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Abstract. The calibration of stochastic point process rainfall The use of stochastic rainfall models dates back several
models, such as of the Bartlett-Lewis type, suffers from thedecades\WWaymire and Guptal981), and has since received
presence of multiple local minima which local search algo-much attention in literature. Both single-site and spatial-
rithms usually fail to avoid. To meet this shortcoming, four temporal models have been researched extensively. How-
relatively new global optimization methods are presentedever, the scope of this article is limited to the use of single-
and tested for their ability to calibrate the Modified Bartlett- site models. For more information about spatial-temporal
Lewis Model. The list of tested methods consists of: the models, one is referred Wheater et al(2005.

Downhill Simplex l\/_let_hod_, Simplex-Simulated Annealing, An important branch of rainfall models is based on the
Particle Swarm Optimization and Shuffled Complex Evolu-

. h fth laorith f T eneration of rectangular pulses. Within these rectangu-
tion. The parameters of these algorithms are first optlmlzefar pulses models, one may discern the Bartlett-Lewis (BL)

to ensure optimal performance, after which they are use Rodriguez-Iturbe et 31.19873 and Neyman-Scott (NS)
for calibration of the Modified Bartlett-Lewis model. Fur- ..\~ -4 Delleyr1981) type rainfall models. The dis-
the_rm(_)re, this paper addresses the cho_ice_ of weights in th nction between the NS and BL models can be made in the
objective function. T_hree alternative wgghmg methods arehird order moment and proportion dry but not in the second
compared to determine whether or not simulation results (oby) .y, properties. Hence, both are virtually interchangeable,

taingd after calibration W.ith the b(_ast optimization method) with the possible exception that the NS models may generate

are influenced by the choice of weights. marginally more extreme values. Since empirical analysis

revealed that for data observed at Uccle (near Brussels, Bel-

gium), the BL model is preferabl&¢rhoest et a).1997), and

1 Introduction since this paper makes use of the same data (albeit a more ex-
_ ) ) ) ) ) tended dataset), the NS models will not be discussed further.

Rainfall is an important input for many models in various Nonetheless, obtained results may also be applicable to the

branches of applied sciences. Generally, observed time seqs models, due to their strong similarity with the BL models.
ries of rainfall can be used. However, certain applications

(such as design studies) require very long time series which Since the formulation of the original BL model by
are not available from observation&kieater et aj200§. To ~ Rodriguez-lturbe et al(19873, this model has been sub-
circumvent this problem, one can make use of rainfall mod-Jected to a number of modifications and extensions. Intro-

els Boughton and Droop2003. When using such models ducing ajitter, for example, results in more realistically irreg-
it is of paramount importance to ensure the modelled rain-ular céll intensities@nof and Wheaterl994a Gyasi-Agye

fall adequately reflects meteorological conditions in the areg®"d Willgoose 1999. Allowing for different cell types to
of interest. exist, introduces certain variations between storms, which is

in accordance with the existence of different types of rainfall
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(such as frontal and convective rainfall). To achieve the latterwet-dry properties, commonly expressed by the zero depth
the mean cell duration can be randomizBaddriguez-lturbe  probability (ZDP), an important feature of the rainfall time
etal, 1988, multiple cell types can be define@¢wpertwait series, were not adequately reproduced. These findings led
1994, or one can make use of multiple superposed processet® an adjustment of the model. In the Modified BL (MBL)
(Cowpertwait 2004 Cowpertwait et a.2007). Finally, to model, the average cell duration is allowed to vary between
improve extreme value behaviour, the probability distribu- storms. This is achieved by letting the parameter of the expo-
tion of cell intensities can be adjusted to a distribution with anentially distributed cell duration follow a Gamma distri-
heavier tail Onof and Wheater19941. bution with shape and rate parameterandv, respectively
To fit the model to a series of observations, the generalizedRodriguez-lturbe et 11988. This results in ] =«/v
method of moments is used. In this method, the model is fit-and Vafy] = «/v2. For the expected duration of a cell to
ted to observed sample properties of rainfall intensity at dif-be finite, it is assumed that> 1. FurthermoreRodriguez-
ferent aggregation levels. For this purpose, analytical expreskturbe et al.(19873 introduced dimensionless parameters
sions of the expected value of the modelled properties were = /1 and¢ =y /n, which are used in the calibration. This
derived as a function of the model parametéedriguez-  way, it can be seen that by keepirgand ¢ constant, and
Iturbe et al, 19873. varyingn, storms which exhibit similar structures but consist
The calibration of the BL models has proven to be a cum-of different types of cells (i.e. with different average dura-
bersome task because of the presence of multiple local mintion and variance) are generated. In total, the MBL model
ima (Verhoest et a).1997. Traditional local search tech- contains 6 parameters that are to be calibrated.
nigues sometimes fail to avoid these local minima, resulting Analyses of the MBL model show that the model is an
in a suboptimal solution to the optimization problem. improvement in comparison with the original BL model
Furthermore, the calibration result is influenced by the (Rodriguez-Iturbe et 411988 Entekhabi et a).1989. Bet-
choice of weights in the objective function. Different ap- ter reproduction of the ZDP, the autocorrelation structure of
proaches exist, but it is not clear which of them leads to bettethe rainfall, and the manifestation of extreme rainfall events
simulation results. is observed \elghe et al. 1994. Nonetheless, the model
To address these issues, this paper proposes to use relgenerates excessive values for the autocorrelation with a lag
tively new optimization methods as they are expected to bdarger than 12 h@nof and Wheater1993 and the fit of the
more robust than more traditional local search methods. Furextremes is still not completely satisfactory.
thermore, three different approaches to the weighing of the To improve extreme value behaviour of the model, third
objective function are compared in order to shed some lightorder statistics could be included in the objective function.
on their advantages and disadvantages in terms of model peirhis approach has already proven to lead to good results for
formance and practicality. For these purposes, data recordeithie Neyman-Scott model€owpertwaif 1998 Burton et al,
at the Uccle-site of the Royal Meteorological Institute (RMI) 2008. Expansion of this concept to the Bartlett-Lewis mod-
in Brussels (Belgium), are used. The data set consists oéls can thus be expected to yield similar satisfying results.
105 yr of recorded rainfall at an aggregation level of 10 min For the Bartlett-Lewis model at hand, analytical expressions
(De Jongh et al20086. for the third order statistics have not yet been published.
However, research on this topic is ongoing and the imple-
mentation of third order statistics into the Bartlett-Lewis
2 The modified Bartlett-Lewis model modelling framework will be addressed in the near future.

Aside from the potential adjustments to the original BL mod-

elling structure, mentioned in Sed, the basic principles 3 Calibration procedure

of the model have remained intact: storm arrivals occur in a

Poisson process with parameigrand each storm arrival is  The calibration of Bartlett-Lewis models, and stochastic rain-

followed by a number of cell origins, which also occur in a fall models in general, is usually based on the generalized

Poisson process, characterized by paramgt@ihe duration  method of moments (GMM). The GMM seeks to minimize

of the interval in which cell origins are generated is expo- the difference between observed sample properties of rainfall

nentially distributed with parameter. Each cell origin is  intensity and those generated by rainfall models. Alternative

coupled with a rainfall cell, having a random depth and dura-methods, such as likelihood approximati@@aferon et a.

tion, both drawn from exponential distributions characterized2001) or Bayesian inferenceHartig et al, 2011), could be

by parameters /lu, andn respectively. The superposition considered for calibration, but these methods tend to be com-

of the rainfall cells eventually leads to a continuous rainfall putationally very expensiveObeysekera et al1987). It is

time series. not clear whether or not this would have any merit in prac-
Extensive analysis of the model Rodriguez-lturbe et al.  tical applications Rodriguez-lturbe et 311988, as from a

(19873ab) revealed that the original BL model was well capa- practical point of view the models are usually treated as be-

ble of reproducing general rainfall statistics. Conversely, theing fully identifiable, i.e. only one parameter set is used for
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S|mu!at|qn. Moreover, itis not posglble to .obt.am a Ilkel|hoo-d Table 1. Pre-defined boundaries for the parameters of the MBL

function in a closed form, so maximum likelihood approxi- odel during calibration, applicable to all months.

mation is not available as a parameter estimation method.
The use of the GMM for the calibration of stochastic rain-

. . . Parameter A K o v
fall models is widespread. An array of empirical studies have o
been performed in which Bartlett-Lewis models were fitted Lowerboundary 0 0 O O 1 O
to rainfall time series in Great BritairOfpiof and Wheater Upper boundary 0.1 20 1 15 20 20

1993 19944 Cameron et al.2000, Ireland Khalig and

Cunnane 1996, Belgium (/erhoest et a).1997 Vanden-

berghe et a).2011), the United StatesRodriguez-lturbe  for simplicity, in most case®V is chosen to be a diagonal
et al, 19871 Velghe et al. 1994, New Zealand Cowpert-  matrix. In that case the objective function is reduced to:
wait et al, 2007, Australia Gyasi-Agyei and Willgoose

4 X k

1999 Heneker et a).2001), South Africa Smithers et a. _ M — M e\

2002, etc. fex) —;w (M} — M; (x)) @
In general, the objective functiorf, which is to be

minimized, can be written as: Frequentlyw; is set equal tozi/lez, wheregq; is a user de-

F) = (M —M@x) WM — M(x)) (1) fined value Entekhabi et a).1989 Cowpertwait 1991, Vel-

ghe et al. 1994 Verhoest et a).1997 Smithers et a).2002
wherex is the parameter vecta¥/’ is the vector of observed ~ Cowpertwait 2004). Division of the squared model error by
values for a set ot properties,M (x) is the vector of their  the sample estimate ensures that large values do not dominate
expected values under the model (calculated through analythe minimization procedureCowpertwait et a.2007). The

ical expressions), and/ is ak x k positive definite matrix  variablea is usually chosen arbitrarily, to ensure a good re-
of weights. The objective function valuéfor a given set of  production of certain fitting propertie€owpertwait(1991),
parameters is also referred to as the fitness of the proposedfor example, chooses = 100 for the mean and = 1 for
parameter vector, as it reflects the quality of this potentialthe other fitting properties.Velghe et al.(1994 and Ver-
solution to the optimization problem. hoest et al(1997, on the other hand, chooge=1 for all

The chosen fitting properties in the current work include fitting properties. In this paper we will follow the approach
the mean (Avg), variance (Var), lag-1 autocovariance (Cov),of Velghe et al(1994 andVerhoest et al(1997 and call this
and the proportion of dry intervals or zero depth probabil- objective function OF1.
ity (ZDP). Each of these are evaluated at aggregation levels An alternative configuration of the objective function is
of 10min, 1h, 6h and 24 h. This is similar to the fitting suggested b owpertwait et al(2007):
properties chosen b§owpertwait et al(2007).

As discussed in Sect, the parameters of the MBL model k1M (x) 2 M; 2
all follow a different probability distribution function. The fx) ZZ < M! _1> + <Mi (x) _1)
support for each of these parameters is the intd¢faftoo], '
except fora, for which a lower boundary of 1 is assumed The use of an additional term which contains the reciprocal
(seeRodriguez-lturbe et a1.1988. The used algorithms value of the division present in EqR)(helps to ensure that
should obey these boundaries, otherwise, numerical instabilro bias is present in the optimal solution, in case an exact fit
ities might emerge when calculating the analytical expres-s not obtained. This objective function will be referred to
sions using negative values, which would trouble the calibra-as OF2.
tion or lead to erroneous results. Another implication that Finally, a simplification of the theory dflansen(1982
arises is the impracticality of working withoco as an upper can be used to weigh the objective function. Here,
boundary, as this might impede the convergence of the opw; = 1/Var[M]] is used. This makes sense because “in
timization method. Therefore, the theoretical upper bound-least squares problems with unequal variances, observations
aries are tightened so that the parameters can still take a widghould be weighed according to the inverse of their vari-
range of feasible values, and in addition, contain the previ-ances” Chandler 2004. The empirical variance of the ob-
ously calibrated values of the MBL modeldrhoest et aJ.  served sample properties is obtained by calculating these
1997. Tablel shows the set of boundaries which is assumedproperties for each year separately, which results in a series
to constitute the feasible parameter space of the model.  of 105 repetitions of that particular property. The variance of

The choice oW is rather subjective. Many different ap- these repetitions is calculated and used in the objective func-
proaches have been explored in literature. The theory ofion. This approach will further be referred to as OF3. A
Hansen(1982 suggests that the inverse of the covariancemore clarifying overview of the used objective functions is
matrix of the observed properties should be usetlVasin given in Table2.
terms of parameter identifiability, this would be the theoret- Finally, it should be mentioned that the MBL model is fit-
ically optimal starting pointkaczmarska2011). However, ted on a monthly basis, i.e. 12 different parameter sets have

®)

i=1
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Table 2. Expressions of used objective functions for the calibration
of the Modified Bartlett-Lewis model.

Name Expression
k(M] - M; (x))?
OF1: f(x):Z(lMil;(x))
i=1 i
e N\ M\
OF2: ﬂx)z;[( W -1) + Mi(x)—l
k(M) - M;(x))
ora: =3 )
1= 1
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ing advantages and disadvantages of the presented methods

is aspired.
4.1 Downhill simplex method

The Downhill Simplex Method (DSM) is based on an idea by
Spendley et al1962 for tracking ideal operating conditions

by evaluating the output of a system at a set of points, form-
ing a simplex, in the parameter space, and the continuous
formation of new simplices by reflecting a point in the hyper-
space of the other pointblelder and Mead1965 acknowl-
edged this concept’s merit in the optimization of mathemat-
ical formulas. The simplex moves autonomously through
the parameter space by a sequence of intermittent reflections,
contractions and expansions.

to be calibrated, i.e. one for each month. This approach Suppose an objective function contaibsvariables and

is upheld to cancel out any seasonal effects present in th

f& subjected to a minimization procedure without posing any

rainfall time series. This is necessary to ensure temporajestrictions on the values of the variables. Then, suppose

homogeneity@beysekera et all987 Verhoest et a).1997).
The objective of this paper is to determine whether the

xo, X1, ...,Xxp are (D+1) points in theD-dimensional space
which form the current simplex. The objective function value

choice of the objective function has a significant impact onof each pointy; is written asy;.

choice of the objective function can be assessed by considne subscript (y,
ering properties that were not used during the fitting, but are

of hydrological importance. If no significant impact can be

=miny;), the point with the highest objec-

tive function value receives subscrip{(y, = maxy;). Point
1

observed, a distinction can be made based on the efficiency is defined as the centroid of those points for whigh /.

of the calibration.

4 Optimization methods

The calibration of the Bartlett-Lewis models has been re-
ported as being a cumbersome taSkrpoest et al.1997),

as the optimization is troubled by the presence of multiple
local minima, in which local optimization techniques tend to
get trapped. In the past, such techniques have been used
the majority of the cases. For examplelghe et al(1994);
Verhoest et al(1997); Onof and Wheatgi1993 use Powell’s
method Press et al.1986 for calibration. This gradient-

based method is prone to get stuck in local optima. Fur-

thermore, the user has to supply the algorithm with an initial

The distance betweer; andx; is expressed by @&, x ;).
During each step of the process, is replaced by a new point
by a reflection, contraction or expansion of the simplex. The
reflection ofx;, can be written as}, whose coordinates can
be found by the following relationship :

(4)

with « a positive constant, known as tredlection coefficient
iR other wordsx* lies on a straight line, connecting, and
X, opposite tax, with d(x*,x) = a«d(x;,x). xj is replaced
by x} and the process starts over with the new simplex if
Vi >y >y

If, on the other hand, the reflection has created a new min-
imum (y* < y;), the simplex is expanded fromr™ towards

x*=A4+a)x —ax,

guess of the solution, which may lead to a bias in the resultss™* according to :

(Khalig and Cunnanel996. More recently, most authors
opt to calibrate using the Simplex method Nlder and

k%

=yx*+(1-y)x ®)

Mead (1969 with multiple starting points. Occasionally the The expansion coefficient, which is larger than 1, equals
outcome is further minimized using a gradient-based methoqj(x**’i) divided by dg*, ). If y** < y;, thenx,, is replaced

(Wheater et a) 2006 Cowpertwait et a.2007 Kaczmarska
2011).

by x** and the process starts over. If, on the other hand,
y** > y;, then the expansion is considered to have failed and

In recent years, an array of global optimization methods,., s replaced byc* before re-initiating the process.
has been developed. In this work, we test four of those algo- | ihe reflection ofx to x* results in a situation where

rithms with respect to the calibration of the BL models. The

y* > y; for all i #h, i.e. replacingy by x* results in the

following sections discuss the theoretical background of thegeation of a new maximum*, thenx;, becomes eithet,,

used optimization methods which, ultimately, stem from fun-

or x*, whichever has the smallest function value, aritlis

damentally different conceptual backgrounds. The current.giculated as follows :

paper does not aim at discriminating against or rallying for a

certain method, merely an objective comparison, highlight-

Hydrol. Earth Syst. Sci., 16, 873891, 2012

x™ = pxp+(1-p)x. (6)
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The contraction coefficieng € [0,1] is the ratio of d¢**, x) SIMPSA (Press and Teukolsky}991, Cardoso et al.1996.

to d(x,x). x** replacesx; and the algorithm proceeds to From the point of view of the DSM, the incorporation of
the next iteration, unless™ > min(yy, y*). In the latter case  the Simulated annealing framework enforces the DSM in its
the contraction resulted in a point that has a higher functionglobal search. By allowing occasional missteps, the algo-
value than bottx; andx*. In case of such a failed contrac- rithm can be steered away from local minima, increasing the
tion all x;’s are replaced byx; +x;)/2 before continuing to  robustness of the outcome.

the next iteration. The propagation of the simplex continues The probability of a misstep is controlled by the temper-
until a suitable result (expressed by the stopping criteria) isature T of the system. A new configuration correspond-
obtained. ing to a lower energy level (i.eAE < 0) or lower func-

As can be deduced from the description above, the DSMion value, is unconditionally accepted. When, on the other
is a local, rather than a global search method. The outcoméand, a solution is found which cannot be accepted as an im-
of the optimization strongly depends on the initial position, provement (i.e AE > 0), there still is a chanc®(AE) =
provided by the user. To enable a more global search, and texp(—AE/k,T) that it will nevertheless be accepted. Thus,
avoid a biased outcome resulting from a user provided initialthe probability of making a move in the “wrong” direction is
position, multiple starting points are chosen randomly within very high at the beginning of the cooling process, i.e. a global
the boundaries of the search space. In this specific case 3earch of the parameter space in conducted. As the temper-
initial positions are generated. The DSM is applied to eachature decreases, the chances of making a wrong move de-
of these initial positions, after which the single best result iscrease accordingly, approaching zero and thus the algorithm
selected as the outcome of the DSM with multiple startingultimately converges towards the original DSM.
points. This method is used throughout the article, any fur- It is clear that, in order to fully exploit the potential of
ther mentioning of the DSM thus refers to the methodology SIMPSA, the initial temperature has to be chosen carefully,

using 30 initial positions. satisfying the condition that almost all wrong steps should
be accepted at the start of the iteration process. Then, as the
4.2 Simplex-simulated annealing optimization progresses, the chances of making erroneous

moves should decrease, which means the temperature will
Simplex-Simulated Annealing (SIMPSA) is a hybridization steadily decrease according to a predefined cooling schedule.
between the DSM byNelder and Mead1969 and Simu-  The cooling schedule proposed Awrts and Van Laarhoven
lated AnnealingKirkpatrick et al, 1983 Kirkpatrick, 1984). (1989 is used :
The latter method, which is based on the metallurgic pro- ,
cess of Annealing, enforces the DSM through its abil- Tt T/

. . . = 7
ity to escape local minima and thus avoid premature con- 14 I/In@+s) ()
vergence. The annealing process was first simulated by 3

Metropolis et al.(1953, and was later picked up b¥irk- with § ando trajectory parameters, andthe current iter-

patrick et al (1983, to be used as an optimization algorithm. ation. § is the cooling rate, which controls the speed of
In the original Metropolis algorithm, an equilibrium com- the cooling. Small values<1) will result in slow conver-
position of molecules, which yields minimum energy at a gence while larger values-(l) result in convergence to in-
given temperature, is sought after through successive rarferior local minima. Finallyo is the standard deviation of
dom displacements. Because a thermic balance is charathe objective function value of all configurations at a certain
terized by a Boltzmann distribution of energy levels, tran- temperaturg’/ at iteration step.
sitions towards a lower, as well as towards a higher en- In order to initiate the optimization scheme an initial guess
ergy level are possible. This feature is thought to be theof the parameter vector has to be supplied by the user. This
main reason why a minimum energy level can be reachednitial guess is used by SIMPSA to construct the additional
(Aarts and Van Laarhovei987). D points of the simplex needed in A-dimensional prob-
This concept can easily be translated towards an optimizalem. Therefore, the initial guess is perturbed in one ofits
tion algorithm. By replacing the energy level of the system dimensions to create the initial simplex. Once the initial sim-
with the value of an objective function, the search for a min- plex is formed, the iteration process can commence and new
imum energy level is converted to a search for the minimumsimplex configurations are formed like in the original DSM.
of the objective function. As stated before, this leads to an The way in which SIMPSA incorporates the Simulated
optimization scheme which is fairly consistent and, above all,Annealing methodology of making the occasional faulty
less prone to get stuck in local minima, in comparison with move is as follows: when propagating the simplex follow-
gradient-based methods. An issue, however, is that Simuing the aforementioned rules (Seét.l), a positive, log-
lated Annealing relies on a random walk through the param-distributed variable, proportional to the control temperature
eter space. This shortcoming can be mitigated by the usé&, is added to the function value of each of the points of the
of the DSM to guide the search of the optimum, which al- simplex. In a similar fashion, the function value of the newly
lows for a more structured search. This is what constitutedound point is diminished by a randomly chosen value. In
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this manner, a new point (e.g. created by a reflection) witha whole during all preceding iterations and the current, and is
a higher objective function value than the other points of therepresented by the best found positjapby the swarm. Ac-
simplex (which would be rejected by the DSM'’s rules), still cordingly, the cognitive component consists of information
has a chance (proportional T of being accepted. about the objective function, obtained by a certain particle

It is expressed by the best previously visited positigrof
particlei in the search space. Both components are combined

4.3 Particle swarm optimization :
to update the velocity:

The accomplishment of complex objectives through the usey; (r +1) = w-v; () +-c1-r1(t) - [pi (t) — x; (1)]

of simple .|nd|V|duaI interactions has been an important tea-ra(t) - [pg(t) — xi (D], )
source of influence for a certain type of artificial intelli-
gence, collectively terme8warm IntelligenceOne of those  with v; (¢) the velocity of particle at iteration step; x; (¢)
techniques is Particle Swarm Optimization (PSO), initially the position of the-th particle at iteration steg ¢1 andc;
introduced to simulate social behaviour and later adaptegositive acceleration constants, used to scale the influence
to be used as an optimization methdte(nedy and Eber-  of the cognitive and social components. The variablgs)

hart 1999. PSO is based on the behaviour of herd ani-andr,(r) are uniformly distributed between 0 and 1, and in-
mals, characterized by the absence of a leader in the hergroduce a stochastic component in the optimization. Finally,
Notwithstanding the absence of such a leader, the herd ig is the inertia weight. These parameters all have an im-
able to act as a collective, mainly due to local interactionsportant influence on the performance of the PSO algorithm,

between the individuals. This allows them to attain certaing more detailed discussion of their significance and a method
goals, such as the gathering of food and the evasion of predgor their selection are reported in Sest2

tors. The simulation of this behaviour and the replacement
of the aspired goal by some sort of objective function, makes4.4 Shuffled complex evolution
this method particularly useful for solving an optimization
problem Engelbrecht2006. The Shuffled Complex Evolution algorithm (SCE-UA), orig-
The PSO algorithm consists of a swarm ®fparticles,  inally developed for the calibration of a watershed model
each particle representing a possible solution to the problenfDuan et al. 1994, is based on a synthesis of four con-
at hand. The particles travel the multi-dimensional searchcepts: (1) a combination of deterministic and probabilis-
space, in search of the global optimum. The search is ledic approaches; (2) systematic evolution of a “complex” of
by a combination of information gathered by the patrticle it- points spanning the parameter space, in the direction of
self, and by the community as a whole. IDadimensional  global improvement; (3) competitive evolution; (4) complex
search space, the position and velocity of a certain particleshuffling. The combination of these concepts, most of which
i, withi=1,...,N, can be represented byladimensional  have already proven their merit in global optimization prob-
vectorx; = (x;1,X;2,...,X;p) andv; = (v;1,v;2,...,0;p), re- lems, makes the SCE-UA method robust, effective, flexi-
spectively. The positior; of a particle can be adjusted by ble and efficientQuan et al. 1994. The SCE-UA method
adding its speed vectay; to the current position. This can (following the description byDuan et al. 1994 can be
be expressed by the following equation: summarized by the following steps:

xi(t+1) =x;(t)+vi(t+1) (8) 1. atthe start of the optimization procedure a random sam-
ple of s points is generated in the feasible parameter
space (defined by the user). Since no prior information
about the approximate location of the global optimum is
available, a uniform distribution is used to generate this
initial sample. In each of thepoints, one can calculate
the corresponding objective function value.

for which # and ¢ + 1 express the current and subsequent
iteration step.

The velocity drives the optimization. It determines the
speed and direction in which the particles move, thus orches-
trating the collective search of, and convergence towards,
the global optimum. For this purpose, the aforementioned

vector is equipped with two components, each containing 2. Once the objective function values of the generated

Specific information about the objective. (1) Tbegnitive samples are known, they can be ranked according to
componenteflects the personal experience of a given parti-  their objective function values, the first having the low-
cle, while (2) thesocial componenbears information gath- est function value and the last having the highest func-
ered by the particle’s neighbourhood. Many different ap-  tion value (or the other way around for a maximization

proaches exist for defining the size and shape of this neigh-  problem).

bourhood, more detailed information can be foun&igel-

brecht(2006. For the sake of simplicity, a global neighbour- 3. Thes points are then partitioned infpcomplexes, each
hood is selected for the current application. The social com- containingm points. The complexes are partitioned
ponent thus consists of information gathered by the swarmas  in such a manner that compléxwherei =1,2,..., p,
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contains everyp(k — 1) +i ranked point, withk = 5 Implementation of the optimization methods

1,2,...,m.

For each of the optimization algorithms described, several

parameters have to be selected in order to fully exploit their

potential. The selection of those parameters will have an

influence on the effectiveness of the algorithms, so a care-

5. After the complexes have evolved they are shuffled.ful consideration of the available options will contribute to
This is accomplished by combining them into a single the objectiveness of the overall comparison. Therefore, the
sample population: sorting the population in order of conducted selection procedure for the parameters of the op-
increasing objective function value and ultimately shuf- timization algorithms is described below. Furthermore, the
fling the sample population inte complexes following ~ implementation entails the specification of measures to be
the procedure outlined in step 3. taken against infeasible parameter combinations, i.e. points

which lie outside the delineated boundaries. These measures

6. Before continuing the iterative process convergence crijl| also be described in the following sections.
teria are checked. If none of them are met the pro- A aigorithms that are based on a simplex design are
cess continues, otherwise the process is aborted and thgopped by the same stopping criteria. The iterative process
optimum is assumed to have been found. is called to a halt when the differences in objective func-

7. In afinal step the reduction of the number of complexestion values between the points of the simplex are smaller
is checked. If the minimum number of complexes re- tha_m acgrtaln threshold, or when the positions of the S|mple_x
quired in the populationpmn, is less tharp, then the  Points differ less than a given threshold. For PSO, other cri-
complex with the lowest ranked points is removeds teria need to be specified because of the different conceptual

replaced byp — 1 ands = pm, after which the process approach. This is further elaborated in Sécg.
restarts at step 4. If, howeves,,in = p, the algorithm
returns to step 4.

4. The constructed complexes are allowed to evolve ac
cording to the competitive complex evolution (CCE) al-
gorithm (which will be discussed further below).

5.1 Simplex-simulated annealing

The effectiveness of the SCE-UA method can be attributedThe performance of SIMPSA can be enhanced for a specific
to several factors. First of all the use of a population avoidsproblem by fine-tuning some of the parameters of the algo-
biases resulting from the use of a single user-defined initiakithm. Most of the parameters have been set to their recom-
point. On the other hand, the partitioning into different com- mended valueGardoso et a).1996, except for the cooling
plexes allows for an extensive exploitation of the parameterates (see Eq7) and the final temperature. To avoid the al-
space, while the shuffling of the complexes is a way of shar-gorithm getting stuck in local optima, it is opted to choose
ing knowledge on a larger scale, representing the explorativghe cooling rates < 1, which will lead to slower but steady
character of the algorithm. convergence instead of fast convergence towards (possibly)
A key component of the SCE-UA method is the CCE al- inferior optima. Therefore, different cooling rates are tested,
gorithm. The CCE algorithm controls the evolution of the § is varied between 0.2 and 0.9 with an increment of 0.1.
points within a certain complex. Within each complex, asub- The second parameter that can be adjusted is the final tem-
complex is formed. A fixed number of points is drawn from perature. The final temperature is the temperature at which
a trapezoidal probability distribution (constructed so that theSIMPSA is reduced to the original DSM. Put differently, if
point with the best function value has the best odds of beinghe final temperature is reached, the temperature is set to zero
selected) and are assigned to the subcomplex. The menand the chances of making movements in the wrong direction
bers of the subcomplex can be regarded as parents whichecome equal to zero. Obviously, the higher the final temper-
are about to generate offspring. The idea of competitive-ature, the faster the algorithm will come to a halt. Care must
ness, introduced in the formation of the subcomplexes (nobe taken however, a final temperature that is too high will
all points of the complex are allowed to procreate), expediteshullify the expected advantages of using SIMPSA instead of
the search towards promising regions. Offspring is generateghe DSM. Different values for the final temperature are tested
via the use of the DSM byNelder and Meaq1969. The  to investigate its influence on the overall calibration result.
simplex is formed by the points of the subcomplex, and isThe final temperature is tested{at 0.1, 0.01, 0.001, 0.0001,
allowed to progress for a fixed number of inner loop itera- 0.00003.
tions (21), resulting in the offspring. The generation of off-  Figure 1 shows the dependence of the objective function
spring is repeated a number of times before the complexegalue on the cooling rate and the final temperature. For
are shuffled and the process starts over. As the optimizatiogach month, calibrations were performed using these differ-
progresses, the entire population is expected to converge t@nt combinations for cooling rate and final temperature. Fig-
wards the neighbourhood of the global optimum, providedyre 1 displays the average result obtained over the different
that the initial population size and the number of C0mp|eX€‘Sm0nthS, SO as to provide an image on how well the combi-
is sufficiently large. nation of cooling rate and final temperature performs for the
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. 5.2 Particle swarm optimization

. . . . . . 1% As outlined in Sect4.3, the performance of PSO is influ-

enced by several parameters. To ensure efficient convergence
. . . . . L Jo2 to the global optimum, care must be taken in the selection of
these parameters. For example, the population Bizaeust
. . . . . be chosen large enough so that the parameter space is suf-

Final temperature

. . . . . . . 10 ficiently explored, but not too large because of the obvious

increase in computational burden accompanied with such an

. . . . . . . L Loy increase in population size. Furthermore, the cognitive pa-

rameterc, social parametear, and the inertia weighi will
. . . . . . . also have an impact on the speed and efficiency of the al-
Io.05 gorithm. The relative magnitude of andc, determine the

7 03 o4 o5 o6 o7 o5 o9 exploration/exp_loitatio_n trade-off made by PSO. Exploration

Cooling rate means the particles will be able to explore the whole param-

eter space and identify promising parameter regions. They
Fig. 1. Dependence of the fitness on the cooling gaéad the final ||, however, lack in accuracy to find a satisfactory optimum
temperature of SIMPSA. in this promising region. Exploitation, on the other hand,
means each particle will be pre-occupied with its own local
search, not interacting much with the other particles. This
way, the parameter space will not be explored sufficiently,

%o inferior results might be obtained. For the PSO algorithm

mmt' rr;ﬁ.?re ]?tt;;[ alnle (: T[?] h|gh|||ght thlls’ ?r::d to m(;:refasle tmter'to work properly, the balance of the exploration/exploitation
pretability of the plots, the color scale of Fij(and of plots trade-off is of key importance. A larger social parameter

Itn the f(k))l_lov?ng se(_:ttrllotrr]]s)lls adjtuskt)?d_ Sodths_t o?ly ?ara{ne'cz, for example, means that more importance is given to the
er comoinations wi € lowest obtained objeCtve TUNCUON | Kagt position, i.e. exploration is favoured. If, on the

values are attributed gray shades. Parameter combinatio her hand, the cognitive parametaroutweighs the social

thzg res::lted :lr;i:fr:]etrrrl?]'cmr"’} 6\‘/:, e ?ftitr:lblutterﬂ a tr)l"f[‘c'r( cotl)mtjtr.” parameter, much more care is given to the local exploita-
esulls co atfor lowerfina’ temperatures DEUEr -y, saarch by the particles. Finally, the inertia weight

sults are obtained, this is because the parameter space is e J<w < 1) will slow down the velocity of the particle at

plored more intensively. For the cooling rallgt seems that a previous iteration step. Large valuesuofacilitate explo-

thre fe.;t ;ss?rl]tste;r% clbgaéneg dv(;/h_eg ;;t IS set”to 0.5 dorr 0.8I't F'gfation of the parameter space (higher velocities will lead to

ure Zto' Sd fa g.ﬁ_ .t? It_ ’ eqtua ygc\)ls t:]su S tmore extensive coverage of the parameter space), whilst a

cets equal o 0.5, to favour a slower convergence, minimiz- 21 faciltates exploiationEngelbrecht2009.

N th(g isk of ' éttin stuck in a local o tin?um ’The final To select the parameters which will lead to the best cali-
9 "9 Y S P ' . . bration results for the model under study, an exhaustive pa-

temperature is set to 1, as this will lead to a faster Cal'brat'onrameter search is conductegicheerlinck et al.2009. Pa-

than would be the case if the final temperature were to be ) AN
set lower. rameterscy, c2 andw are varied and monthly calibrations

. . . are conducted for the different combinations. The population
Besides the choice of the above-mentioned parameters, th&zeN is fixed at 30 particlesHngelbrecht2008. The other
user has to set up rules about what to do with generated points P g i

which are outside the parameter boundaries. One possiblgarameters are varied in their convergence domiel¢a

way is to just place boundary violating points at the bound- 003 Jiang et a|.2007). Parameters; andc; range from 0.5

. : to 2.5 andw ranges from 0.2 to 1 with an increment of 0.2.
ary (Box, 1965. This, however, may lead to considerable ; . .
) o T . . . Figure 2 displays the results of the exhaustive parameter
instabilities in the simplex which may cause it to collapse

(Cardoso et a1.199§. Another solution is to reset them at search. This figure shows the mean obtained objective func-

a random position in the feasible parameter space. In thi%eI ?:r;/alsi;?ureth:arr?%r;trgz;:e“:rsjg; S;hgto rotrr:eatlerre; Zart?lren_al-
paper, we opted for accepting infeasible points, however, the orith erforms well for all months Fi7 8 showg']s t,he
objective function is adjusted so that infeasible points auto9 P - M9

. . ) o . . dependence of the fitness with regard to the social and the
matically receive a very high objective function value, which - . . L .
. . : X cognitive parameters; andcy, with a fixed inertia weight
will force the simplex back into the feasible parameter space

(Nelder and Mead1965. Note that the same approach is (w =0.4). The results show that, in order to obtain good cal-
used for the DSM ' ibration results, a trade-off has to be made betwgeamdc;.

High values of; in combination with low values af; yield
good results and vice versa. A choice thus has to be made
by the user in favour of either a more explorative, or a more

calibration of all months. It should be noted that for different
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Fig. 2. Dependence of the objective function value on the number of
complexegp and the number of inner loop iteratioms of SCE-UA.
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Fig. 3. Distributions of estimation error for each parameter under
different optimization methods and objective functions.

exploitative search. In this case,is set at 2.5, a search with
an explorative character is preferred.

Figure2b shows the results of the calibrations for different
combinations ofw andc; whencs is fixed at 2.5. Results
show that good results are obtained when the inertia weight
w is kept relatively small, whilst the choice of does not
seem to have a profound effect on the result when using small
values forw. A minimum could, however, be detected for
c¢1 =1.5 and consequently this value is chosendpr

Finally, Fig. 2c shows the results for different combina-
tions of w and ¢y with ¢ fixed at 15. This figure shows
that there is a negative correlation between both parame-
ters. Higher values af, in combination with lower values
of w lead to promising results, and vice versa. Because the
value co was previously set at 2.5, the value wfis set at
0.4. The figure shows that for this combination good results
are obtained.

In addition to the selection of the PSO parameters, sev-
eral other settings have to be specified. When a population
member attempts to cross parameter boundaries, that bound-
ary acts as a perfect reflector. In other words, the direction
of displacement of the particle is inverted in order to keep it
inside the parameter boundaries.

The choice of a stopping criterion will also affect the ob-
tained calibration results. In addition to the already men-
tioned general stopping criteria several other approaches can
be utilized for PSO. In the current paper the search procedure
is stopped if the global best solutigry does not change dur-
ing 30 subsequent iterations. This indicates that no better
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Fig. 4. Distributions of estimation error for each parameter, grouped according to the used objective function.

solutions are being found. This criterion is preferred againstber of inner loop iterations. The number of complexes
a convergence criterion, i.e. a certain fraction of the popu-however, is best set at 5, since for this value good results are
lation has to converge to the same solution in order for theobtained throughout and this is less computationally expen-
algorithm to stop, because, from personal experience, it hasive than 10 or 20 complexes. The valuendfis chosen as

become clear that the latter is quite time consuming. 20. It can be seen in Fi@ that for this value better results
_ are obtained than is the case widnwould be equal to 10 or
5.3 Shuffled complex evolution 30, and the results are equal to those obtained wtien30,

. howevem I = 20 is computationally more efficient.
The parameters of the SCE-UA algorithm have been set to

their recommended valueBan et al. 1994, except for the

number of complexeg and the number of inner loop itera- 6 Comparison of optimization methods

tionsnI which are evaluated more closely. The valuga$é

recommended to lie between 2 and 20. Therefoigevalu-  After successfully implementing the presented optimization
ated at different values within this interval. It is expected thatmethods, the calibration of the MBL model can be per-
the use of more complexes will lead to better results, but aformed. The performance of the optimization methods is
a higher computational cost. The number of inner loop iter-evaluated in two steps. First, a known parameter set is used
ations will also have an influence on the results. The higheito perform several simulations to which the MBL model will
the number of inner loop iterations, the better the offspringbe fitted using the different optimization methods and ob-
that is being generated (the simplex will be able to progresgective functions. This way, the optimization methods and
further towards an optimum), again, bearing in mind the aug-the objective functions’ ability to retrieve a known parame-
mented computational burden. The parameter search thu€r set will be assessed. Second, the MBL model is fitted to
seeks to find a good balance between results and efficiencyhe observations at Uccle for each optimization method and
The procedure is the same as with PSO and SIMPSA. For evebjective function.

ery combination of SCE-UA parameters calibrations are con-

ducted for each month. Those results are averaged and dis-

played in Fig.3. These results confirm that a higher number

of complexes leads to better results, as does a higher num-
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log(A) log(k) log(¢) Table 3. Descriptive statistics of the performance of different opti-
O—+—+— S S I N N mization methods for the calibration of the Modified Bartlett-Lewis

Rectangular Pulses model.

O -10
- -10
x 15 minimum  median StDev  duration (min)
-10 -
) 2 20| . DSM OF1 0.0300 0.0467  0.0247 9
OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF2 ~ 0.0594 0.0922  0.0580 15
OF3 0.1908 0.2063  0.0524 9
log(u,) log(a) log(v) SIMPSA OF1 0.0300 0.0300  0.4696 18
o 7T || 1 OF2 0.0594 0.0594 18.2159 100
A4 5 ‘ ! o= OF3 0.1908 0.1908  0.6206 4
. ’ 1
X ol Lo 1 J J PSO OF1 0.0283 0.0311  0.1531 13
- f 05 -10
* T T 1 "l e L OF2 0.0594 0.0624  0.8168 31
| : : 0 = OF3 0.1908 0.1908  0.2359 14
-2 ! Y L 1+ | -20
: o Rt SN S : SCE-UA OF1 0.0300 0.0300  0.1150 14
OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF2 0.0594 0.0594 0.3552 24
OF3 0.1908 0.1908  0.3433 11

Fig. 5. Distributions of estimation error for each parameter, grouped
according to the used optimization method.

on several occasions. PSO seems to be the most consistent in
identifying the true parameter, however, its results are com-

- o _ parable to those of SCE-UA, apart from a few outliers.
To assess the ability of the optimization methods the objec-

tive functions to retrieve a known parameter set, a parameteg.2 Fit to Uccle data
set was taken frorverhoest et al(1997) to perform a total
of 400 simulations with the MBL model. The length of each To evaluate the performance of the different optimization
simulation is equal to 105yr. Afterwards, the MBL model methods and objective functions in a realistic situation, 30
was fitted to these simulations. For each objective functionfepetitions of the calibration are performed for each opti-
and for each optimization method, 400 calibrations were carmization method, each objective function, and each month.
ried out, i.e. only one repetition of the calibration for each The 30 repetitions vary in that for each of them, the algo-
simulated data set. Ideally, each of these calibrations shouldithm starts from a different initial situation. For the DSM,
result in the retrieval of the known parameter set. However,PSO, and SCE-UA, the initial population is chosen randomly
since this is very unlikely, the distribution of estimation er- within the preset parameter boundaries according to a uni-
rors will shed light on the algorithms and objective functions’ form distribution. Similarly, the initial simplex for SIMPSA
performance in their attempt to retrieve known parameters. is created around a randomly chosen point in parameter
Figure 4 visualises the distribution of the estimation er- space, also sampled from a uniform distribution.
rors on the six MBL model parameters for the month of Jan- In order to compare the performance of the used optimiza-
uary. It can be seen that SIMPSA, PSO, and SCE-UA perlion methods, several approaches can be adopted. Here, we
form better in identifying the true parameters in comparisonWill first summarize the obtained results by a set of descrip-
with the DSM with multiple starting points. Significant dif- tive statistics. This will give a first indication of how well
ferences between the former optimization methods, or becertain methods perform compared with the others. Table
tween the objective functions, are not clearly visible. To fa- displays the aforementioned descriptive statistics for the dif-
cilitate this, the calibration results are grouped according toferent objective functions, fitted by the different optimiza-
the objective function with which they were obtained, regard-tion methods. The minimum and median values and the
less of the used optimization method (see Bjg.Similarly, standard deviation (StDev) of the objective function values
Fig. 6 displays the distribution of the estimation error in func- Obtained after 30 repetitions, displayed in TaBlare cal-
tion of the used optimization method, regardless of the usedulated by, first, determining those statistics for each month
objective function. separately and, second, taking the mean over 12 months. The
Figure5 indicates that the use of OF3 might lead to bet- results are displayed in such a way to enhance interpreta-

ter identifiability (this is especially visible fag), however ~ tion without loss of generality. The duration of the calibra-
differences are very small. tion is the mean duration of the total calibration procedure,

o L : . i.e. taking into account all of the 12 months, on a PC with
As for the ability of the optimization methods to identify € . ’ .
the true parameters, Fig.confirms the DSM’s inability to an Intel®@Core™i7-2600 CPU at 3.40 GHZ. All software is

do so. SIMPSA seems to lead to very large estimation errorémplemented in Matlab®.

6.1 Retrieval of known parameters
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© 0.4r ¥
Several observations can be made on the basis of Bable b 0.2l e
First, it seems that the obtained minima for the different ob- % T == \_‘1
jective functions are largely the same. This means that, when ~ © ot ‘ ‘ o ‘ ]
the optimization is repeated at least 30 times, each of the DSM SIMPSA PSO SCE-UA
optimization methods is able to find the same minima. Fur-
ther inspection of these minima indicates they result from the (b) OF2
same minimizers, i.e. the same parameter combinations are ‘
being found by the different optimization methods. This sug- o "
gests that the parameters are highly identifiable, seeing that O
the same minima are being found by independent optimiza- S 15;
tion methods. This evidence is corroborated by the fact that g
the median values, at least for SIMPSA and SCE-UA, are IS
equal to the minima, i.e. the same points are being withheld ‘g 1
as the minimum in the majority of the calibration runs. As 2 .
for DSM and PSO, the median values are fairly close to the g —
minimum. Thus, when it comes to finding a suitable mini- S 0.5 Q‘ _
mum, DSM, SIMPSA, PSO and SCE-UA are almo_st_mter- 8 = — E ’—f‘
changeable. All four are able to locate the same minima on : : : :
multiple occasions. Note that PSO is able to find a minimum DSM  SIMPSA  PSO  SCE-UA
with a lower objective function value for OF1, in compar-
ison with SIMPSA and SCE-UA. Yet the value reported in (c) OF3

Table 3 is the mean value of the minima of the 12 different

months. Further investigation of the data uncovers that for i9- 7. Empirical Cumulative distribution function of the mean

the month of April, PSO attained a better solution, however,lo min rainfall depth in January as simulated with OF1 vs. observed
. . value

the differences in the parameter values are rather small, sO

it is doubtful that it will lead to significant differences in the

simulations.

Second, the robustness of each optimization method camethods. When comparing the remaining three methods, it
be judged in several ways. A first indicator is the standardcan be seen that PSO and SCE-UA have resulted in roughly
deviation of the objective function values of the found min- the same standard deviations, whereas SIMPSA clearly had
ima after 30 repetitions. Clearly, DSM is far more robust problems in minimizing OF2. It shows a much higher stan-
(i.e. by an order of magnitude) than the other optimizationdard deviation for OF2, and moreover, the average duration
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Table 4. Mean ranks of the different optimizaton method’s perfor- Table 5. p-values for pairwise Wilcoxon rank sum tests between

mances. different optimization methods.
DSM SIMPSA PSO SCE-UA DSM SIMPSA PSO SCE-UA
Mean rank 2391 2085 2236 1929 DSM 1 1.14x 10—08 0.0043 9.20¢ 10—18
SIMPSA 1 0.0059 0.0031
PSO 1 1.0810°08
of the calibration is 3 to 4 times higher than for DSM, PSO  SCE-UA 1

and SCE-UA, of which DSM proves to be slightly faster
in obtaining results. This may lead to the conclusion that

SIMPSA is not as flexible as PSO or SCE-UA. In order to compare the performance of the different op-
DSM, PSO and SCE-UA also display longer calibration timization methods objectively, a Kruskal-Wallis test is per-
runtimes and a slightly elevated standard deviation for OF2formed (ruskal and Wallis 1952. Under the null hypoth-
but not of the same magnitude as SIMPSA. As the former aressis, the populations from which the samples are generated
more flexible, they are more adaptable to changes in the obhaye the same median value. If the null hypothesis is re-
jective function, which of course is an advantage because thfécted it can be concluded that the populations show signif-
cumbersome optimization of the parameters does not have tRant differences. Post-hoc analysis has to be performed to
be repeated in order to obtain satisfactory results. determine which of the methods differ significantly. For this,
To further assess the spread of the results obtained by thg pairwise Wilcoxon rank sum tesG{bbons 1989 is per-
different optimization methods, a box plot is created. Fig- formed. The null hypothesis of the Wilcoxon rank sum test
ure7a, b and c show comparative box plots for OF1, OF2 andstates that the compared samples are independent samples
OF3, respectively. To enhance the interpretability of thesefrom identical continuous distributions with identical medi-
plots, box plot 7b is clipped. A dotted line marks the limit ans Gibbons 1985. These statistical tests are performed for
if any points are outside it. The points outside the limit are 3| the obtained data, i.e. the results for the different months
plotted in a compression region delineated by two solid lines.and the different objective functions are gathered and then
The density of the point in the compression region gives antested. This approach is chosen because it allows to define
indication of the number of points outside the limit. which of the optimization methods displays the overall best
For OF1 and OF2, it is clear that DSM and SCE-UA ex- performance.
hibit the best performances, followed by PSO and SIMPSA. 1 can pe expected that the Kruskal-Wallis test will find that

Figure7a and b clearly show that the outcome of a calibra- e gjfferent optimization methods differ significantly. This
tion with the DSM or SCE-UA is more robust than with PSO assumption is confirmed. A-value of 1.3x 10-7 is ob-

and SIMPSA. However, the DSM is slightly less accurate jained when conducting the Kruskal-Wallis test. The mean
because the mean of the obtained calibration results does et ks are shown in Tabld. At a 5% significance level
coincide with the minimum, which is the case for SCE-UA. thare is a significant difference between the populations’ me-
Conversely, SCE-UA has more outliers, suggesting that it isjjans, The mean ranks lead to believe that SCE-UA performs
slightly less robust. Thus, DSM is able to locate near-optimalyest followed by SIMPSA, PSO and the DSM. The fact that
solutions in a very robust manner, whereas SCE-UA is able tog\ypsa performs second best and that DSM has the lowest
locate more accurate results in a slightly less robust mannep,ean rank is quite surprising. Tak®e as well as the box
Finally, the performances of PSO and SIMPSA combinedpots |ead to believe that both DSM and PSO performed bet-
with both OF1 and OF2 seem to be more alike, however, obgr than SIMPSA. This shows the importance of using multi-
jective function values obtained by SIMPSA are spread moréye evaluation criteria. The standard deviatons (listed in Ta-

than those obtaingd by PSO, indicating a less robust result. o 3) and the box plots (Fig7) are both seemingly sensitive
For OF3 (see Figrc), DSM clearly outcompetes the other 1 gytliers. The use of a more robust statistic (mean ranks)
optimization methods. It is more accurate, more robust, nveils this sensitivity.

faster (see Tabl8) and more user friendly. Differences be- To determine which of these differences are significant,
tween SIMPA, P_SO and SCE-UA are less apparent. SUb%)airwise Wilcoxon rank sum tests are performed. The result-
tle differences exist, however. PSO seems to be_ more robu ﬁg p-values are shown in Tab Note that, for the inter-

than SCE-UA and SIMPSA respectively, and again, SIMPSA

. . ; ; retation of these-values, a Bonferroni correction must be
exhibits the least desirable results (albeit the differences arg ®

: d theref b lgable). Si based pplied, i.e. results are significant ate¥b significance level
minute, and therefore may be negligable). Since, based O0fy,o , yajye of the tested hypothesis is smaller tagn%
this last plot, no obvious distinction can be made betwee

d biecti . ded with n the number of tested hypotheses). In this case, the
PSO and SCE-UA, a more objective measure is needed t ull hypothesis of the pairwaise Wilcoxon rank sum test can

determine whether or not there are significant differences irbe rejected at a 5% significance level if thevalue of the
the results. hypothesis is smaller than@b/6 = 0.0083. Consequently,
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Table 6. Final parameters resulting from calibration with OF1 Table 7. Final parameters resulting from calibration with OF2
found by each of the optimization methods, except for the monthfound by each of the optimization methods.
of April for which the displayed minimum was only found by PSO.

A K ¢ Wy o v fithess

» « 4 P o v fitness Jan  0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Jan 0.0324 0.3810 0.0593 0.9609 3.2957 0.9053 0.0345 Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Eeb 0.0272 0.2973 0.0485 0.9483 3.4148 1.0634 0.0389 Mar 0.0323 0.6014 0.0324 14060 2.7365 0.1547 0.0695
Mar 0.0327 0.5920 0.0327 1.4127 27201 0.1541 0.0356 Apr  0.0295 0.2955 0.0336 1.6068 3.0217 0.3402 0.0932
Apr  0.0297 0.2918 0.0333 1.6022 3.0000 0.3353 0.0281 May 0.0257 0.1109 0.0294 3.3918 3.1143 0.4169 0.0792
May 0.0257 0.1122 0.0296 3.3370 3.1148 0.4208 0.0393 Jun 0.0282 0.2013 0.0326 4.9003 3.1173 0.1927 0.0288
Jun 0.0284 0.2003 0.0326 49128 3.0996 0.1899 0.0146 Jul 0.0273 0.0895 0.0269 7.3857 3.3546 0.2849 0.0264
Jul  0.0275 0.0896 0.0268 7.4132 3.3296 0.2781 0.0134  Aug 0.0286 0.1749 0.0295 6.8458 2.8455 0.1286 0.0339
Aug 0.0288 0.1727 0.0294 6.8543 2.8370 0.1282 0.0170 Sep  0.0265 0.1204 0.0229 3.9312 27200 0.2294 0.0562
Sep 0.0266 0.1208 0.0226 3.9448 2.7106 0.2233 0.0279 Oct 0.0297 0.3551 0.0329 2.1488 2.4548 0.1820 0.0411
Oct 0.0299 0.3523 0.0323 2.1634 2.4490 0.1775 0.0208 Nov 0.0309 03021 0.0483 1.1964 2.8494 0.7105 0.0724
Nov 0.0306 0.2994 0.0490 1.1666 2.8800 0.7642 0.0365 Dec 00289 0.2280 0.0444 1.1090 3.1501 11111 0.0670
Dec 0.0286 0.2266 0.0448 1.0846 3.1943 1.1887 0.0336

) o preted as the probability distributions of the respective mo-
it can be concluded that, at a 5% significance level, all theyents or properties when rainfall time series are simulated.
compared optimization methods are found to differ signifi- 14 exemplify this, Fig.8 shows the Empirical Cumulative
cantly in their median values. So, it is appropriate to con-pjstribution Function (ECDF) of the mean 10 min rainfall
clude that SCE-UA is the best method for the calibration of depth in the month of January. It would be preferable that
the MBL model, compared with the other tested methods.ihe gphserved value at Uccle coincides with the obtained me-
Thfa fact that the QUratlon of the c_al_|brat|on is reasonable anQjian value, which is obviously not the case. Fig@rshows
quite robust contributes to the validity of this conclusion. Ac- ine ECDF of the lag-1 autocovariance of the data at an ag-
cording to these statistical tests SIMPSA takes second plaCSregation level of 12 h, for the month of March. This figure
and is followed by PSO and DSM. However, from & prac- shows a much more satisfying fit to the observations. Note
tical point of view, these results can be disputed. The DSMy 4t these ECDFs were obtained through simulation using the
method clearly shows to be more robust, faster and more us§fest obtained parameter set after 30 repetitions of the cali-
friendly. Besides, it is not clear whether the subtle differ- pation with OF1. For each of the used objective functions,
ences in the calibration results between the different methgmijar figures for different moments and wet-dry proper-
ods would result in significant different modelling outcomes. tjas could be made, this at different aggregation levels. This
So, pros and cons must be weighed before making a choicgqyid, however, lead to a vast number of figures, render-
of optimization method, bearing in mind the aforementioneding comparison impossible. Therefore, the median values of
results. the simulated moments and wet-dry properties are compared
with the observed rainfall time series.

Figure 10, for example, shows the mean 10 min rainfall
generated by the different fitted models with regard to the
In order to compare the performance of the models, fittedobservations. It can be seen that none of them provides a per-
with the respective objective functions, it seems appropriatdect fit to the observations. However, OF1 and OF2 seem to
to incorporate several different performance measures to adargely coincide whereas OF3 tends to deviate more severely
sess the impact of the configuration of the objective func-form the observed mean values. Similar plots can be made
tion on various aspects of the fitted model. The paramedfor the other moments of the observed and simulated rain-
ter sets that provided the best fits in Se&tare used here fall time series. These plots can provide a general idea of
to enable the comparison. These parameter sets are givéhe orders of magnitude of the deviations from the obser-
in Tables6 to 8. vations, but they will not allow to distinguish between the

The objective function itself, focuses on the expected mo-suggested objective functions, for their interpretation is far
ments of the rainfall time series and its wet-dry properties.too subjective.

However, certain properties of the generated rainfall time se- More objective goodness of fit measures of the rainfall
ries cannot be expressed by analytical expressions, extrentane series’ moments are given in Talle Thus, Table9
values, for example, and have to be evaluated through simudisplays the mean percentage error (MPE), mean absolute
lation. As a consequence, for each of the three fitted modelgyercentage error (MAPE) and maximum percentage error
an ensemble of 50 simulations is carried out, each of which iMAXPE) of the simulated moments and ZDP in compari-
105yr long. For each moment or property of the rainfall time son with the observed values. The MPE is particularly useful
series, a list of 50 values is obtained, which can each be interin uncovering the presence of a significant bias in the model

7 Comparison of objective functions
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L Mean 10 minute rainfall depth in January Table 8. Final parameters resulting from calibration with OF3
‘ ‘ found by each of the optimization methods.
0.8l ] A K ¢ Ix o v fitness
Jan  0.0314 0.2385 0.0463 1.2099 2.8871 0.6913 0.2979
Feb 0.0284 02422 00448 1.2191 2.8032 0.6100 0.2523
06l | Mar 00271 02707 00474 1.3024 29791 0.6322 0.2471
- Apr  0.0267 02139 00338 1.6379 3.0981 04922 0.2482
= May 00241 0.1455 0.0336 27151 3.6000 0.6365 0.0989
Jun  0.0242 0.1495 0.0340 3.0595 4.2021 0.7554 0.1277
0.4¢ 1 Jul  0.0248 0.1133 0.0294 4.3469 42751 0.7048 0.3039
Aug 0.0260 0.1292 00235 51469 3.0247 0.2313 0.1574
Sep 0.0240 0.1356 0.0276 2.9538 3.1375 0.4571 0.0637
0.2k | Oct 0.0259 0.2061 0.0329 1.9844 25324 0.3799 0.0706
— CDF OF1 simulations Nov 0.0300 0.2140 0.0406 1.4124 26273 0.5974 0.2119
. Dec 0.0315 0.2254 0.0463 1.3147 27612 0.6977 0.2100
— — —Observation (Uccle)
O L L L
0.013 0.014 0.015 0.016 0.017

rainfall depth (mm)
Table 9. Model performance measures for the MBL model fitted
Fig. 8. Empirical Cumulative distribution function of the lag-1 au- wjith different objective functions.
tocovariance of the 12 hourly-rainfall depth in March as simulated
with OF1 vs. observed value. MPE MAPE MAXPE

_ _ OF1 —-4% 12% —94%
12 hour autocovariance in March OF2 —5% 12%  —98%

L ; : OF3 -2%  14% —83%
|
0.8r : 1
| observed values. The only valid conclusion would be that
: OF3 shows relatively little bias in comparison with the fitting
0.6¢ | by the other two objective functions. In order to assess the
§ : quality of the overall goodness of fit of the different fits, the
! MAPE is best used. This shows that both OF1 and OF2, al-
0.4r | 1 . .
| though more biased, show an overall better fit to the observed
| moments than OF3. The MAXPE, finally, reveals that OF3
0.2+ | - _ 1 results in a lower maximum percentual error, when compared
| — €CDF OF1 simulations with OF1 and OF2. So, judging by these overall model per-
| [Z= ~Observation (Uccle) formance measures, it seems that the use of OF1 and OF2
00 1 ‘ 2 3 leads to, more or less, the same results, albeit that OF2 gen-

erates a slightly higher bias than the generated rainfall time
series fitted with OF1. Taking this information into account,
Fig. 9. Mean 10 min rainfall, average simulation result vs. observa-and, looking back at Tabl& which shows that the calibration
tions. process tends to be a bit more time consuming when OF2 is
used, it is reasonable to conclude that OF1 could be a good
objective function for calibrating the MBL model.
fit. As outlined in Sect3, OF2 was especially designedtore-  Based on these criteria, the results with OF3 are promis-
duce the overall bias in the fitting of the BL models. Judginging, a smaller bias is achieved and the maximum error is
from Table9, this attempt to reduce overall bias in the model smaller. However, the MAPE suggests an overall larger de-
fit had an adverse effect. The fitting of the MBL model with viation from the observations than when the model is fitted
OF2 seems to lead to a bigger underestimation of the mowith OF1 or OF2. To further investigate this, Fidgsl and
ments of the rainfall time series (a negative value corresponds 2 show the MAPE and MPE, respectively, for a set of mo-
to underestimation by model), however it can be argued thaments and the ZDP. Figufel clearly reveals the fact that the
the difference is rather negligable. simulation results obtained by fitting with OF3 almost sys-
Judging solely by the MPE, one might find it reasonable tematically display a larger deviation from the observations
to conclude that calibration using OF3 leads to the best overthan when the model is fitted with the other configurations
all model fit. The MPE, however, reveals very little about of the objective function, which was already concluded on
the distribution nor the magnitude of the deviations of the the basis of Tabl®. Interestingly however, OF3 seems to be

rainfall depth (mm)
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Fig. 10. Mean Absolute Percentage Error of different fits, averaged

over different months and aggregation levels (10 min, 30 min, 1 h,Fig. 11. Mean Percentage Error of different fits, averaged over dif-

6h, 12h and 24 h). ferent months and aggregation levels (10 min, 30 min, 1 h, 6h, 12h
and 24 h).

more capable in producing more satisfying wet-dry proba-
bilities (ZDP) in comparison with its contenders. The reason —OFl
why the overall bias is smaller with OF3 is explained by com- I OF2
bining Figs.11and12. It seems the overall deviation of the or [ _JOF3
OF3 is larger, but, more balanced between under- and overg
estimation, especially for lag-2 and lag-3 autocorrelation and 5
skewness of the rainfall time series. These results make its
abundantly clear that a straightforward conclusion in favour
of one of three objective function configurations is very hard
to make. From a practical point of view, however, it seems
reasonable to prefer OF1 over OF2, as was already suggesteg
earlier. =
The impact of the used objective functions on the repro-
duction of extreme rainfall events will not be discussed here.
The MBL model suffers from several flaws which need to
be resolved first. The MBL model systematically underes-
timates extreme rainfall event¥drhoest et al.1997 and
occasionally creates unrealistic rainfall ceN&(hoest et a.
2010. The first issue might be resolved by introducing the Fig. 12. Mean Percentage E_rror of different f_its, avergged over dif-
third order moment into the objective functicBdwpertwait ferent months and aggregation levels (10 min, 30 min, 1 h, 6 h, 12
1998. The second issue might be resolved by truncating thé] and 24 h).
distribution from which average cell durations are drawn (i.e.
a truncated MBL model)\ferhoest et a.2010. However, o
these approaches need further investigation and are out @nd the Neyman-scott type models, due to strong similarities
the scope of this paper. between them.
A first issue that was addressed is the fitting procedure it-
self. The fitting procedure is characterized by the presence
8 Conclusions of multiple local minima, making it hard for conventional
“local search” methods to reach satisfactory results in a ro-
In this paper, further refinement of the calibration proce-bust manner. Therefore, four different optimization meth-
dure of Bartlett-Lewis type stochastic point rainfall mod- ods were tested and compared with each other. To ensure
els was attempted. For this purpose, the Modified Bartletta fair comparison, the parameters of the respective meth-
Lewis (MBL) model was used. These results may howeverods were first fine-tuned for this specific minimization prob-
be applicable to other variants of the Bartlett-Lewis modellem, after which the actual calibration of the MBL model

percentage

M

Avg
Var
Cov
Corr(1) -
Corr(2) -
Corr(3)
ZDP |
Skew [
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was performed. The performance was then judged by thdyy each of the three methods differ significantly. SCE-UA is
accuracy, robustness and time consumption of the optimizamost accurate, followed by PSO and DSM, however, DSM
tion methods. The following algorithms were used: the DSMis faster, more robust and more practical in use. Thus no
by Nelder and Meaq1969, Simplex-Simulated Annealing straightforward conclusion can be made based on these re-
(SIMPSA) (Cardoso et al.1996, Particle Swarm Optimiza- sults. However, the choice between them will depend on the
tion (PSO) Ehi and Eberhartt999, and Shuffled Complex application’s desired accuracy, expertise of the user, and the
Evolution (SCE-UA) Duan et al.1994). timespan in which results have to be obtained.

Secondly, the choice of weights in the objective func- The results of the comparison of the three tested alterna-
tion is addressed. In many empirical studies, the choice otive objective function configurations are less clear-cut. In
the weights of the used properties in the objective functionsummary, it can be concluded that the use of OF3 is not to
is made rather subjectively. As different approaches existbe encouraged, as it leads to an overall larger deviation from
the impact of the approaches on the results after calibrathe observations, except for the ZDP, than when OF1 or OF2
tion is therefore investigated. Three objective functions wereare used. Both OF1 and OF2 perform equally well, how-
used, one classically used objective function (OF1), accordever, it could be noticed that the calibration with OF2 tended
ing to Verhoest et al(1997), an implicitly weighed objective  to be more computationally intensive, which is of course an
function (OF2) Cowpertwait et al.2007) and one weighted argument in favour of the use of OF1.
by the empirical variances of the included properties (OF3)
(Chandley 2004). Simulated moments obtained after fitting
with each of these three objective functions were comparecm
with eac_h other_. .. . Royal Meteorological Institute (RMI) for placing the extensive data

The fine-tuning of the parameters of the optimization ¢of of Uccle rainfall at their disposal.
methods generally revealed that different parameter combi-
nations lead to the same results. Therefore, in future regdited by: A. Montanari
search, when calibrating BL type models, one can rely on
the feasible parameter ranges presented in this paper. When
however, one would attempt to repeat this search for a differReferences
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