Antiviral activity of medicinal plants extracts against foodborne norovirus

Ivan Živković1, Katarina Šavikin2, Gordana Zdunić2, Jelena Živković2, Dubravka Bigović2, Nebojša Menković2, and Dragoslava Radin1,*

1University of Belgrade – Faculty of Agriculture, Institute for Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
2Institute for Medicinal Plants Research “Dr. Josif Pančić”, 11000 Belgrade, Serbia
*Corresponding author: dradin@agrif.bg.ac.rs

Received: October 30, 2018
Accepted: November 20, 2018
Published on-line: December 20, 2018
Published: December 25, 2018

Medicinal plant extracts have a broad antimicrobial activity, including antiviral effects. In our study, eleven dry extracts of ten different medicinal plants prepared with two solvents (5%, dimethyl sulfoxide (DMSO) and 30% ethanol in 5% DMSO) in different concentrations have been examined for anti-norovirus activity. The reduction of norovirus >1 log10 genome equivalents has been obtained with 1 mg/mL of Aronia melanocarpa leaf extract, dried wine Prokupac and Hypericum perforatum extract. Some of the observed extracts i.e. Hypericum perforatum, Aronia melanocarpa fruit extract and Punica granatum peel extract showed better activity when dissolved in 30% ethanol with 5% DMSO. All results of anti-noroviral activity of tested extracts which achieved <0.5 log10 genome equivalents were considered as not effective.

Key words: Human norovirus, medicinal plant extract, antiviral activity

http://dx.doi.org/10.5937/leksir1838031Z

1. INTRODUCTION

Generally, human norovirus (hNoV) is recognized as one of the most common causes of viral gastroenteritis. Norovirus is easily transmitted from person to person by a fecal-oral route directly or indirectly through contaminated food (shells, berries, etc) or water. Also, hNoV are very often related with fresh products and large outbreaks are well documented (EFSA/ECDC, 2016). The European Union (EU) Rapid Alert System for Food and Feed (RASFF) indicated that norovirus is a relatively “new acquaintance” in terms of citation history in RASFF border rejection notifications (involving Third Countries as countries of origin) but a rather “old acquaintance” in alert notifications. The relative frequency of citation of alert notifications on norovirus places them well ahead of Salmonella and Listeria, well known bacterial food pathogens, and marks those foodborne viruses as a serious biological hazard (Papapanagiotou, 2017).

Norovirus belongs to the Caliciviridae family of non-enveloped, small, positive-stranded RNA viruses and based on their capsid amino acid compositions are divided into 6 genogroups (GI - GVI) and > 40 genotypes (Rocha-Pereira et al., 2016). HNoV as non-enveloped viruses are resistant to the majority of chemical disinfectants. One of the agents with virucidal efficacy is chlorine/hypochlorite, however due to its byproducts represents health risk (El-Senousy et al., 2014).

Numerous plants have been used in traditional medicine for healing but also for the preservation of raw and processed food (Jaykus et al., 2013; D’Souza, 2014). Plant extracts abundant in chemically diverse metabolites have been extensively studied for their varied biological activity including antimicrobial (Braga et al., 2005; D’Souza, 2014). Plant derived antimicrobials for the control and prevention of the transmission of human enteric viruses, including noroviruses, are of recent interest especially because of the absence of vaccines for the human noroviruses. The aim of our study was screening of dry extracts of ten different medicinal plants for anti-norovirus activity.

2. MATERIALS AND METHODS

2.1. hNoV stock

Fecal stool samples containing hNoV were diluted (w/v) to obtain 10% suspensions with phosphate buffered saline (PBS, pH=7.2). Suspensions were centrifuged (Eppendorf 5804 R, 14000 G / 5 min at 20 °C) and filtered using syringes (0.45 and 0.22 µm filter pore size; Thermo Fisher Scientific, Germany) in order to remove impurities. Target hNoV RNA (expressed as amount of genome equivalents; GE) in the suspension was quantified by standard curve which was prepared using positive control (PC) template (Quantification of Norovirus genotype 1 and 2, Primer DesignTM Ltd, genesig). The all further experiments were carried out with the 1% suspension of hNoV which contained ∼ 10⁹ GE per µL.
2.2. Medicinal plants extract (MPE)

After drying at room temperature plant material was milled in a laboratory mill. Extraction was done using maceration with 70% ethanol (EtOH). The extracts were then filtered and the solvent was evaporated under low pressure at temperature not higher than 50 °C. Wine of the grape variety Prokupac was also evaporated to dryness under vacuum. Dry extracts were kept in a vacuum desiccator until analysis. Medicinal plants and their parts used for testing are listed in Table 1.

2.3. Antiviral activity of MPE

MPE have been diluted with two solvents: 5% dimethyl sulfoxide (DMSO) and combination of 30% ethanol in 5% DMSO to obtain final concentrations of 0.4; 1.0 and 2.5 mg/mL. To test the antiviral activity of MPE the equal volumes of hNoV and extracts suspensions have been mixed and incubated 1h at 37 °C. Solvents used for MPE preparation (5% DMSO, mixture of 30% ethanol in 5% DMSO) have been tested to confirm that they themselves have no effect on the reduction of hNoV particles.

2.4. Disinfectant solution and experimental treatment with hNoV suspension

Commercial household bleach was purchased at a local store (Belgrade, Serbia). The main ingredient of the bleach was sodium hypochlorite (NaOCl, 4.5% [w/v]). Experimental sodium hypochlorite solution was diluted with dimethyl sulfoxide (5% DMSO) to 250 ppm and 25 ppm free chloride concentration. Equal volumes of hNoV suspension and disinfectant solution have been mixed and incubated 1h at 37 °C. Because of the possible aggression of free chlorine on isolation of hNoV RNA with commercial kit, the direct method with TRIZOL™ reagent has been used (Radin and D’ Souza, 2011).

2.5. RT-qPCR assays

One-Step RT-qPCR assays were performed using 20 µL reaction mixture containing 10 µL of oasig™ qRT-PCR Master-Mix, 1 µL of Norovirus Primer/Probe mix and hNoV RNA sample. No-template control (NTC) was added to verify the absence of contamination. Cycling conditions for RT-qPCR were as follows: reverse transcription at 55 °C/10 min, enzyme activation 95 °C/2 min, denaturation at 94 °C/12 min, followed by 30 cycles. RT-qPCR assays were done using Quantification of Norovirus genotype I and II (PrimerTMLtd, gensing, United Kingdom).

Table 1. Medicinal plants used for the testing of antiviral activity

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Abbreviation</th>
<th>Plant part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitis vinifera, var. Prokupac</td>
<td>WPE</td>
<td>Wine</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>PPE</td>
<td>Peel</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>HyPE</td>
<td>Herba</td>
</tr>
<tr>
<td>Gentiana asclepiadea</td>
<td>GAE</td>
<td>Root</td>
</tr>
<tr>
<td>Aconitum napellus</td>
<td>MAE</td>
<td>Peel</td>
</tr>
<tr>
<td>Mahonia aquifolia</td>
<td>SRE</td>
<td>Root</td>
</tr>
<tr>
<td>Gentiana lutea</td>
<td>GLE</td>
<td>Root</td>
</tr>
<tr>
<td>Helichrysum plicatum</td>
<td>HPE</td>
<td>Herba</td>
</tr>
<tr>
<td>Aronia melanocarpa</td>
<td>AMLE</td>
<td>Leaf</td>
</tr>
<tr>
<td>Satureja subspicata</td>
<td>SSE</td>
<td>Herba</td>
</tr>
<tr>
<td>Gentiana procumbens</td>
<td>MFE</td>
<td>Fruit</td>
</tr>
<tr>
<td>Aronia melanocarpa</td>
<td>AMFE</td>
<td>Peel</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>HyPE</td>
<td>Herba</td>
</tr>
</tbody>
</table>

3. RESULTS AND DISCUSSION

3.1. Reduction of hNoV in suspension by medicinal plant extracts

Antiviral activity of 10 medicinal plant extract applied at different concentrations (0.4, 1.0, 2.5 mg/mL) and dissolved in two different solvents has been examined for the reduction of foodborne hNoV particles in suspension following treatment at 37 °C during 1h (Table 2). The reduction of norovirus >1 log_{10} GE has been obtained with 1 mg/mL of Aronia melanocarpa leaf extract (AMLE), dried wine Prokupac (WPE) and Hypericum perforatum (HyPE) extract, and therefore could be promising for hNoV reduction having in mind that tested concentrations have been lower than usually used. The reduction in the interval 0.5 - 1 log_{10} GE has been obtained with 0.4 mg/mL of WPE, PPE and HyPE; 1.0 mg/mL of GAE and AMFE; 2.5 mg/mL of GAE and AMFE. All results of antinoroviral activity of tested MPE which achieve < 0.5 log_{10} GE are considered as not effective. Some of MPE i.e. HyPE, Aronia melanocarpa fruit extract (AMFE) and Punica granatum (PPE) showed better activity when dissolved in 30% ethanol with 5% DMSO.

According to the literature, this is the first report of the antinorovirus activity of Aronia melanocarpa. Antiviral activity of A. melanocarpa on some other viruses was reported. Park et al. (2013) reported that fruits of A. melanocarpa possess in vitro and in vivo activity against different subtypes of influenza viruses and such activity was also noticed for oseltamivir-resistant strain. They concluded that the activity was attributed to two constituents i.e. ellagic acid and myricetin. Moreover, this is the first report of the anti-norovirus activity of the wine obtained from Serbian autochthonous grape variety Prokupac. It is in accordance with the Oh et al. (2015) findings that red wine as well as its component resveratrol can affect the foodborne viral surrogates, murine norovirus-1 and feline calicivirus Fs at an early stage of infection.

As for Hypericum species, Akram et al. (2018) assembled the facts from articles published in English language since 1982 to 2017 about antiviral potential of plants in various viral diseases such as influenza, hepatitis, human immunodeficiency virus (HIV), herpes simplex virus (HSV), etc. which have been proven in clinical studies. One of the species which was pointed out for its activity was Hypericum connatum. Also, antiviral activity was reported for other Hypericum species (de Carvalho Meirelles et al., 2019).

3.2. Virucidal effects of disinfectant solution against hNoV particles

As one kind of control, proven effective disinfectant against hNoV has been tested for the reduction of virus particles. Commercial household bleach containing sodium hypochlorite (NaOCl, 4.5% [w/v]) was diluted with dimethyl sulfoxide (5% DMSO) to 250 ppm and 25 ppm free chlorine concentrations. Equal volumes of hNoV suspension and disinfectant solution have been mixed and incubated 1h at 37 °C. At lower concentration disinfectant solution have reduced hNoV particles in suspension following treatment at 37 °C during 1h (Table 2). The reduction of norovirus >1 log_{10} GE has been obtained with 1 mg/mL of Aronia melanocarpa leaf extract (AMLE), dried wine Prokupac (WPE) and Hypericum perforatum (HyPE) extract, and therefore could be promising for hNoV reduction having in mind that tested concentrations have been lower than usually used. The reduction in the interval 0.5 - 1 log_{10} GE has been obtained with 0.4 mg/mL of WPE, PPE and HyPE; 1.0 mg/mL of GAE and AMFE; 2.5 mg/mL of GAE and AMFE. All results of antinoroviral activity of tested MPE which achieve < 0.5 log_{10} GE are considered as not effective. Some of MPE i.e. HyPE, Aronia melanocarpa fruit extract (AMFE) and Punica granatum (PPE) showed better activity when dissolved in 30% ethanol with 5% DMSO.

As for Hypericum species, Akram et al. (2018) assembled the facts from articles published in English language since 1982 to 2017 about antiviral potential of plants in various viral diseases such as influenza, hepatitis, human immunodeficiency virus (HIV), herpes simplex virus (HSV), etc. which have been proven in clinical studies. One of the species which was pointed out for its activity was Hypericum connatum. Also, antiviral activity was reported for other Hypericum species (de Carvalho Meirelles et al., 2019).

As one kind of control, proven effective disinfectant against hNoV has been tested for the reduction of virus particles. Commercial household bleach containing sodium hypochlorite (NaOCl, 4.5% [w/v]) was diluted with dimethyl sulfoxide (5% DMSO) to 250 ppm and 25 ppm free chlorine concentrations. Equal volumes of hNoV suspension and disinfectant solution have been mixed and incubated 1h at 37 °C. At lower concentration disinfectant solution have reduced hNoV particles in suspension following treatment at 37 °C during 1h (Table 2). The reduction of norovirus >1 log_{10} GE has been obtained with 1 mg/mL of Aronia melanocarpa leaf extract (AMLE), dried wine Prokupac (WPE) and Hypericum perforatum (HyPE) extract, and therefore could be promising for hNoV reduction having in mind that tested concentrations have been lower than usually used. The reduction in the interval 0.5 - 1 log_{10} GE has been obtained with 0.4 mg/mL of WPE, PPE and HyPE; 1.0 mg/mL of GAE and AMFE; 2.5 mg/mL of GAE and AMFE. All results of antinoroviral activity of tested MPE which achieve < 0.5 log_{10} GE are considered as not effective. Some of MPE i.e. HyPE, Aronia melanocarpa fruit extract (AMFE) and Punica granatum (PPE) showed better activity when dissolved in 30% ethanol with 5% DMSO.

As for Hypericum species, Akram et al. (2018) assembled the facts from articles published in English language since 1982 to 2017 about antiviral potential of plants in various viral diseases such as influenza, hepatitis, human immunodeficiency virus (HIV), herpes simplex virus (HSV), etc. which have been proven in clinical studies. One of the species which was pointed out for its activity was Hypericum connatum. Also, antiviral activity was reported for other Hypericum species (de Carvalho Meirelles et al., 2019).
Table 2. Antiviral activity of medicinal plants extracts against foodborne norovirus after treatment at 37 °C 1h

<table>
<thead>
<tr>
<th>Concentration of medicinal plants extracts</th>
<th>Reduction of hNoVb,c,d [log_{10} genome equivalents]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 [mg/mL] 5% DMSO</td>
<td>SRE 0.33±0.01, GAE 0.49±0.04, AMLE 0.45±0.02, GLE 0.45±0.01, WPE 0.79±0.02, HPE - , HyPE ND, AMFE 0.12±0.03, SSE 0.23±0.01, MAE - , PPE 0.70±0.03</td>
</tr>
<tr>
<td>1 [mg/mL] 5% DMSO +30% EtOH</td>
<td>SRE 0.28±0.03, GAE 0.59±0.01, AMLE 1.06±0.05, GLE 0.46±0.01, WPE 1.21±0.01, HPE 0.22±0.02, HyPE ND, AMFE 0.29±0.05, SSE 0.29±0.05, MAE 0.21±0.01, PPE 0.83±0.03</td>
</tr>
<tr>
<td>2.5 [mg/mL] 5% DMSO +30% EtOH</td>
<td>SRE - , GAE - , AMLE - , GLE - , WPE - , HPE - , HyPE 1.38±0.01, AMFE 0.66±0.02, SSE - , MAE - , PPE -</td>
</tr>
</tbody>
</table>

aHNoV in 5% DMSO served as a control and had been compared with treatments of MPE.
bNR – no reduction
cND - not detected
d- - not done

CONCLUSION

In conclusion, the most active extracts were Aronia melanocarpa leaves extract, Hypericum connatum extract, and dried Pokupac wine. It was noticed that the type of solvent used for dissolution made a significant difference in anti-noroviral activity. Some of the medicinal plant extracts showed anti-noroviral activity similar to the effect of lower concentration of sodium hypochlorite that stands as one of the few efficient chemical disinfectants but with byproducts that could be health hazardous.

ACKNOWLEDGMENTS

Acknowledgment. This work was supported by the Ministry of Education, Science and Technological Development Republic of Serbia (Projects III 46009 and III 46013).

REFERENCES

Codex Alimentarius (2012). CAC/GL 79-2012 guidelines on the application of general principles of food hygiene to the control of viruses in food, Codex Committee on Food Hygiene 13.

