242

Table 3 Comparison with the most effective heuristic algorithms for the BCP

Inst

best

GA1

GA2

GA2a

Lim03
[26]

Phan-
Skiena[33]

Prest
05

[36]

Malaguti
08

[29]

Greedy

GEOM20 20 21 21 21 21 20 21 21 25
GEOM20a 20 21 20 20 22 20 20 20 28
GEOM20b 13 14 13 13 14 13 13 13 17
GEOM30 27 32 28 28 29 27 28 28 34
GEOM30a 27 28 27 27 32 27 27 27 32
GEOM30b 26 26 26 26 26 26 26 26 28
GEOM40 27 30 28 28 28 27 28 28 34
GEOM40a 37 40 37 37 38 38 37 37 49
GEOM40b 33 36 33 33 34 36 33 33 41
GEOM50 28 30 28 28 28 29 28 28 34
GEOM50a 50 53 50 50 52 54 50 50 60
GEOM50b 35 43 37 35 38 40 35 35 55
GEOM60 33 34 33 33 34 34 33 33 41
GEOM60a 50 55 51 50 53 54 50 50 61
GEOM60b 41 51 43 43 46 47 43 41 64
GEOM70 38 42 38 38 38 40 38 38 47
GEOM70a 61 65 63 62 63 64 62 61 73
GEOM70b 48 60 50 49 54 54 48 48 77
GEOM80 41 45 41 41 42 44 41 41 52
GEOM80a 63 69 66 65 66 69 63 63 80
GEOM80b 60 73 65 65 65 70 61 60 99
GEOM90 46 49 46 46 46 48 46 46 54
GEOM90a 63 75 68 67 69 74 64 63 81
GEOM90b 70 86 75 75 77 83 72 70 110
GEOM100 50 55 52 50 51 55 50 50 58
GEOM100a 68 83 74 72 76 84 68 68 97
GEOM100b 73 93 78 77 83 87 73 73 122
GEOM110 50 57 52 50 53 59 50 50 58
GEOM110a 72 88 80 77 82 88 73 72 98
GEOM110b 78 98 85 85 88 87 79 78 122
GEOM120 59 66 60 60 62 67 60 59 73
GEOM120a 84 100 88 87 92 101 84 84 108
GEOM120b 84 106 92 91 98 103 86 84 124

The experiments performed with the evolutionary algorithms (proposed in

Sections 3 and 4) are described and compared with the most effective algorithms
proposed in the literature on the BCP and BMCP instances. The corresponding
computational results are reported, in Tables 3 and 4, respectively. The first two columns
of the tables report the instance name and the corresponding best published solution
value (‘‘best’’). The next three columns represent solution obtained by proposed GA1
(“GA1”), GA2 (“GA2”) and solutions obtained by executing GA2 several times
(“GA2a”). The sixth column (“Lim03”) represents the solutions obtained by Lim [26],
where he combined hill-climbing techniques and squeaky wheel optimization. The
algorithm works in optimization version (i.e. it does not require as input the maximum
color k to be used).

 Jasmina Fijuljanin / GA for the BMCP 243

Table 4 Comparison with the most effective heuristic algorithms for the BMCP

Inst

best

GA1

GA2

GA2a

Lim03
[26]

Lim05[25]

Prest
05

[36]

Malaguti
08

[29]

Chard

[8]

Greedy

GEOM20 149 150 149 149 149 149 149 149 - 195
GEOM20a 169 178 171 170 169 169 170 169 - 201
GEOM20b 44 45 44 44 44 44 44 44 44 47
GEOM30 160 168 161 160 160 160 160 160 - 214
GEOM30a 209 234 214 212 211 209 214 211 209 292
GEOM30b 77 80 77 77 77 77 77 77 77 88
GEOM40 167 180 170 168 167 167 167 167 - 226
GEOM40a 213 246 223 215 214 213 217 215 214 297
GEOM40b 74 82 75 75 76 74 74 74 74 121
GEOM50 224 243 227 226 224 224 224 225 - 271
GEOM50a 315 370 323 323 326 318 323 320 315 440
GEOM50b 83 99 88 88 87 87 86 83 84 126
GEOM60 258 268 262 258 258 258 258 258 258 312
GEOM60a 356 399 368 365 368 358 373 363 356 460
GEOM60b 114 134 121 120 119 116 116 114 115 161
GEOM70 267 304 275 273 279 273 277 270 267 374
GEOM70a 469 508 480 476 478 469 482 473 478 577
GEOM70b 117 142 126 126 124 121 119 119 119 176
GEOM80 382 421 391 390 394 383 398 388 382 513
GEOM80a 360 411 374 374 379 379 380 370 360 461
GEOM80b 139 162 141 140 145 141 141 141 139 179
GEOM90 332 363 335 335 335 332 339 334 333 418
GEOM90a 377 430 380 380 382 377 382 384 377 485
GEOM90b 144 180 158 155 157 157 147 146 147 210
GEOM100 404 449 425 421 413 404 424 412 404 503
GEOM100a 437 541 460 458 462 459 461 452 437 626
GEOM100b 156 198 169 168 172 170 159 160 159 243
GEOM110 376 434 397 387 389 383 392 382 376 483
GEOM110a 490 585 502 501 501 494 500 492 490 662
GEOM110b 206 240 215 209 210 206 208 207 206 297
GEOM120 396 458 420 412 409 402 417 405 397 515
GEOM120a 549 649 561 559 564 556 565 559 549 702
GEOM120b 191 225 196 196 201 199 196 195 191 268

The seventh column of Table 3 (“Phan-Skiena”) reports the solution values

obtained by Phan and Skiena [33] by means of the Discropt general heuristic in the case
of BCP (they report no results for BMCP). The algorithm works in optimization version.

The solution values (“Lim05”) by Lim [25], with an algorithm combining
squeaky wheel optimization with tabu search, are reported in the seventh column of
Table 4 in the case of BMCP (results for BCP are not competitive and were not reported
in detail in [25]).

The eighth column (“Prest 05”) in tables represents the solutions obtained by
Prestwich [36] with an algorithm which hybridizes local search and constraint
programming.

The solution values (“Malaguti 08”) by Malaguti and Toth [29], with an
algorithm combining an effective tabu search algorithm with population management
procedures are reported in the ninth column of tables.

 Jasmina Fijuljanin / GA for the BMCP 244

The tenth column (“Chard”) in Table 4 contains solution obtained by Chardiani
and Stützle [8]. For instances GEOM20, GEOM20a, GEOM30, GEOM40 and GEOM50
in [8], the solutions were not given, and therefore, in Table 4 in the places provided for
them is a sign “-”.

The last column in tables (“Greedy”) contains solution obtained by greedy
algorithm.

Although the genetic approaches presented in this paper did not improve the
previous best known solution values, GA2 results are highly comparable with other
methods, as can be seen from Tables 3 and 4.

7. CONCLUSIONS

In this paper, evolutionary heuristic algorithms for two generalizations of the
well known vertex coloring problem (VCP), namely the bandwidth coloring (BCP) and
the bandwidth multicoloring (BMCP) problems, are presented.

GAs use integer encoding, one – point crossover and the fine-grained
tournament selection (FGTS). The idea of frozen genes is used in both algorithms to
increase the diversity of genetic material. The initial population is generated to be
feasible. Genetic operators preserve the feasibility of solutions, so incorrect individuals
do not appear throughout all generations. The caching technique additionally improves
the computational performance of GA1.

Proposed GA1 has achieved much better solution than the calculated upper
bound for a given problem, and GA2 has significantly improved the solutions obtained
using GA1. Computational experiments on GEOM instances demonstrate the robustness
of the proposed algorithms with respect to the solution quality and running time.
Comparisons with the results from the literature show the appropriateness of applying the
proposed algorithm components.

This work can be extended in several ways. Based on the results, it seems that
the proposed GAs have potential to be useful metaheuristics for solving other similar
problems. The second extension can be a parallelization of GA2 and testing on more
powerful multiprocessor computer systems.

REFERENCES

[1] Anderson, L.G., “A simulation study of some dynamic channel assignment algorithms in a
high capacity mobile telecommunications system”, IEEE Transactions on Communications,
21 (1973) 1294–1301.

[2] Avanthay, C., Hertz, A., and Zufferey, N., “A variable neighborhood search for graph
coloring”, European Journal of Operational Research, 151 (2) (2003) 379–388.

[3] Blöchliger, I., and Zufferey, N., "A graph coloring heuristic using partial solutions and a
reactive tabu scheme", Computers and Operations Research, 35 (3) (2008) 960–975.

[4] Bouchard, M., Čangalović, M., and Hertz, A., "On a reduction of the interval coloring
problem to a series of bandwidth coloring problems", Journal of Scheduling, 13 (6) (2010)
583-595.

[5] Brelaz, D., „New methods to color the vertices of a graph“, Communications Of The ACM, 22
(4) (1979) 251–256.

 Jasmina Fijuljanin / GA for the BMCP 245

[6] Chams, M., Hertz, A., and De Werra, D., “Some experiments with simulated annealing for
coloring graphs”, European Journal of Operational Research, 32 (2) (1987) 260–266.

[7] Chiarandini, M., and Stützle, T., An application of iterated local search to graph coloring, in:
D. S. Johnson (ed.), Computational Symposium on Graph Coloring and its Generalizations,
2002, 112–125.

[8] Chiarandini, M., and Stützle, T., "Stochastic local search algorithms for graph set T-colouring
and frequency assignment", Springer Science + Business Media, 12 (2007) 371–403.

[9] Chiarandini, M., Dumitrescu, I., and Stützle, T., “Stochastic local search algorithms for the
graph colouring problem”, in T.F. Gonzalez (ed.), Handbook of Approximation Algorithms
and Metaheuristics, Chapman & Hall/CRC, Boca Raton,FL,USA, 2007, 1-17.

[10] Christofides, N., “An algorithm for the chromatic number of a graph”, The Computer Journal,
14 (1) (1971) 38–39.

[11] Dorne, R., and Hao, JK., "A new genetic local search algorithm for graph coloring", PPSN 98,
Lecture Notes In Computer Science, Berlin: Springer, 1498 (1998) 745-760.

[12] Dorne, R., and Hao, J.K., “Tabu search for graph coloring, t-colorings and set t-colorings” in:
S. Voss (ed.), Meta-Heuristics Advances and Trends in Local Search Paradigms for
Optimization, Kluwer, 1998, 77-92.

[13] Eraghi, A.E., Torkestani, J.A., and Meybodi, M.R., „Solving the bandwidth multicoloring
problem: a cellular learning automata approach“, Proceedings Of the 2009 International
Conference On Machine Learning And Computing, Perth,Australia, 2009.

[14] Fijuljanin, J., "Genetic algorithm for the bandwidth coloring problem and its application in
teacing", Master thesis (in Serbian), Faculty of Matematics, University of Belgrade, 2010.

[15] Fleurent, C., and Ferland, J.A., “Object-oriented implementation of heuristic search methods
for graph coloring, maximum clique, and satisfiability”, Cliques, Coloring, and Satisfiability:
2nd DIMACS Implementation Challange, 1993, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, (26) (1996) 619–652.

[16] Galinier, P., and Hao, J.K., “Hybrid evolutionary algorithms for graph coloring”, Journal of
Combinatorial Optimization, 3 (4) (1999) 379–397.

[17] Hertz A., and De Werra D., “Using tabu search techniques for graph coloring”, Computing, 39
(4) (1987) 345–351.

[18] Hertz, A., Plumettaz, A., and Zufferey, N., “Variable space search for graph coloring”,
Discrete Applied Mathematics, 156 (13) (2008) 2551–2560.

[19] Holland, J., Adaptation in Natural and Artificial Systems, The University of Michigan Press
(1975).

[20] Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C., “Optimization by simulated
annealing an experimental evaluation; part II, graph coloring and number partitioning”
Operations Research, 39 (3) (1991) 378–406.

[21] Kratica, J., Čangalović, M., and Kovačević-Vujčić, V., "Computing minimal doubly resolving
sets of graphs", Computers & Operations Research, 36 (7) (2009) 2149-2159.

[22] Kratica, J., Kovačević-Vujčić, V., and Čangalović, M., "Computing strong metric dimension
of some special classes of graphs by genetic algorithms", Yugoslav Journal of Operations
Research, 18 (2) (2008) 143-151.

[23] Kratica, J., Kovačević-Vujčić, V., and Čangalović, M., "Computing the metric dimension of
graphs by genetic algorithms", Computational Optimization and Applications, 44 (2) (2009)
343-361.

[24] Kratica, J., Milanović, M., Stanimirović, Z., and Tošić, D., "An evolutionary based approach
for solving a capacitated hub location problem", Applied Soft Computing, DOI:
10.1016/j.asoc.2010.05.035.

[25] Lim, A., Lou, Q., Rodrigue,s B., and Zhu, Y., “Heuristic methods for graph coloring
problems”, in: Proceedings of the 2005 ACM Symposium on Applied Computing, Santa Fe,
NM, 2005, 933–939.

 Jasmina Fijuljanin / GA for the BMCP 246

[26] Lim, A., Zhang, X., and Zhu, Y., “A hybrid methods for the graph coloring and its related
problems”, in: Proceedings of MIC2003: The Fifth Metaheuristic International Conference,
Kyoto, Japan, 2003.

[27] Lü, Z., and Hao, J.K., "A memetic algorithm for graph coloring", European Journal of
Operational Research, 203 (1) (2010) 241–250.

[28] Malaguti, E., “The vertex coloring problem and its generalizations“, Dottorato di Ricerca in
Automatica e Ricerca Operativa, Universita degli studi di Bologna, Bologna, 2009.

[29] Malaguti, E., and Toth, P., "An evolutionary approach for bandwidth multicoloring problems",
European Journal of Operational Research, 189 (2008) 638–651.

[30] Malaguti, E., Monaci, M., and Toth, P., "A metaheuristic approach for the vertex coloring
problem", INFORMS Journal on Computing, 20 (2) (2008) 302-320.

[31] Marti, R., Gortazar, F., and Duarte, A., “Heuristics for the bandwidth coloring problem”,
2009.

[32] Matić, D., "A genetic algorithm for composing music", Yugoslav Journal of Operations
Research, 20 (1) (2010) 157-177.

[33] Phan, V., and Skiena, S., “Coloring graphs with a general heuristic search engine”, in: [38],
2002, 92–99.

[34] Porumbel, C.D., Hao, J.K., and Kuntz, P., “A search space “cartography” for guiding graph
coloring heuristics”, Computers and Operations Research, 37 (4) (2010) 769–778.

[35] Prestwich, S., “Constrained bandwidth multicoloration neighborhoods”, in: [38], 2002, 126–
133.

[36] Prestwich, S., “Generalized graph colouring by a hybrid of local search and constraint
programming”, Technical Report, Cork Constraint Computation Center, Ireland, 2005.

[37] Resende, M.G.C., and Ribeiro, C.C., “Greedy randomized adaptive search procedures”,
Handbook of Metaheuristic, Kluwer Academic Publishers, 2003, 219–249.

[38] Trick, M.A., Computational Symposium: Graph Coloring and its Generalization, Cornell
University, Ithaca,NY, 2002. <http://mat.gsia.cmu.edu/COLOR02/>.

[39] Welsh, D.J.A., and Powell, M.B., “An upper bound for the chromatic number of a graph and
its application to timetabling problems”, The Computer Journal, 10 (1) (1967) 85–86.

