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ABSTRACT 

 

Many areas of the world today have access to alternative energy sources to meet their energy 

needs. A fundamental problem facing societies today is to determine the optimum utilization of 

energy sources. This paper analyzes the issues involving co-utilization of different types of energy 

production in Iceland. Formulating a dynamic social optimization problem, expressions are 

derived for optimal energy supply prices from each energy source. Based on the economic 

characteristics of the energy sources, an optimal solution is derived that involves both periods of 

specialization in a single energy source as well as periods of simultaneous co-utilization of 

available sources. 
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INTRODUCTION 

 

echnology today offers societies today several options in meeting their energy needs. This, however, 

creates a problem of selecting the optimal mix of energy sources. The solution to this problem 

clearly varies from one situation to another. In certain cases, the optimal energy mix will involve 

only one energy source. In other cases, it may involve several energy sources that may, moreover, be employed in 

varying proportions over time. This paper analyzes the policy issues involving co-utilization of different types of 

energy production. The model presented analyzes the co-utilization of geothermal and hydropower production in 

Iceland. Three sources of energy generation specifically relevant to Iceland, hydroelectric, geothermal and fossil fuel 

are considered. Even though this paper focuses on a single country, many of the results are applicable globally to the 

problem of an optimal energy mix. 

 

 Natural conditions in Iceland favor the increased utilization and development of hydroelectric and 

geothermal power production. The mean surface run-off in Iceland is about 50 liters/second/square kilometer, with a 

large part of the country consisting of a plateau more than 400 meters above sea level. More than half of the country 

is above 500 meters above sea level. The technically hydropower potential is estimated at 64 TWh/year, of which 30 

TWh/year is considered economically and environmentally harness able. In addition, Iceland has abundant 

geothermal energy resources. A quarter of the entire country is a volcanic area. Given that geothermal resources are 

not strictly renewable, it is estimated that the potential power production from this source is 20 TWh/year. Present 

utilization of these two resources totals only 4.2 TWh/year, or only about 8% of Iceland’s aggregate potential 

(Orkustofnun  - Iceland Energy Authority, 2007). 

 

HYDROPOWER PRODUCTION 

 

 The first hydropower plant in Iceland was constructed in 1904, with a power generation capacity of 9 

kilowatts. Over the years, many additional hydropower plants have been added. The first large-scale hydropower 

plant was built in 1965, which had a capacity of 210 MW. The total hydropower production in Iceland is now 7,289 

GWH (World Energy Council, 2007). This, however, represents only a small amount of the economically feasible 

hydropower production for the country. Iceland is second only to Norway in the world in having the smallest per 

capita electric power consumption. 
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GEOHERMAL POWER PRODUCTION 

 

 Iceland has enormous supplies of geothermal energy.  Currently there is 2,631 GWH of installed capacity. 

However, it is estimated that the total potential for electricity production from the 19 high temperature fields in the 

country could be as high as 1,480 TWH/year. There are three types of geothermal energy: hydrothermal, geo-

pressured and hot dry rock, the last being the most plentiful. The geothermal fields of Iceland are almost exclusively 

hydrothermal in nature, and this type of geothermal energy is the most useful for commercial applications. 

Hydrothermal areas are divided into high and low temperature fields, according to the reservoir temperature. A low 

temperature field is defined as one where the temperature is below 150 degrees centigrade at one kilometer in depth, 

and a high temperature field where the temperature is above 200 degrees centigrade. The high temperature fields of 

Iceland traverse the country from Southwest to Northeast, with the low temperature fields located on the flanks 

(Orkustofnun  - Iceland Energy Authority, 2007). 

 

 Geothermal energy currently provides 26.5% of the gross energy consumption in Iceland.  A very 

important use of this energy source is for space heating (residential and commercial), with about 87% of all 

buildings in Iceland being heated this way. In addition, geothermal energy is used for greenhouse cultivation of 

fruits and vegetables.  The principal industrial uses of high temperature geothermal energy involve drying 

applications using flashed steam and/or hot water.  Iceland has found that the most efficient way of using the high 

temperature fluid is to cascade its use by using the heat first for the production of electricity, and the remainder for 

providing for space heating, swimming pools, and even for heating sidewalks and roads. There are five major 

geothermal power plants in Iceland. In contrast to low temperature space heating, power production is only possible 

in the high temperature fields situated in the volcanic zone which lies diagonally from southwest to northeast 

through the country. The Svartsengi Power Plant, in the southwest of the country, currently produces 76.5 MW of 

electricity and about 475 liters/second of  90º Centigrade hot water. The Nesjavellir Power Plant, which supplies hot 

water to Reykjavik, is situated in the south of the country and produces 120 MW of electricity and about 1800 

liters/second of hot water. There are three power plants that only produce electricity. The Krafla Power Plant, 

situated in the northeast of the country, produces 60 MW of electricity. The Reykjanes Power-Plant, located in the 

southwest tip of the country produces 100 MW of electricity. The Hellisheidi Power-Plant, produce 90 MW of 

electricity (Landsvirkjun – National Power Company of Iceland, 2007) 

 

ECONOMIC ANALYSIS OF ENERGY UTILIZATION 

 

 Iceland is a country of many contrasts. While it is rich in energy resources, Iceland is a barren country. The 

Icelandic climate is too cold for any significant growing of crops. Therefore, a considerable part of the needed 

agricultural products must be imported. However, Iceland is self-sufficient in meat and dairy products and certain 

types of vegetables. The principal industry in Iceland is fishing. This industry, however, has been in a period of 

significant decline in recent years due to over fishing and reduced total catch.  The principal industrial firms in the 

country include an aluminum smelter built in 1969 with 90,000 ton production capacity and a ferrosilicon plant. 

Iceland has made some attempts to attract other energy intensive industries to the country. In the 1990s, international 

companies started looking at Iceland as   potential location for additional aluminum smelters, an industry that 

requires an extensive amount of available power. By 2003 Iceland had the world’s highest aluminum production per 

capita of the population with two aluminum smelters (260,000 tons production and 300,000 people) (Hilmarsson, 

2003)  

 

 In 2007, Alcoa opened a 320,000 ton aluminum smelter at Reydarfjordur in Eastern Iceland.  This smelter 

required Landsvirkjun, The National Power Company of Iceland, to build the 690 MW Karahnjukar Hydropower 

plant just to provide power to the Alcoa smelter. The resulting dam, the largest in Europe, has been severely 

criticized by environmentalists in the country, as it flooded 57 square kilometers of pasture land (Landsvirkjun – 

National Power Company of Iceland, 2007).  In 2008, Alcoa proposed construction of an additional smelter in 

Husavik, northern Iceland. In addition, Nordural, a subsidiary of the U.S. firm, Century Aluminum, has proposed 

construction of an aluminum smelter at Helguvik Cove, in southwest Iceland. Both of these projects have been put 

on hold due to the recent financial collapse to hit Iceland. 
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 The construction and operation of aluminum smelters in Iceland has both positive and negative impacts on 

the country. It does bring in additional tax revenue to the country, provides additional employment during 

construction and final operation, and creates a positive economic multiplier effect on the other sectors of the 

Icelandic economy. However, from an environmental perspective, this type of industrial development brings 

increased pollution levels and waste disposal problems. Also, if geothermal resources are used as a power source, 

this can cause surface disturbances due to fluid withdrawal, noise, thermal effects, and emission of chemicals into 

the atmosphere. 

 

 Iceland has also considered the export of power. Feasibility studies completed by Landsvirkjun, the 

National Power Company of Iceland, have concluded that it would be technically feasible to export electricity 

through submerged ocean cable to Scotland or England (Landsvirkjun – National Power Company of Iceland, 1992). 

Given the distances involved (minimum of 950 km), transmitting electricity through cables can only be done 

effectively by high voltage direct current (HVDC). When electricity is transmitted with HVDC, the alternating 

current is changed to direct current by rectifying it in a converter station at one end, and then changing the power to 

AC by inverting it in a converter station at the other end. 

 

 Even though a submarine cable is technically feasible and the price of Icelandic energy is competitive, 

Iceland would still face significant technical, economic and political obstacles. Such a project would require an 

enormous expenditure of funds, and this would require some cost sharing by the receiving countries. A plant would 

first have to be built in Iceland just to construct the cable. Also, there are some technical issues. There are currently 

longer undersea cables and deeper undersea cables in the world, but the undersea cable connecting Iceland to Europe 

would be longer and deeper than other previously constructed cables. Also, the cost effectiveness of the project will 

depend on market prices of energy in the future. From a political perspective, it may also be difficult for Iceland to 

negotiate a cost effective price, given competition from other European power producing countries (e.g. France). For 

the receiving countries, however, the greatest advantage may be that Iceland’s electricity does not result in any 

environmental pollution. 

 

 There are many issues facing Iceland today as it considers development opportunities utilizing these 

abundant power supplies especially given the financial and economic crisis currently facing the country. Iceland is 

in many ways unique in terms of its available energy sources. However, most countries today face similar situations 

with regard to a choice of different energy sources. The following theoretical model is presented to show how a 

cost-effective co-utilization of different energy sources can be developed resulting in an optimal mix of energy 

sources. 

 

MODEL OF ENERGY CO-UTILIZATION 

 

 In order to evaluate the potential for co-utilization of different energy sources, and to determine the optimal 

mix of these energy sources, the following model is developed. Consider a city with a certain population area. Let 

the instantaneous demand for energy in this area be given by the inverse demand function  

 

(1) ),( tyDp   

 

where p denotes the demand price and y refers to energy consumption at time t. Notice that according to this 

specification, the function D(y,t) is time variant. We assume (i) that D(y,t)>0, (ii) that the function D(y,t) is twice 

continuously differentiable and (iii) that Dy (y,t)<0. 

 

 Given this energy demand a measure of social benefits derived from energy use is provided by the 

consumer surplus defined by the following expression: 

  

(2) 
q

tyDtB
0

),()( dy 

In this case it is mathematically convenient to assume that the function B (t) is concave in q. 
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 To describe a rather typical situation imagine that the population area in question is a city and the energy 

demand in this analysis is for residential and industrial energy purposes. Energy generation can come from three 

sources, geothermal, hydroelectric, and fossil fuel. Each of these three methods of energy generation involves social 

costs. Let us for a moment describe these costs at time t by the following cost function: 

 

(3)  C(t) = C1(yG,t)+C2(yH,t)+C3(yF,t) 

 

Where yG, yH, and yF refer to the instantaneous consumption of geothermal, hydroelectric, and fossil energy 

respectively and the functions C1(∙), C2(∙) and C3(∙) represent the corresponding cost functions. 

 

 Instantaneous net social benefits may be defined as the difference between social benefits and costs: 

 

(4) )()()( tCtBtNB   

 

The problem for the country or region is to select the optimal combination of these methods so as to maximize the 

present value of net social benefits. This problem is equivalent to choosing time paths of yG, yH, and yF to maximize 

the objective function: 

 

(5) dtrttNBV )exp()(
0

 


 

 

where r represents the social rate of discount, subject to the constraint that demand is satisfied, i.e. 

 y= yG + yH+ yF and other constraints. Economic optimality requires that demand be satisfied at each point in time, 

for otherwise prices would convey incorrect signals and could induce suboptimal behavior. 

 

 The maximization of net social benefits from energy generation subject to satisfying demand is clearly 

equivalent to minimizing the cost of meeting that demand. This cost minimization approach gives rise to the concept 

of the marginal social cost of energy supply which is often referred to as the supply price of energy. Thus, a 

particularly transparent way to approach the problem of the optimal energy generation mix, is to proceed in terms of 

the social supply price of energy from the different energy sources. The following sections will develop a supply 

price for each power source. 

 

HYDROELECTRIC SUPPLY PRICE 

 

 Let the cost of electric power generation in the hydroelectric grid system be defined by the cost function: 

 

(6) C(y), Cy >0 

 

This cost function reflects the total costs of operating the existing hydroelectric system (i.e. both fixed and variable 

costs) at a point of time. ( )C  , however, does not include investment costs (i.e. sunk costs) or costs associated with 

future capacity changes. For reasons of mathematical convenience we assume that this cost function is convex and 

twice continuously differentiable. 

 

 Production of electricity is constrained by two factors, the installed generating capacity, denoted as Q, and 

the availability of water. Thus, 

 

(7) Q ≥ y ≥ 0  

 

 In a typical hydroelectric power system, capacity can only be adjusted in relatively large discrete blocks. 

Generating capacity is, in other words, highly indivisible. This significantly complicates the analysis and resulting 

optimal management of the system. We will therefore consider Q fixed for this analysis. 
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 The availability of water depends on the flow rate of the river, which may be taken to be exogenous, and 

the accumulation of water resources in reservoirs. Referring to the stored water in the reservoirs at time t by x(t) we 

have: 

 

(8) x′ (t) = ∂x∕ ∂t = a(t) – y(t) 

 

where a(t) represents the exogenous inflow of water and y(t) the extraction of water for energy generation. 

 

 The simplifying assumption is used that maximization of social benefits from electricity generation is 

equivalent to maximizing the present value of future consumer and producer surplus. Thus, assuming for the present 

that capital is fixed, the problem facing the hydroelectric power authorities is: 

 

(9) 
0 0

[ ( , ) ( )] exp( )
q

MaxV D y t dy C y rt dt


      

   

subject to:  

 

(10) Q ≥ y ≥ 0 

 

(11) x′ = a – y 

 

(12) y, x ≥ 0 

 

where r>0 denotes the social rate of discount and the term  [
0

( , ) ( )
q

D y t dy C y ] represents the sum of consumer 

and producer surpluses at time t. 

 

 Equation (9) is only dynamic in a limited sense as the stock variable x does not appear explicitly in the 

objective function. This means that the energy generation remains at all times at the optimal equilibrium level given 

the exogenous variables. If the stock constraint, x≥0, does not become binding at some point of time, the problem is 

entirely static. 

 

 A Hamiltonian function corresponding to equation (9) may be written as: 

 

(13) 
0

( , ) ( ) ( ) ( )
q

H D y t dy C y a y Q y x           

 

where σ and μ1 and μ2 are the Lagrange multipliers for this problem. Along the optimal solution to equation (9), 

these variables measure the shadow or, in this case, social values of the respective stock variables. More precisely, 

σ(t) measures the increase in the present value of net social benefits, from time t onwards, due to a marginal increase 

in water reservoir levels. The variable μ1 measures the instantaneous change in social benefits due to a marginal 

increase in electricity generating capacity at time t, and the variable μ2(t) measures the instantaneous increase in 

social benefits due to an increase in water levels at time t. 

 

 The necessary conditions for solving equation (9) are: 

 

(14) 1( , ) ( ) , 0, 0y y yH D y t C y y H q       

 

(15) 1 2r       

 

(16)  1 1Q y,  0,  Q y 0       
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(17)  x′ = a-y 

  

(18) 
2 2x 0, 0,  x 0       

 

These necessary conditions reveal a set of socially optimal rules for electricity pricing. Provided there is some 

production of electricity, according to equation (14), the optimal supply price of hydropower, pH, is given by: 

 

(19) 1( , ) ( )H yP D y t C y       

 

The first term in the supply price is the marginal instantaneous cost of generating electricity. The second, σ, reflects 

the social cost of using water for electricity generation. It can be shown that if the water supply is adequate for all 

future periods, then σ = 0 at all t. The third term, μ1, measures the social value of a marginal increase in generating 

capacity. If there is excess capacity at time, μ1=0, otherwise μ1≥0. For investment to be optimal, μ1 must at least 

equal the marginal cost of investment. 

 

 The variables σ and μ1 in equation (19) reflect the importance of water availability and investment costs for 

the optimal supply price of hydropower. The movement of σ and μ1 over time is given by conditions (14) through 

(18). Two important special cases may be discerned from this analysis. 

 

CASE 1: WATER SUPPLY NOT BINDING 

 

 If the water supply is abundant in the sense that the x≥0 constraint will never become binding, the 

electricity pricing rules are relatively simple. In that case they are: 

 

(20) ( , ) ( )H yp D y t C y  , if Q>y, i.e., excess capacity 

 

(21) ( , )Hp D Q t , if Q=y, i.e., full utilization of capacity 

 

It is important to realize that to follow these rules just requires knowledge of the current situation facing the 

hydroelectric authority. Assuming for the moment that demand increases at a constant exponential rate (i.e., the 

inverse demand function can be written as ( , ) ( ) exp( ), 0D y t D y t     ), the optimal time path of supply 

price will be similar to Figure 1. 

 

 
Figure 1 

Hydroelectric Supply Price: Abundant Water with No Investment 
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Figure 1 illustrates two possible phases. In the first phase, from t=0 to t=t1, there is excess capacity and 

equation (20) applies. In the second phase, from t=t1 onwards, there is full utilization of capacity. Therefore, the 

supply price must adjust so as to satisfy the demand and equation (21) applies. 

 

 At some point during phase 2 it will become optimal to invest in additional capacity. The condition for that 

is given by: 

 

(22) 1 0( ) ( )V Q V Q I   

 

where 1( )V Q represents the value of the optimal program under some new capacity, Q1, and 0( )V Q the value of 

the optimal program under the old capacity, Q0. (I) represents the cost of investing in additional capacity. 

 

 As suggested by equation (22), investment decisions require knowledge about future conditions since 

1( )V Q and 0( )V Q  involve the entire future path of electricity generation. More precisely: 

 

(23) 1
0 0

( ) [ ( *, ) ( *)] exp( )
q

V Q D y t dy C y rt dt


     ,    

 

Where y* represents the optimal path of electricity production and bounded by the constraint Q1≥y*. A similar 

expression holds for 0( )V Q . Thus, the optimal investment decisions require perfect foresight for the remainder of 

the program horizon. Only in certain rare circumstances is it possible to base the optimal investment decisions on 

current data. One such case is when future electricity demand is guaranteed not to fall below the demand at the time 

of the investment. 

 

 Once a discrete addition to electricity generation capacity has taken place, the situation reverts to one 

described by equations (20) and (21). Thus, allowing discrete investments, the time path of the electricity supply 

price is described in Figure 2. 

 

 
Figure 2. 

Hydroelectric Supply Price: Abundant Water 
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CASE 2: WATER SUPPLY BINDING 

 

 If it is expected that at some point in the future water will become scarce in the sense that the x≥0 becomes 

binding, this will be reflected in the current shadow value of water, σ. Therefore, as suggested by equation (19), the 

social supply price of water will have to be adjusted upwards. The more imminent the water shortage the higher is σ 

and the higher the supply price of electricity. This is illustrated in Figure 3. 

 

 
Figure 3. 

Hydroelectric Supply Price: Water Shortage 

 

 

 Figure 3 illustrates the case where demand is time invariant, i.e. ( , ) ( )D y t D y , but water reservoirs are 

declining and running dry at time t1. Therefore, prior to t1, the supply price rises to encourage conservation and to 

postpone the time of water shortage. From t1 onwards, electricity supply relies on the instantaneous water flow, a(t), 

and if this is constant so will the supply price be. 

 

 The economic rationale for increasing the supply price of electricity when water shortage is expected is to 

encourage conservation. When reservoirs run dry, power authorities are faced with a block interval in the sense that 

they would like to make x negative but are unable to do so. This situation suggests prior adjustments in the optimal 

paths. 

 

 Clearly, potential water shortage greatly complicates the determination of optimal price. First, since 

running out of stored water at some point in the future is a distinct possibility in most hydroelectric systems, the 

pricing of energy can no longer rely on current data. Foresight and prediction become crucial for identifying the 

optimal pricing path. Second, due to this constraint, the calculation of optimal prices becomes more complex, even 

when good predictions are available. Third, actual price profiles become more uneven and jagged than before. 

 

GEOTHERMAL ENERGY SUPPLY PRICE 

 

 In order to analyze the supply price, we need to first consider a geothermal field consisting of a number of 

well. Hot water continuously flows into these wells. Let x(t) represent the level of water of a given temperature in 

the wells at time t. It stands to reason that the rate of change of x depends on the level of x itself. Let this natural rate 

of change be given by the function G(x(t)). We assume that G(0)>0 and there exists a natural positive equilibrium 

water level, x*, say, such that  G(x*)=0 and that G(X)>0 for all x in the interval (0,X*). For reasons of mathematical 

convenience we further assume that G(x) is twice continuously differentiable and concave. The shape of G(x) is 

illustrated in Figure 4. 
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Figure 4 

Natural Water Inflow Function, G(x) 

 

 

 Hot water is being extracted from the wells and supplied to consumers at the rate of y(t). Thus, the water 

level in the wells changes according to: 

 

(24) ( ) ( ( )) ( )x t x t G x t y t              

 

The instantaneous cost of extracting water from the field is taken to increase with the rate of extraction, y, 

and decrease with the available level of water, x, such that: 

 

(25) ( ) ( , ), 0, 0C t C y x Cy Cx           

 

This function is assumed to be twice continuously differentiable and convex in both of its arguments. 

 

 As in the case of the hydroelectric power generation example discussed above, the production of 

geothermal energy is constrained in two ways. One is the capacity of the system to pump and pipe hot water to 

consumers. Referring to this constraint by the symbol Q, we have: 

 

(26) Q y            

 

The other constraint is the availability of hot water in the wells, x. Therefore, x cannot be made negative. 

 

(27) 0x             

 

 In countries like Iceland, the second constraint is much more important than the first one.   One reason is 

that the delivering capacity can normally be adjusted in relatively small steps to accommodate demand. On this basis 

and to avoid unnecessary complications let us assume that investments in capacity are perfectly divisible so that: 

 

(28) Q i             

 

where, i represents net investment. 
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 The problem facing power authorities is thus: 

 

(29) 
0 0

[ ( , ) ( , ) ] exp( )
q

MaxV D y t dy C y x s i rt dt


            

 

subject to: 

  

(30) 0Q y   

          

(31) Q i   

           

(32) ( )x G x y    

          

(33) , 0y x            

 

where, r>0 denotes the social rate of discount, s, the unit price of investment, and the term 

0
[ ( , ) ( , ) ]

q

D y t dy C y x s i     represents the sum of consumer and producer surplus at time t. 

 

 The solution to the above problem has an explicitly dynamic character, since the stock variable, x, appears 

in the objective function. The following phase diagram explains this situation. 

 

 
Figure 5 

Geothermal Extraction: Phase Diagram 

 

 

 The phase diagram in Figure 5 shows that the optimal interior solution involves a dynamic adjustment to a 

saddle point equilibrium (y*,x*). Given an infinite horizon, only paths to (y*,x*) can be optimal. Notice, however, 

that qualitatively different cases are possible. For instance, it may well be the case that the y′ = 0 schedule does not 

intersect the x′ = 0 schedule for any y › 0. This would be the case for a very low natural rate of hot water renewal or 

weak energy demand. In that case zero extraction of hot water would be optimal. 

 

 The optimal energy pricing rule is thus: 
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(34) ( , )G yP C y x              

 

where ( , )yC y x  represents the marginal cost of the water supply, σ is the social shadow value of water in the wells, 

and μ is the shadow value of the supply capacity. Since μ=0 unless the capacity is fully utilized, equation (30) 

reduces to: 

 

(35) ( , )G yP C y x            

 

When delivering capacity is fully utilized, r s   , where μ equals the marginal capacity costs. In this case, 

equation becomes: 

 

(36) ( , ) ( )G yP C y x r s            

 

Given the assumptions, the shadow value of hot water in the geothermal wells, σ, is positive provided the field is 

utilized. In addition, this value increases monotonously as the available water level is drawn down. If it is expected 

that the optimal utilization path will exhaust the water level at some point in time, σ will reflect this and increase 

faster. Thus, in this case, foresight is needed to calculate the optimal supply prices. 

 

 As in the hydroelectric case we can illustrate the time path of the geothermal supply price given constant 

proportional growth of demand. This is shown in Figure 6. 

 

 
 

Figure 6 

Geothermal Supply Price: No Field Investments 

 

 

Figure 6 essentially illustrates two phases for the geothermal field. In the first phase, t=0 to t=t1, there is 

excess capacity in the delivery system and equation (31) applies. In the second phase, from t=t1 onwards, there is 

full utilization of capacity and equation (32) applies. 

 

 At some point during phase 2, it may become optimal to invest in additional field development capacity 

such as drilling new wells. The optimal condition for discrete investment of this nature is given by equation (23) as 

before. If such investment is found to be optimal, water shortage will be alleviated and the path of supply price over 

time may become jagged as illustrated in Figure 7. 
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Figure 7 

Geothermal Supply Price: Field Investments 

 

 

 It should be noted that under the situation of discrete investments, the optimal pricing rules may not 

generate income sufficient to pay for investment costs. In that case, alternative funding will have to be found. 

 

FOSSIL FUEL ENERGY SUPPLY PRICE 

 

 Let the cost of energy generation by burning fossil fuel (e.g. coal, oil, natural gas) in existing capacity be 

represented by the twice continuously differentiable and convex cost function: 

 

(37) ( ), 0yC y C            

 

Production of fossil fuel energy is constrained by the installed capacity. Thus, referring to the installed capacity by 

Q: 

 

(38) Q y           

 

 Assume in reality that fossil fuel energy generation capacity can be adjusted upwards and downwards 

approximately on a continuous basis by changes in investment. It should, however, be recognized that this requires 

that capacity units are small and that there exists a well functioning resale market for fossil fuel capacity. Thus, 

omitting depreciation, capacity changes according to: 

 

(39) ( )Q t i           

 

where i refers to investment. 

 

 Finally, let the investment cost per unit of capacity be represented by 0s  . Given these specifications, 

the problem facing fossil-fuel energy utilities is: 

 

(40) 
0 0

[ ( , ) ( ) ( )] exp( )
q

MaxV D y t dy C y s i rt dt


           
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subject to: 

 

(41) 0Q y           

 

(42) Q i            

 

(43) 0y            

where, as before, 0r  denotes the social rate of discount and the term [
0

( , ) ( ) ( )]
q

D y t dy C y s i    represents 

the sum of consumer and producer surpluses at time t.  

 

 It is worth noting that the only stock variable in this problem is the capacity level, Q. However, given the 

malleability of the fossil fuel capacity, Q will be adjusted to output, y, at each point in time. Given this, the supply 

price of fossil fuel is given by the following single equation 

 

(44) ( )f yP C y r s           

 

 The assumption of perfect malleability of fossil fuel capacity is an approximation. Any changes to this 

assumption would require some modification of equation (40), but these changes would probably be minor. 

 

JOINT UTILIZATION OF DIFFERENT ENERGY SOURCES  

 

 The social supply price schedules of hydroelectric, geothermal, and fossil fuel were derived in the previous 

sections. These schedules, defined in equations (19), (31), and (40) give the respective supply prices as functions of 

the amount of energy generated as well as other variables. From this, we can examine the conditions for joint 

utilization of these energy sources.. 

 

 For purposes of this analysis it is assumed that any energy demand would be met at the lowest available 

supply price at each point of time. If that were not the case, the present value of social benefits would not be 

maximized. This condition of lowest available supply price can be formally stated as: 

 

(45) D(yH,yG,yF, t) = Min[pH(yH),pG(yG),pF(yF)], all t,     

 

where pH(yH), pG(yG), and pF (yF) represent the social supply prices of hydroelectric, geothermal, and fossil fuel 

respectively. 

 

 Thus, the condition for joint utilization of any two energy sources at a point in time is: 

 

(46)      ( ) ( )i i j jp y p y , for iy  and iy ≥ 0   

 

Given the exogenous demand, D(y, t) and the respective supply price functions, it is clear that equations (41) and 

(42) fully specify the optimal joint utilization of the three energy sources at a given point in time. The conditions 

are: 

 

(47)     ( , ) ( )H HD y t p y , or 0Hy     

 

(48)     ( , ) ( )G GD y t p y , or 0Gy     

 

(49)     ( , ) ( )F FD y t p y , or 0Fy     
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(50)     H G Fy y y y      

 

This is illustrated in Figure 8. This illustrates short run supply price schedules for the three energy sources. In the 

figure geothermal energy has the lowest supply price, hydroelectric a slightly higher supply price, and fossil fuel the 

highest supply price at low output levels. 

 

 
 

Figure 8 

Short Run Supply Prices: Examples 

 

 The aggregate inverse supply schedule, obtained as a horizontal sum, (for given supply prices) of the three 

individual supply prices, is shown in Figure 9. 

 

 

 
Figure 9. 

Aggregate Supply Price: An Example 
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 This also shows the energy demand curves for the three different times, namely t=0, t=1, and t=2. 

Assuming that demand increases with time, the demand curves move to the right with time. 

 

             Figure 9 shows that in this example only geothermal energy should be used when aggregate demand is low. 

For higher demand, the supply price of geothermal energy increases and hydroelectric energy becomes economical. 

Only hydroelectric energy will be used to meet the growing demand while it can be supplied at a fixed supply price. 

When the supply price of hydroelectric energy starts to rise, growing demand will be met with a combination of 

hydroelectric and geothermal power sources. In Figure 9, marginal hydroelectric and geothermal supply prices 

eventually reach the fossil fuel supply price. At this point fossil fuel energy demand will meet the additional 

demand. 

 

 This example demonstrates that joint utilization of different energy sources may very well be optimal in the 

short run. But does this also apply in the long run? The main reason for the joint utilization effect described above is 

the capacity constraints on low cost energy sources in the short run. Presumably, in the long run, the least cost 

alternative will be expanded by investment and the associated capacity constraints correspondingly relaxed. 

 

   While this is certainly true to some extent, there are at least two reasons why joint utilization of energy 

sources may also be optimal in the long run. The first has to do with the limitations of nature. It may well be the case 

that least cost energy alternatives simply cannot be expanded by investment because of shortage of the appropriate 

natural resources. This clearly holds for all three of the sources of energy considered in this paper, hydroelectric, 

geothermal, and fossil fuel. The long run, therefore, might actually not be too dissimilar to the one depicted in 

Figure 9. 

 

   The other reason for joint utilization of different energy sources in the long run has to do with the cyclical 

nature of energy generation and demand. As indicated in Figure 9, it may be optimal to meet daily and seasonal 

energy demand peaks and production lows by utilizing more than one energy source with different economic and 

technical characteristics. This may hold even in the long run. The question is whether investment in little used 

capacity of the low variable cost alternative is optimal or not. The relevant condition to investigate is given in 

equation (1.24). 

 

 In conclusion, countries like Iceland face significant decisions regarding future develop of their available 

energy sources. Given the recent financial and governmental collapse of Iceland, it is important that they promote 

these valuable energy sources in order to help insure a sound economic future. The model presented in this paper 

demonstrates the feasibility of co-utilization of different energy sources. 
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