
JSS Journal of Statistical Software
October 2010, Volume 36, Issue 12. http://www.jstatsoft.org/

An R Package for Dynamic Linear Models

Giovanni Petris
University of Arkansas

Abstract

We describe an R package focused on Bayesian analysis of dynamic linear models.
The main features of the package are its flexibility to deal with a variety of constant or
time-varying, univariate or multivariate models, and the numerically stable singular value
decomposition-based algorithms used for filtering and smoothing. In addition to the
examples of “out-of-the-box” use, we illustrate how the package can be used in advanced
applications to implement a Gibbs sampler for a user-specified model.

Keywords: state space models, Kalman filter, forward filtering backward sampling, Bayesian
inference, R.

1. Overview

State space models provide a very rich class of models for the analysis and forecasting of
time series data. They are used in a large number of applied areas outside statistics, such
as econometrics, signal processing, genetics, population dynamics. Dynamic linear models
(DLMs) are a particular class of state space models that allow many of the relevant inferences
to be carried out exactly using the Kalman filter—at least in the case of a completely specified
model. At the same time, they are flexible enough to capture the main features of a wide array
of different data. Estimating unknown parameters in a DLM requires numerical techniques,
but the Kalman filter can be used in this case as a building block for evaluating the likelihood
function or simulating the unobservable states.

The R (R Development Core Team 2010) package dlm (Petris 2010) provides an integrated
environment for Bayesian inference using DLMs. While the user can find in the package
functions for Kalman filtering and smoothing, as well as maximum likelihood estimation,
we believe the main feature lies in the tools that the package provides for simulation-based
Bayesian inference. The package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=dlm.

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=dlm

2 An R Package for Dynamic Linear Models

DLMs are defined in Section 2, but a detailed discussion of the model and its properties
are beyond the scope of this article. For an introduction, the reader can consult West and
Harrison (1997) or Petris, Petrone, and Campagnoli (2009).

The layout of the paper is as follows. Section 2 deals with model specification in R. In Section 3
we briefly touch on how the Kalman filter and smoother are implemented in dlm. We assume
the reader is familiar with filtering and smoothing for DLMs. Section 4 covers parameter
estimation, from both a maximum likelihood and a Bayesian perspective. In Section 5 we
discuss differences and similarities between dlm and other functions already available in R, or
included in other contributed packages, for DLM analysis. Finally, Section 6 concludes the
paper.

2. Model specification

A DLM is specified by the set of equations

yt = Ftθt + vt, vt ∼ N (0, Vt),

θt = Gtθt−1 + wt, wt ∼ N (0,Wt),
(1)

t = 1, The specification of the model is completed by assigning a prior distribution for the
initial (pre-sample) state θ0. This is assumed to be normally distributed with mean m0 and
variance C0. In (1) yt and θt are m- and p-dimensional random vectors, respectively, while
Ft, Gt, Vt, and Wt are real matrices of the appropriate dimension. The sequences (vt) and (wt)
are assumed to be independent, both within and between, and independent of θ0. In most
applications, yt is the value of an observable time series at time t, while θt is an unobservable
state vector. The DLM provides a very rich and flexible family of models though it is only a
highly special case of the more general class of state space models. In package dlm we tried
to impose as few restrictions as possible on the types of models that can be specified. In
particular, DLMs for multivariate observations and nonconstant models can be easily defined
within the framework of the package, as we will illustrate below.

An R object representing a DLM can be defined using the function dlm. Before discussing
the general case, let us start with the simpler case of constant DLMs. These are models of
the form (1) in which the real matrices Ft, Gt, Vt, and Wt are time-invariant. When this is
the case, we will drop the subscript t in the notation. Clearly, a constant DLM is completely
specified by the matrices F,G, V,W , C0 and the vector m0. Accordingly, the general creator
function dlm can take those matrices as arguments. As a very simple example, consider a
polynomial model of order one, or random walk plus noise model, which is a univariate model
with univariate state vector defined by

yt = θt + vt, vt ∼ N (0, V),

θt = θt−1 + wt, wt ∼ N (0,W).

Suppose one wants to define in R such a model, with V = 3.1, W = 1.2, m0 = 0, and
C0 = 100. This can be done as follows:

R> myModel <- dlm(FF = 1, V = 3.1, GG = 1, W = 1.2, m0 = 0, C0 = 100)

Extractor and replacement functions for the different components of a model are available.
For example, one can print the value of the matrix V using the command V(myModel). If 4.1

Journal of Statistical Software 3

Function Model

dlmModARMA ARMA process
dlmModPoly nth order polynomial DLM
dlmModReg Linear regression
dlmModSeas Periodic – Seasonal factors
dlmModTrig Periodic – Trigonometric form

Table 1: Creator functions for special models.

instead of 3.1 was the value one intended for V , one can fix it with the assignment V(myModel)
<- 4.1. Polynomial models are so common in applications that a special function has been
defined to specify such models in a simplified way. So, the same model can be alternatively
defined in R as

R> myModel <- dlmModPoly(order = 1, dV = 3.1, dW = 1.2, C0 = 100)

In addition to dlmModPoly, package dlm provides other functions to create standard types
of DLMs. They are summarized in Table 1. With the exception of dlmModARMA, which also
handles the multivariate case, the other creator functions are limited to the case of univariate
observations. More complicated DLMs can be explicitly defined using the general function
dlm. Note also that dlmModARMA produces one DLM representation of the specified ARMA
process; other representations exist and they can be specified using the more general dlm.

A convenient feature of DLMs is that sums and outer sums of DLMs can be defined in a
natural way, allowing the user to specify complex models from basic building blocks. A
standard example is a DLM representing a time series for quarterly data, in which one wants
to include a local linear trend (polynomial model of order 2) and a seasonal component. Such
a model can be set up in R very simply in the following way:

R> myModel <- dlmModPoly(2) + dlmModSeas(4)

In the code above we have used the default values of most of the arguments of dlmModPoly
and dlmModSeas. The user should however keep in mind that the default values, in particular
those of the variances V and W , are typically not meaningful for the particular data set at
hand, and should be considered as place-holders that allow the user to quickly set up a model
like myModel in the code above. More meaningful values can be either specified in the call to
dlmMod* or explicitely set after the model is defined, using the replacement functions provided
by the package.

Two DLMs, modeling an m1- and an m2-variate time series respectively, can also be combined
into a unique DLM for (m1 + m2)-variate observations. We can think of this as a kind of
outer sum. For example, two univariate models for a local trend plus a quarterly seasonal
component as the one described above can be combined as follows (here m1 = m2 = 1):

R> bivarMod <- myModel %+% myModel

Also in this case the user has to be careful to specify meaningful values for the variances
of the resulting model after model combination. Both sums and outer sums of DLMs can
be iterated and they can be combined to allow the specification of more complex models for
multivariate data from simple standard univariate models.

4 An R Package for Dynamic Linear Models

We describe next how it is possible to specify a time-varying DLM, where at least one of
the matrices or variances defining the model is not constant. In package dlm we took an
approach similar to the one used in the S+FinMetrics module of S-PLUS (see Zivot and
Wang 2005). A dlm object may contain, in addition to the components FF, V, GG, W, m0, and
C0 described above, one or more of JFF, JV, JGG, JW, and X. While X is a matrix used to store
all the time-varying elements of the model, the J* components are indicator matrices whose
entries signal whether an element of the corresponding model matrix is time-varying and, in
case it is, where to retrieve its values in the matrix X. For example, in the standard DLM
representation of a simple linear regression models, the state vector is θt = (βt0, βt1)

′, the
vector of regression coefficients, which may be constant or time-varying. The system matrix
Gt is the 2× 2 identity matrix and the observation matrix is Ft = [1 xt], where xt is the value
of the covariate for observation yt. Assuming the variances Vt and Wt are constant, the only
time-varying element of the model is the (1, 2)th entry of Ft. Accordingly, the component X

in the dlm object will be a one-column matrix containing the values of the covariate xt, while
JFF will be the 1 × 2 matrix [0 1], where the ‘0’ signals that the (1, 1)th component of Ft
is constant, and the ‘1’ means that the (1, 2)th component is time-varying and its values at
different times can be found in the first column of X.

3. Kalman filtering and smoothing

Assuming that a DLM is completely specified, i.e., that there are no unknown parameters
in its definition, one can use the well-known Kalman filtering and smoothing algorithms to
obtain means and variances of the conditional distributions of the unobservable system states
given the data. Let us recall that the filtering distribution of θt is the distribution of θt given
y1, . . . , yt, while the smoothing distribution of θt at time s is the conditional distribution of θt
given y1, . . . , ys, for s ≥ t. Note that, under our modeling assumptions, all these distributions
are Gaussian, hence completely determined by their mean and variance. Package dlm provides
the function dlmFilter and dlmSmooth for filtering and smoothing.

It is well-known that a naive implementation of the Kalman filter and smoother may incur
in numerical instability issues. These may lead, for example, to calculated variance matrices
that are not postive semidefinite. Square-root filter and smoothers, based on the propagation
of Cholesky decomposition of the variance matrices, provide more robust algorithms. Even
more robust are the singular value decomposition-based algorithms proposed by Wang, Liber,
and Manneback (1992) and Zhang and Li (1996), and used in package dlm. In this case the
filtering and smoothing recursions consist in the sequential calculation of a singular value
decomposition of the relevant variance matrices. As a—perhaps annoying—consequence, all
the variance matrices returned by dlmFilter and dlmSmooth are expressed in terms of their
singular value decomposition. In order to recover the variance matrices in their usual form,
one can use the provided utility function dlmSvd2var.

4. Parameter estimation

Clearly, in any realistic statistical application using DLMs, one has to estimate unknown
parameters of the DLM. In the simplest and most common cases, for example, such as a
polynomial model with the possible addition of a seasonal factor model, these may be obser-

Journal of Statistical Software 5

vation or system variances only, but, in general, unknown parameters may appear anywhere
in the matrices defining the DLM. Package dlm provides tools for both Bayesian inference
and maximum likelihood estimation of unknown model parameters. We will discuss maximum
likelihood first, followed by Bayesian inference for DLMs.

4.1. Maximum likelihood

For maximum likelihood estimation, package dlm relies on optim, the excellent optimizer
available in R. The dlm function for maximum likelihood estimation is dlmMLE, which calls
the optim subroutines. A call to the function may look like this:

R> dlmMLE(y = myData, parm = init, build = myFun)

Argument y is a (univariate or multivariate) time series object or a vector/matrix of observa-
tions, while parm is a vector of initial values for the unknown parameters. The third argument
in the example above, build, is a user-defined function that takes a parameter vector as first
argument and returns a dlm object. Loosely speaking, the following procedure is what dlmMLE
essentially does:

1. Define a target function by compounding the build argument with dlmLL(), which
evaluates the (negative log of the) joint density of the observations, thus defining the
negative loglikelihood function;

2. Call optim to minimize the negative loglikelihood function defined in 1.

As a specific example, consider a random walk plus noise model, which has two unknown
variance parameters. In this case the build argument could be defined as follows

R> myFun <- function(x) return(dlmModPoly(1, dV = exp(x[1]), dW = exp(x[2])))

Note that we have parametrized the variances in term of their logs in order to avoid specifying
bounds on the parameter values. One can specify bounds using the standard arguments lower
and upper of optim. As a matter of fact, any arguments of optim can be specified in dlmMLE,
which will pass them to optim.

As a less trivial example, we consider a bivariate time series of yearly average air temperatures.
The first component is an average computed from land-based observation stations (Jones
1994). The second component is an average based on a number of marine-based stations
(Parker, Folland, and Jackson 1995). These data are analyzed in Shumway and Stoffer (2006)
using a DLM. We show below how to use package dlm to fit the model proposed by Shumway
and Stoffer. Marginally, each component of the observed bivariate series is assumed to follow
a random walk plus noise model. However, since the two series are essentially measurements
of the same quantity, the state in the two marginal models is assumed to be the same, and the
observation noises are taken to be correlated. Formally, we have a constant DLM specified
by the following matrices:

F =

[
1
1

]
, G =

[
1
]
.

6 An R Package for Dynamic Linear Models

The observation covariance matrix, V , and the system variance W need to be estimated from
the data. In this case, since the model is not a standard one, we use the general creator dlm to
define a build function, which we subsequently use to find the MLEs of the model parameters.
In order to avoid an optimization problem with complicated constraints, we parametrize V in
terms of the elements of its log-Cholesky decomposition (Pinheiro and Bates 1996). For W ,
we simply use its log.

R> buildTemp <- function(x) {

+ L <- matrix(0, 2, 2)

+ L[upper.tri(L, TRUE)] <- x[1 : 3]

+ diag(L) <- exp(diag(L))

+ modTemp <- dlm(FF = matrix(1, 2, 1), V = crossprod(L),

+ GG = 1, W = exp(x[4]), m0 = 0, C0 = 1e7)

+ return(modTemp)

+ }

R> y1 <- scan("http://www.stat.pitt.edu/stoffer/tsa2/data/HL.dat")

R> y2 <- scan("http://www.stat.pitt.edu/stoffer/tsa2/data/Folland.dat")

R> y <- ts(cbind(y1, y2), start = 1880)

R> fitTemp <- dlmMLE(y, parm = rep(0, 4), build = buildTemp,

+ hessian = TRUE, control = list(maxit = 500))

The Hessian matrix at the minimizer of the negative loglikelihood can be used to estimate
asymptotic standard errors or, more generally, asymptotic covariance matrices of the MLE.
The fitted model is best set up in R using the build function itself, together with the MLE
of the parameters:

R> modTemp <- buildTemp(fitTemp$par)

At this point one can use the fitted model for smoothing or forecasting, or just take a look at
the parameter estimates. The estimated V and W are as follows.

R> V(modTemp)

[,1] [,2]

[1,] 0.019503957 0.006512939

[2,] 0.006512939 0.005386751

R> drop(W(modTemp))

[1] 0.002633201

The user should be aware that the likelihood function for a general DLM may present local
maxima. Therefore, we suggest, as a minimal check, to call dlmMLE several times with different
starting values. Furthermore, it is not uncommon for the likelihood function to be relatively
flat around its maximum, implying that the combination of data and model does not allow for
an accurate estimation of the unknown parameters. The Hessian matrix at the maximum can
be used to assess the presence and extent of this phenomenon, although we have noticed that

Journal of Statistical Software 7

the Hessian obtained from dlmMLE is subject to numerical instability and users on different
platforms may obtain different results. (The function numDeriv:::hessian offers a stabler
alternative for the numerical evaluation of the Hessian matrix).

To illustrate this point further, let us consider again the random walk plus noise model
together with the famous Nile river level data (the data set is available in R as Nile).
Parametrizing the model directly in terms of the two variances, one can obtain the MLEs
as follows.

R> buildNile <- function(x) dlmModPoly(1, dV = x[1], dW = x[2])

R> fitNile <- dlmMLE(Nile, parm = rep(100, 2), build = buildNile,

+ lower = rep(1e-8, 2), hessian = TRUE)

R> fitNile$par

[1] 15099.795 1468.427

For this very simple example, the estimated asymptotic covariance matrix of the MLEs,
obtained by inverting the Hessian returned by dlmMLE, is the following.

R> aVar <- solve(fitNile$hessian)

R> aVar

[,1] [,2]

[1,] 4226694.0 -571174.9

[2,] -571174.9 1028114.8

R> sqrt(diag(aVar))

[1] 2055.893 1013.960

The standard errors are large. A 95% confidence interval for W based on standard asymptotics
even includes the value W = 0 – and clearly the smoothed level obtained setting W = 0 is
going to look very different from the one obtained setting W to its MLE. This suggests
that plugging the MLE into the model and proceeding with the analysis, ignoring in this
way the uncertainty in the parameter estimates, is probably not the best thing to do, from
a statistical standpoint. If one has such large standard errors in a simple model like the
random walk plus noise, one can easily imagine that the situation will be even worse for more
complicated models. As a matter of fact, in several multivariate examples finding MLEs can
be a numerically challenging and time-consuming exercise. Moreover, even when one is able
to compute a MLE – and to be reasonably confident it is not just a local maximum of the
likelihood function – the problem remains of how to deal with the large uncertainty in the
estimates. In practice filtering and smoothing estimates of the unobservable states, together
with their variances, are customarily computed by plugging in the model the MLE of the
unknown parameters, completely ignoring the large uncertainty typically associated to the
estimates. A reasonable way to cope with this issue is to take a Bayesian approach, in which
posterior distributions – whether of states or parameters – incorporate all the uncertainty
about the quantities of interest.

8 An R Package for Dynamic Linear Models

4.2. Bayesian inference

While for a few very special cases (see West and Harrison 1997, sections 4.5 and 16.4) it is
possible to compute the posterior distribution of states and unknown parameters in closed
form, one has in general to resort to Monte Carlo methods to draw a sample from the pos-
terior distribution of interest. Currently, the most commonly used approach to do so is to
implement a Gibbs sampler which draws in turn from the conditional distribution of: (i) the
parameters given the data and unobserved states, and; (ii) the states given the data and
the parameters. The first step can be further broken down into several Gibbs steps, each
drawing a specific subset of parameters given everything else (sampling from a full condi-
tional distribution). The states can be considered latent variables: their inclusion in the
Gibbs simulation scheme usually simplifies the implementation and speeds up the mixing of
the resulting Markov chain. While drawing the parameters dependends heavily on the model
and priors used, the state sequence can be generated from its full conditional distribution
using the so-called forward filtering backward sampling (FFBS) algorithm (Carter and Kohn
1994; Früwirth-Schnatter 1994; Shephard 1994). The algorithm is basically a simulation ver-
sion of the Kalman smoother, consisting in running the Kalman filter first, followed by a
backward recursion to generate all the states from the final time T to time 0. Package dlm
provides an implementation of the backward-sampling portion of the algorithm in the func-
tion dlmBSample. Together, dlmFilter and dlmBSample can be used to implement FFBS. It
must be stressed that FFBS can be also helpful when, in a model with no unknown parame-
ters, one is interested in the posterior distribution, or some summaries thereof, of a nonlinear
functional of the state process. As a very simple example, consider again the Nile River level
data set, modelled as a random walk plus noise DLM. The MLE of the system variance W
is about 1470 and that of the observation variance V is about 15100. For purpose of illus-
tration, we consider these values as known. The one-dimensional state θt represents in this
model the “true” level of the river at time t. Suppose one is interested in assessing the largest
year-to-year variation, i.e., maxt(θt− θt−1). Let us denote this quantity η. Since it is difficult
to derive the exact distribution of η, we obtain 1000 simulated samples as follows.

R> modNile <- dlmModPoly(1, dV = 15100, dW = 1470)

R> nileFilt <- dlmFilter(Nile, modNile)

R> eta <- replicate(1000, max(diff(dlmBSample(nileFilt))))

From the simulated sample, Monte Carlo estimates of quantities like the expected value or
the variance of the posterior distribution can be computed in the usual way.

In addition to dlmBSample, which can be used as a building block in a user-defined Gibbs
sampler, package dlm provides a function, dlmGibbsDIG, that runs a Gibbs sampler for a par-
ticular class of univariate DLMs. The defining properties of these models are the following:
(i) the only unknown parameters are in the variances V and W ; (ii) W is a diagonal matrix,
and; (iii) the unknown variances have independent inverse Gamma prior distributions. We
will call a model satisfying these properties a d-inverse-gamma model, where d refers to the
total number of unknown variances in the model. To illustrate the usage of the function
dlmGibbsDIG, let us consider the built-in data set UKgas, containing quarterly UK gas con-
sumption from 1960 to 1986. From visual inspection of the data it seems that, on a log scale,
a DLM obtained by adding a quarterly seasonal factor model to a local linear trend model
should fit the data reasonably well. This is Harvey’s (1989) so-called basic structural model.

Journal of Statistical Software 9

0 200 400 600 800 1000

0.
02

0.
04

0.
06

0.
08

σy
σβ
σs

Figure 1: Trace plots of MCMC output.

The observation (F) and system (G) matrices of the model are

F =
[
1 0 1 0 0

]
, G =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

 . (2)

The unknown model parameters are the observation variance V = σ2y and two elements of W ,
which is assumed to have the diagonal form

W = diag(0, σ2β, σ
2
s , 0, 0). (3)

We take independent inverse gamma priors for the three nonzero variances, with shape pa-
rameter α = 10−3 and rate parameter β = 10−3. A Gibbs sampler for this model can be run
in R as follows:

R> set.seed(999)

R> mcmc <- 1000

R> burn <- 500

R> outGibbsIRW <- dlmGibbsDIG(y = log(UKgas),

+ mod = dlmModPoly(2) + dlmModSeas(4), shape.y = 1e-3, rate.y = 1e-3,

+ shape.theta = 1e-3, rate.theta = 1e-3, n.sample = mcmc + burn,

+ ind = c(2, 3))

10 An R Package for Dynamic Linear Models

The argument ind specifies the position of the unknown variances on the diagonal of W .
A trace plot of the simulated standard deviations, after burn-in, is provided in Figure 1.
Package dlm also provides basic functionality for MCMC output summary. Ergodic means,
i.e., simulation-based Bayes estimates, of the unknown standard deviations, together with
their estimated Monte Carlo standard errors, can be obtained as shown below.

R> mcmcMean(with(outGibbsIRW, sqrt(cbind(V = dV[-(1 : burn)],

+ dW[-(1 : burn),]))))

V W.2 W.3

0.041549 0.012866 0.059212

(0.002081) (0.000262) (0.000876)

Monte Carlo standard errors are estimated using Sokal’s method (Sokal 1989; Green 2001)

4.3. Example: Outliers and structural breaks

The function dlmGibbsDIG in package dlm provides an out-of-the-box tool for Bayesian in-
ference in a broad class of commonly used DLMs. For other DLMs, the package provides a
couple of functions that can be used as building blocks for an appropriate Gibbs sampler. In
addition to dlmBSample, used to implement FFBS and described in Section 4.2, in package
dlm the user can find an R port (function arms) of the original C code by W. Gilks that im-
plements adaptive rejection Metropolis sampling (ARMS, Gilks, Best, and Tan 1995). This
can be very useful when, within a Gibbs sampler, one needs a draw from a nonstandard dis-
tribution. Function arms is an improved version of the original ARMS algorithm, allowing
the target density to be multivariate. See the examples in the help file. As an illustration,
we will show in the present section how to use the tools offered by package dlm to set up a
Gibbs sampler for a structural model that accounts for possible outliers and structural breaks.
The resulting function implementing the Gibbs sampler is shown in the supplementary file
‘dlmGibbsDIGt.R’.

Within a simulation-based Bayesian approach, the most common way to account for outliers
in a Gaussian model is to replace the normal distribution with a scale mixture of normals in
such a way that, conditionally on the scale parameter, the observations are again normally
distributed while, marginally, they have a Student-t distribution. Hyperpriors can be specified
for the degrees of freedom of the resulting Student-t distributions. Of course, other parameters
may be included in the model as well, in which case the argument outlined above holds
conditionally on these additional parameters.

For a DLM like (1), assuming that yt is univariate and the elements of each wt are independent,
i.e., that Wt is diagonal, we can apply the preceding approach to vt and to each component
of wt to obtain a model that accounts for possible outliers in the observation process as well
as in the state process. The latter can be thought as structural breaks. In order to describe
the model in more detail, we need to introduce new notations. Let G(α, β) denote the gamma
distribution with mean α/β, so that the gamma distribution with mean a and variance b is
G(a2/b, a/b). In addition, let Dir(α) denote the Dirichlet distribution with (vector) parameter
α, and Sam(X , π) the distribution of a random element of the finite set X , selected according
to the probability vector π. Finally, we denote by Unif (a, b) the uniform distribution on the

Journal of Statistical Software 11

interval (a, b). We will focus on the observational variances first, extending our model to
system variances in a second time. Given a common scale factor λ−1, and individual scale
factors ω−1t (t = 1, 2, . . .), we assume that

vt ∼ N (0, (λωt)
−1). (4a)

For the ωt’s we assume independent gamma priors:

ωt
indep∼ G(νt/2, νt/2). (4b)

Up to this point, the specification is equivalent to assuming that λ
1
2 vt has a Student-t distri-

bution with νt degrees of freedom. Moving up in the hierarchical prior, we make the following
distributional assumptions on the model parameters:

λ ∼ G(a2/b, a/b), (4c)

νt
indep∼ Sam(N, π), (4d)

a ∼ Unif (0, A), (4e)

b ∼ Unif (0, B), (4f)

π ∼ Dir(α). (4g)

We consider a finite set of possible degrees of freedom N = {n1, . . . , nK}, although extensions
to continuous νt’s are easy to devise. For each t, the posterior distribution of ωt (or νt)
contains the relevant information about the “outlying-ness” of the observation yt: values of ωt
smaller than one flag possible outliers. A similar hierarchical prior can be specified for each
series of nonzero components of wt. Let wti be the ith element of wt. For the series (wti)t≥0
we assume a hierarchical prior of the same form as (4a)–(4c). As a notational device, we will
use the same symbols as in (4a)–(4c), with an additional subscript “θi”; with this convention
we have a prior for the wti’s defined hierarchically in terms of

λθi, ωθi,t νθi,t, aθi, bθi, πθi, Aθi, Bθi.

Including the unobservable states as latent variables, all the full conditional distributions are
easy to derive and to sample from, with the exception of that of a, b, and aθi, bθi. The full
conditional of (a, b) is

p(a, b| . . .) ∝ G(λ; a, b), (5)

where, for every α and β, G(·;α, β) denotes the density of the G(α, β) distribution. Sim-
ilar expressions hold for the pairs (aθi, bθi) for every i. To draw from these nonstandard
distributions we use arms on each pair (a, b), (aθi, bθi). A detailed derivation of all the full
conditional distributions of the model can be found in Petris et al. (2009). We tested the
model described above on the seasonally adjusted monthly index of US industrial production
of consumer goods1. The data are available through the Federal Reserve website at the URL
http://research.stlouisfed.org/fred2/series/IPCONGD. A look at the time series plot
shows that, on a log scale, a local linear trend model, with possible outliers and structural
breaks, should give a reasonable fit. The Gibbs sampler was run with the following call to
dlmGibbsDIGt:

1This series is updated frequently; at the time of writing it ended in February 2009.

http://research.stlouisfed.org/fred2/series/IPCONGD

12 An R Package for Dynamic Linear Models
Tr

en
d

2.
5

3.
0

3.
5

4.
0

4.
5

1940 1950 1960 1970 1980 1990 2000 2010

●●●●●
●●●●●●●●●

●
●●●●●●

●●●●●●
●
●
●●●●●●●

●

●●

●

●
●
●●
●
●●●

●

●●●●●●●●●●

●

●●●●●●●
●

●

●●●
●●
●●●●●

●
●
●
●
●

●

●
●
●●●
●

●

●●●●

●

●●●●
●●●●●●●●●●●

●

●

●●●
●
●●●
●
●●●●●●●●

●

●
●

●
●●●●

●
●

●

●

●
●
●
●●●●●

●

●●
●

●
●●
●●●●●

●

●
●
●●●●●●●●●

●●●●
●●
●
●
●●●●●●●●●

●●●●●
●

●
●●●
●
●●●●
●●●●●●●●●●●●●

●

●●●●●●
●●●●●●

●

●

●●

●

●

●

●●●●●
●●●●●●●

●

●

●
●●●●●●●●●

●●●●

●

●●●●

●
●
●
●
●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●

●●●●

●
●
●
●
●●●●●●●●●●●●●

●●●●●●●●

●

●●●
●
●
●●

●●●●●

●

●

●

●●●●●●●
●●●●●●●

●

●●
●

●
●
●●●
●
●
●●●●●
●
●●●

●

●
●
●●●●●
●

●●●●●
●
●●●●●●●●●●●●

●
●
●●●●

●

●●

●
●
●●
●
●●●
●●●
●

●

●
●●

●

●●●
●●●●●●

●●●●●●●●●
●
●●●
●●●●●●●●●●

●

●

●

●●●●●●
●
●●●●●●

●●●●●●●●
●
●●
●

●

●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●
●●
●
●
●●●●●●●

●

●

●●●●●●●●●●
●●●●●●

●●●●●
●
●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●

●●●●●
●●●●●●●

●
●
●●●
●

●

●●
●●
●●
●

●●
●●●●
●●

●
●●●●
●●
●●
●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●
●●

●●
●●●●●●●●●

●●●●●
●●●●●●

●
●●●
●●●
●
●

●

●●●●●
●●●●●●●●●

●●
●
●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●
●
●●●●●●●●

●●
●
●●
●

●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●
●●●
●●
●●●●●●

●
●●●●●●

●●●
●
●

●

●●●
●

0.
0

0.
4

0.
8

1.
2

ωω
θθ1

,, t

S
lo

pe

−
0.

02
0.

00
0.

01
0.

02

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●

●●●●●●●
●●●
●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●
●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●

●
●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●●

●●●●●●●●●●●●

0.
0

0.
4

0.
8

1.
2

ωω
θθ2

,, t

R
es

id
ua

ls

−
0.

04
−

0.
02

0.
00

●●●
●●●●●●●●●●●●

●●
●
●

●

●●●●●
●●●
●
●●●●●●●

●

●●
●
●

●

●●●●●

●

●
●●●●●●●●

●●

●

●●●●●●●

●

●
●●
●●
●
●●
●●●

●

●●●
●
●

●

●●●
●
●●●●●
●●
●●●●●●●●●●

●
●●●●●●●

●
●
●

●●●●●●●●●●●
●●

●

●

●●●●●●

●

●●
●

●●●
●●●
●
●

●

●●
●●●●●●

●

●

●

●●
●
●●●●
●●
●●
●●●●
●
●
●●●●
●●●●●●

●●
●●
●●
●
●●●●●●

●●●●●●●●●●●●●
●
●●●
●●●●●●

●●●●●

●

●●●●
●●●
●●●●●
●
●
●●●●

●

●

●

●●●●●●
●●

●

●●●●
●●
●●●●

●

●
●●●
●●●●
●●
●●●●●●●●●

●
●●●●●●●●●

●

●●●●●●

●

●●●●
●●●●●●

●●●●●●●●●●●●●
●
●●●●●

●

●
●●●●●●

●

●
●●●●●●●●●●

●●●
●
●

●

●
●
●●●●●
●
●●●●●●●

●●

●

●●
●
●●
●●

●
●●●
●●●●●●●●●●●●

●●●
●●●●●
●

●

●●
●
●●●●●●

●●●●

●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●
●●●●●●●●

●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●

●●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●

●●
●●●●●●●●●●●●●

●●●●●●●

●

●●
●●

●

●

●●●●●●
●

●

●●●●●
●
●
●
●
●
●●●●●
●

●●●●●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●
●●
●●●●

●
●
●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●●●●●●
●●
●
●
●●
●
●
●
●●
●●●
●
●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●●

●●●
●
●
●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●
●●●●●●●●

●●●●●●●●●●

●

●●
●●●

1940 1950 1960 1970 1980 1990 2000 2010

0.
0

0.
4

0.
8

1.
2

ωω
y,,

 t

Figure 2: Outlier and structural breaks in industrial production of consumer goods.

Journal of Statistical Software 13

R> mc <- 2000

R> burn <- 1000

R> gibbsOut <- dlmGibbsDIGt(yM, mod = dlmModPoly(2), A_y = 5e4, B_y = 5e4,

+ ind = 1 : 2, save.states = TRUE, n.sample = mc + burn, thin = 4)

Standard convergence diagnostics and visual assessment of trace plots did not raise any reason
for concern, so we proceded and used the output of the Gibbs sampler for posterior inference.
Graphical summaries are included in Figure 2. The residuals in the bottom panel are defined
as ε̂t = yt − E(Fθt|y1:T). By looking at the residuals and the ωy,t’s, it can be seen that
there are a few outliers, some of them fairly extreme (such as those occurred in August 1945
and October 1964), and most of them—the large ones in particular— negative. The trend
of the series (top panel of Figure 2) shows some abrupt changes. The most dramatic one,
with an estimated ωθ1,t of 0.0025, in April 1942, and a slightly milder one in December 1970
(ω̂θ1,t = 0.146). The slope, on the other hand, appears to have been fairly stable—dynamically
changing, but in a smooth fashion, without sudden jumps. The current economic downturn,
for example, is reflected in a slope which is becoming, month after month, more and more
negative.

5. Comparison with other implementations

In this section we discuss some functions and packages available in, or for, R that can be
used to make inference in a DLM. For a more extensive comparison of the different packages,
see Tusell (2010). We will first focus on the functions that are included in the standard
distribution of R, and then move to other functions available in contributed packages.

Function StructTS. This function computes the MLE of the variance parameters and the
filtered means of the state vectors for a basic structural model, i.e., a constant DLM consisting
of a random walk plus noise, a local linear trend, or a local linear trend plus a seasonal
component. Smoothed means of the state vectors can be obtained via a call to tsSmooth.
Forecasts, together with their standard errors, are available by calling predict on the fitted
model (an object of class StructTS). The main function StructTS, together with the method
functions available for objects of class StructTS, provides a very reliable tool to analyze
time series using basic structural models. The main limitations are that only univariate time
series can be analyzed and only using DLMs of very special types—basic structural models.
Moreover, maximum likelihood is the only method available for parameter estimation.

Function KalmanLike. This function, together with KalmanRun, KalmanSmooth, and
KalmanForecast, provides more flexibility in state space modeling. As a matter of fact,
they provide the engine behind StructTS and the related functions mentioned above. They
can treat more general DLMs, as long as they are constant and univariate. In using them di-
rectly, some care needs to be paid as, according to their help page, the functions only perform
minimal checks on their arguments and KalmanLike may change the value of its arguments.

Package dse. Package dse (Gilbert 2009) provides a powerful set of tools to estimate and
work with multivariate ARMA and linear state space models, within a frequentist framework.

14 An R Package for Dynamic Linear Models

Beside the different “philosophical” slant, for the pragmatic user the main advantage offered
by package dlm is the possibility of specifying time-varying models—in dse only constant
models are allowed. On the other hand, for constant models, dse provides several alterna-
tive estimation methods for unknown model parameters, in addition to maximum likelihood.
In hard estimation problems, these can be used to find initial parameter values for maxi-
mum likelihood estimation. This may be potentially useful even for the user of package dlm
interested in maximum likelihood estimation.

Package sspir. The contributed package sspir (Dethlefsen and Lundbye-Christensen 2006)
has functions for approximate filtering and smoothing of linear state space models with nor-
mally distributed states and univariate observations with distribution in an exponential family,
such as Poisson or Binomial. Models of this kind are usually called dynamic generalized lin-
ear models (DGLMs), and are used to study time series of counts or proportions. Although
focused on DGLMs, package sspir provides functions for filtering and smoothing of univariate
or multivariate DLMs, both constant and time varying. In this area, at least for completely
specified DLMs, there is some overlap with the functionality of package dlm, although im-
plementation details differ substantially. An informal comparison of execution times shows
that the filtering routine in package sspir is about 12 times slower than the corresponding
one in package dlm. For the smoothing, package dlm is only about 7 times faster. However,
we think the main advantage of package dlm over sspir for DLM analysis is that the former
provides an integrated environment in which unknown parameters can be estimated by max-
imum likelihood or Bayesian inference, while the latter requires all model parameters to be
known.

6. Conclusions

In the previous sections we have illustrated the main features of the R package dlm for
Bayesian and likelihood analysis of DLMs. Within this class, dlm is very flexible in the types
of model that can be specified: essentially any constant or time-varying DLM, univariate or
multivariate, over a finite horizon can be defined within the package framework. Moreover,
simplified constructors for standard DLMs are provided, and models can be combined with
sums or outer sums. This freedom allows the researcher to concentrate on substantive issues,
without being limited by the constraints imposed by the software. (Of course, this is a relative
freedom that can be enjoyed only within the DLM class.) In view of the great flexibility
in the specification of the model, DLMs that are numerically unstable with respect to the
standard filtering and smoothing procedures may result. This is the main reason behind the
careful choice of the robust singular value decomposition-based algorithms for filtering and
smoothing used in package dlm. A minor limitation of these algorithms is that they require
the observation variances Vt to be nonsingular.

Nowadays, Bayesian inference can be applied for a huge class of models using a limited num-
ber of basic techniques—essentially, the Gibbs sampler and Metropolis–Hastings algorithm.
However, although the general algorithms are always the same, they have to be taylored to
the particular model/prior at hand, and this typically requires a human intervention. Pack-
age dlm provides a few general purpose functions that are intended to help building a Gibbs
sampler in the DLM framework. In fact, arms can be useful for any kind of model—not just
a DLM— and dlmBSample can be used to simulate from the full conditional distribution of

Journal of Statistical Software 15

the states of any DLM. The function dlmGibbsDIG, included in the package, can be used out
of the box to perform Bayesian inference for structural time series. However, most of all, it
provides an example of how a Gibbs sampler for a DLM can be set up in R using the tools
available in the package. Another more advanced example is discussed in Section 4.3.

Aknowledgments

In the development of package dlm we have benefited from the suggestions and feedback
of several users. In particular, we would like to thank Sonia Petrone, Michael Lavine, and
Spencer Graves for their constructive input. Needless to say, without R in the first place, no
contributed package would exist: our sincere thanks go to all the developers of R for their
continued effort and support.

References

Carter CK, Kohn R (1994). “On Gibbs Sampling for State Space Models.” Biometrika, 81,
541–553.

Dethlefsen C, Lundbye-Christensen S (2006). “Formulating State Space Models in R with
Focus on Longitudinal Regression Models.” Journal of Statistical Software, 16(1), 1–15.
URL http://www.jstatsoft.org/v16/i01.

Früwirth-Schnatter S (1994). “Data Augmentation and Dynamic Linear Models.” Journal of
Time Series Analysis, 15, 183–202.

Gilbert PD (2009). Brief User’s Guide: Dynamic Systems Estimation (dse). R package
version 2009.10-2, URL http://CRAN.R-project.org/package=dse.

Gilks WR, Best NG, Tan KKC (1995). “Adaptive Rejection Metropolis Sampling within
Gibbs Sampling.” Applied Statistics, 44, 455–472. Corr: 1997, 46, 541–542, with R.M.
Neal.

Green PJ (2001). “A Primer on Markov Chain Monte Carlo.” In OE Barndorff-Nielsen,
DR Cox, C Klüppelberg (eds.), Complex Stochastic Systems. Chapman & Hall/CRC, Boca
Raton.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press, Cambridge.

Jones PD (1994). “Hemispheric Surface Air Temperature Variations: A Reanalysis and Update
to 1993.” Journal of Climatology, 7, 1794–1802.

Parker DE, Folland CK, Jackson M (1995). “Marine Surface Temperature: Observed Varia-
tions and Data Requirements.” Climatic Change, 31, 559–560.

Petris G (2010). dlm: Bayesian and Likelihood Analysis of Dynamic Linear Models. R package
version 1.1-1, URL http://CRAN.R-project.org/package=dlm.

http://www.jstatsoft.org/v16/i01
http://CRAN.R-project.org/package=dse
http://CRAN.R-project.org/package=dlm

16 An R Package for Dynamic Linear Models

Petris G, Petrone S, Campagnoli P (2009). Dynamic Linear Models with R. Springer-Verlag,
New York.

Pinheiro JC, Bates DM (1996). “Unconstrained Parametrizations for Variance-Covariance
Matrices.” Statistics and Computing, 6, 289–296.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Shephard N (1994). “Partial Non-Gaussian State Space Models.” Biometrika, 81, 115–131.

Shumway RH, Stoffer DS (2006). Time Series Analysis and Its Applications, with R Examples.
2nd edition. Springer-Verlag, New York.

Sokal AD (1989). Monte Carlo Methods in Statistical Mechanics: Foundations and New
Algorithms. Cours de Troisiéme Cycle de la Physique en Suisse Romande. Lausanne.

Tusell F (2010). “State Space Modeling and Estimation in R.” Submitted.

Wang L, Liber G, Manneback P (1992). “Kalman Filter Algorithm Based on Singular Value
Decomposition.” In Proceedings of the 31st Conference on Decision and Control, pp. 1224–
1229.

West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. 2nd edition. Springer-
Verlag, New York.

Zhang Y, Li R (1996). “Fixed-Interval Smoothing Algorithm Based on Singular Value De-
composition.” In Proceedings of the 1996 IEEE International Conference on Control Ap-
plications, pp. 916–921.

Zivot E, Wang J (2005). Modeling Financial Time Series with S-PLUS. 2nd edition. Springer-
Verlag, New York.

Affiliation:

Giovanni Petris
Department of Mathematical Sciences
University of Arkansas
72701 Fayetteville AR, United States of America
E-mail: GPetris@uark.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 36, Issue 12 Submitted: 2009-04-20
October 2010 Accepted: 2010-03-05

http://www.R-project.org/
http://www.R-project.org/
mailto:GPetris@uark.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Overview
	Model specification
	Kalman filtering and smoothing
	Parameter estimation
	Maximum likelihood
	Bayesian inference
	Example: Outliers and structural breaks

	Comparison with other implementations
	Conclusions

