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Abstract. The predicted distribution of semi-volatile organic
components between the gaseous and condensed phase as a
function of ambient relative humidity and the specific form
of the partitioning model used has been investigated. A mole
fraction based model, modified so as not to use molar mass
in the calculation, was found to predict identical RH depen-
dence of component partitioning to that predicted by the con-
ventional mass-based partitioning model which uses a mo-
lar mass averaged according to the number of moles in the
condensed phase. A recently reported third version of the
partitioning model using individual component molar masses
was shown to give significantly different results to the other
two models. Further sensitivities to an assumed pre-existing
particulate loading and to parameterised organic component
non-ideality are explored and shown to contribute signifi-
cantly to the variation in predicted secondary organic par-
ticulate loading.

1 Introduction

Aerosol particles may contribute significantly to radiative
forcing in the atmosphere by the direct, semi-direct and indi-
rect effects (Solomon et al., 2007); their size and composition
determining each of the radiative properties to varying de-
grees. The aerosol forcings are intrinsically linked to aerosol
behaviour in the moist atmosphere – a property that is di-
rectly influenced by both inorganic and organic components
(Kanakidou et al., 2005). Dependent on conditions, there
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are a number of possible means by which water vapour may
interact with the ambient aerosol. Ambient relative humidity
will directly determine the equilibrium water content and size
of aerosol particles in the sub-saturated moist atmosphere.
This hygroscopicity has been widely investigated and atmo-
spheric measurements reviewed inSwietlicki et al. (2008).
As particles encounter supersaturation, cloud droplets may
nucleate and grow on those which are able to behave as
cloud condensation nuclei under the prevailing conditions.
Properties affecting such aerosol “activation” have been sum-
marised inMcFiggans et al.(2006). Similarly, nucleation of
ice crystals on aerosol particles behaving as ice nuclei, or
freezing of aerosol that had previously activated into liquid
droplets may occur when exposing an air parcel to the ap-
propriate temperature regime and associated supersaturation
with respect to ice. Such behaviour has been reviewed by
Cantrell and Heymsfield(2005).

A fourth means by which water may influence the impact
of aerosol particles is by directly affecting particulate load-
ing. Many of the components that comprise the majority of
the atmospheric aerosol mass are water soluble. Historically,
most aerosol mass was considered to be inorganic, domi-
nated by readily soluble electrolyte species. If such compo-
nents have a gaseous origin (“secondary” components), they
will partition to deliquesced aqueous aerosol particles by ac-
commodation at the surface and dissolution into the available
water according to their effective solubility. With increasing
relative humidity, there will be more water available in the
particles and there will be a proportionate increase in the
semi-volatile inorganic components dissolved in the avail-
able water at equilibrium. This ignores any potential limita-
tion in the kinetics of uptake of the semi-volatile component.
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In recent years, it has become apparent that the atmo-
spheric aerosol comprises significant amounts of organic ma-
terial. The fractional abundance of organic aerosol (OA)
components in submicron particles varies between 20% to
50% by mass (Zhang et al., 2005). and comprises thousands
of compounds of varying reactivity and molecular structure
(Gray et al., 1986; Middlebrook et al., 1998). A significant
proportion of these components may be semi-volatile and
contribute to the mass of so-called secondary organic aerosol
(SOA). There have been many thousands of organic com-
pounds detected in the atmosphere and both anthropogenic
“A-” and biogenic “B-” volatile organic compounds (VOCs)
are subject to atmospheric oxidation producing a range of
VOC oxidation products of widely varying volatilities, de-
termining whether they contribute to SOA formation and
growth. The organic aerosol fraction contains a mixture of
compounds with a wide range of solubilities in water and it
has been estimated that the fraction of the organic carbon in
the condensed phase which is water soluble varies between
20% and 70% (Saxena and Hildemann, 1997), though the
actual water solubility varies widely and is almost invariably
lower than that of inorganic components.

In order to predict the amount of secondary organic
aerosol, a widely used approach has been to consider the
partitioning of semi-volatile organic components in a man-
ner analogous to that described for semi-volatile inorganic
water soluble components above. However, instead of dis-
solution of components in a single dominant solvent, the ab-
sorptive partitioning model for organic material has most fre-
quently been used to consider absorption of semi-volatile or-
ganic components into an organic medium sufficiently sim-
ilar in nature for the system to act as a single phase organic
solution. This is not a requirement for the absorptive parti-
tioning model and separate phases have been considered in
a number of studies, see below. The current study exam-
ines the sensitivity of the absorptive partitioning model to a
particular aspect of this assumption of similarity to thereby
consider the potential influence of water on the partitioning.
Whereas other studies have extensively examined details of
the non-ideality in the participation of water in absorptive
partitioning (e.g.,Chang and Pankow, 2008; Pankow and
Chang, 2008); even to the extent that phase separation into
polar and non-polar phases has been considered (e.g.,Er-
dakos and Pankow, 2004; Erdakos et al., 2006; Chang and
Pankow, 2008), this study largely explores the impact of the
molar mass and extremely large atmospheric abundance of
water vapour on its role in partitioning. A companion pa-
per expands the current approach to consider non-ideality. In
addition, a slight modification to the model formulation to
conveniently incorporate the volatility basis set approach has
been effected.

2 Absorptive partitioning model formulations

The partitioning of semi-volatile organic components was
originally thought to be dominated by adsorption (Pankow,
1987). Soderholm(1988) discussed particle/vapour inter-
actions and derived an expression for the mass concentra-
tion of the saturated vapour.Pankow(1994) developed an
equilibrium partitioning model in an attempt to distinguish
between absorptive partitioning into a condensed phase and
adsorption onto the particle surface.Pankow et al.(2001)
developed the absorptive partitioning model to describe the
gas/particle partitioning of each component in a complex
multicomponent system. The condensation of multiple or-
ganic compounds into an aerosol needs to take account of
interactions between molecules in the condensed phase (de-
viations from Raoult’s Law) as well as the volatility of the
components. The absorptive partitioning model provides a
mathematically simple method of predicting the condensed
phase composition in a multicomponent system at temper-
atures and pressures relevant to the atmosphere.Donahue
et al.(2006) further developed the model to consider a num-
ber of condensable compounds with a broad range of volatil-
ity. This approach allows use of large numbers of potentially
condensable compounds by binning them according to their
saturation concentrationC∗

i value. The amount of condensed
material is calculated by summing all componentsi ensuring
mass balance between the two phases for each component
considered. Defining a partitioning coefficientξi for com-
poundi given itsC∗

i value:

ξi =

(
1 +

C∗

i

COA

)−1

(1)

the total mass of condensed organic material,COA, is given
by the sum of the products of the individual total component
concentrations in both phases and their partitioning coeffi-
cient:

COA =

∑
i

Ciξi (2)

The partitioning predictions ofDonahue et al.(2006) and
Pankow(1994) are defined by two closely related expres-
sions, Eqs.3 and4 respectively):

C∗

i =
C

vap
i COA

Ccond
i

=
106MiγiP

0
i

RT
(3)

Kp,i =
RT

106MomγiP
0
i

(4)

where
C

vap
i is the vapour phase concentration of componenti,

µgm−3,
Ccond

i is the condensed phase concentration of componenti,
µgm−3,
Ci=C

vap
i +Ccond

i is the total loading of componenti, µgm−3,
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P 0
i is the saturated vapour pressure of componenti, atm,

R is the ideal gas constant =8.2057×10−5

m3atm mol−1K−1,
T is the temperature, K (=298.15K for this work),
γi is the activity coefficient for componenti in the liquid
phase and
C∗

i is the effective saturation concentration, µgm−3. In
both casesC∗

i (or the inverse ofKp,i) will have units of
µgm−3. In comparing these formulations it is important to
note thatC∗

i (Eq. 3) is not the reciprocal ofKp,i (Eq. 4)
as Mi is not the same asMom (see below). Calculation
of the partitioning in both models can be seen to require
vapour pressure data for the condensable speciesP 0

i and
information on the non-ideality (deviations from Raoult’s
Law) of the condensed components.

Mom is the molar mass averaged according to the number
of moles in the condensed material (SOA and water) given by
Eq. (5) below in which all concentrations in this case (COA

andCi) are in molar units (specifically µmol m−3),

Mom =

∑
i

CiξiMi∑
i

Ciξi

=

∑
i

CiξiMi

COA

(5)

In Donahue et al.(2006), the molecular weight term was
redefined as that of the condensing species (Mi in Eqs.3 and
5.). One way that the equilibrium coefficient (Kp,i), as de-
fined in Eq. (4), can be made to equal the reciprocal of the
mass concentration of the saturated vapour (C∗

i ), as defined
in Eq. (3), is through use of a modified activity coefficient,γi

accounting for the redefinition ofMi as outlined in the sup-
plementary material toDonahue et al.(2006). In order for
the two formulations to be equivalent without redefinition
and recalculation of activity coefficients, it is implied that
the difference in molecular weights between different com-
ponents was not significant. This may be a reasonable as-
sumption when considering the condensation of similar hy-
drocarbon species as emitted from vehicle exhausts; but is
likely to make a difference if one of the components has a
significantly different molecular weight to the others. The
magnitude of the required redefinition and recalculation of
the activity coefficients is examined in the results section.

Seinfeld et al.(2001) obtained an expression explicitly ac-
counting for the effects of relative humidity on partitioning
of organic material. By taking derivatives ofKp at constant
T andp and straightforward manipulation of Eq. (4), the fol-
lowing expression was derived as their Eq. (17):

dKp,i

dRH
= −Kp,i

d ln MWom

dRH
− Kp,i

d ln γi

dRH
(6)

whereMWom is a number averaged molar mass identical
to Mom in Eq. (4). The first term denotes the RH-dependence
of Kp,i resulting from changes inMWom and the second
term, that resulting from changes inγi . By inspection of

Eqs. (4) and (6), since water has a very lowMW it will al-
ways tend to increaseKp,i . The effect of the second term of
Eq. (6) is more difficult to predict since the activity coeffi-
cient variation with RH will be more complex and depend

largely on the hydrophilic
(

d ln γ
dRH <0

)
or less hydrophilic(

d ln γ
dRH >0

)
nature of the partitioning organic components.

This work focuses on the impacts of the first term in Eq. (6)
resulting from the molecular weight differences. The second
term of Eq. (6) will only briefly be discussed in Sect. 3.3.3.

2.1 Reformulation of the mass-based partitioning
model

As originally developed, absorptive partitioning has been
widely used to model aerosol formation in chamber ex-
periments (Odum et al., 1996, 1997; Kamens et al., 1999;
Pankow et al., 2001). The chamber SOA experiments are
interpreted as a mass balance between the oxidised mass of
hydrocarbon species (1MHC) and the organic aerosol mass
(1MOA) produced from the n partitioning semi- (or non-
)volatile oxidation products (P1, P2, ... Pn), so the yield
(mass fraction,FOA) can be expressed as:

FOA =
1MOA

1MHC

= COA

∑
i

αiKp,i

1 + COAKp,i

(7)

=

∑
i

αi

1 + C∗

i /COA

whereαi is the mass-based stoichiometric yield (not stoi-
chiometric coefficients) of compoundi. Such a mass based
approach is convenient in interpreting chamber experiments
where aerosol mass may be measured, but molecular infor-
mation about the condensed mass is lacking. Aiming to
predict the formation of SOA from the products of gaseous
oxidationJohnson et al.(2005) generated a range of con-
densable molecules using the Master Chemical Mechanism
(MCM), (Jenkin et al., 1997, 2003; Saunders et al., 2003;
Bloss et al., 2005), an explicit model of the degradation of at-
mospheric VOCs. These explicit models provide calculated
molecular concentrations of a large number of species po-
tentially contributing to the SOA. This allows the reformu-
lation of the partitioning model in terms of the molar abun-
dance of components. Whilst practical difficulties would be
encountered using such an approach to interpret experimen-
tal data with measurements of aerosol mass and a generally
incomplete speciation of components, theoretical prediction
of SOA precursors such as that ofJohnson et al.(2005)
lend themselves to a molar partitioning consideration. If re-
quired, predictions of condensed molar abundance may be
simply converted into mass using molecular weights explicit
in the detailed component speciation. In the current work, the
convenient volatility-binning formalism has been preserved,
making the following changes:
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Table 1. Physical properties andC∗
i

Values used in the partition model comparisons.

Compound Mol.Wt. P 0 @ 25◦C C∗
i
(mass) C∗

i
(mole) Log10C

∗
i
(mass) Log10C

∗
i
(mole)

mm Hg µg m−3 µmol m−3

Dimethyl ether 46.069 4440 1.100×1010 2.388×108 10.0414 8.3780
Acetone 58.08 231.5 7.231×108 1.245×107 8.8592 7.0952
N-pentanol 88.096 2.1975 1.041×107 1.182×105 7.0175 5.0726
Maleic acid 116.03 1.19×10−5 7.426×101 6.400×10−1 1.8708 −0.1938
Water 18.016 23.775 2.304×107 1.279×106 7.3625 6.1069
Ethanol 46.048 59.025 1.462×108 3.175×106 8.1649 6.5017
N-decane 142.176 1.58 1.209×107 8.502×104 7.0823 4.9295

(i) removal of the molecular weight term from the expres-
sion forC∗

i

C∗

i =
106γiP

0
i

RT
(8)

where the terms have the same meaning as in Eqs. (1)
and (2) andC∗

i is now the saturation vapour concen-
tration in µmol m−3. This is still used in Eqs. (1) and
(2) although now the total concentration of condensed
phase organic material (COA) is in µmol m−3 rather
than µg m−3.

(ii) incorporation of the absorptive partitioning of water
in its own volatility bin with physical properties taken
from steam tables (see Table1). The data in the steam
tables were derived from a canonical function for the
reduced free enthalpy (Gibbs function) with the posi-
tion of the saturation line defined by a correlation of
reduced saturation pressure against reduced tempera-
ture (k-function) (Schmidt and Grigull, 1982). TheC∗

i

value for water was calculated from its vapour pres-
sure and the system temperature. The abundance of
water in the system was calculated from the product
of vapour density at the saturation line (23.041 g m−3

or 7.7031×1017 molecule cm−3 at 25◦C) and the rela-
tive humidity. In principle, any component may be at-
tributed its own volatility value; in practice only water
is sufficiently abundant to introduce significant errors
were it lumped with other components.

(iii) For those cases where large numbers of compounds are
considered it may be appropriate to use the convenient
volatility-binning formalism ofDonahue et al.(2006) in
which a basis set ofC∗

i values separated by factors of 10
in molar units is defined,

C∗

bin = {0.01 0.1 1 10 100 1000 10 000 100 000} (9)

Using theC∗

i value in each logarithmically-spaced bin
equal to the geometric mean value of the bin boundaries

was found to replicate the results obtained by explic-
itly incorporating individual compounds less accurately
than using a total abundance averagedC∗

bin for all com-
ponents in a single bin

C∗

bin =

∑
i

CiC
∗

i∑
i

Ci

(10)

for all components in a single bin (where all concentra-
tions are in µmol m−3). This is identical to a condensed
abundance averaged value.

(iv) calculation of an abundance averaged molar mass for
each bin (usingC∗

i in µmol m−3):

Mbin =

∑
i

CiMi∑
i

Ci

(11)

As all components in a bin partition to the same extent
this abundance averaged molar mass is the average mo-
lar mass of the condensed material provided by com-
pounds in this bin and is used to convert the number of
moles of condensed material in each bin into a corre-
sponding mass after the partitioning calculation.

This reformulation of the partitioning method is read-
ily applicable to the condensation of components with
widely varying molar mass. Removing the molar mass
term makes the calculation simpler while providing
identical results to those from the model using mass-
based partitioning and averaged molar mass (see be-
low). The partitioning is calculated on a mole basis us-
ing the reformulated model. If required, the resulting
mass for each component can be obtained by multiply-
ing the number of moles condensed by the appropriate
molar mass.
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3 Results

Predictions using the molar partitioning model were com-
pared with conventional mass-based approaches for a num-
ber of case studies.

3.1 Partitioning of semi-volatile components of known
volatility

The component physical properties used in the test cases are
summarised in Table1. They were chosen to provide a wide
range of vapour pressures rather than for their atmospheric
relevance. However maleic acid may be a significant con-
tributor to SOA under some conditions and the other com-
pounds were selected because they had very different volatil-
ities to maleic acid; and good quality vapour pressure data
were available. A wide range of volatilities was needed to
highlight the differences between the models. All calcula-
tions have been carried out at 25◦C and vapour pressure data
are from the following sources: dimethyl ether, (Florusse
et al., 2002); acetone, (Ambrose et al., 1974); n-pentanol and
ethanol, (Ambrose et al., 1970); maleic acid, vapour pressure
and boiling point estimated by the method ofNannoolal et al.
(2004, 2008) with a boiling point correction derived from
that required to accurately predict experimental vapour pres-
sure data for succinic acid (structurally very similar to maleic
acid) using the same estimation methods; water, (Schmidt
and Grigull, 1982); n-decane, (Salerno et al., 1986), interpo-
lated to give a value at 25◦C.

3.1.1 Comparisons in dry conditions

The predicted composition of condensed material derived
from a mixture of four organic compounds (selected for their
wide range of volatilities) was used to compare the three par-
titioning methods (mass basis using Eq. (3) – “Mass3”, mass
basis using Eq. (4) – “Mass4” and molar basis – “Mol”) as-
suming ideality. This assumption is clearly incorrect, but
is used for illustrative purposes. The abundances of the
four components were selected such that roughly the same
amount of each component was condensed when calculated
using the mole based partitioning assuming ideality. It is ap-
parent (from Fig.1) that the Mass4 method and the Mol
partitioning method were in agreement while the Mass3
method predicts that a greater amount of the more volatile
material condenses and (for the condensation of a similar
amount of each compound) the discrepancy increases the
more volatile the compound; this is caused by the difference
in molar mass between the compounds rather than directly
by their increasing volatility.

If the values are recalculated with the same molar mass for
all four components then all three models are in agreement
and the disagreement demonstrably results from use of the
molar mass of the condensing species in the calculation of
C∗

i .

dimethyl ether acetone n−pentanol maleic acid
0

500

1000

1500

2000

Compound

C
o

n
d

en
se

d
 m

as
s 

μg
 m

−3

 

 

Mole
Mass_3
Mass_4

Fig. 1. Predicted condensed mass of each component of a four com-
ponent organic mixture as predicted by three models. The initial
mixture consisted of (in g m−3):- dimethyl ether: 3824; acetone:
192.9; n-pentanol: 2.194; and maleic acid: 9.632×10−4.

3.1.2 Partitioning in systems with components more
widely differing in molar mass

The above result may be further extended to consider the
two component condensation of decane with either ethanol
or water, again assuming ideality for simplicity. Results
from a fourth model, the isothermal flash calculation (Raal
and Muhlbauer, 1998), may be compared with those from
the three models described above. An isothermal flash cal-
culation provides the composition of the liquid and vapour
phase in equilibrium at the specified temperature and at ei-
ther a specified system pressure or a specified ratio of liq-
uid to vapour; for example, a stream of vapour (mole frac-
tion, i=zi) subjected to an increase in pressure causing par-
tial condensation to form a liquid phase (mole fraction,xi)
in equilibrium with a vapour (mole fraction,yi). This is di-
rectly analogous to the partitioning between the gaseous and
liquid components in an atmospheric aerosol. In the flash
calculation the following equations are solved iteratively for
all components (Raal and Muhlbauer, 1998):

Ki = yi/xi (12)∑
i

xi =

∑
i

yi = 1 (13)

F = V + L (14)

Fzi = Vyi + Lxi (15)

WhereF , V andL are the total number of moles in the
initial stream, the vapour phase and the liquid phase respec-
tively. These equations can be rearranged into an expres-
sion which can be solved for the vapour fraction (=V/F ).
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Fig. 2a. Vapour and liquid phase compositions for:(a) n-
decane(1)/ethanol(2) as predicted by four models. Note that the
phase composition is in mole %.

If the vapour fraction has been specified thenL is known
(L=F − V ) and

xi =
zi((

L
F

)
+ Ki

(
V
F

)) (16)

and the system pressure is given by: –

p =

∑
i

xip
0
i (17)

A flash calculation can be made providing sufficient mate-
rial is in the stream for condensation to occur; i.e. the pres-
sure,p, is between the bubble point and dew point pressures.
For the case of an atmospheric aerosol neither the partial
pressure of the aerosol nor the liquid fraction is known a pri-
ori, so for this work a special case was selected. Setting the
abundance of both components to the geometric mean of the
C∗

i value (in µmol m−3) gives a total vapour concentration
equal to twice the average saturated vapour concentration.
This means that half the material will condense to form a
liquid and half will remain in the vapour. For the flash cal-
culation, the vapour fraction (V/F ) is thus set to 0.5. Using
this abundance in either Mol or Mass4, confirms that half
the available moles condense and the same liquid composi-
tion and system pressure are predicted (see Fig.2bfor the de-
cane/ethanol and decane/water binary systems respectively).

With the same inputs, Mass3 gives a different proportion
of each component in each phase. Specifically Mass3 over-
predicts the amount of the most volatile component (i.e. the
component with the lowest molecular weight) found in the
liquid phase. The isothermal flash calculation with the same
inputs andV/F=0.5 gave a liquid composition in excellent
agreement with Mol and Mass4 but quite different from that
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Fig. 2b. Vapour and liquid phase compositions for(b) n-
decane(1)/water(2) as predicted by four models. Note that the phase
composition is in mass %.

given by Mass3 (see Fig.2b). Partitioning model results
should be consistent with the isothermal flash calculation;
both being derived from the same laws (i.e. Dalton’s law
of partial pressures, ideal gas law and Raoult’s law) and as-
sumptions (all activity coefficients=1).

3.2 Predicted impacts of inclusion of water using the
volatility basis set approach

Figure 1a inDonahue et al.(2006) shows an example of typi-
cal ambient partitioning with a total condensed organic mass,
COA, of 10.64 µg m−3. The mass in each of 8 decades of
the log10(C

∗) basis set from−2 to +5 is 2.5, 1.8, 4.0, 4.0,
6.0, 5.2; 6.2 and 8.0 µg m−3 organic mass respectively (all
components having the same molar mass of 250 g mol−1),
as shown in Fig.3b. The inclusion of water at a concen-
tration equivalent to 80% RH (18.43 g m−3 based on a sat-
urated vapour density for waterSchmidt and Grigull, 1982)
leads to a total mass prediction of 74.22 µg m−3 of which
14.74 µg m−3 was organic material partitioned as shown in
Fig. 3b.

It can be seen that components in bins 0 to 3 are most
responsible for the difference in condensed organic mass.
Hence the inclusion of water in the calculation predictably
increases both the organic and total condensed mass. In-
creasing the RH with the same organic distribution leads to a
prediction of increasing condensed organic mass in all three
models. The loadings are the same if all the components in
all the bins are given the same molecular weight. If, however,
a realistic range of molecular weights is assigned to these
bins (for example the least volatile bin (−2) was assigned a
molar mass of 300 g mol−1, the next bin (−1) 250 and so-
on in steps of 50 up to bin +1 at 150 and then continuing

Atmos. Chem. Phys., 9, 2919–2932, 2009 www.atmos-chem-phys.net/9/2919/2009/
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Fig. 3a. The effect of ambient RH on the partitioning prediction
using Mass3 model and assumed ideality with the same total or-
ganic loading in both panels (all organic components have been as-
signed a molar mass of 250 gmol−1): (a) dry air, total condensed
mass=organic condensed mass=10.64 µgm−3.

in steps of 25 so that the most volatile bin (+5) is assigned
a molar mass of 50 g mol−1; see caption to Fig.4) then the
results differ. The Mass4 and Mol models predict identi-
cal amounts of condensed organic and total mass, while the
Mass3 model predicts slightly higher organic mass and a
much greater increase in condensed water with increasing
RH (Fig. 4). The discrepancy between the predictions for
SOA made by the Mass3 and either of the Mass4 or Mol
models in this example is small and it is sensitive to the mo-
lar mass distribution assigned to the bins. For example if all
organic components have the same molar mass then this dis-
crepancy disappears; if the molar mass of each bin is doubled
(so that the distribution across the range of bins varies from
600 to 100) then the discrepancy between the models remains
the same (0.76 µg m−3); however if the molar mass distribu-
tion above is used but with each value increased by 50 then
the discrepancy is reduced (to 0.746 µg m−3); while if each
molar mass value is decreased by 30 from the above distribu-
tion then the discrepancy increases (to 1.127 µg m−3). These
calculations demonstrate that it is the ratio of the molar mass
of the organic components that determine the difference in
predicted SOA between the models.

It should be re-emphasised that this change in predicted
total material solely results from changes in the partition-
ing coefficient resulting from the reducing average molec-
ular mass of condensing species with increasing RH, but not
changes resulting from variation in component activity coef-
ficient with changing condensed water content, i.e. the first,
but not the second, term in Eq. (17) inSeinfeld et al.(2001).
The condensed water is treated as an absorbing phase in the
same way as the condensed organic components and this is
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tal condensed mass=74.22 µgm−3, of which organic condensed
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Fig. 4. The partitioning of the organic components shown in Fig. 3
as a function of RH as predicted by three models assuming ideality.
The log10(C

∗
i
) bins have been given the following molecular weight

distribution (in g mol−1), −2, 300;−1, 250; 0, 200; +1, 150; +2,
125; +3, 100; +4, 75; +5, 50. The chart shows the total condensed
organic mass on the left axis and total condensed mass including
water on the right axis.

reflected in an increase in the total condensed mass. The sec-
ond term in Eq. (17) ofSeinfeld et al.(2001) may lead to a
significant reduction in the influence of water on partitioning,
but the first term cannot a priori be excluded.

A comparison of the predicted abundance of water as a
function of RH is shown in Fig.5bin terms of mole and mass
fraction. It is clear that the Mol and the Mass4 models both
predict an abundance of water consistent with Raoult’s Law,
whilst the Mass3 model predicts a mass fraction of water
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Fig. 5a. The composition of the condensed material by each model
as a function of RH: mole fraction.

equal to the RH (indeed, for all semi-volatile compounds,
the Mass3 model will predict amassrather than mole frac-
tion equal to its gaseous saturation ratio). This illustrates
the magnitude of the correction required in the modified ac-
tivity coefficients,γi , to account for both scale change and
non-ideality in the Mass3 model to comply with the con-
ventional definition of Raoult’s Law in terms of component
mole fraction (and non-ideal deviation).

3.3 Further partitioning sensitivities to RH using the
molar partitioning model

3.3.1 Condensed mass variation with total abundance
of the most volatile condensing component and its
molecular weight

Given that all formulations of the partitioning exhibit sen-
sitivity to component molecular weight variation in general
and to the availability of atmospheric water as a low molec-
ular weight semi-volatile component in particular, the be-
haviour of the model with abundance of the lowest volatility
(and molecular weight) component was investigated. First,
consider the effect of variation of total abundance of semi-
volatile componentsA, B andC on predicted aerosol mass.
Figure 6 shows a case whereC∗

A>C∗

B>C∗

C (A is more
volatile thanB which is more volatile thanC) and their
abundances follow the same trend such that each makes a
significant contribution to the condensed aerosol. Assum-
ing an activity coefficient of unity for all components and
the same molecular mass (250 g mol−1), the predicted con-
densed mass of the least volatile compounds (B+C) is al-
most two orders of magnitude greater at 0.95 saturation ratio
of A than whenA is absent at lowB+C total loading, less
than a factor of three greater at intermediateB+C loading
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Fig. 5b. The composition of the condensed material by each model
as a function of RH and mass fraction.

and less than 20% greater at highB+C loading. The ad-
ditional condensed mass ofA with the increasing saturation
ratio ofA is similar at all total concentrations ofB+C.

This prediction is obviously independent of the formula-
tion of the model chosen, since the molecular masses are
identical. Repeating the calculation, assuming that compo-
nentA is water (and that it is appropriate to consider water as
participant in absorptive partitioning), i) the RH dependence
of the condensed organic mass and ii) the variability in RH
dependence of condensed organic mass with total organic
abundance are both again evident. Using the Mol model a
discrete volatility bin for water with a log10(C

∗
w) value on a

molar basis at 25◦C of 6.1067, the RH dependence of the par-
ticulate mass comprising organic componentsB andC and
particulate water is shown in Fig.7).

B and C have molar-basedC∗

i values of 0.4 and
0.004 µmol m−3 respectively. If the molar masses ofB and
C are both 250 g mol−1, this is equivalent to mass-basedC∗

B

andC∗

C values of 100 and 1 µg m−3 (log10(C
∗

i ) mass based
bins 2 and 0). Three cases were investigated with increas-
ing total organic abundances of 0.008, 0.08, 0.8 µmol m−3

(2, 20 and 200 µg m−3) of componentB and 0.004, 0.04,
0.4 µmolm−3 (1, 10 and 100 µgm−3) of componentC. From
Fig. 7 it can be seen that, between RH of 0 and 95% the pre-
dicted dependence of the mass of both total organic (B+C)
and of organic plus water is significant. Figure7 shows the
change in RH dependence for three different values of the to-
tal abundances of the two organic components (B+C). As in
the previous case, the dependence on the saturation ratio (in
this case RH) of the most volatile component with concen-
tration of the condensed organic mass of componentsB+C

is large. The great decrease in RH sensitivity with increased
total loading ofB+C can be seen. It can be seen from Fig.7
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Fig. 6. Aerosol mass variation with componentA concentration
using the molar partitioning model.

that there is a lower additional mass of condensed water at
95% RH compared with dry conditions than the additional
mass of componentA in Fig. 6. This is because of the lower
molar mass of water compared with componentA. The ad-
ditional number of moles of componentA in Fig. 6 and of
water in Fig.7 is the same with changing saturation ratio (or
RH). Figure7 shows the change in RH dependence for three
different values of the total abundances of the two organic
components (B+C). It is evident from the much stronger
dependence of condensed organic mass on RH at low or-
ganic molecular abundance (2 µg m−3 B and 1 µg m−3 C)
than at high abundance (200 µg m−3 B and 100 µg m−3 C),
that the precursor concentration at which SOA formation ex-
periments are conducted will influence the observed RH de-
pendence. This is solely the result of keeping the total water
abundance within the range of atmospheric concentrations
whilst varying the total OA concentrations by orders of mag-
nitude. It is readily expected that total wet mass will be de-
pendent on RH, but it can be clearly seen that total dry or-
ganic mass will also be dependent on RH and that the depen-
dence of total partitioning mass (dry or wet) will depend on
total abundance of organic material.

Furthermore, as has previously been reported, the contri-
bution of the more volatile organic component to the organic
aerosol mass is predicted to be significantly greater at high
concentrations (and higher RH).

3.3.2 Dependence of condensed organic mass loading
prediction on pre-existing core

Figure8 shows the predicted dependence of the condensed
mass on the availability of a fully-miscible but involatile
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Fig. 7. Aerosol mass variation with relative humidity using the mo-
lar partitioning model.

core, behaving ideally. It can be seen that, at constant RH,
the condensed semi-volatile organic mass increases with core
mass as would be expected from the above discussion. How-
ever as the total absorptive mass still increases with RH due
to the increased liquid water content; so the amount of con-
densed semi-volatile organic material still increases with RH.
It can be seen that there is a very marginal increase in sen-
sitivity to RH at lower core mass. The molar mass of the
core material was set in all cases to 250 g mol−1. Since
the predicted condensed mass depends only on the available
number of moles, increasing the molar mass to e.g. 500 or
2500 g mol−1 has the same effect as reducing the core mass
to 0.5 or 0.1 µg m−3 respectively, maintaining the molar mass
at 250 g mol−1.

3.3.3 Indication of the potential influence of organic
component non-ideality

The main focus of the current work has been on the effect
of water on absorptive partitioning of organic compounds
resulting solely from water vapour being very many orders
of magnitude more abundant than any other semi-volatile
vapour. The impact on partitioning resulting from its low
molecular weight via the first term in Eq. (6) has been shown
to be dependent on model formulation and the relative mag-
nitude of the impacts of the first and second terms will there-
fore be dependent on both non-ideality of the water/organic
mixture and consistency of the formulation of the model and
activity coefficients used. To gain some broad insight into
the possible effects of non-ideality, the activity coefficients
of each of the condensed organic components has been pa-
rameterised in the molar partitioning model such that each
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may have a positive or negative deviation from ideality, lead-

ing to “salting out”,
(

δ ln γi

δRH >0
)
, or “salting in”,

(
δ ln γi

δRH <0
)

respectively. The low abundance case study from Sect. 3.1
was used but with a fully-miscible but involatile organic core
mass of 1 µg m−3, and a parameterisation of the activity co-
efficient of each component as a function of relative humid-
ity (and hence water activity in solution). The parameter-
isation for negative and positive deviations took the forms(
1−0.9a2

w

)
and (1+5aw)2 respectively. It is quite obvious

that these forms of component activity are unrealistic simpli-
fications of the real dependences, but the intention here is to
explore the potential magnitude of the impact of non-ideality
on partitioning, not the magnitude of partitioning for any real
component. It can be seen from Fig.9 that, in all cases exam-
ined, the dependence of the mass loading of the semi-volatile
organic components on RH is still large.

As might be expected given the huge atmospheric abun-
dance of water, in no case is condensed organic mass inde-
pendent of RH. The shape of the dependence will obviously
vary with the form of the activity coefficient expression, but
organic component non-ideality will not generally lead to a
small dependence on RH. It should be noted that the same
degree of non-ideality in the different volatility components
leads to a different mass loading and dependence of mass
loading on RH. If the deviation from non-ideality is nega-
tive, the dependence on RH is greater if the more volatile
component is non-ideal than if the less volatile component is
non-ideal. Conversely, if the deviation from non-ideality is
positive, the dependence on RH is greater if the less volatile
component is non-ideal than if the more volatile component
is non-ideal. Such a crude exploration of the effects of non-
ideality obviously does not account for effects such as phase
separation or mixed solvent systems and assumes that the re-
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Fig. 9. Simplified representation of the effect of organic component
non-ideality on the predicted condensed organic mass. Either or
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tive or negative deviation from ideality (e.g. the effect of a negative
deviation from ideality for the low volatility component is denoted
“real,−veC∗ low”). The non-ideality of water was not considered.

sultant condensed phase is miscible across its entire com-
position range. The molar-based model has been explicitly
coupled to a multicomponent thermodynamic model and this
is the subject of a more detailed study of these phenomena.

3.4 Partitioning of simulated condensable OVOCs from
the oxidation of atmospheric VOCs

The MCM incorporated into a trajectory model framework
has previously been used to simulate the chemical com-
position of anthropogenically polluted air arriving at Writ-
tle in south-east England for the hour ending 18:00 on
06/08/2003 (Utembe et al., 2005; Johnson et al., 2006a,b),
in conjunction with measurements made as part of the Tro-
pospheric ORganic CHemistry (TORCH) project. In the
present work, partitioning of some 3380 closed shell (non-
radical and neutral) species at their simulated total abun-
dances (in molecule cm−3) was estimated using the Mass3,
Mass4 and Mol versions of the partitioning model, using the
distribution of the predicted closed shell components simu-
lated by (Johnson et al., 2006a,b). The molecular weights
and vapour pressure values were calculated for all the closed
shell species and the compounds were binned according to
their calculatedC∗

i values. For each bin an abundance aver-
agedC∗

i and molecular weight were calculated. For a given
compound theC∗

i value used in the Mass3 method is divided
by the molecular weight to obtain theC∗

i value used in the
Mol method.
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The bins used in the two methods will therefore not con-
tain the same compounds and for the less volatile compounds
the bin number (log10(C

∗

i )) for the Mass3 method will be
on average 2 units higher than for the Mol method. Hence in
Fig. 10, where the predicted SOA is shown as a distribution
among the least volatile bins, the log10(C

∗

i ) values shown
are those for the Mass3 method (rest;−3/−4, −2, −1 etc.);
while the corresponding bin designations for the Mol method
are 2 units lower (rest;−5/−6, −4, −3 etc...) and when
comparing the distribution between the two methods a direct
comparison between individual bins is not entirely meaning-
ful as they will contain different components.

In the absence of water the two methods give similar
amounts of SOA (Mass3 46.9 ng m−3, Mol 43.0 ng m−3).
Bin 1 in the Mass3 method (roughly corresponding to bin -1
in the Mol method) contains a higher abundance of species
than the bins on either side. In the Mass3 model in dry
conditions this results in 4.03 ng m−3 of SOA from this bin
alone (but<1 ng m−3 from the−1 bin in the Mol model).
At 80% RH, total SOA for the Mass3 model increases to
91.8 ng m−3 (in addition to 367 ng m−3 of condensed wa-
ter) while in the Mol model the total SOA is 53.4 ng m−3

(condensed water=15.78 ng m−3. The distribution of SOA
over the seven lowest volatility bins as predicted by these
two models at 80%RH is shown in Fig.10. Note that the
major differences seen in the predictions in the two least
volatile bins (labelled−3/−4 and rest) are an artifact of the
positioning of the bin boundaries. Both models predict that
the vast majority of material in these bins will condense to
form aerosol and if the predicted amounts for these two bins
are added together the two models are in reasonable agree-
ment (39.3 vs. 40.3 ng m−3). A much more significant dif-
ference occurs for bin 1 where the Mass3 model predicts
39.06 ng m−3 compared to 4.81 ng m−3 for the Mol method.
This is related to the very high levels of condensed water
predicted by the Mass3 model at 80% RH. When the re-
sults were recalculated using the Mass3 model but with the
RH reduced to 24.27% (so that the Mass3 model predicted
the same amount of condensed water as the Mol model at
80%RH), the SOA predicted by the Mass3 model in bin 1
was reduced to 5.58 ng m−3, in much closer agreement with
the Mol model (4.81 ng m−3) and demonstrating that the ma-
jor factor in the high SOA content predicted by the Mass3
model for bin 1 was the very high condensed water mass.

In summary, the two models predict a different distribu-
tion of SOA, with the Mass3 model predicting a greater
condensed organic abundance. The differences do not affect
the least volatile organic components (which are predicted to
condense to a high degree by both models) but rather the in-
termediate volatility compounds where only a small fraction
condenses. For such components the increased mass of the
total aerosol predicted by Mass3 (because of the large con-
tribution made by condensed water) can alter the degree of
condensation by a factor of 10 or more resulting in signifi-
cant differences from the Mol model as seen in Fig.10. This
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Fig. 10. Predicted SOA distribution by three models using molecu-
lar abundances from the MCM at 80% RH. Also shown is the same
calculation using Mass3 model with the RH reduced to 24.27%,
where Mass3 predicts the same amount of condensed water as the
other models, see text.

results entirely from the difference in molecular weights of
the components (most notably from that of water, though not
entirely). The Mass4 and Mol models produce identical re-
sults and are simply re-expressions of the same Laws – the
only advantage being that the Mol model does not require
the calculation of an average molecular weight. Both expres-
sions comply with Raoult’s Law. The Mass3 model con-
travenes Raoult’s Law with the result that lower molecular
weight components partition preferentially to the condensed
phase in comparison with the Mass4 and Mol models.

4 Discussion and conclusions

Water is a major component of the atmosphere and the most
abundant potentially condensable component under ambi-
ent conditions. In attempting to model the condensation of
atmospheric semi-volatiles into an aerosol it is important
to account for the effects of water. In addition to its im-
pacts on sub-saturated hygroscopic growth and cloud acti-
vation, water can potentially enhance SOA formation by act-
ing as an absorptive medium. Irrespective of the difference
in molecular mass of individual condensing components, a
semi-volatile component as abundant in the atmosphere as
water has the potential to influence the ambient loading of
particulate material. At high total abundance of semi-volatile
organic components, the presence of water may contribute a
relatively minor amount of condensed material. However,
the boundary layer abundance of water vapour will remain
relatively constant at around 1 or 2% by volume. The con-
densable organics may vary much more appreciably and, as
shown by Fig.7, any particulate material formed at low total
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organic concentrations may strongly depend on the ambient
RH. It is predicted here that the RH dependence is much
greater at low organic concentrations, comparable with those
expected in the atmosphere. The dependence is much more
marginal at concentrations more usually found in chamber
experiments. It is therefore essential to establish whether wa-
ter may have such an effect at or near atmospheric concen-
trations so that it can be established whether it is necessary
to explicitly include it in the partitioning calculations.

The quantification of the dependence of organic compo-
nent partitioning coefficient and hence condensed mass on
water vapour concentration will depend on a range of factors,
not least of which is whether absorptive partitioning should
follow Raoult’s Law. The supplemental material toDonahue
et al.(2006) states that, for hydrocarbons of reasonably uni-
form density, it is more sensible to relate vapour pressure re-
duction to component mass, rather than mole, fraction. It is
for this reason that, assuming ideality, the Mass3 model pre-
dicts much more water than the other two models and is the
source of the discrepancy between the Mass3 model and the
flash calculation. For atmospheric purposes (and if the flash
calculation is wrong, for distillation plant design and other
chemical engineering applications), it is essential to establish
whether Raoult’s Law should be obeyed for the appropriate
systems (or whether it is the most convenient base for cor-
rection by activity coefficients). In the atmosphere, that is
for mixtures of multifunctional moderate molecular weight
organic components and probably water.

The predicted mass of absorbed semi-volatile components
is obviously dependent on the mass of pre-existing involatile
but fully miscible material assumed to be present, but the RH
dependence is predicted to be largely independent of the core
mass. Obviously, introduction of a large core mass will make
detection of a small amount of absorbed material more dif-
ficult, so experiments aiming to investigate the dependence
of SOA loading on RH at low parent hydrocarbon concentra-
tions should be carried out with at most a modest loading of
absorptive core material.

It must be clearly noted and emphasised that the current
study largely ignores the effects of non-ideality (though it is
briefly addressed in Sect. 3.3.3 and by Fig.9). Note that,
in ideality since all component activity coefficients are as-
sumed unity, the dependence is purely associated with the
large number of condensing moles of water (equivalent to
the first term in Eq.6). Both laboratory and modelling stud-
ies of the second term in Eq. (6) associated with the compo-
nent activity coefficients should be encouraged. It was shown
in Fig. 9 that a very simplified parameterisation of compo-
nent non-ideality still led to a significant dependence of con-
densed organic and total mass on RH. A more explicit inclu-
sion of component activity coefficients in the Mol formula-
tion of the model is the focus of a companion manuscript.
Because of the huge potential range of organic components
in ambient particles, it is expected that there will be a wide
range of activity coefficients, and potentially a significant de-

gree of phase separation. Whether such effects are zeroeth
order needs to be the subject of extensive further study. It
is possible that the activity coefficients of components are
systematically underpredicted in the presence of other com-
ponents, most notably water and the low aqueous solubility
of even the most soluble organic components relative to in-
organic electrolytes may lead to relatively high activity co-
efficients close to their solubility limit. Having said this, the
extremely high abundance of water vapour in the lower at-
mosphere means that there is always water available for hy-
dration of willing molecules.

It should also be noted that it is widely expected for or-
ganic component volatility to be reduced by substitution of
oxygen containing functional groups, increasing their polar-
ity. It is therefore more likely that the water activity coef-
ficient is closer to unity at lower organic precursor concen-
trations and therefore that the relative humidity dependence
is close to that depicted in Fig.7). However, owing to the
significant contribution of more volatile and probably less
polar molecules to the aerosol mass at higher concentrations,
the aerosol solution non-ideality will be greater and the wa-
ter activity coefficient will be significantly greater than unity.
This result may contribute to the apparent discrepancy be-
tween the chamber observations of low or negative depen-
dence of aerosol yield on relative humidity and the positive
dependence observed in flow tube experiments at lower con-
centrations (Jonsson et al., 2006). This result should be the
focus of further laboratory investigation, since it has impor-
tant consequences on the applicability of extrapolation of the
results from high concentration experiments to atmospheric
conditions.
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