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Abstract

It is well-known that Wilcoxon procedures out perform least squares procedures when
the data deviate from normality and/or contain outliers. These procedures can be gen-
eralized by introducing weights; yielding so-called weighted Wilcoxon (WW) techniques.
In this paper we demonstrate how WW-estimates can be calculated using an L1 regres-
sion routine. More importantly, we present a collection of functions that can be used to
implement a robust analysis of a linear model based on WW-estimates. For instance,
estimation, tests of linear hypotheses, residual analyses, and diagnostics to detect differ-
ences in fits for various weighting schemes are discussed. We analyze a regression model,
designed experiment, and autoregressive time series model for the sake of illustration. We
have chosen to implement the suite of functions using the R statistical software pack-
age. Because R is freely available and runs on multiple platforms, WW-estimation and
associated inference is now universally accessible.

Keywords: estimation, inference, linear models, R functions, rank-based procedures, robust,
weighted Wilcoxon estimates.

1. Introduction

One of the most widely used models in statistics is the linear model which is typically written
as

Yi = β0 + β1X1i + β2X2i + · · ·+ βpXpi + εi = β0 + Xᵀ
i β + εi, i = 1, 2, . . . , n (1)

where Yi is an observed univariate response variable, Xi = (X1i, X2i, . . . , Xpi)ᵀ is a p × 1
vector of (known) explanatory variables, β = (β1, β2, . . . , βp)ᵀ is a p× 1 regression parameter
vector, and β0 is the intercept parameter. When needed, we will write the combined parameter
vector as θ = (β0,β

ᵀ)ᵀ. Throughout this paper we assume that the εi are iid according to a
continuous distribution function F that satisfies F (0) = 1/2 and f(0) > 0 where f denotes
the corresponding probability density function.
In regards to (1), it is well-known that Wilcoxon procedures out perform least squares (LS)
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procedures when F deviates from the Gaussian distribution. Furthermore, in designed exper-
iments, Wilcoxon procedures provide protection against outlying responses (i.e. Yi). See, for
example, the books Hettmansperger (1984) and Hettmansperger and McKean (1998). Here
and after we refer to the Hettmansperger and McKean reference as HM.

Briefly, a Wilcoxon estimate of β is defined to be a minimum of the following dispersion
function

DR(β) =
n∑

i=1

(
R (εi(β))− n+ 1

2

)
εi(β) (2)

where εi(β) = Yi − Xᵀ
i β and R (εi(β)) denotes the rank of εi(β) among {εj(β)}. This

corresponds to the dispersion function of Jaeckel (1972) with Wilcoxon scores. Because (2)
is invariant to location, β0 can not be simultaneously estimated with β. Instead, β̂0 =
med{εi(β̂)}, where β̂ is a minimum of (2), is typically used as an estimate of β0. See, for
example, Section 3.5.2 of HM (1998).

Now, since Wilcoxon estimates are only robust in regards to the response, they may not be
appropriate in observational studies if the independent variables (i.e. Xi) are contaminated.
As an alternative, one can consider an analysis based on weighted Wilcoxon (WW) estimates.
In short, a WW-estimate corresponds to a minimum of the following objective function

DWR(β) =
∑

1≤i<j≤n

bij |εj(β)− εi(β)| (3)

where bij denotes a weight to be used in the (i, j)th comparison. Note that DWR(β) is
essentially a weighted version of Gini’s mean difference measure of scale. When bij = 1 for
i 6= j and 0 otherwise, it can be shown (e.g. Hettmansperger 1984, p.277) that DWR(β) =
2DR(β); hence the name WW-estimate.

WW-estimates and corresponding inference have been studied extensively in the context of lin-
ear regression models. See, for example, Sievers (1983); Naranjo and Hettmansperger (1994);
Chang, McKean, Naranjo, and Sheather (1999) and Chapter 5 of HM (1998). Depending
on the weighting scheme (see Section 2) used, WW-estimates can attain a continuous totally
bounded influence function and a positive breakdown point, which for one class is the maxi-
mum of 50%. Thus, this class of estimates can be simultaneously robust and highly efficient.
This makes WW-estimates particularly appealing when it comes to autoregressive time se-
ries analysis where an observation plays a dual role as both a response and an explanatory
variable. The paper by Terpstra, McKean, and Naranjo (2001) provides a good overview of
WW-estimates and their application to autoregressive time series modeling.

In spite of the abundance of literature, the desirable robustness and efficiency properties, and
the wide applicability to various linear models, this class of estimators has yet to be imple-
mented in any mainstream statistical software packages. It is here where we hope to make a
contribution. That is, we present an R (see e.g. Ihaka and Gentleman 1996) implementation
of WW-estimates and corresponding inference.

More specifically, we review some popular weighting schemes from the literature and illus-
trate how these weights and corresponding estimates can be calculated with an L1 regression
routine in Section 2. Furthermore, the asymptotic theory for WW-estimation and inference
is well established. For example, the asymptotic distribution of the estimates, tests of linear
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hypotheses, studentized residuals, and diagnostics for comparing different WW-fits are sum-
marized in Section 3. In Section 4 we present some of the critical functions that are used
to compute these estimates, test statistics, and diagnostics. We also discuss some of the R
packages that are required for our implementation. Some data set examples, which include a
regression model, a designed experiment, and an autoregressive time series are used for illus-
tration in Section 5. The purpose of these examples is to illustrate the wide applicability of
our functions to various kinds of data sets (e.g. observational and experimental). Lastly, Sec-
tion 6 provides some examples relating to simulation studies and bootstrapping. We conclude
with a brief discussion of possible implementations in other statistical software packages.

2. Computational details

To compute the WW-estimate one can use an L1 regression routine with

bij(Yj − Yi) and bij (Xj −Xi)

playing the role of the response variables and design points, respectively. Note that this is
essentially how weighted least squares regression estimators are calculated. However, to our
knowledge, R does not provide an explicit L1 regression function. Nevertheless, since L1

regression estimates are equivalent to (median) quantile regression estimates, the quantreg
package written by Roger Koenker can be used to calculate the WW-estimate. We refer the
interested reader to Koenker and Bassett (1978) for more information on regression quantiles.
To obtain the estimates then, we can call the rq.fit.br and rq.fit.fn functions using the
aforementioned weighted pairwise differences to obtain the estimates. We note that rq.fit.br
and rq.fit.fn are based on exterior and interior point methods, respectively. According to
the R documentation for rq, rq.fit.br is recommended for smaller scaled problems. For
instance, when the sample size is smaller than 5,000 and the number of regressors is less than
20.

As shown, WW-estimates are readily obtained once the weights (i.e. bij) have been determined.
In this paper, we essentially consider three classes of weights; namely constant weights, Mal-
lows (1975) weights, and Schweppe (e.g. Handschin, Kohlas, Fiechter, and Schweppe 1975)
and Chang et al. (1999) weights. Briefly, weight functions that only depend on the design
points are typically referred to as Mallows weights. Examples are given in Sections 2.2 and
2.3. On the other hand, a weighting scheme that depends on both the design point and the
response is a member of the Schweppe class. See, for example, Section 2.4. We now give
a brief discussion of some of the more popular members of these classes that appear in the
literature.

2.1. Wilcoxon weights

The simplest weighting scheme corresponds to bij = 1 for i 6= j and 0 otherwise. Note that
εj(β) − εi(β) = 0 when i = j so that the value of bii is essentially arbitrary. Practically
speaking then, these weights are constant weights. Furthermore, as mentioned in Section 1,
these weights yield the well-known rank-based Wilcoxon (WIL) estimate. Wilcoxon proce-
dures are typically more efficient than least squares procedures when the data are non-normal
and feature 95.5% efficiency when the data are normally distributed (e.g. HM (1998, p.163)).
However, the influence function of the Wilcoxon estimate is only bounded for the response
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and not the design point (e.g. HM (1998, p.164)). Thus, Wilcoxon estimates are not robust
against outlying points in the design. This, of course, is irrelevant when the data are obtained
from a designed experiment.

2.2. Theil weights

When it comes to discussing outlier resistant estimates for the simple linear regression model
many nonparametric textbooks present the median of the pairwise slopes (e.g. Theil 1950) as
an estimate of β. For example, the books by Conover (1999), Daniel (1990), and Hollander
and Wolfe (1999) discuss this estimator. Now, suppose the weights in (3) are defined by
bij = |Xj −Xi|−1; ignoring the possibility of ties for the sake of simplicity. Then, as shown
in Terpstra et al. (2001), the minimum of (3) corresponds to Theil’s estimator. Thus, we
see that Theil’s estimator is a member of the class of WW-estimates. From this perspective
then, a generalization of Theil’s estimator to the case where p > 1 can be obtained by letting
bij = ‖Xj −Xi‖−1 where ‖ · ‖ represents the Euclidean norm. Note that these weights are of
the form bij = b(Xi,Xj) for some real-valued function b(·). That is, this weighting scheme
is a member of the Mallows class.

Naranjo and Hettmansperger (1994) derived both the influence function and breakdown point
of the Mallows-based WW-estimate. These results are also stated as Theorems 5.7.1 and 5.7.3
respectively in HM (1998). The theorems imply that Theil’s estimator is a bounded influence
estimator that attains a breakdown point of 1/3. Hence, we see that the Theil estimator is
robust.

2.3. GR weights

Another Mallows-based weighting scheme is defined by bij = hihj where hi = h (Xi) and

h (Xi) = min

{
1,

[
c

d2
i (Xi)

]k/2
}
. (4)

Here, c and k correspond to tuning constants and d2
i (Xi) denotes the squared Mahalanobis

distance of Xi based on some (robust) measure of location and dispersion for the design set
{Xi}. For example, our default implementation calculates d2

i (Xi) using the fast minimum
covariance determinant estimates proposed by Rousseeuw and Van Driessen (1999). These
estimates are available in R through the lqs (R 1.8.1 and earlier) and MASS (R 1.9.0 and
later) packages written by Brian Ripley. For the tuning constants, we use c = χ2

0.95(p), the
95th percentile of a χ2(p) distribution, and k = 2.

These weights have been studied extensively in the context of linear regression. The interested
reader is referred to Naranjo and Hettmansperger (1994); Naranjo, McKean, Sheather, and
Hettmansperger (1994); McKean, Naranjo, and Sheather (1996b) and Chapter 5 of HM (1998).
Once more, it follows from the results of Naranjo and Hettmansperger (1994) that these
weights admit a bounded influence function and a positive breakdown point. See also McKean,
Naranjo, and Sheather (1996a). We follow the convention in the literature and refer to this
particular WW-estimate as a generalized rank (GR) estimate. Lastly, note that there is a
fundamental difference between the GR-estimate and the Theil estimate. That is, the weights
for the GR-estimate are factored, and the weights for the Theil estimate are not factored.
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2.4. HBR weights

These weights also yield robust estimates but typically have higher efficiency than the Theil
and GR estimates. More specifically, let

bij = ψ

(∣∣∣∣ b

aiaj

∣∣∣∣) , where ai =
εi(β̂0)

σ̂ψ(χ2
0.95(p)/d

2
i (Xi))

, (5)

d2
i (·) is defined in (4), and ψ(t) = (t− sgn (t))I(−1 < t < 1) + sgn (t). The tuning constant,
b, is set at [med{ai}+ 3MAD{ai}]2 and

σ̂ = MAD{εi(β̂0)} = 1.483med|εi(β̂0)−med{εj(β̂0)}|.

Lastly, εi(β̂0) denotes the ith residual based on an initial estimate. Note that these weights
incorporate information from the design points and the responses via the initial residuals. Our
default implementation uses the fast least trimmed squares estimator proposed by Rousseeuw
and Van Driessen (2002) for β̂0. Again, this estimate is available in R via the lqs or MASS
package. The weights in (5) were suggested by Chang et al. (1999) and are used in Section
5.8.1 of HM (1998). This particular WW-estimate is referred to as the HBR-estimate since
it acquires a 50% breakdown point provided the initial estimates (i.e. µ̂, Σ̂, and β̂0) are high
breakdown (50%) estimates.

3. Theoretical results

This section summarizes some of the main theoretical results pertaining to the estimation,
inference, and diagnostic procedures that we have chosen to implement. In general, WW-
estimates do not exist in closed form. Thus, it is not universally possible to determine exact
distributions of estimates and/or test statistics. Expectedly then, all of the results presented
in this section are asymptotic in nature. For the sake of brevity, we refer the reader to
appropriate references for the technical details.

3.1. Asymptotic distributions

Recall that DWR(β) is invariant to location and therefore, β0 can not be directly estimated
via the minimization. As an estimate then, we use β̂0 = med{Yi − Xᵀ

i β̂WR} where β̂WR

denotes a minimum of (3). Note that this is essentially a robust analog of the least squares
estimate where the mean of the residuals is used as an estimate of the intercept. See, for
example, Section 3.5 of HM (1998). In what follows we let θ̂ = (β̂0, β̂

ᵀ
WR)ᵀ denote the joint

estimated parameter vector.

The main result is that θ̂ is asymptotically normal. That is,
√
n(θ̂ − θ) d−→ N(0,Ω) where

Ω has the general form

Ω =
[
τ2
s + τ2xᵀC−1V C−1x −τ2xᵀC−1V C−1

−τ2C−1V C−1x τ2C−1V C−1

]
. (6)

Here, x denotes the p× 1 vector of column means corresponding to the n× p design matrix
X and τs = (2f(0))−1. The remaining components (i.e. τ , C, and V ) depend on the type of
weights that are used.
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For Mallows weighting schemes define W to be the n× n matrix whose elements are

wij =
{
− 1

nbij ; i 6= j
1
n

∑n
k=1 bik ; i = j

(7)

where bii is defined to be zero. Note that both W and X depend on n. Then, the quantities
of Ω are defined as follows:

C = lim
n→∞

1
n

XᵀWX, V = lim
n→∞

1
n

XᵀW 2X, (8)

and τ = (
√

12E [f(ε1)])−1. The details regarding this result can be found in Sievers (1983)
and/or Section 5.2 of HM (1998). We note that when Wilcoxon weights are used,

C = V = lim
n→∞

1
n

Xᵀ
cXc

where Xc denotes the centered design matrix. Now, for practical applications an estimate
of Ω is needed. Estimates of C and V correspond to (8) without the limits. For the scale
parameters, we have implemented the confidence interval estimate discussed on pages 7–8 and
25–26 of HM (1998) for τs and the density estimate presented in Section 3.7.1 of HM (1998)
for τ .

Next, let us consider Schweppe weights; and recall that these weights are random since they
depend on the response variable. Essentially, this is what is responsible for changing the
definitions of τ , C, and V from those given in (8). Here, we have τ = 1/2. However, for C
and V we need to define the following quantities:

Bij(t) = E [bijI(0 < Yi − Yj < t)] ,
γij = B′ij(0)/E [bij ] ,

Cn =
1
n2

n−1∑
i=1

n∑
j=i+1

γijbij(Xj −Xi)(Xj −Xi)ᵀ, and (9)

U i =
1
n

n∑
j=1

(Xj −Xi)E [bijsgn (Yj − Yi) | Yi] . (10)

Then, C = plimn→∞Cn and V = limn→∞(1/n)
∑n

i=1 VAR [U i]. The details regarding this
result can be found in Chang et al. (1999) and/or Section 5.8 of HM (1998). Estimates of
these quantities are also discussed in these references.

3.2. Tests of linear hypotheses

Consider testing a general linear hypothesis of the form

H0 : Aβ = 0 versus H1 : Aβ 6= 0 (11)

where A is a q× p hypothesis matrix with rank q. For example, when A is the p× p identity
matrix, H1 corresponds to regression significance. We only consider tests of the regression
parameters as these are typically the focus in regression analyses.

The first test is based on a standardization of the full model estimate and is typically referred
to as a Wald test. More specifically, let β̂WR denote a WW-estimate obtained from minimizing
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(3) and let Ω̂2,2 denote a consistent estimate of τ2C−1V C−1, which is defined in (6). Then,
an approximate α level test of (11) is given by: reject H0 if

Ŵ 2 = n
(
Aβ̂WR

)ᵀ (
AΩ̂2,2A

ᵀ
)−1 (

Aβ̂WR

)
(12)

is larger than χ2
1−α(q). However, finite sample simulation studies suggest that a better test

is given by: reject H0 if Ŵ 2/q > F1−α(q, n− p− 1) where F1−α(q, n− p− 1) corresponds to
the (1− α)100% percentile of a F distribution with q and n− p− 1 degrees of freedom. See,
for example, McKean and Sheather (1991) and/or Section 3.6 of HM (1998). Note that this
test can be modified to include the intercept term should one choose to do so.

The second test, typically referred to as a drop in dispersion test, is based on both the full
model estimate (say β̂f ) and a reduced model estimate (say β̂r). That is, the reduced model
estimate minimizes (3) subject to the linear constraints in (11). This can be accomplished
using a QR decomposition of the matrix Aᵀ. Our discussion here is limited to Mallows schemes
since this is the extent of the current (at least to our knowledge) theoretical development;
see, for example, Theorem 5.2.12 of HM (1998). Nevertheless, in principle, the same idea is
also applicable to Schweppe weights.

Now, once the reduced and full model estimates are obtained, the drop in dispersion test
statistic is given by

SRD =
√

12
nτ̂

(
DWR(β̂r)−DWR(β̂f )

)
(13)

where DWR(·) denotes the dispersion function in (3) and τ̂ is a consistent estimate of τ . Next,
let C and V be the matrices defined in (8), let Cr denote the reduced model analog of C,
and define

C+ =
[

C−1
r 0
0 0

]
.

Then, SRD d−→
∑q

i=1 λiχ
2
i (1) where λ1, λ2, . . . , λq are the q positive eigenvalues of V (C−1−

C+) and χ2
1(1), χ2

2(1), . . . , χ2
q(1) are iid χ2 random variables, each with one degree of freedom.

To obtain a p-value, Hettmansperger and McKean (1998, p.288) suggest either bootstrapping
(see e.g. Section 6.1) the test statistic or simulating the sum of weighted χ2 distributions.

Our current implementation only considers Wilcoxon weights (i.e. bij = 1). For these weights
it is readily shown that the q positive eigenvalues are all equal to one, so the limiting distri-
bution is χ2 with q degrees of freedom. However, like the Wald test, finite sample simulation
studies suggest that a better test is given by: reject H0 if FR = SRD/q > F1−α(q, n− p− 1).
See, for example, McKean and Sheather (1991) and/or Section 3.6 of HM (1998). Lastly, it
should be pointed out that Hettmansperger and McKean (1983) compared the performances
of FR and Ŵ 2/q via small sample simulation studies. In short, their findings indicate that
FR exhibits a more stable Type I error rate and slightly dominates Ŵ 2/q in terms of power.
This is consistent with the simulation study presented in Section 6.2 of this paper.

3.3. Studentized residuals

Let ε̂i = Yi−β̂0−Xᵀ
i β̂WR denote the ith residual where β̂0 = med{Yi−Xᵀ

i β̂WR}. For general
residual analyses it is desirable to know the variance of ε̂i, say σ2

i . Then, the studentized
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residual, which is often used for outlier identification, is defined as ε̂i/σ̂i. A general rule
of thumb is to declare the ith observation a potential outlier if the absolute value of the
studentized residual is larger than two.

In what follows we let ε̂M and ε̂S denote n×1 vectors which contain the residuals for Mallows
and Schweppe weights, respectively. Then, a first order approximation of VAR [ε̂M ] is given
by

VAR [ε̂M ] .= σ2I −K3J − (K4I −K5J)Kᵀ
w + τ2KwKᵀ

w (14)

where σ2 = VAR [ε1], I is the n × n identity matrix, J = (1/n)11ᵀ, 1 is an n × 1 vector of
ones, Kw = Xc(Xᵀ

cWXc)−1Xᵀ
cW ,

K3 = 2τsδ3 − τ2
s , K4 =

√
12τξ, K5 =

√
12ττsδ5,

δ3 = E [ε1sgn (ε1)] , δ5 = E [sgn (ε1) sgn (ε1 − ε2)] , and ξ = E [ε1sgn (ε1 − ε2)] .
(15)

See, for example, Naranjo et al. (1994) and Section 5.4 of HM (1998). We note that (14) is valid
for any Mallows weighting scheme. In particular, (14) holds for the three weighting schemes
discussed in Sections 2.1, 2.2, and 2.3; the only quantity that changes is the W matrix, which
appears in Kw. Now, in practical applications we need estimates of the quantities defined
in (15). For σ̂ we use MAD{ε̂M,i}, where MAD represents the median absolute difference
estimator of scale. Estimates of τs and τ were discussed in conjunction with (8). For the
remaining quantities we use the residual-based moment estimators. See, for example, Section
5.4 of HM (1998).

The Schweppe weights version of (14) is similar and is given by

VAR [ε̂S ] .= σ2I + τ2
s J +

1
4
XcC

−1V C−1Xᵀ
c − 2τsκ1J

−
√

12τκ2

{
AXcC

−1Xᵀ
c + XcC

−1Xᵀ
cA

}
. (16)

See, for example, Chang et al. (1999) and Section 5.9 of HM (1998). Here, C and V correspond
to the matrices defined in conjunction with (9) and (10) respectively, κ1 = E [|ε1|], and
κ2 = E [ε1(2F (ε1)− 1)]. Residual-based moment estimates of κ1 and κ2 can be obtained by
replacing F with the empirical cumulative distribution function of the residuals. The other
quantities, namely σ2, τs, τ , I, and J are identical to those defined for Mallows weights.
Finally, A = n(

√
12τ)−1W where W corresponds to the Schweppe analog of (7). Once

again, we note that (16) holds for any Schweppe weighting scheme since the only quantities
that depend on the weights are A, C, and V .

3.4. Diagnostics for comparing fits

It is clear from Section 2 that different weighting schemes yield different estimates. In fact, it
follows from Lemma 5.2.11 of HM (1998) that the most efficient WW-estimate corresponds to
the Wilcoxon estimate. Recall that all points are equally weighted for this particular estimate.
However, equal weights do not always make sense for those data sets which contain outliers.
Thus, it is desirable to have a diagnostic that compares the Wilcoxon estimate (bij = 1 for
all (i, j)) to a WW-estimate (bij 6= 1 for some (i, j)). Actually, in principle, the diagnostics in
this section can be used to compare any two WW-estimates (e.g. GR and HBR). However, to
our knowledge, no studies directly address this problem. Nevertheless, in view of the theory
presented in Section 5.5 of HM (1998), such a practice can be justified.
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In what follows we let θ̂R = (β̂R0, β̂
ᵀ
R)ᵀ denote the parameter estimates based on Wilcoxon

weights. An analogous estimate, say θ̂WR, will be defined for any WW-estimate whose weights
are not all equal to one. Then, the two estimates can be compared using the following
diagnostic

TDBETASR = (θ̂R − θ̂WR)ᵀΩ̂
−1

R (θ̂R − θ̂WR) (17)

where Ω̂R is an estimate of the Wilcoxon version of (6). A more thorough discussion of this
diagnostic can be found in McKean et al. (1996a), McKean et al. (1996b) and Section 5.5 of
HM (1998). These references suggest using 4(p+ 1)2/n as a benchmark for declaring the fits
to be different.

Now, when two fits are declared to be different it is sometimes desirable to investigate the
nature of the difference. This can be accomplished by comparing the individual fits for the
two estimates. For example, let ŶR,i = β̂R0 + Xᵀ

i β̂R denote the Wilcoxon fit for the ith case
and let ŶWR,i denote the ith fit for the other WW-estimate. A diagnostic which compares
these fits is given by

CFITSR,i =
ŶR,i − ŶWR,i√

1
n τ̂

2
s + Xᵀ

ci(X
ᵀ
cXc)−1Xci

(18)

where the denominator of (18) corresponds to the estimated standard error of ŶR,i. See,
for example, Section 5.5 of HM (1998). Hettmansperger and McKean (1998, p.303) suggest
using 2

√
(p+ 1)/n as a benchmark for declaring two individual fits different. We note that

these diagnostics are designed to distinguish differences between fits and therefore, do not
necessarily provide any information regarding which fit is best. Instead, we recommend a
standard residual analysis, based on the studentized residuals of Section 3.3, for this endeavor.

4. R code

4.1. Web resources

In this section we give a brief description of some of the R functions that can be used to
perform a weighted Wilcoxon analysis. However, we begin by listing some important web
sites related to our software.

http://CRAN.R-project.org/. This is the main web site for the R statistical software pack-
age (R Development Core Team 2005). Specifically, this is where one can find information on
downloading, installing, and updating R. An abundance of other related material can also be
found here. For instance, information on the quantreg, lqs, and MASS packages, which are
required to run our functions, is available under the Packages link. See also the R help files
corresponding to install.packages and library.

http://www.stat.wmich.edu/mckean/HMC/Rcode. Our entire suite of functions is contained
in one file (ww.r) and can be downloaded from this site. Alternatively, one can source the
code directly by supplying the appropriate URL as an argument to the R source function.

http://CRAN.R-project.org/
http://www.stat.wmich.edu/mckean/HMC/Rcode
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See, for example, the R help file corresponding to source. There is also a help file (wwhlp.r)
that can be downloaded. This file contains a detailed description of each function along with
some examples which illustrate usage. Lastly, two of the subdirectories correspond to code
that is related to Sections 6.1 and 6.2, respectively.

http://www.stat.wmich.edu/mckean/book/data/datasets.html. The data sets pertain-
ing to the examples in Sections 5.1 and 5.2 can be downloaded from here. In fact, many of
the data sets in HM (1998) are available from this web site.

4.2. Descriptions of R functions

wwest. This function performs a weighted Wilcoxon analysis using the weighting schemes
discussed in Section 2. As input, this function requires a design matrix, a response vector, and
a name for the weighting scheme. Arbitrary Mallows weights are also allowed. Specifically,
output is produced which summarizes a test of regression significance along with tests on
individual parameters. A graphical residual analysis can also be obtained.

wwfit. As input, this function requires a design matrix, a response vector, and an n(n −
1)/2 × 1 vector of weights. Note that this function is not limited to the weighting schemes
discussed in Section 2. It then minimizes the dispersion function in (3) via the L1 procedure
discussed in Section 2. The return value is a list which contains the parameter estimates,
residuals, and a weight matrix.

wilwts. This function returns an n(n− 1)/2× 1 vector of ones. These weights correspond
to the Wilcoxon estimate.

theilwts. This function returns the n(n − 1)/2 × 1 vector of Theil weights discussed in
Section 2.2. When p = 1 the slope estimate corresponds to the median of the pairwise slopes.

grwts. This function returns the n(n − 1)/2 × 1 vector of GR weights defined in (4). The
function is flexible enough to accommodate arbitrary distances and tuning constants.

hbrwts. This function returns the n(n−1)/2×1 vector of HBR weights defined in (5). The
function is flexible enough to accommodate arbitrary distances, initial estimates, and tuning
constants.

wts. This is a wrapper function that essentially calls one of the above weight functions.
Typically, it is only used in conjunction with wwfit. For example, in simulation studies
where only the estimates are being studied, it is not necessary to evaluate the extra output
produced by wwest.

wilcoxontau. This function calculates the density estimate of τ = (
√

12E [f(ε1)])−1 dis-
cussed in Section 3.7.1 of HM (1998). It is a scale parameter estimate which appears in the
Mallows-based variance-covariance matrix defined in (6).

http://www.stat.wmich.edu/mckean/book/data/datasets.html
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taustar. This function calculates the confidence interval estimate of τs = (2f(0))−1 dis-
cussed on pages 7-8 and 25-26 of HM (1998). It corresponds to the asymptotic standard
deviation of the median-based estimate of the intercept parameter.

varcov.gr. This function calculates an estimate of the variance-covariance matrix for the
regression coefficients (including the intercept) when Mallows weights are used. In particular,
it can be used to determine the variance-covariance matrix of the Wilcoxon estimate. It
returns several components associated with the matrix. See, for example, (6), (7), and (8).

varcov.hbr. This function calculates an estimate of the variance-covariance matrix for the
regression coefficients (including the intercept) when Schweppe weights are used. It returns
several components associated with the matrix. See, for example, (6), (9), and (10).

wald. This function calculates the Wald statistic defined in (12) and the corresponding p-
value for the hypotheses given in (11). It requires both the intercept parameter estimate and
the regression parameter estimates. The use of the F distribution for calculating p-values is
documented in McKean and Sheather (1991) and Section 3.6 of HM (1998).

droptest. This function performs a drop in dispersion test for the general linear hypotheses
defined in (11). The test statistic is defined after (13). Our current implementation requires
that Wilcoxon weights (i.e. bij = 1) be used for the analysis. Again, the use of the F distri-
bution for calculating p-values is documented in McKean and Sheather (1991) and Section
3.6 of HM (1998).

redmod. This function obtains the reduced model design matrix used by droptest. The
calculation of this matrix is based on a QR decomposition of Aᵀ where A is defined in (11).
See, for example, Theorem 3.7.2 of HM (1998).

regrtest. This function performs a Wilcoxon-based drop in dispersion test of regression
significance (i.e. H1 : β 6= 0).

cellmntest. This function performs a Wilcoxon-based drop in dispersion test and returns
a robust ANOVA table for the one-way analysis of variance model. The interested reader is
referred to Chapter 4 of HM (1998) for the details.

pwcomp. This function is typically used in conjuntion with cellmntest. It examines all Cp
2

pairwise comparisons using Wilcoxon-based drop in dispersion tests. Note that this is similar
in nature to the protected LSD method. See, for example, Kuehl (2000, p.111).

studres.gr. This function calculates the studentized residuals corresponding to Mallows-
based weighted Wilcoxon estimates (see (14)). These residuals can be used to construct
residual plots and flag potential outliers. For instance, if the absolute value of the studentized
residual exceeds two then one might declare the observation an outlier.
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studres.hbr. This function is analogous to studres.gr except that it corresponds to WW-
estimates based on Schweppe weights (see (16)).

fitdiag. This function returns the diganostics TDBETASR and CFITSR,i which are de-
fined in (17) and (18), respectively. The current implementation allows the following com-
parisons: WIL vs. GR, WIL vs. HBR, GR vs. HBR, and WIL vs. LS. All comparisons are
standardized using the WIL fit.

plotfitdiag. This function produces a casewise plot of CFITSR,i based on the results of
fitdiag. Information on the total change in fits (i.e. TDBETASR) is also reported.

5. Data set examples

We now present some data set examples which illustrate the use of our R functions and
corresponding output. Other examples can be found in our help file (wwhlp.r).

5.1. Hawkins data set

For our first example we analyze the well-known data set constructed by Hawkins, Bradu,
and Kass (1984). Briefly, this data set contains 75 observations on one response variable and
three predictor variables. The first 10 observations are bad leverage points, observations 11-14
are good leverage points, and the remaining observations are consistent with the underlying
model. This data set is typically used to illustrate the degree of robustness (or lack of) an
estimator exhibits toward outlying data points.

The analysis will parallel that given in Section 5.3 of HM (1998); except that we will compare
the WIL estimator to the HBR estimator (as opposed to the GR estimator). Figures 1 and
2 pertain to the WIL estimate while Figures 3 and 4 display the HBR results. Figure 5
compares the WIL and HBR fits directly.

To begin, note that wwest essentially serves as an all-purpose estimation and inference func-
tion. It makes calls to several of the functions described in Section 4.2. In particular, calls to
wwfit, wald, and regrtest are made. Note that the type of weighted Wilcoxon analysis is
controlled by the bij argument.

Figures 1 and 3 display the results for the WIL and HBR fits, respectively. The output is
similar to that produced by many statistical software packages. That is, a test of general re-
gression significance along with significance tests for individual model parameters are output.
With the exception of the drop in dispersion test for the Wilcoxon estimate (i.e. FR), all tests
are Wald-based (i.e. (12)) procedures. Finally, the user is given an option to view a graphical
residual analysis.

Figures 2 and 4 display the residual analyses for the WIL and HBR fits, respectively. The
standard residual vs. fit and normal probability plots are given in positions (1,1) and (2,2),
respectively. As a compliment to the normal probability plot, a histogram of the residuals
appears in position (1,2). Lastly, a case plot of the studentized residuals (recall (14) and
(16)) is given in position (2,1). Here, we can use the ±2 benchmark to help identify potential
outliers.
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> wwest(x=hawk[,1:3],y=hawk[,4],bij="WIL")

Wald Test of H0: BETA1=BETA2=BETA3=0
TS: 419.2269 PVAL: 0

Drop Test of H0: BETA1=BETA2=BETA3=0
TS: 44.312 PVAL: 0

EST SE TVAL PVAL
BETA0 -0.7758 0.2032 -3.8177 0.0003
BETA1 0.1688 0.1103 1.5312 0.1302
BETA2 0.0180 0.0651 0.2766 0.7829
BETA3 0.2687 0.0541 4.9651 0.0000

Would you like to see residual plots (y/n)?
y

Figure 1: Wilcoxon-based wwest output for the Hawkins data.

Finally, a few words regarding the WIL and HBR fits are in order. It is clear from Figure
5 that the WIL and HBR fits are quite different; most notably, for the first 14 observations.
It is evident from Figure 2 that the WIL fit favors the bad leverage points. For example,
both residual plots identify the four good leverage points as outlying observations. On the
other hand, the HBR-based residual plots in Figure 4 identify the 10 bad leverage points as
outlying observations. Lastly, we note that the inference results in Figures 1 and 3 contradict
one another. That is, the WIL test for regression significance is significant while the HBR
test is not significant. Actually, all of this comes as no surprise given the well-known fact that
WIL procedures are not robust against bad leverage points.

5.2. LDL cholesterol in quail

This data set contains the LDL Cholesterol levels of 39 different quail. The data were obtained
using a completely randomized design with four treatments. Each treatment essentially cor-
responds to a different diet containing a different drug compound. To begin, note that this
is a designed experiment. Therefore, the design matrix will not contain any leverage points.
It does not make sense then, from an efficiency point of view, to use a weighted Wilcoxon
estimate that downweights leverage points (e.g. GR or HBR). In general, we recommend that
Wilcoxon-based procedures be used for experimental design situations. See Chapter 4 of HM
(1998) for details.

We are interested in testing for a significant treatment (i.e. diet) effect. This can be accom-
plished using the cellmntest function. Figure 6 illustrates the steps involved as well as the
corresponding output. Briefly, cellmntest performs a WIL-based drop in dispersion test and
returns a robust ANOVA table for the one-way analysis of variance model. From Figure 6 we
see that FR = 3.79 and the corresponding p-value is 0.0187. Hence, the diets are significantly
different at the 0.05 level.
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Figure 2: Wilcoxon-based residual analysis for the Hawkins data.
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> wwest(x=hawk[,1:3],y=hawk[,4],bij="HBR")

Wald Test of H0: BETA1=BETA2=BETA3=0
TS: 0.5651 PVAL: 0.6398

EST SE TVAL PVAL
BETA0 -0.1547 0.2166 -0.7144 0.4773
BETA1 0.0960 0.1179 0.8145 0.4181
BETA2 0.0385 0.0683 0.5630 0.5752
BETA3 -0.0458 0.0586 -0.7813 0.4372

Would you like to see residual plots (y/n)?
y

Figure 3: HBR-based wwest output for the Hawkins data.

Now, given a significant result, it is customary to examine the pairwise differences in order to
help assess the nature of the rejection. To this end, we note that cellmntest has an argument
which allows one to test

H0 : Aµ = 0 versus H1 : Aµ 6= 0

where µ is the p × 1 vector of cell locations and A is an arbitrary q × p contrast matrix.
For example, if p = 4, calling cellmntest with A = (1, 0,−1, 0) tests for location differences
between populations one and three. Thus, we can use cellmntest to examine each of the
Cp

2 pairwise comparisons by defining an appropriate A matrix. When used in this manner
we essentially have a Wilcoxon-based drop in dispersion version of the well-known protected
LSD method. See, for example, Kuehl (2000, p.111). In fact, this is exactly what the pwcomp
function is used for. From Figure 6 then, we see that diet number 2 yields the lowest cholesterol
levels and this diet is significantly different from the others.

5.3. Residential extensions data

A widely used model in time series analysis is the (stationary) autoregressive model of order
p, which we denote as AR(p). In short, an AR(p) model is a linear regression model where the
response variable corresponds to the current time series value and the independent variables
represent the previous p values of the time series. See, for example, Fuller (1996) for a more
thorough description. Thus, from this perspective, our suite of R functions is equally appli-
cable to autoregressive time series analysis. In fact, WW-estimates are particularly appealing
because outlying observations play a dual role as both response and explanatory variables.
Terpstra et al. (2001) provides a good overview of WW-estimates and their application to
autoregressive time series modeling.

A widely cited example in the robust time series literature is a monthly time series (RESX),
which originated at Bell Canada. The data set can be found in Rousseeuw and Leroy (1987,
p.278–280). The series consists of the number of telephone installations in a given region and
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Figure 4: HBR-based residual analysis for the Hawkins data.
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Figure 5: Comparison of the WIL and HBR fits of the Hawkins data.

Table 1: Parameter estimates for the RESX data.
Estimate β̂1 SE(β̂1) β̂2 SE(β̂2)
WIL 0.5032 0.0298 -0.1512 0.0298
GR 0.3605 0.1008 0.4048 0.0956
HBR 0.4126 0.0691 0.2903 0.0755

has two obvious outliers. The outliers are essentially attributed to bargain months where
telephone installations were free. Historically, the stationary zero mean AR(2) has been used
to model the seasonally differenced series.

The WIL, GR, and HBR parameter estimates and standard errors for the AR(2) model are
given in Table 1. Again, we used the function wwest to obtain these results. However, we
have chosen to suppress the output in the interest of space. Note that there appears to be
some discrepancy between the three estimates. In particular, the sign of β̂2 is negative for the
WIL estimate and positive for the GR and HBR estimates. This difference between the WIL
estimate and the other WW-estimates can provide valuable insight into the type of outliers
present.

For example, let {Yt} denote the observed time series where Yt = Xt+at, {Xt} is an underlying
AR(p) time series, and {at} is an iid sequence of random variables that possess a mixture
distribution, say (1−q)δ0+qH. Here, q represents the proportion of outliers, δ0 is a degenerate
distribution at zero, and H is some contaminating distribution function. Now, when q = 0
this model corresponds to the Type II or Innovation Outlier (IO) model of Fox (1972). For
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> #The data...
> quail[,1]
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
[30] 3 4 4 4 4 4 4 4 4 4

> quail[,2]
[1] 52 67 54 69 116 79 68 47 120 73 36 34 47 125
[15] 30 31 30 59 33 98 52 55 66 50 58 176 91 66
[29] 61 63 62 71 41 118 48 82 65 72 49

> #Test for equal cell locations...
> z=cellmntest(y=quail[,2],levels=quail[,1])

RD DF MRD TS PVAL
H0 108.611 3 36.2037 3.7896 0.0187
Error 35 9.5535

> #Cell location estimates...
> z$full$coef
[1] 67 42 63 62

> #Pairwise comparisons...
> t(pwcomp(quail[,2],quail[,1]))

G1-G2 G1-G3 G1-G4 G2-G3 G2-G4 G3-G4
PVAL 0.0031 0.5984 0.5433 0.0131 0.0173 0.8472

Figure 6: WIL-based one-way analysis of variance output for the quail data.

the IO model, outliers are introduced through the error distribution corresponding to {Xt}
and consequently produce good leverage points in the sense that the fit yields a small residual
at these points. In Type I or Additive Outlier (AO) model (e.g. q > 0) of Fox (1972) outliers
do not become part of the underlying model and, as a consequence, result in bad leverage
points. Of course, any given time series may contain both IOs and AOs either in isolation
and/or patches.

Now, as demonstrated by Terpstra et al. (2001), the WIL estimate is highly efficient under
an IO model. However, when AOs are present the WIL estimate is not robust and can differ
from other WW-estimates; in particular, the GR and HBR estimates. Thus, for time series
analysis, it is important to both identify and distinguish between the different types of outliers.
Indeed, the TDBETASR and CFITSR,i diagnostics discussed in Section 3.4 are suitable for
these types of comparisons.

Figure 7 presents these diagnostics for the following three comparisons: WIL vs. GR, WIL vs.
HBR, and GR vs. HBR. The figure was created with the fitdiag and plotfitdiag functions.
Based on the benchmark value of 0.48, all three fits appear to be different. However, note that
the two TDBETASR diagnostics which feature the WIL fit are much larger than the GR vs.
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Figure 7: Comparison of WIL, GR, and HBR fits of the RESX series.
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HBR TDBETASR. That is, the GR and HBR fits are much more similar. This indicates the
presence of additive outliers. For example, recall that the WIL estimate does not downweight
any observations, the GR estimate downweights all leverage points, and the HBR estimate
attempts to downweight only bad leverage points. Since additive outliers typically produce
bad leverage points, the GR and HBR estimates will tend to be similar, but different from the
WIL estimate. On the other hand, if all fits appear to be similar then any potential outliers
will tend to be of the innovation variety. Lastly, we note that the CFITSR,i diagnostics
clearly indicate the two previously mentioned outliers.

6. Simulation applications

In this section, we present two statistical applications of our software. We would like to point
out that, using our R functions, the effort to code these applications was quite minimal. The
functions pertaining to these applications (bootsim.s, polysim1.s) are also available on our
web site. The address is given in Section 4.1.

6.1. The bootstrap

For our first application, we consider bootstrapping the p-value of the test statistic (i.e. FR)
defined after (13). We have chosen to use the bootstrap where the model is rebuilt based on
a sample of full model residuals; see Efron and Tibshirani (1993) for a discussion. A brief
description of the general algorithm is as follows.

Algorithm 6.1 (Bootstrap algorithm for p-value) Consider the linear model in (1) and
the hypotheses in (11). Let NB denote the number of bootstrap samples.

(1) Fit model (1). Then obtain the full model residuals, say {ε̂i}, and the value of the test
statistic, FR.

(2) Set j = 1.

(3) Obtain a bootstrap sample of size n, say {ε̂∗i }, by sampling with replacement from {ε̂i}.
Now let Y ∗i = ε̂∗i .

(4) Fit model (1) using {(Y ∗i ,X
ᵀ
i )} and obtain F ∗R,j, the test statistic for the hypotheses in

(11).

(5) If j < NB, set j = j + 1 and return to step (3); else, stop.

The bootstrap p-value is then given by

p∗ =
1
NB

NB∑
j=1

I(F ∗R,j ≥ FR)

where I(·) denotes the indicator function.

Note that the regression equivariance property of the estimate and step (3) imply that the
fitting, and hence testing, is performed under the assumption that H0 is true. The R code for
this bootstrap consists of a wrapper function (bootsim.s) around droptest.
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Figure 8: Scatterplot of p-values based on FR and F ∗R for 1000 simulations with the identity
line superimposed.

We used the above algorithm on an example involving generated data from the model

Yi = β0 +
3∑

j=1

βjXji + εi

where the {εi} and {Xji}, j = 1, 2, 3, were iid N(0, 1) variates. We set all of the βj equal to
zero and used n = 30 for the sample size. The hypotheses considered were

H0 : β2 = β3 = 0 versus H1 : β2 6= 0 and/or β3 6= 0.

The actual data set (eg.dat) can be obtained from our web site given in Section 4.1. For
the data, the value of FR was 1.217 with a p-value of 0.312 (based on the approximate F -
distribution). Based on NB = 500 bootstraps, we calculated the bootstrap p-value to be
0.294.

Next, we simulated the process 1000 times, drawing new data each time. Figure 8 displays
the asymptotic p-values versus the bootstrap p-values for the test statistic FR. In addition,
Table 2 displays the empirical α levels for the nominal α values listed. We note that the α
levels for the asymptotic version of the test are quite close to the nominal values whereas
the α values for the bootstrap version of the test appear to be somewhat liberal. Generally
speaking, the plot on the left side of Figure 8 indicates the p-values for the two tests are
quite close. However, upon closer inspection (see right side of Figure 8) of the region which
contains smaller p-values, we see that the asymptotic p-values tend to be slightly larger
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than the bootstrap p-values. In summary though, this simulation suggests that both tests
performed reasonably well.

6.2. The order of a polynomial model

In this application, we investigate an algorithm for the determination of the order of a poly-
nomial model. Consider a polynomial model of the form

Yi = β0 +
p∑

j=1

βj(Xi −X)j + εi (19)

where ε1, ε2, . . . , εn are iid with pdf f . Graybill (1976) presents the following algorithm for
determining the order (i.e. p) of model (19).

Algorithm 6.2 (Graybill) Select a super order P so that the true order p is less than or
equal to P . Select a significance level α.

(0) Set p = P .

(1) While p > 0, fit model (19) with order p.

(2) Test the hypotheses H0 : βp = 0 versus H1 : βp 6= 0 at level α.

(3) If H0 is rejected, declare p to be the order and stop; else, set p = p− 1 and return to step
(1).

We conducted a pilot study of the powers of five tests for this algorithm: WIL (both the Wald
test and the drop in dispersion test), GR, HBR, and LS. Using the functions described in Sec-
tion 4.2, the coding for the simulation was straightforward. For example, the three weighted
Wilcoxon Wald tests involved calls to wwest and wald, while the drop in dispersion test was
performed with the droptest function. For LS, we used the lsfit and wald functions. The
R wrapper (polysim1.s) to do the simulations can be downloaded from our web site given
in Section 4.1.

For the pilot study, we only considered eight situations. Each situation used a sample size
of n = 30. Four of the situations used N(0, 1) simulated errors, while the remaining four
used contaminated normal simulated variates. For the contaminated variates, we set the
contamination at 20% and the ratio of standard deviations, contaminated to good, at 10. The
regression predictors were iidN(0, 1) variables. The first through fourth situations within each
distribution consisted of a polynomial of degree 1 through 4, respectively. We set βi = 0.4
for situation i of the normal errors and βj = 0 for j 6= i. The settings for the contaminated
normals were the same, except 0.7 was substituted for 0.4. Finally, we used P = 4 for all
situations.

Table 2: Empirical α levels for the test statistic FR and the corresponding bootstrap test.
Nominal α

0.010 0.050 0.100
FR 0.008 0.051 0.099
F ∗R 0.019 0.067 0.115
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We ran 1000 simulations for each situation. Our interest was in how well the algorithm worked
for each procedure. Table 3 reports the percentage of times that a particular procedure chose
the correct order of the polynomial. The LS test did the best for normal errors, followed
closely by the Wilcoxon drop in dispersion test, FR. For contaminated normal variates, the
LS test performed poorly versus the Wilcoxon drop in dispersion test, the Wilcoxon Wald
test, and the HBR test. Of the Wilcoxon procedures, the drop in dispersion test did the
best. The poor behavior of the GR test confirms the discussion in McKean, Sheather, and
Hettmansperger (1994) on the poor efficiency of high breakdown estimators in detecting the
curvature in polynomial models. However, note that the HBR estimator recovers much of the
efficiency that the GR estimator lost in the presence of curvature; although, in general, it did
poorer than the Wilcoxon procedures.

7. Discussion and conclusion

As discussed in this paper, weighted Wilcoxon analyses can range from highly efficient to
highly robust, depending on the weights employed. Nevertheless, this class of estimators has
yet to be implemented in any mainstream statistical software packages. This paper addresses
this issue with a suite of R functions. However, in principle, the algorithm used to obtain
these analyses can be adapted to any statistical software package that has L1 regression
capabilities. For example, in S-PLUS, L1 regression estimates are computed via the l1fit
function. Therefore, upon making the appropriate substitutions to wwfit, one can readily use
the functions in S-PLUS as well. In SAS, L1 regression estimates can be computed using the
IML procedure and the LAV subroutine. Furthermore, the weights defined in (4) and (5) can
be computed using calls to MAD, MCD, and LTS.

However, some vigilance is necessary when considering this approach. For example, as dis-
cussed in Section 2.1, the Wilcoxon estimate minimizes the L1 objective function applied to
the differences of the residuals. In contrast, the L1 regression estimate minimizes the sum of
the absolute values of the residuals. Thus, the Wilcoxon and L1 estimators are quite different.
As outlined in Section 3.8 of HM (1998), the L1 estimator is equivalent to an R-estimator
using sign scores. Hence, the efficiency properties of the L1 estimator are the same as those
associated with the median and sign test in location problems. In particular, the L1 estimator
for linear models has an asymptotic relative efficiency (ARE) of 0.637 relative to the least
squares estimator when the errors have a normal distribution, while the Wilcoxon regression
estimator has an ARE of 0.955. Of course, for very heavy tailed data, the L1 estimator is
generally more efficient.

Table 3: Correct order identification percentages.
Errors Normal Contaminated Normal

Situation 1 2 3 4 1 2 3 4
WIL Drop 40.6 59.4 65.0 65.6 45.5 56.3 65.3 68.7
WIL Wald 38.3 56.3 61.1 61.4 39.9 55.4 62.3 65.5
GR 40.4 12.1 1.3 0.0 45.8 14.2 1.2 0.1
HBR 31.3 51.4 45.3 35.3 41.8 59.0 56.4 37.4
LS 43.4 61.0 65.7 66.9 10.8 16.5 28.3 34.6
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Furthermore, suppose a user naively uses the inference results produced by an L1 computing
package for the corresponding WW-inferences. While such inference is appropriate for the
L1 estimator, it is not in general appropriate for the WW-estimator. For example, recall
that DWR(β) is invariant to location and therefore, β0 can not be directly estimated via
the minimization. Hence, any displayed inference results for an intercept parameter would
not be valid. This can be further illustrated by considering the standard errors for a simple
linear regression model, say Yi = β0 + β1Xi + εi, i = 1, 2, . . . , n. For instance, the asymptotic
standard error for the Wilcoxon estimate of β1 is given by

SE(β̂1) =
τ√∑n

i=1(Xi −X)2
(20)

where τ = (
√

12E [f(ε1)])−1. However, in using an L1 package for the computation of the
denominator of (20), the Xis would be replaced by the pairwise differences of the Xis. Thus,
an adjustment would need to be made. In general, the estimate of τ would also be different.
For example, the L1 estimate is essentially an estimator of the reciprocal of the mode of
the error distribution. However, weighted differences of the residuals are used for the WW-
estimate. Hence, the user would have to show that the estimate produced by the package is
consistent for τ ; which is unlikely for non-constant weighting schemes. Instead, we simply
recommend that the user obtain the inference appropriate for the WW-estimator; that is, the
inference produced by our R code.
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