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ON THE LONGEST PATH
IN A RECURSIVELY PARTITIONABLE GRAPH

Julien Bensmail
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Abstract. A connected graph G with order n ≥ 1 is said to be recursively arbitrarily parti-
tionable (R-AP for short) if either it is isomorphic to K1, or for every sequence (n1, . . . , np) of
positive integers summing up to n there exists a partition (V1, . . . , Vp) of V (G) such that each
Vi induces a connected R-AP subgraph of G on ni vertices. Since previous investigations, it
is believed that a R-AP graph should be “almost traceable” somehow. We first show that the
longest path of a R-AP graph on n vertices is not constantly lower than n for every n. This
is done by exhibiting a graph family C such that, for every positive constant c ≥ 1, there is a
R-AP graph in C that has arbitrary order n and whose longest path has order n−c. We then
investigate the largest positive constant c′ < 1 such that every R-AP graph on n vertices
has its longest path passing through n · c′ vertices. In particular, we show that c′ ≤ 2

3
. This

result holds for R-AP graphs with arbitrary connectivity.
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1. INTRODUCTION

Let n ≥ 1 be a positive integer. A n-graph is a graph whose order, i.e. its num-
ber of vertices, is n. Throughout this paper, we denote by LP (G) the order of the
longest path in a given connected graph G. We say that G is recursively arbitrarily
partitionable (R-AP for short) if and only if one of the following two conditions hold.

— The graph G is an isolated vertex.
— For every sequence (n1, . . . , np) of positive integers that performs a partition of n,

there exists a partition (V1, . . . , Vp) of V (G) such that G[Vi] is a connected R-AP
subgraph of G on ni vertices for all i ∈ {1, . . . , p}.

The property of being R-AP was introduced in [7] as a strengthened version of
the property of being arbitrarily partitionable. The property of being AP was itself

c© AGH University of Science and Technology Press, Krakow 2013 631

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26812097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


632 Julien Bensmail

introduced to deal with a problem of resource sharing among an arbitrary number of
users (see [1, 2, 5, 8] for further details).

R-AP graphs have been mainly studied in the context of some simple classes of
graphs like trees [7], a family of unicyclic 1-connected graphs called suns [6], and a
class of 2-connected graphs called balloons [4,7]. Although these works did not lead to
numerous general properties of R-AP graphs, they however suggest that the property
of being R-AP is even closer to traceability1) than the one of being AP. For instance,
we know that if T is a R-AP n-tree, then LP (T ) ≥ n − 2. It was also empirically
observed2) that if B is a R-AP n-balloon, then LP (B) ≥ n− 4. Such bounds do not
exist regarding AP trees and AP balloons since the structure of these graphs is much
less predictable (see [3] and [4], respectively).

Regarding these observations, one could naively think that there should exist a
small positive constant c ≥ 1 such that LP (G) ≥ n− c for every R-AP n-graph G. In
this work, we first show, in Section 3, that such a constant does not exist by exhibiting
a class C of R-AP graphs such that for every c there exists a n-graph C in C such that
LP (C) = n− c for some n. The graphs of C are 1-connected, but an equivalent result
regarding 2-connected graphs is derived by slightly modifying our construction. We
then investigate, in concluding Section 4, the greatest constant c′ ≤ 1 such that every
R-AP n-graph has its longest path passing through n · c′ of its vertices. In particular,
we exhibit another family of graphs showing that c′ ≤ 2

3 . This upper bound also holds
regarding `-connected R-AP graphs, no matter what is the value of `.

2. DEFINITIONS AND PRELIMINARY RESULTS

First observe that adding edges to a R-AP graph does not make it loose its property
of being R-AP.

Remark 2.1. If G is spanned by a R-AP subgraph, then G is R-AP.

Because every path is clearly R-AP, the next result follows by Remark 2.1.

Remark 2.2. Every traceable graph is R-AP.

Determining whether a n-graph G is R-AP is laborious since, according to the
original definition, one has to check whether G can be partitioned following every
partition of n. We thus usually prefer to check the following equivalent condition
which derives from the fact that a R-AP graph is partitionable into R-AP subgraphs
at will.

Remark 2.3 ([7]). A connected n-graph G is R-AP if and only if for every
λ ∈ {1, . . . , bn2 c} there exists a partition (Vλ, Vn−λ) of V (G) such that G[Vλ] and
G[Vn−λ] are connected R-AP subgraphs of G on λ and n− λ vertices, respectively.

Let us now introduce the following subclass of caterpillar graphs.

1) A traceable graph is a graph that has a Hamiltonian path.
2) Private communication.
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Definition 2.4. Let a, b ≥ 2 be two positive integers and consider three
vertex-disjoint paths u1u2, v1, . . . , va and w1, . . . , wb of order 2, a and b, respectively.
The caterpillar Cat(a, b) is the tree obtained by identifying the vertices u1, v1 and w1.

Throughout this paper, every mention to caterpillar graphs actually refers to cater-
pillars of the form Cat(a, b). Two examples of such caterpillars are given in Figure 1.
This family of caterpillars is important regarding R-AP graphs since it was proven in
[7] that most of R-AP trees are caterpillars of this kind. The authors of [7] also gave
a complete characterization of R-AP caterpillars.

Fig. 1. The caterpillars Cat(2, 3) and Cat(3, 3)

Theorem 2.5 ([7]). A caterpillar Cat(a, b) is R-AP if and only if a and b take values
in Table 1.

Table 1. Values a and b (a ≤ b) such that Cat(a, b) is R-AP

a b

2, 4 ≡ 1 mod 2
3 ≡ 1, 2 mod 3
5 6, 7, 9, 11, 14, 19
6 7
7 8, 9, 11, 13, 15

3. LONGEST PATH AND ADDITIVE FACTOR

In this section, we prove the following result.

Theorem 3.1. There does not exist a positive constant c ≥ 1 such that we have
LP (G) ≥ n− c for every R-AP n-graph G.

This is proved by exhibiting a counterexample for every possible value of c. For
this purpose, we introduce the family of connected cycles graphs.

Definition 3.2. Let k ≥ 1 and x, y ≥ 0 be three positive integers. The connected
cycles graph CCk(x, y) is the graph with the following vertices:

— Let u1 . . . ux and v1 . . . vy be paths with order x and y, respectively.
— For every i ∈ {1, . . . , k}, let aibieidiciai be a cycle with length 5.
— For every i ∈ {1, . . . , k − 1}, let wi,i+1 be a vertex.
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These vertices are linked in CCk(x, y) in the following way: uxa1, vyek ∈
E(CCk(x, y)) and we have wi,i+1ei, wi,i+1ai+1 ∈ E(CCk(x, y)) for every i ∈
{1, . . . , k − 1}.

An example of a connected cycles graph is depicted in Figure 2. Notice that
LP (CCk(1, 1)) = |V (CCk(1, 1))| − k. Thus, by showing that all graphs CCk(1, 1) are
R-AP, we can contradict the existence of the constant c mentioned in Theorem 3.1.

u1 u2 u3 a1

c1

a2

c2

w1,2

b1 b2

e1 e2 v1v2v3v4v5

d2d1

Fig. 2. The connected cycles graph CC2(3, 5)

Before proving that CCk(1, 1) is R-AP for every k, we first introduce another
graph structure we encounter while partitioning a connected cycles graph.

Definition 3.3. Let k ≥ 1 and x ≥ 0 be two positive integers. The partial con-
nected cycles graph PCCk(x) is the graph obtained by removing the vertex ek from
CCk(x, 0).

We are now ready to prove the main result of this section.

Lemma 3.4. The graph PCCk(x) is R-AP for every k ≥ 1 and x ≥ 1 such that
x 6≡ 2 mod 3. The graph CCk(x, y) is R-AP for every k ≥ 1 and x, y ≥ 1 whenever
x 6≡ 2 mod 3 or y 6≡ 2 mod 3.

Proof. The proof is by induction on k and uses the terminology introduced in Defi-
nition 3.2. For each value of k, we prove that the result is true for all possible values
of x and (possibly) y which satisfy the claim. Recall that, according to Remark 2.3,
a connected n-graph G is R-AP if and only if for every λ ∈ {1, . . . , bn2 c} we can
partition V (G) into two parts Vλ and Vn−λ inducing connected R-AP subgraphs of
G with order λ and n− λ, respectively.

Case 1. k = 1.
First, every graph PCC1(x) is R-AP since it is spanned by Cat(3, x + 1), which is
R-AP according to the assumption on x.

We now prove that every graph C = CC1(x, y) is R-AP whenever the conditions of
the claim are fulfilled. This is proved by induction on x+y by showing that there is a
partition of V (C) into two parts Vλ and Vn−λ satisfying the conditions above for every
λ ∈ {1, . . . , bn2 c} where n = 5+ x+ y. For each value of λ, we give a satisfying subset
Vλ, and it is understood that Vn−λ = V (C) − Vλ. We further assume x 6≡ 2 mod 3
since the graphs CC1(x, y) and CC1(y, x) are isomorphic.
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First, when dealing with λ ≥ x + 5, we can pick up, as Vλ, the λ first vertices
of the ordering {u1, . . . , ux, a1, b1, c1, d1, e1, vy, . . . , v1} of V (C) to get a partition of
C into a traceable graph or CC1(x, y − (λ − (x + 6))) which is R-AP by the in-
duction hypothesis, and a path. For λ = x, one can consider Vλ = {u1, . . . , ux}
so that the two induced graphs are traceable. Now, if λ = x + 2 or λ = x + 3,
then we can choose {u1, . . . , ux, a1, b1} or {u1, . . . , ux, a1, c1, d1}, respectively, as Vλ,
so that the two induced subgraphs are paths. Next, consider λ = x + 4. Then
Vλ = {u1, . . . , ux, a1, b1, c1, d1} yields a correct partition of C. Indeed, on the one
hand, C[Vλ] is a caterpillar Cat(3, x + 1) which is R-AP since otherwise it would
mean that x ≡ 2 mod 3, a contradiction. On the other hand, the graph C[Vn−λ] is a
path.

Now consider λ = x+1. If Vλ = {u1, . . . , ux, a1} does not provide a satisfying par-
tition of C, then y ≡ 2 mod 3 since C[Vn−λ] is Cat(3, y+1) and is not R-AP. Consider
now, as Vλ, the λ first vertices of the ordering (v1, . . . , vy, e1, b1, d1, c1, a1, ux, . . . , u1)
of V (C). If this choice of Vλ does not yield a correct partition of C once again,
then it means that either C[Vλ] is the caterpillar Cat(3, y + 1), or a connected cycles
graph CC1(x

′, y) with x′ ≡ 2 mod 3. But then we get that either x + 1 = y + 4 or
x+1 = y+5+x′, respectively, which both imply that x ≡ 2 mod 3, a contradiction.

Finally consider every value λ ∈ {1, . . . , x − 1}. On the one hand, if
x− λ 6≡ 2 mod 3, then choose Vλ = {u1, . . . , uλ} so that C[Vλ] and C[Vn−λ] are
a path, and CC1(x− λ, y) which is R-AP by the induction hypothesis. On the other
hand, i.e. x − λ ≡ 2 mod 3, we have λ 6≡ 0 mod 3 since otherwise we would have
x ≡ 2 mod 3. We can assume that λ 6∈ {y, y + 2, y + 3}, since otherwise we could
deduce a correct partition of C as in the cases λ ∈ {x, x+2, x+3}, respectively. Then
consider, as Vλ, the λ first vertices of (v1, . . . , vy, e1, b1, d1, c1, a1, ux, . . . , u1). If this
choice of Vλ does not yield a correct partition of C, then C[Vλ] is either a caterpillar
Cat(3, y + 1) which is not R-AP, or a graph CC1(x

′, y) with x′ ≡ 2 mod 3. But
note then that the first situation cannot occur because λ 6≡ 0 mod 3. For the second
situation, note that, because λ 6≡ 0 mod 3, we have y 6≡ 2 mod 3. Since we have
x′, y < x, the graph CC1(y, x

′) is actually R-AP by the induction hypothesis.

Case 2. Arbitrary k.
Let us now suppose that the result is true for every i up to k − 1, and let us prove
it for k. Consider first C = PCCk(x) for consecutive values of x 6≡ 2 mod 3. As we
did before, to prove that C is R-AP we show that there exists a partition of V (C)
satisfying our conditions for every possible value of λ. One may choose Vλ as follows.

— If λ ≡ 1 mod 3, then one may consider, as Vλ, the first λ vertices of the ordering
(bk, dk, ck, ak, wk−1,k, ek−1, bk−1, dk−1, ck−1, ak−1, . . . , w1,2, e1, b1, d1, c1, a1,
ux, . . . , u1) of V (C). On the one hand, notice that C[Vλ] is either a path, or
covered by a R-AP caterpillar or a partial connected cycles graph PCCk′(x′) with
k′ ≤ k− 1 and x′ 6≡ 2 mod 3, which is R-AP by the induction hypothesis. On the
other hand, observe that C[Vn−λ] is either traceable, or spanned by a connected
cycles graph CCk′′(x, y) for some k′′ ≤ k − 1 and y, which is R-AP according to
the induction hypothesis.
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— If λ ≡ 2 mod 3, then one can obtain similar partitions of C from the ordering
(dk, ck, bk, ak, wk−1,k, ek−1, dk−1, ck−1, bk−1, ak−1, . . . , w1,2, e1, d1, c1, b1, a1,
ux, . . . , u1) of V (C).

— Otherwise, if λ ≡ 0 mod 3, then one has to consider as Vλ the first λ vertices of
the ordering (u1, . . . , ux, a1, b1, c1, d1, e1, w1,2, . . . , ak−1, bk−1, ck−1, dk−1, ek−1,
wk−1,k, ak, bk, ck, dk) of V (C) when x ≡ 1 mod 3, or the ordering (u1, . . . , ux,
a1, c1, d1, b1, e1, w1,2, . . . , ak−1, ck−1, dk−1, bk−1, ek−1, wk−1,k, ak, ck, dk, bk)
otherwise, i.e. when x ≡ 0 mod 3. The two induced subgraphs C[Vλ] and C[Vn−λ]
are then R-AP. Indeed, on the one hand, C[Vλ] is either isomorphic to a path or
spanned by a connected cycles graph CCk′(x, y) for k′ ≤ k − 1 and some y. On
the other hand, the subgraph C[Vn−λ] is spanned by some PCCk′′(x′) graph with
k′′ ≤ k and x′ 6≡ 2 mod 3.

To end up proving the claim, we have to show that CCk(x, y) is R-AP whenever
x 6≡ 2 mod 3 or y 6≡ 2 mod 3. As for the base case, we show this by induction on
x+ y. Once again, we assume that x 6≡ 2 mod 3 for a given graph C = CCk(x, y).

For some λ ∈ {1, . . . , y}, one can consider Vλ = {v1, . . . , vλ} so that C is par-
titioned into a path and CCk(x, y − λ) which is R-AP according to the induction
hypothesis. When λ = y + 1, one can choose Vλ = {v1, . . . , vy, ek} so that C is
partitioned into a path and a partial connected cycles graph which is R-AP by the
induction hypothesis since x 6≡ 2 mod 3. For other values of λ, one may choose Vλ
as follows.

— If λ ≡ 0 mod 3, one can consider, as Vλ, the λ first vertices from the ordering
(u1, . . . , ux, a1, b1, c1, d1, e1, w1,2, . . . , wk−1,k, ak, bk, ck, dk ek, vy, . . . , v1) of V (C)
when x ≡ 1 mod 3, from (u1, . . . , ux, a1, c1, d1, b1, e1, w1,2, . . . , wk−1,k, ak, ck, dk,
bk, ek, vy, . . . , v1) otherwise, i.e. when x ≡ 0 mod 3. The two induced subgraphs
are then R-AP since they are traceable or isomorphic to connected cycles graphs
which are R-AP according to the induction hypotheses.

— If λ 6≡ 0 mod 3 and λ − (y + 1) ≡ 0 mod 3, then one can consider the λ first
vertices of the ordering (v1, . . . , vy, ek, bk, dk, ck, ak, wk−1,k . . . , e1, b1, d1, c1, a1,
ux, . . . , u1) of V (C). For each such partition, we get, on the one hand, that C[Vλ]
is either a path, a R-AP caterpillar, or a R-AP (partial) connected cycles graph.
In particular, note that when C[Vλ] is a caterpillar or partial connected cycles
graph, then this graph is R-AP since y 6≡ 2 mod 3 because of the assumptions on
λ. On the other hand, the graph C[Vn−λ] is either a path, or a (partial) connected
cycles graph which is R-AP by the induction hypothesis.

— If λ 6≡ 0 mod 3 and λ− (y + 1) ≡ 1 mod 3, then one may pick up, as Vλ, the λ
first vertices from the ordering given to deal with the previous case. This choice of
Vλ makes, on the one hand, C[Vλ] being spanned by either a path, or CCk′(x′, y)
where k′ ≤ k − 1 and x′ 6≡ 2 mod 3 which is R-AP by the induction hypothesis.
On the other hand, C[Vn−λ] is a path, or is spanned by some graph CCk′′(x, y′)
for k′′ ≤ k − 1 and some y′ which is R-AP, again by the induction hypothesis.

— Otherwise, if λ 6≡ 0 mod 3 and λ−(y+1) ≡ 2 mod 3, then some similar partitions
of C may be obtained from the ordering (v1, . . . , vy, ek, dk, ck, bk, ak, wk−1,k
. . . , w1,2, e1, d1, c1, b1, a1, ux, . . . , u1) of V (C).
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Note that Lemma 3.4 provides a full characterization of R-AP (partial) connected
cycles graphs since every such graph whose parameters do not satisfy this lemma is
not R-AP. To be convinced of that fact, one just has to consider successive partitions
of such a graph for λ = 3.

We finally deduce Theorem 3.1 as a corollary of Lemma 3.4.

Proof of Theorem 3.1. We have LP (CCc+1(1, 1)) = |V (CCc+1(1, 1))| − (c + 1) for
every c ≥ 1. Therefore, for every possible value of c, we have a graph showing that c
does not contradict the claim.

Finally notice that by adding the edge u1v1 to any connected cycles graph
CCk(1, 1), we get a 2-connected graph which is R-AP according to Remark 2.1 and
whose longest path has order LP (CCk(1, 1)) + 1. Therefore, Theorem 3.1 is also true
when restricted to 2-connected graphs.

4. LONGEST PATH AND MULTIPLICATIVE FACTOR

The graph CCk(1, 1) has order n = 6k + 1 while its longest path has order n− k for
every k ≥ 1. Thus, even if the connected cycles graphs confirm that the order of the
longest path in a R-AP n-graph is not constantly lower than n up to an additive factor,
they do not reject the strong relationship between the properties of being R-AP and
traceable. We now discuss how to create this relationship thanks to a multiplicative
factor.

Question 4.1. What is the biggest c < 1 such that LP (G) ≥ n · c for every R-AP
n-graph G?

Regarding the connected cycles graphs, we get that c ≤ 5
6 . In this section, we

deduce a better upper bound on c thanks to the following graph construction.

Definition 4.2. Let k, k′ ≥ 1 be two positive integers. The urchin W (k, k′) is the
graph obtained as follows.

— Let A, B, C be three sets of k, k and k′ distinct vertices, respectively.
— Add a perfect matching between the vertices of A and B.
— Add all possible edges between distinct vertices in B ∪ C.

This construction is illustrated in Figure 3. Note that the urchinW (k, k) has order
3k while its longest path has order 2k+2. We then get that LP (W (k, k))/n tends to
2
3 as k grows to infinity. In what follows, we show that any urchin W (k, k) is R-AP,
and thus that the following holds regarding Question 4.1.

Theorem 4.3. Regarding Question 4.1, we have c ≤ 2
3 .
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Fig. 3. The urchins W (3, 3) and W (3, 5)

We prove that an urchin W (k, k′) is R-AP for some values of k and k′.

Lemma 4.4. The urchin W (k, k′) is R-AP for every k ≥ 2 and k′ ≥ k − 2.

Proof. We introduce some terminology to deal with the vertices of any urchin
W (k, k′). The vertices of A are denoted u1, . . . , uk, and those of B are denoted
v1, . . . , vk in such a way that uivi is an edge for every i ∈ {1, . . . , k}. The vertices of
C are denoted w1, . . . , wk′ arbitrarily.

The claim is proved by induction on both k and k′. As a base case, note that
every urchin W (2, k′) is traceable, and thus R-AP by Remark 2.2. Suppose now that
W (i, i′) is R-AP for every i up to k− 1 and i′ ≥ i− 2. We now prove that the urchin
n-graph W = W (k, k′) is R-AP for every k′ ≥ k − 2. For this purpose, we show, for
every value of λ ∈ {1, . . . , bn2 c}, that V (W ) can be partitioned into two parts Vλ and
Vn−λ inducing R-AP graphs on λ and n− λ vertices, respectively.

We first deal with the easy cases, i.e. λ ∈ {1, 2, 3}. For λ = 1, consider Vλ = {u1}
so that the two induced subgraphs are K1 and W (k− 1, k′+1). Since k′ ≥ k− 2, this
subgraph is R-AP by the induction hypothesis. For λ = 2, let Vλ = {u1, v1}. The two
induced subgraphs then are K2 and W (k− 1, k′), which is R-AP for the same reason
as the previous case. Now, for λ = 3, choose Vλ = {u1, v1, w1}. The two induced
subgraphs then are a path, and the urchin W (k − 1, k′ − 1) which is R-AP, again by
the induction hypothesis.

We now deal with the remaining values of λ, i.e. λ ≥ 4. The part Vλ is obtained
by choosing two disjoint sets V ′λ and V ′′λ , and then considering their union. On the
one hand, in the case where λ ≡ 1 mod 3, let x = bλ−43 c. Clearly, x is an integer.
First, let V ′λ = ∅ if x = 0, or V ′λ =

⋃x
i=1{ui, vi, wi} otherwise. Then set V ′′λ =

{vx+1, ux+1, vx+2, ux+2}. The two induced subgraphs then are a path or W (x+2, x),
and W (k − (x+ 2), k′ − (x− 2)), which are R-AP by the induction hypothesis since
k′ ≥ k − 2.

On the other hand, i.e. λ 6≡ 1 mod 3, let x = bλ3 c and y ≡ λ mod 3 with
y ∈ {0, 2}. Then, let V ′λ =

⋃x
i=1{ui, vi, wi}. The strategy for choosing V ′′λ depends on

whether y = 0 or y = 2.

— y = 0. Choose V ′′λ = ∅. In this situation, the two induced subgraphs are W (x, x)
and W (k−x, k′−x) which are R-AP by the induction hypothesis since k′ ≥ k−2.

— y = 2. Let V ′′λ = {vx+1, ux+1}. The two induced subgraphs then areW (x+1, x) and
W (k− (x+1), k′−x), which are R-AP according to the induction hypothesis.

Theorem 4.3 follows as a corollary of Lemma 4.4. Note that Lemma 4.4 is tight in
the sense that urchins W (k, k − x) with x ≥ 3 are not R-AP since such a graph W
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cannot be partitioned as requested for λ = 3. Indeed, as a set Vλ with size 3 inducing
a R-AP subgraph of W , one has to consider, following the terminology introduced in
the proof of Lemma 4.4, a part of the form {ui, vi, wj} or {wi, wj , w`}. After having
successively picked several sets with size 3 off W , one necessarily gets an urchin
W (k′, 0) with k′ ≥ 3. Such a graph is clearly not partitionable for λ = 3 once again.

We can strengthen Theorem 4.3 as follows. Let W = W (k, k′) be a R-AP urchin.
Observe that by adding the edges u1u2, . . . , u1uk to W , we get a 2-connected graph
W2 which is R-AP by Remark 2.1. By then adding the edges u2u3, . . . , u2uk to W2,
we get another R-AP graph W3 which is 3-connected. By repeating this procedure
as many times as needed, we get an `-connected R-AP graph W` for any value of `
assuming k and k′ are big enough. Note that we have LP (Wi) = LP (W ) + 2i, and
thus that LP (Wi)/LP (W ) tends to 1 as k grows to infinity. Therefore, the statement
of Theorem 4.3 is also true when restricted to `-connected R-AP graphs, no matter
what is the value `.

Theorem 4.5. Theorem 4.3 is also true when Question 4.1 is restricted to R-AP
graphs of arbitrary connectivity.
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