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Abstract

A disadvantage of optimization of flexible multibody sysge(WVBS) is a computing time, mainly for large
systems, especially designed by FEM. The computing tines sigith the complexity of the model significantly. A
reduction techniques allow decreasing of degrees of fraesitd it contributes to the reduction of the computing
time. These techniques can be used for the reduction froostmals and more degrees of freedom to tens, but
some limits exist. A reduction degree (ratio between nunob&OFs before and after the reduction) is the most
important feature because it predicts the final accuracheftodel. The next one is the selection of master and
slave degrees of freedom that play an important role in caimgall bodies together within the MBS (e.g. by
joints). There are many reduction methods, but they diffeavailable accuracy, speed, efficiency and suitability
for the same reduction degree. A dimension of the originstiesy is decisive for the reduction method suitability,
many methods require an inversion matrix from the part oftiifness matrix. The inversion matrix are than large
and the computing time grows up. This paper deals with theatémh techniques, their disadvantages, suitability
and applicability.
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1. Introduction

Optimization of structures and multibody systems is verpantant in mechanical design.
The optimized parameters can be stiffness, eigenfregegneigenmodes, acceleration, accu-
racy and other properties generally used in mechanics. €kegroperties of the proposed
system are demanded. Optimizations lead to the best soduiat the way towards them is not
easy. Optimized models are generally produced from the leoagdeled by the Finite Element
Method (FEM). However, the precise model requires moreildeglements and also degrees
of freedom (DOF) naturally, too. From such a model the gegrdrmatrices are large and it is
uneconomical to solve them. There are many types of reduatiethods which decrease the
dimension of the model. They are based almost all of them ersthtic (Guyan) reduction
[4], but another advanced reduction methods exist that ardased on the static reduction.
For the model it is necessary to choose the master (will beetBaand the slave (will be left
out) degrees of freedom. These DOFs are selected eithenatitally by selection criteria or
manually. The quality of the reduced system is largely infagsl by the selection procedure
(see fig. 8 and fig. 9).
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2. Thereduction methods

The reduction method most known and used is so-called sgaticction (Guyan reduction).
It was introduced in 1965. This method is used widely in maB}Rrograms (e.gANSYS).
Static reduction is very simple to use, but it has one sigmificlisadvantage — model reduced
by static reduction is accurate only at zero frequency. @gadvantage is improved by the
dynamic reduction, where the accurate frequency is seleate for every frequency a new
transform matrix is generated.

More satisfying method is IRS (Improved Reduced Systeng)diiced in [3]. This method
comes out from the static reduction, where the expressiersustituted by the expansion up to
the fourth order. An expression is also obtained more atelyrthan by using static reduction,
but the model is accurate at the zero frequency, too. Smalifroation makes from the IRS
method the dynamic IRS reduction method.

A very good results are obtained using the iterated IRS temlumethod [3]. The iterations
improve the reduced matrices coming from the static redacilhis method is time-consuming
but the results are the most accurate ones from all previetisods.

Another reduction approach is based on the Krylov subsp&gidbat is used in product
nor 4ansys [6].

2.1. Comparison of methods

Firstly, are compared methods based on the static redudtmreduction was done for the
body in fig. 4 modeled iANSYS by the PLAIN42 elements.

The comparison of the reduction methods based on the sgahicction is in fig. 1 for the
Guyan method, fig. 2 for the IRS method and fig. 3 for the iterdRS. The horizontal axis
represents the reduction degree that means a ratio betiveaize of the original system and
the reduced system in percents. The vertical axis showsetiattbn between eigenfrequency

4 . . ;
Eigenfrequency 1 +
Eigenfrequency 2 «
3.5 Eigenfrequency 3 « .
Eigenfrequency 4 o
3| Eigenfrequency 5 =
Eigenfrequency 6 o
S 25
c [m]
S 2
g O
i
A 15
1 § *
05 o | | X
OLa—»n—n !,.angiggg%%++
0 20 40 60 80 100

Reduction degree [%]

Fig. 1. Deviations of eigenfrequencies (static reduction)
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of the original and the reduced system. Obviously, the tikgeréRS method [3] is the best one.
Let us compare iterated IRS method and the very good methsmtian the Krylov subspaces
[5] built-in mor 4ansys product [6]. The testing was done with the body from fig. 7. bhdy

is fixed on the short side (triangular signs) and excited byndrmonic function on the opposite
size (arrow). The original system has 4368 DOFs and the nupfldifferential equations is
the same. The system is reduced to only 60 chosen degreesedbfn (reduction degree is
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1.37 %). The results of the numerical integrations are inFiglt is very remarkable that the
selection of the same master—slave points for the redubtidhe Krylov subspaces and by the
iterated IRS leads to the quite different results. The radndy the iterated IRS results into
lower deviations from the original system.

The original system requires for the integration time frono @ second about 50.14 hours
computing time iNVATLAB, the system reduced ipr 4ansys 0.32 hours (0.64 %), but the
system reduced by iterated IRS only 0.16 hours (0.32 %) (AMEIgk 64 3000+, 2 GB RAM).
The time also depends on the integrator tyg#e45 is used.

2.2. Selection of master and slave degrees of freedom

The selection of the master and slave degrees of freedonhdareduction methods is an
important decision and it influences the output accuracy.tt® selection several approaches
can be used. The first one is based on the experience, thedsecerselects the points with
large masses and the third one is an automatic algorithm -basgd on the ratio between mass
and stiffness of the diagonal values of the mass and stdfmegrices [2], [7].

The automatic selection has one significant disadvantape¢elly for the connection of
bodies), the important and interesting points are oftertteshifrom the selected points — and

Fig. 4. The mesh of the reduced body.
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Fig. 5. A comparison of original and reduced models by ietdRS andror 4ansys method.
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these points (DOFs) are missing for connecting the bodiegpplying the forces. Then these
points must be selected additionally and than the reswdtsswally inaccurate.

We discover that a very good result practically non-seresiit additional selections gives
the selection approach when the boundary points (nodesgtgeted. The results are in figs 8
and 9.

2.3. Automatic connection of reduced flexible bodies

The reduction process has another big problem for the mexharthat move in some
workspace (e.g. machine tools or robots). The investigaifdhe mechanical properties must
be done in the whole workspace. In each position within theksmace the reduced models
of flexible bodies of particular elements of the mechanismstrbe interconnected according
to their connection by kinematical joints. This finishes tneation of the investigated model
of the mechanism and the analysis can be done only afterntpletion. This is traditionally
done by hand and the solving time increases enormously.efdreran automatic procedure
for the connection of reduced flexible bodies has been dped|§8], [9]. The procedure is
based on the automatic generation of connecting springs@iog to the particular type of the
kinematical joint (e.g. rotational joint in fig. 6).

Fig. 6. Automatic connection of two flexible bodies by ratathl kinematical joint.

2.4. Qualities of reduction methods

All reduction methods are applicable, but there are somgdtans. The static reduction
is very simply applicable but it is efficient only above theluetion degree of 30 percent. A
higher reduction degree leads to the results for this metiazturate and practically unusable.
And if the eigenfrequencies are enough accurate then tle@migdes are almost always poor.
The reduction IRS and iterated IRS are suitable for a high@uction degree. These methods
give good results and they are sufficiently accurate andeigeles are usually in a good agree-
ment with the original system. These three reduction methaxtk with an inverse matrix and
they are also time-consuming and they need large memory.mitkeod based on the Krylov
subspaces used itor 4ansys is faster. The comparison between iterated IRS method and
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Fig. 7. Body for comparison between iterated IRS and morans
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Fig. 8. The MAC criterion for a poor selection of master aral/sldegrees.
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Fig. 9. The MAC criterion for a good selection of master araysldegrees.

nor 4ansys is in fig. 5. The speed of the method is not a constraining faoézause the
reduction is done for the optimization only once and thely timé reduced matrices are used.

The selection of the master and slave degrees of freedonemntis largely the final result,
especially the eigenmodes. A MAC criterion (Modal Assum@riterion) [1] shows large
differences in fig. 8 and in fig. 9. The results of poor and coremt selections are in fig. 8
and fig. 9. The main diagonal must be equal one in case of pexfgeement and the other
components must be equal zero.

3. Conclusions

The applications and usage of the reduced models are widey ddn be used for testing,
real-time applications or optimizations. The main advgates a very small resulting system
with the almost identical behavior to the original one. Thduction is done only once, later
only the reduced matrices are used and all following contjmutaare very fast. Therefore, the
reduction techniques provide a very powerful tool espiciat the design and optimization.

This paper has summarized the properties of different temtutechniques and the develop-
ment of several additional critical procedures that inseg&ie reduction accuracy and efficiency
significantly. These are the procedure for the selectionasdtar—slave DOFs and the procedure
for the automatic connection of reduced flexible bodies.eBasn that a powerful global op-
timization procedure (e.g. optimization of mechanicalgemies of machine-tool in its whole
workspace).
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