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Abstract. Ethanol is an important biogenic volatile organic
compound, which is increasingly used as a fuel for motor
vehicles; therefore, an improved understanding of its atmo-
spheric cycle is important. In this paper we use three sets
of observational data, measured emissions of ethanol from
living plants, measured concentrations of ethanol in the at-
mosphere and measured hydroxyl concentrations in the at-
mosphere (by methyl chloroform titration), to make two in-
dependent estimates related to the rate of cycling of ethanol
through the atmosphere. In the first estimate, simple calcula-
tions give the emission rate of ethanol from living plants as
26 (range, 10–38) Tg yr−1. This contributes significantly to
the total global ethanol source of 42 (range, 25–56) Tg yr−1.
In the second estimate, the total losses of ethanol from the
global atmosphere are 70 (range, 50–90) Tg yr−1, with about
three-quarters of the ethanol removed by reaction with hy-
droxyl radicals in the gaseous and aqueous phases of the at-
mosphere, and the remainder lost through wet and dry de-
position to land. These values of both the source of ethanol
from living plants and the removal of atmospheric ethanol via
oxidation by hydroxyl radicals (derived entirely from obser-
vations) are significantly larger than those in recent literature.
We suggest that a revision of the estimate of global ethanol
emissions from plants to the atmosphere to a value compara-
ble with this analysis is warranted.

1 Introduction

Ethanol is a widely used organic compound, best known for
its role in alcoholic beverages and as a fuel additive or exten-
der. It is also recognised as a minor biogenic volatile organic
compound (BVOC) in the atmosphere. Since the first atmo-

spheric measurements of ethanol made by Snider and Daw-
son (1985) in the United States and Jonsson et al. (1985) in
Sweden, there have been limited observations of ethanol be-
cause of its low atmospheric mixing ratio and the difficulties
associated with its analysis. There are also large regional dif-
ferences in the atmospheric mixing ratios of ethanol due to
the wide variation in biogenic and anthropogenic contribu-
tions (Naik et al., 2010).

The paucity of atmospheric measurements of ethanol mix-
ing ratios and emissions makes it difficult to precisely quan-
tify its sources and sinks. To date, three summaries of the
global atmospheric budget of ethanol have been published
(Singh et al., 2004; Millet et al., 2010; Naik et al., 2010),
although only Naik et al. (2010) present a detailed analysis
of the atmospheric sources and sinks of ethanol. These stud-
ies agree that the largest atmospheric source of ethanol is
from emissions by living plants, with smaller contributions
from plant litter, biomass burning, atmospheric chemistry
and anthropogenic production. The major removal process
for ethanol from the atmosphere is oxidation by hydroxyl
radicals (qOH). Wet deposition and dry deposition consti-
tute smaller sinks. Naik et al. (2010) found that the ethanol
mixing ratios predicted by their global chemical transport
model for the continental boundary layer (CBL) were sig-
nificantly smaller than measured values – suggesting a large
missing source of ethanol in the CBL. Naik et al. (2010)
identified that an in situ source of ethanol of 10 pptv day−1

(29.3 Tg yr−1) could bring the model and observations into
alignment. Naik et al. (2010) explored whether this rate of
atmospheric chemical production of ethanol was possible,
and concluded not. Thus, a major non-atmospheric source
of ethanol is missing.
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Fig. 1. Scaled annual estimates of ethanol emissions from plants based on the ethanol emission fluxes available in the literature. References
area Fukui and Doskey (1998),b Kirstine et al. (1998),c Helmig et al. (1999),d Holzinger et al. (2000),e Schade and Goldstein (2001),
f Grabmer et al. (2006),g Rottenberger et al. (2008).

The arguments presented here, consistent with the sugges-
tion of Naik et al. (2010), are that previous global atmo-
spheric budgets of ethanol underestimate the total ethanol
sources and sinks, and that ethanol production from living
plants and/or anthropogenic sources may be considerably
larger than estimated in recent budgets. For this analysis, a
compilation has been made of all of the plant emission mea-
surements and the atmospheric ethanol measurements found
in the literature. In this study, we more than double the
database of ethanol emission fluxes from vegetation used by
Naik et al. (2010). The inclusion of these extra studies allows
the consideration of the effects of root flooding and plant
stress on the emission of ethanol from plants, not included
in the Naik et al. (2010) paper.

2 Ethanol emissions from plants to the atmosphere and
the sources of atmospheric ethanol

When plants experience conditions where sufficient oxy-
gen is unavailable for normal (aerobic) respiration, most
plants are able to maintain energy production by fermenta-
tion (Kimmerer and MacDonald, 1987; Kreuzwieser et al.,
2004). Ethanol is a by-product of this fermentation process.
Much of this ethanol is metabolised within the plant, but a
portion is emitted from the plant’s leaves or stems to the at-
mosphere (MacDonald and Kimmerer, 1993). Ethanol emis-
sions by plants are significantly enhanced under anaerobic or
stress conditions, such as frost, drought or flooding (Fukui
and Doskey, 1998; Rottenberger et al., 2008). An estimate of
the magnitude of the global ethanol source from living plants
is reliant on measurements of ethanol fluxes from plants. The
global emission of ethanol from plants is the sum over all
biomes of the products of the average emission of ethanol
from each biome (Ei) times the area of that biome (Ai).

ET =

∑
i

Ei · Ai (1)

The uncertainty in the global emission of ethanol is the result
of the combined uncertainties in each of the biome estimates.

Seven studies of ethanol emissions from plant species or
ecosystems occur in the literature (Fig. 1). We initially dis-
cuss each of these studies, which vary in design and du-
ration, and extrapolate an annual average ethanol emission
and/or range of emissions for each study. In extrapolating to
annual average emissions we have assumed zero night-time
emissions and reduced emissions in winter depending on the
biome.

In the following discussion, we initially retain the original
units of emission used by the authors, but when we combine
the data, such as in Fig. 1, we reduce the data to consistent
SI units. Throughout this study, where a standard deviation
is given, it is preceded by±, and where a range is provided it
represents notionally two standard deviations each way from
the mean. In determining global sources and sinks of ethanol,
the uncertainties in the individual components are combined
using root-sum-of-squares (RSS) analysis.

Fukui and Doskey (1998) measured ethanol emission
fluxes from a grassland ecosystem in the midwestern United
States over most of the growing season. The average of
all the ethanol fluxes measured during the study period was
206 µg m−2 h−1, with the largest fluxes occurring after a se-
vere frost event or after the plots were waterlogged follow-
ing heavy rain. Using the data of Fukui and Doskey (1998),
we estimate that for a simulated growing season in a typical
temperate region with 1000–2000 daylight hours, two water-
logged periods and one severe frost event, as observed by
Fukui and Doskey (1998), the average ethanol flux would be
0.2–0.4 g (ethanol) m−2 yr−1 (Fig. 1). Kirstine et al. (1998)
investigated BVOC emissions from a grass pasture in south-
eastern Australia and estimated a total BVOC flux of 1.9 g
(C) m−2 yr−1 over the growing season. During a hot, dry
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period in the summer, 6–21 % of the BVOC flux consisted
of ethanol. This is equivalent to an ethanol flux of 0.2–0.8 g
(ethanol) m−2 yr−1 (Fig. 1).

Two studies of ethanol emissions from coniferous plant
ecosystems have been conducted involving a pine (Pinus
ponderosa) plantation in California (Schade and Goldstein,
2001), and a spruce (Picea abies) forest in Germany (Grab-
mer et al., 2006). These two studies measured ethanol emis-
sions over 90 and 60 days, respectively, during the summer
and recorded typical diurnal patterns with a burst of ethanol
in the morning when the leaf stomata opened, a peak around
midday and a gradual decrease toward zero in the late after-
noon as the stomata closed.

Helmig et al. (1999) and Holzinger et al. (2000) measured
ethanol emissions from potted specimens of non-coniferous
trees. Since these were short-term studies conducted under
optimum growing conditions, typically observed diurnal and
seasonal variations from Schade and Goldstein (2001) and
Grabmer et al. (2006) were used to calculate the annual inte-
grated ethanol emissions shown in Fig. 1. Representative fo-
liage mass densities were taken from Guenther et al. (1994).

In a study of BVOC emissions from evergreen tree speci-
mens representative of the floodplain rainforest of the Central
Amazon, Rottenberger et al. (2008) determined daily inte-
grated ethanol fluxes for potted plants of four species during
simulated flood conditions. Temperature, PAR and humid-
ity were controlled to mimic the natural environment. Daily
integrated emission rates over the 1–2 weeks of the flooding
simulations varied from about 0–160 µmol m−2 d−1, with the
lower values occurring prior to flooding and the higher values
occurring 3–6 days after the plant pots were flooded. Large
variations in emissions occurred among the four species. If
these flooded conditions are representative of 210 days per
year, which the authors considered to be typical of forests
in this region, the annual averaged ethanol emission fluxes
of the four species would lie within a range of approximately
0.05–0.43 g (ethanol) m−2 yr−1, with the value depending on
the frequency of flood events.

Given the ranges associated with the extrapolated annual
fluxes from the measured ethanol emissions, there is little dif-
ference in the ethanol emission fluxes observed in all seven
studies in Fig. 1. We estimate that the median of the ranges of
the scaled annual fluxes of all the available ethanol emissions
from vegetation in Fig. 1 is equal to about 0.55 g m−2 yr−1.

There are two ways in which this data set could be extrapo-
lated to give a global ethanol emission estimate using Eq. (1).
In the first approach, the median of the observed emissions
could be multiplied by the global area of vegetation to give
one emission estimate. In the second approach, it could be
assumed that the individual emission studies provide infor-
mation about coherent species or regional differences in the
ethanol emissions. In this case, each of the emissions could
be multiplied by the area it is thought to represent and the
sum of these products would give a second emission esti-
mate. Because there is probably no significant difference

(taking into account the limited number of observations in
each study) in the annual average emissions derived from
measurements on the different ecosystems shown in Fig. 1,
this second approach is not pursued.

We assume that the areas of grasslands, tundra and forests
above latitudes of 60◦ have zero ethanol emissions as the
temperatures at these latitudes are likely to be too low for
significant emissions of ethanol. Also, zero emissions are as-
signed to non-flooded rainforest, cultivated land, desert and
semi-arid shrubland due to the lack of observations of ethanol
fluxes for these areas.

Using the first approach, the average emission is mul-
tiplied by the total global area (within the boundaries of
60◦ N to 60◦ S) of grasslands, coniferous and non-coniferous
forests, and seasonally-flooded tropical rainforests (Esser,
1992; Potter, 1999) to estimate a global ethanol emission
from vegetation of 26 Tg yr−1. Because of the small data
set, statistical analysis is an insufficient basis for quantify-
ing the uncertainty in the data, and judgement must be used
(Cullen and Frey, 1999). We define the range of the global
average emission in terms of the median of the lower values
of the range and the median of the higher values of the range
in Fig. 1. Thus, the range for the global emission estimate is
10–38 Tg yr−1.

In our estimation, the most serious neglect in this calcu-
lation is the omission of potential ethanol emissions from
wetlands (excluding flooded forests) and rice paddies. There
is evidence of ethanol in the soils of these systems (Metje
and Frenzel, 2005; Chawanakul et al., 2009), but there are
no measurements of ethanol emissions from wetlands or rice
paddies to the atmosphere. Such emissions would increase
the estimate of the global plant ethanol emissions to the at-
mosphere.

This study suggests that living plants are a significant
source of atmospheric ethanol, with an estimate of 26 (range,
10–38) Tg yr−1. The previous studies have estimated 6
(range, 4–8) Tg yr−1 (Singh et al., 2004), 17 Tg yr−1 (Millet
et al., 2010), and 9.2 Tg yr−1 (Naik et al., 2010) for the global
plant production of ethanol. In this study, the global plant
production of ethanol estimated from the observed emissions
is, on average, larger than that of previous studies (although
the range of the emissions includes the largest estimate of the
above studies, Millet et al., 2010).

3 Other sources of atmospheric ethanol

To understand the global cycle of ethanol, other sources as
well as plants must be quantified. Estimates are available in
the literature for ethanol emissions from plant decay, biomass
burning, atmospheric production and anthropogenic sources
(Singh et al., 2004; Millet et al., 2010; Naik et al., 2010).
Following a comprehensive review, we add two additional
sources not previously quantified: the ethanol emitted from
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Table 1. Global atmospheric sources of ethanol in Tg (ethanol) yr−1. Numbers in parentheses are estimated ranges of the sources and sinks.

Sources
(Tg yr−1)

Singh et al.
(2004)

Millet et al.
(2010)

Naik et al.
(2010)

Naik et al.
(2010)

This study
(Approach 1)

BASE SYNEOH

Living plants 6 (4–8) 17 9.2 9.2 26 (10–38)
Plant decay small 6 3 (1–6)a

Herbivory 1.6 (0.5–3)b

Biomass burning 2 (1–3) 0.07 0.47 0.47 0.8 (0.1–2)a

Soil and water 0 (0–1) ?
Anthropogenic 2 (1–2) 2 5.0 5.0 6 (2–10)b

Atmospheric 2 (1–3) 0.3 0.06 29.4 0.5 (0.05–1.5)a

Ocean 4 (3–5)c

Total sources 12 (7–17) 25 14.7 44.1 42 (25–56)

a average of the values from Singh et al. (2004), Millet et al. (2010) and Naik et al. (2010),b Kirstine and Galbally (2011),c Beale et al. (2010)

animal manure (Kirstine and Galbally, 2011) and ethanol
emitted from the ocean (Beale et al., 2010).

Ethanol is formed by the microbial fermentation of resid-
ual carbohydrates in the manure of cows (Filipy et al., 2006;
Sun et al., 2008). Using observations of such emissions from
the available literature (Filipy et al., 2006; Shaw et al., 2007;
Sun et al., 2008; Ngwabie et al., 2008; Chung et al., 2010),
we estimate that, on a global scale, dairy cows and confined
beef cattle and their manure produce about 1.6 (range, 0.5–
3) Tg yr−1 of ethanol.

In a recent study by Beale et al. (2010) in the Atlantic
Ocean, the ethanol concentrations of surface ocean water
were found to be in the range of 2 to 33 nM, with maxi-
mum concentrations occurring in pre-dawn samples and the
smallest concentrations in the afternoon. Regional varia-
tions in ethanol concentration were noted, suggesting sig-
nificant variation in ethanol production in the ocean surface
layer. From these measurements, Beale et al. (2010) esti-
mated a global annual ethanol source from the ocean of ap-
proximately 4 (range, 3–5) Tg yr−1.

The estimates of the various sources of atmospheric
ethanol are gathered in Table 1. We estimate the total global
ethanol source to be 42 (range, 25–56) Tg yr−1. This pro-
vides our first estimate of the rate of ethanol cycling through
the atmosphere. The large uncertainty associated with this
estimate is a consequence of the existence of only seven stud-
ies of ethanol emission fluxes from plants, some of short du-
ration.

Our estimate of the global ethanol source, based on mea-
sured ethanol emission fluxes, is equal to the global ethanol
turnover of 44.0 Tg yr−1 derived by Naik et al. (2010) in
their SYNEOH model, where they introduced an additional
29.3 Tg yr−1 source into the atmosphere to bring the model
and observations into alignment. The distinction is that, in
our study, the additional production of ethanol was a con-

sequence of large emissions from living plants, rather than
from secondary atmospheric precursors.

The global production of ethanol from plants is hard to
determine with high precision because it is strongly influ-
enced by anaerobic or other stress conditions that are diffi-
cult to simulate without sufficient long-term studies of fluxes
from representative biomes. Thus, successful global mod-
elling is likely to require constraints from the ethanol sinks
derived from measurements of ethanol mixing ratios in the
atmosphere.

4 The magnitude of the ethanol sink in the atmosphere

We estimate the global rate of ethanol removal from the at-
mosphere based on observed ethanol concentrations in the
atmosphere. Assuming steady-state conditions for ethanol
in the atmosphere over the course of a year, the total global
annual sink for ethanol should be equal to the total global an-
nual source. Therefore, a determination of the magnitude of
global ethanol removal processes may be used as a check on
the magnitude of the global ethanol sources.

4.1 Ethanol concentrations in the atmosphere

Ethanol is a minor BVOC in the global troposphere. The
available body of ethanol concentration measurements in the
atmosphere are analysed here. We note that various ob-
servations of atmospheric ethanol are presented in Naik et
al. (2010) and referenced to earlier papers (Warneke et al.,
2005; Singh et al., 2006, 2009; Murphy et al., 2007), but the
ethanol data are not presented in these earlier papers. We
assume that ethanol measurements were made by the same
authors alongside the other measurements reported in these
papers, and these ethanol measurements are presented for the
first time in Naik et al. (2010).
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Table 2a.Mixing ratios of ethanol in the continental boundary layer.

Region Latitude Duration Mixing Ratios References
of Study (nmol mol−1)

Coastal

Trinidad Head, California 41◦ N Apr–May 0.11b Millet et al. (2004)
Chebogue Point, Canada 44◦ N Jul–Aug 0.11b Millet et al. (2006)
Galveston Bay, Texas, USA 29–30◦ N Aug–Sep 0.87a Gilman et al. (2009)
Granite Bay, California 39◦ N Jul–Sep 1.90c Naik et al. (2010)d

Rural/remote

Rural sites, near Tucson, Arizona 32◦ N Aug–Sep 0.40a Snider and Dawson (1985)
Recreational reserve, Stockholm 59◦ N May–Jun 2.6a Jonsson et al. (1985)
Rural site, Alabama 32◦ N 2.3a Fehsenfeld et al. (1992)
Forest plantation, Alabama 32◦ N Jun–Jul 1.2a Goldan et al. (1995a)
Wank Mountains, Germany 48◦ N Jul–Aug 0.24a Leibrock and Slemr (1997)
Rural site, Tennessee 36◦ N Jun 0.38a Riemer et al. (1998)
Mesa near Boulder, Colorado 40◦ N Feb 2.6a Goldan et al. (1995b)
Sierra Nevada pine forest 39◦ N Jul–Sep 2.5a Schade and Goldstein (2001)
INTEX-NA Study, USA/Canada 27–53◦ N Jul–Aug 0.40c Naik et al. (2010)d

Remote spruce forest, Germany 50◦ N Jul–Aug 0.7a Grabmer et al. (2006)
INTEX-B Study, USA/Mexico 15–60◦ N Mar 0.30c Naik et al. (2010)d

High alpine site, Switzerland 47◦ N Summer 0.12a Legreid et al. (2008)
High alpine site, Switzerland 47◦ N Winter 0.31a Legreid et al. (2008)

a mean of measurements,b median of measurements,c mean of measurements from surface to 2 km,d supplied by other authors

Table 2b. Mixing ratios of ethanol in the urban continental boundary layer.

Region Latitude Duration Mixing Ratios
of Study (nmol mol−1) References

Urban

Tucson, Arizona, USA 32◦ N Feb–Sep 3.3a Snider and Dawson (1985)
Osaka, Japan 35◦ N May–Dec 8.2a Nguyen et al. (2001)
Pittsburg, USA 40◦ N Jan–Feb 0.99b Millet et al. (2005)
Pittsburg, USA 40◦ N Jul–Aug 1.7b Millet et al. (2005)
Wuppertal, Germany 51◦ N Aug–Oct 0.78a Niedajadlo et al. (2007)
Zürich, Switzerland 47◦ N Summer 3.9a Legreid et al. (2007)
Zürich, Switzerland 47◦ N Winter 7.5a Legreid et al. (2007)
Brazil (various locations) 13–30◦ S 1 min–4 h 162a Anderson (2009)

a mean of measurements,b median of measurements,c mean of measurements from surface to 2 km,d supplied by other authors

In the non-urban CBL of the Northern Hemisphere (NH),
the mixing ratio of ethanol has been measured in the range
from 0.1 to 2.6 nmol mol−1, with the lower values being in
remote sites (Table 2). The larger mixing ratios of ethanol
in rural areas, when compared with those of the remote or
coastal troposphere, indicate the presence of a strong source
of ethanol in rural regions of the CBL, probably mostly bio-
genic. Using the arithmetic mean of the non-urban obser-
vations in Table 2, an ethanol mixing ratio of 1 nmol mol−1

(range, 0.6–1.8 nmol mol−1) is estimated to be representa-

tive of the relatively unpolluted CBL. On the basis of similar
ratios of vegetation to total land area, we assume that the
ethanol mixing ratio in the CBL of the Southern Hemisphere
(SH) is the same as that in the NH, namely 1 nmol mol−1.
The ethanol mixing ratios of urban areas (Table 2) are not
included in this assessment because the global urban area ac-
counts for less than 0.7 % of the total global land area (Potere
et al., 2009).

Ethanol mixing ratios in the free troposphere (FT), in-
cluding the snow-covered Arctic, indicate a range of<0.05
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Table 3. Mean mixing ratios of ethanol in the free troposphere and marine boundary layer.

Region Duration
of Study

Mixing Ratios
(nmol mol−1)

References

Free Troposphere

Pacific Ocean
(10◦ S–36◦ N)

Feb–Mar 0–0.2
median = 0.05

Singh et al. (1995)

Atlantic Ocean
(40–65◦ N)

Oct–Nov <0.050 Singh et al. (2000)

Pacific Ocean
(30◦ S–30◦ N)

Mar–Apr <0.050 Singh et al. (2001)

Alert, Nunavut,
Canada (82.5◦ N)

Feb–Mar
(dark)

0.099±0.091 Boudries et al. (2002)

Alert, Nunavut,
Canada (82.5◦ N)

Apr–May
(daylight)

0.036±0.031 Boudries et al. (2002)

Pacific Ocean
(14–40◦ N)

Feb–Apr 0.072a Singh et al. (2004)

Marine Boundary Layer

Pacific Ocean
(14–40◦ N)

Feb–Apr 0.17±0.25b Singh et al. (2004)

North Atlantic
(41–44◦ N)

Jul–Aug 0.23±0.20 de Gouw et al. (2005)

Gulf of Mexico,
USA (25–28◦ N)

Jul–Aug 0.036a Gilman et al. (2009)

North Atlantic
(42–44◦ N)

Jul–Aug 0.32±0.43 Naik et al. (2010)c

a mean of measurements,b mean of measurements from surface to 2 km,c supplied by other authors

to 0.1 nmol mol−1 (Singh et al., 1995, 2004; Boudries et
al., 2002) (Table 3). In this study, we use the median of
the measurements provided by Singh et al. (1995), namely
0.05 nmol mol−1, as an estimate of the average mixing ra-
tio of ethanol in the FT. There is no significant difference
between the median of this data set and that of Singh et
al. (2004). It appears from the available observations that
the mixing ratio of ethanol in the FT is about twenty times
less than that in the relatively unpolluted CBL.

Mean ethanol mixing ratios in the marine boundary layer
(MBL) vary from 0.036 to 0.32 nmol mol−1 (Singh et al.,
2004; de Gouw et al., 2005; Gilman et al., 2009; Naik et
al., 2010) (Table 3). An analysis of the results from aircraft
campaigns by Naik et al. (2010) found that the ethanol mix-
ing ratio decreased by a factor of about four from the sur-
face to an altitude of 5 km for measurements taken during
the INTEX-NA and INTEX-B campaigns, but other studies
identified smaller vertical gradients, or even reversed vertical
gradients, possibly due to strong regional convective influ-
ences. Using the vertical atmospheric profiles of ethanol sug-

gested by the measurements of Singh et al. (2004) and Naik
et al. (2010), we take the mixing ratio of ethanol in the lower
latitude band of the MBL of the NH to be three times the
mixing ratio of ethanol in the FT, namely 0.15 nmol mol−1.

The ethanol mixing ratio in the FT and the MBL of the
SH is assumed to be half of that in the NH at all latitudes
(Table 4), with an upper limit equal to that in the NH and a
lower limit equal to one-fifth of that in the NH.

In urban areas, where a large proportion of ethanol-
blended fuels is utilised in motor vehicles, the atmospheric
mixing ratios of ethanol are appreciably enhanced (Ander-
son, 2009; and references therein). For the 27 Brazilian
sites reviewed by Anderson (2009), the mean mixing ratio of
ethanol was 162–228 nmol mol−1. This mean mixing ratio is
160 times larger than the median ethanol mixing ratio in the
CBL. At present, urban atmospheric ethanol measurements
are few in number and almost non-existent in the SH.
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W. V. Kirstine and I. E. Galbally: The global atmospheric budget of ethanol revisited 551

Table 4. Ethanol removal rates from the various regions of the atmosphere by reaction with hydroxyl radicals, and the information used for
the calculations.

Division CBL MBL FT FT CBL MBL FT FT

Cell Latitude 90–30◦ 90–30◦ 90–30◦ 90–30◦ 30–0◦ 30–0◦ 30–0◦ 30–0◦

Pressure range (mb) 1000–900 1000–900 900–500 500–200 1000–900 1000–900 900–500 500–200

Northern Hemisphere

Temperature (K) 282 282 261 230 288 288 276 242
[•OH] (radicals cm−3) 1.1×106 5.8×105 5.8×105 5.2×105 1.1×106 1.3×106 1.3×106 1.1×106

[C2H5OH] (nmol mol−1) 1 0.15 0.05 0.05 1 0.15 0.05 0.05
Removal rate (Tg yr−1) 11 0.90 2.3 1.5 6.3 2.9 5.3 3.3

Southern Hemisphere

Temperature (K) 282 282 261 230 288 288 276 242
[•OH] (radicals cm−3) 1.1×106 5.5×105 5.5×105 5.7×105 1.1×106 1.5×106 1.5×106 1.3×106

[C2H5OH] (nmol mol−1) 1 0.08 0.025 0.025 1 0.08 0.025 0.025
Removal rate (Tg yr−1) 4.0 0.69 1.1 0.82 4.9 1.9 3.1 1.9

4.2 Ethanol removal from the atmosphere

The major sink for ethanol in the atmosphere is its reac-
tion with hydroxyl radicals (qOH) (Naik et al., 2010). The
global loss rate of ethanol is estimated using the observed
atmospheric mixing ratios of ethanol in the CBL, MBL and
the FT, and the global distributions ofqOH concentrations
with latitude and height determined by Prinn et al. (2001) us-
ing the methyl chloroform titration method. Since theqOH
concentrations vary significantly with latitude and altitude,
we divide the troposphere into 3 vertical boxes and 2 latitu-
dinal bands in each hemisphere (Table 4) to deal with any
covariance between temperatures,qOH concentrations and
ethanol concentrations on these spatial scales. The lower
boxes (1000–900 mb) are further sub-divided into the MBL
and the CBL, which are assigned different concentrations of
ethanol. The ethanol loss rate in each box is determined
using the temperature-dependent reaction rate constant ex-
pression derived by Jiḿenez et al. (2003). Separate calcu-
lations are made for each box, and the loss rates are then
combined to give a single representative loss rate for the FT,
MBL or CBL in the global troposphere. The ranges of the
ethanol losses are determined from the estimated uncertainty
in the ethanol concentrations in each division of the tropo-
sphere and the uncertainties provided by Prinn et al. (2001)
for qOH concentrations and Jiḿenez et al. (2003) for reaction
rate constants.

The hydroxyl radical is the most reactive species with dis-
solved VOCs in cloud water (Herrmann et al., 1999). Ethanol
has an aqueous-phase reaction rate constant withqOH of
(1.3± 0.7)× 109 l mol−1 s−1 (Ervens et al., 2003) at 276 K,
the average temperature of clouds (Lelieveld and Crutzen,
1991). Using data from Lelieveld et al. (1989), the mass of

cloud water is estimated to be 38 Pg in the NH and 42 Pg
in the SH. The qOH concentration in the aqueous-phase of
clouds is taken as (7± 5)× 10−14 mol l−1 (Herrmann et al.,
2000; Leriche et al., 2000). The global loss rate due toqOH
oxidation of ethanol in the aqueous phase of the atmosphere
is calculated as 0.4 (range, 0.2–0.8) Tg yr−1, with approxi-
mately equal contributions from each hemisphere.

In the gaseous and liquid phases of the troposphere, an
ethanol loss rate with respect toqOH of 53 (range, 34–
72) Tg yr−1 is estimated. The higher loss rate of ethanol in
the CBL, in comparison to the FT and MBL, is the conse-
quence of the higher ethanol mixing ratio in the CBL.

As well as this loss of ethanol by reaction withqOH,
ethanol is removed from the atmosphere by dry deposition
and wet deposition (Naik et al., 2010). It is assumed that any
ethanol that is transferred to the terrestrial surface through
deposition processes will be lost through soil water absorp-
tion and subsequent microbial action. Ethanol that is trans-
ferred to the ocean through deposition represents a loss to
the atmosphere, but a source to the ocean. Since the ocean
is considered as a net source of ethanol to the atmosphere
(Beale et al., 2010), only deposition over land is included as
an atmospheric loss.

Ethanol removal rates for dry deposition and wet depo-
sition are calculated using approaches similar to those used
in Galbally and Kirstine (2002). Since representative val-
ues for the dry deposition velocity of ethanol are not avail-
able in the literature, a deposition velocity of 0.16 cm s−1 is
used, equal to that derived for methanol by von Kuhlmann
et al. (2003). For an average height of the CBL of 1000 m,
the global ethanol loss by dry deposition is 14 (range, 7–
22) Tg yr−1 (Table 5). Loss of ethanol by wet deposi-
tion occurs in the CBL through rainfall, taken here to be
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Table 5. Global atmospheric sinks of ethanol in Tg (ethanol) yr−1.
Numbers in parentheses are the estimated ranges of the sinks.

Sinks (Tg yr−1) Naik et al. (2010) This study
BASE

Atmospheric oxidation 9.6 53 (34–72)
Dry deposition 3.7 14 (7–22)
Wet deposition 1.4 3 (2–4)
Total Sinks 14.7 70 (50–90)

800 mm yr−1 (Sanderson, 1990). A Henry’s law constant of
483 mol l−1 atm−1 is used, appropriate to the average tem-
perature of the CBL. Global wet deposition of ethanol is cal-
culated to be 3 (range, 2–4) Tg yr−1 (Table 5).

Calculations based on the observed atmospheric concen-
trations of ethanol indicate a global removal rate of 53 (range,
34–72) Tg yr−1 by hydroxyl radicals, and smaller removal
rates of 14 (range, 7–22) Tg yr−1 and 3 (range, 2–4) Tg yr−1

due to dry deposition and wet deposition, respectively, giv-
ing a global loss rate of 70 (range, 50–90) Tg yr−1 (Table 5).
Although the overlap of the ranges of ethanol emissions and
losses is not large, this atmospheric ethanol loss rate estimate
is not significantly larger than the ethanol source from plants
estimated earlier.

The ratio of the three removal processes (qOH oxida-
tion, dry deposition and wet deposition) calculated here is
75:21:4 %. In comparison, Millet et al. (2010) indicated that
77 % of the ethanol in the atmosphere is removed byqOH
oxidation and the remaining 23 % is removed by dry and wet
deposition, but they do not explicitly provide removal rates.
Naik et al. (2010) calculated a ratio of 65:25:10 % for re-
moval by OH oxidation, dry deposition and wet deposition,
respectively.

In this study, the global ethanol sink is calculated from
measured concentrations of ethanol and hydroxyl radicals
(along with contributions from wet and dry deposition). This
is a slightly different approach to Naik et al. (2010) who in-
creased sources within their model by 29.3 Tg yr−1 to get a
better fit of modelled and observed concentrations. Within
the Naik et al. (2010) study, it does not appear that the
sources were completely adjusted so that modelled atmo-
spheric concentrations fitted the measured global average
concentration.

In this study, no attempt is made to develop a global atmo-
spheric model for ethanol that balances the ethanol sources
and sinks. Instead, the sources and sinks are estimated in-
dependently using the atmospheric measurements available
in the literature. From our calculations, the global ethanol
sink of 70 (range, 50–90) Tg yr−1 has only a small extent
of overlap with the global ethanol source of 42 (range, 25–
56) Tg yr−1. The reason for this is not clear, but may be a
consequence of the lack of ethanol flux measurements from

wetlands, rice paddies, non-flooded tropical forests, culti-
vated land, desert and semi-arid shrubland. Equally, it may
be due to the scarcity of representative ethanol flux and at-
mospheric concentration data.

The question that occurs is whether or not the ethanol
sources and sinks in the atmosphere are in balance. Given the
short lifetime of ethanol in the atmosphere (approximately
3 days), and the fact that the ethanol sink is first order de-
pendent on atmospheric ethanol concentrations, we would
expect over a period of a month or so that the sources and
sinks would be in balance. However, due to the heterogene-
ity of the sources in space and time and the short atmospheric
lifetime, it is expected that the atmospheric concentrations
of ethanol will have more variance in space and time than
other longer lived atmospheric species, with the variability
of ethanol being more comparable with that of water vapour
or radon (Junge, 1974).

5 Conclusions

The atmospheric ethanol cycle is examined from the point
of view of what information can be obtained solely from the
available observations. Calculations, based on the available
measurements of plant/atmosphere emissions of ethanol,
suggest an emission rate of ethanol from living plants of
26 (range, 10–38) Tg yr−1. This gives a total global ethanol
source of 42 (range, 25–56) Tg yr−1. The large uncertainties
associated with these estimates are a consequence of the ex-
istence of only seven studies of ethanol emission fluxes from
plants, some of short duration. The most serious neglect in
this estimate is the omission of potential ethanol emissions
from wetlands (excluding flooded forests) and rice paddies
where there are no measurements.

Within the troposphere of the Northern Hemisphere,
ethanol has an observed mixing ratio of about 1 nmol mol−1

in the continental boundary layer, 0.15 nmol mol−1 in the
marine boundary layer, and 0.05 nmol mol−1 in the free tro-
posphere. Ethanol mixing ratios in the Southern Hemisphere
are less well defined.

The global removal rate of ethanol from the troposphere
is estimated from observed atmospheric ethanol concentra-
tions as 53 (range, 34–72) Tg yr−1 due to reaction with hy-
droxyl radicals, and 14 (range, 7–22) Tg yr−1 and 3 (range,
2–4) Tg yr−1 due to dry deposition and wet deposition, re-
spectively. Given the uncertainties in these estimates, and
the short lifetime of ethanol in the atmosphere (∼3 days), the
total ethanol sinks cannot be considered significantly differ-
ent from the total ethanol sources.

These two independent estimates of the annual cycling of
ethanol through the atmosphere are significantly larger than
those in recent literature. Naik et al. (2010) recently pre-
sented the first global atmospheric budget for ethanol based
on a model study; however, they indicated that “current lev-
els of ethanol measured in remote regions are an order of
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magnitude larger than those in the model, suggesting a ma-
jor gap in understanding”. We suggest that this discrepancy
results from an under-estimation of the amount of ethanol
produced from living plants.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/12/545/2012/
acp-12-545-2012-supplement.pdf.

Edited by: P. Monks
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