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Abstract. The calibration of stochastic point process rainfall
models, such as of the Bartlett-Lewis type, suffers from the
presence of multiple local minima which local search algo-
rithms usually fail to avoid. To meet this shortcoming, four
relatively new global optimization methods are presented
and tested for their ability to calibrate the Modified Bartlett-
Lewis Model. The list of tested methods consists of: the
Downhill Simplex Method, Simplex-Simulated Annealing,
Particle Swarm Optimization and Shuffled Complex Evolu-
tion. The parameters of these algorithms are first optimized
to ensure optimal performance, after which they are used
for calibration of the Modified Bartlett-Lewis model. Fur-
thermore, this paper addresses the choice of weights in the
objective function. Three alternative weighing methods are
compared to determine whether or not simulation results (ob-
tained after calibration with the best optimization method)
are influenced by the choice of weights.

1 Introduction

Rainfall is an important input for many models in various
branches of applied sciences. Generally, observed time se-
ries of rainfall can be used. However, certain applications
(such as design studies) require very long time series which
are not available from observations (Wheater et al., 2006). To
circumvent this problem, one can make use of rainfall mod-
els (Boughton and Droop, 2003). When using such models,
it is of paramount importance to ensure the modelled rain-
fall adequately reflects meteorological conditions in the area
of interest.

The use of stochastic rainfall models dates back several
decades (Waymire and Gupta, 1981), and has since received
much attention in literature. Both single-site and spatial-
temporal models have been researched extensively. How-
ever, the scope of this article is limited to the use of single-
site models. For more information about spatial-temporal
models, one is referred toWheater et al.(2005).

An important branch of rainfall models is based on the
generation of rectangular pulses. Within these rectangu-
lar pulses models, one may discern the Bartlett-Lewis (BL)
(Rodriguez-Iturbe et al., 1987a) and Neyman-Scott (NS)
(Kavvas and Delleur, 1981) type rainfall models. The dis-
tinction between the NS and BL models can be made in the
third order moment and proportion dry but not in the second
order properties. Hence, both are virtually interchangeable,
with the possible exception that the NS models may generate
marginally more extreme values. Since empirical analysis
revealed that for data observed at Uccle (near Brussels, Bel-
gium), the BL model is preferable (Verhoest et al., 1997), and
since this paper makes use of the same data (albeit a more ex-
tended dataset), the NS models will not be discussed further.
Nonetheless, obtained results may also be applicable to the
NS models, due to their strong similarity with the BL models.

Since the formulation of the original BL model by
Rodriguez-Iturbe et al.(1987a), this model has been sub-
jected to a number of modifications and extensions. Intro-
ducing a jitter, for example, results in more realistically irreg-
ular cell intensities (Onof and Wheater, 1994a; Gyasi-Agyei
and Willgoose, 1999). Allowing for different cell types to
exist, introduces certain variations between storms, which is
in accordance with the existence of different types of rainfall
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(such as frontal and convective rainfall). To achieve the latter,
the mean cell duration can be randomized (Rodriguez-Iturbe
et al., 1988), multiple cell types can be defined (Cowpertwait,
1994), or one can make use of multiple superposed processes
(Cowpertwait, 2004; Cowpertwait et al., 2007). Finally, to
improve extreme value behaviour, the probability distribu-
tion of cell intensities can be adjusted to a distribution with a
heavier tail (Onof and Wheater, 1994b).

To fit the model to a series of observations, the generalized
method of moments is used. In this method, the model is fit-
ted to observed sample properties of rainfall intensity at dif-
ferent aggregation levels. For this purpose, analytical expres-
sions of the expected value of the modelled properties were
derived as a function of the model parameters (Rodriguez-
Iturbe et al., 1987a).

The calibration of the BL models has proven to be a cum-
bersome task because of the presence of multiple local min-
ima (Verhoest et al., 1997). Traditional local search tech-
niques sometimes fail to avoid these local minima, resulting
in a suboptimal solution to the optimization problem.

Furthermore, the calibration result is influenced by the
choice of weights in the objective function. Different ap-
proaches exist, but it is not clear which of them leads to better
simulation results.

To address these issues, this paper proposes to use rela-
tively new optimization methods as they are expected to be
more robust than more traditional local search methods. Fur-
thermore, three different approaches to the weighing of the
objective function are compared in order to shed some light
on their advantages and disadvantages in terms of model per-
formance and practicality. For these purposes, data recorded
at the Uccle-site of the Royal Meteorological Institute (RMI)
in Brussels (Belgium), are used. The data set consists of
105 yr of recorded rainfall at an aggregation level of 10 min
(De Jongh et al., 2006).

2 The modified Bartlett-Lewis model

Aside from the potential adjustments to the original BL mod-
elling structure, mentioned in Sect.1, the basic principles
of the model have remained intact: storm arrivals occur in a
Poisson process with parameterλ, and each storm arrival is
followed by a number of cell origins, which also occur in a
Poisson process, characterized by parameterβ. The duration
of the interval in which cell origins are generated is expo-
nentially distributed with parameterγ . Each cell origin is
coupled with a rainfall cell, having a random depth and dura-
tion, both drawn from exponential distributions characterized
by parameters 1/µx andη respectively. The superposition
of the rainfall cells eventually leads to a continuous rainfall
time series.

Extensive analysis of the model byRodriguez-Iturbe et al.
(1987a,b) revealed that the original BL model was well capa-
ble of reproducing general rainfall statistics. Conversely, the

wet-dry properties, commonly expressed by the zero depth
probability (ZDP), an important feature of the rainfall time
series, were not adequately reproduced. These findings led
to an adjustment of the model. In the Modified BL (MBL)
model, the average cell duration is allowed to vary between
storms. This is achieved by letting the parameter of the expo-
nentially distributed cell durationη follow a Gamma distri-
bution with shape and rate parametersα andν, respectively
(Rodriguez-Iturbe et al., 1988). This results in E[η] = α/ν

and Var[η] = α/ν2. For the expected duration of a cell to
be finite, it is assumed thatα > 1. Furthermore,Rodriguez-
Iturbe et al.(1987a) introduced dimensionless parameters
κ = β/η andφ = γ /η, which are used in the calibration. This
way, it can be seen that by keepingκ andφ constant, and
varyingη, storms which exhibit similar structures but consist
of different types of cells (i.e. with different average dura-
tion and variance) are generated. In total, the MBL model
contains 6 parameters that are to be calibrated.

Analyses of the MBL model show that the model is an
improvement in comparison with the original BL model
(Rodriguez-Iturbe et al., 1988; Entekhabi et al., 1989). Bet-
ter reproduction of the ZDP, the autocorrelation structure of
the rainfall, and the manifestation of extreme rainfall events
is observed (Velghe et al., 1994). Nonetheless, the model
generates excessive values for the autocorrelation with a lag
larger than 12 h (Onof and Wheater, 1993) and the fit of the
extremes is still not completely satisfactory.

To improve extreme value behaviour of the model, third
order statistics could be included in the objective function.
This approach has already proven to lead to good results for
the Neyman-Scott models (Cowpertwait, 1998; Burton et al.,
2008). Expansion of this concept to the Bartlett-Lewis mod-
els can thus be expected to yield similar satisfying results.
For the Bartlett-Lewis model at hand, analytical expressions
for the third order statistics have not yet been published.
However, research on this topic is ongoing and the imple-
mentation of third order statistics into the Bartlett-Lewis
modelling framework will be addressed in the near future.

3 Calibration procedure

The calibration of Bartlett-Lewis models, and stochastic rain-
fall models in general, is usually based on the generalized
method of moments (GMM). The GMM seeks to minimize
the difference between observed sample properties of rainfall
intensity and those generated by rainfall models. Alternative
methods, such as likelihood approximation (Cameron et al.,
2001) or Bayesian inference (Hartig et al., 2011), could be
considered for calibration, but these methods tend to be com-
putationally very expensive (Obeysekera et al., 1987). It is
not clear whether or not this would have any merit in prac-
tical applications (Rodriguez-Iturbe et al., 1988), as from a
practical point of view the models are usually treated as be-
ing fully identifiable, i.e. only one parameter set is used for
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simulation. Moreover, it is not possible to obtain a likelihood
function in a closed form, so maximum likelihood approxi-
mation is not available as a parameter estimation method.

The use of the GMM for the calibration of stochastic rain-
fall models is widespread. An array of empirical studies have
been performed in which Bartlett-Lewis models were fitted
to rainfall time series in Great Britain (Onof and Wheater,
1993, 1994a; Cameron et al., 2000), Ireland (Khaliq and
Cunnane, 1996), Belgium (Verhoest et al., 1997; Vanden-
berghe et al., 2011), the United States (Rodriguez-Iturbe
et al., 1987b; Velghe et al., 1994), New Zealand (Cowpert-
wait et al., 2007), Australia (Gyasi-Agyei and Willgoose,
1999; Heneker et al., 2001), South Africa (Smithers et al.,
2002), etc.

In general, the objective functionf , which is to be
minimized, can be written as:

f (x) = (M ′
−M(x))T W(M ′

−M(x)) (1)

wherex is the parameter vector,M ′ is the vector of observed
values for a set ofk properties,M(x) is the vector of their
expected values under the model (calculated through analyt-
ical expressions), andW is a k × k positive definite matrix
of weights. The objective function valuef for a given set of
parametersx is also referred to as the fitness of the proposed
parameter vector, as it reflects the quality of this potential
solution to the optimization problem.

The chosen fitting properties in the current work include
the mean (Avg), variance (Var), lag-1 autocovariance (Cov),
and the proportion of dry intervals or zero depth probabil-
ity (ZDP). Each of these are evaluated at aggregation levels
of 10 min, 1 h, 6 h and 24 h. This is similar to the fitting
properties chosen byCowpertwait et al.(2007).

As discussed in Sect.1, the parameters of the MBL model
all follow a different probability distribution function. The
support for each of these parameters is the interval[0,+∞],
except forα, for which a lower boundary of 1 is assumed
(seeRodriguez-Iturbe et al., 1988). The used algorithms
should obey these boundaries, otherwise, numerical instabil-
ities might emerge when calculating the analytical expres-
sions using negative values, which would trouble the calibra-
tion or lead to erroneous results. Another implication that
arises is the impracticality of working with+∞ as an upper
boundary, as this might impede the convergence of the op-
timization method. Therefore, the theoretical upper bound-
aries are tightened so that the parameters can still take a wide
range of feasible values, and in addition, contain the previ-
ously calibrated values of the MBL model (Verhoest et al.,
1997). Table1 shows the set of boundaries which is assumed
to constitute the feasible parameter space of the model.

The choice ofW is rather subjective. Many different ap-
proaches have been explored in literature. The theory of
Hansen(1982) suggests that the inverse of the covariance
matrix of the observed properties should be used asW. In
terms of parameter identifiability, this would be the theoret-
ically optimal starting point (Kaczmarska, 2011). However,

Table 1. Pre-defined boundaries for the parameters of the MBL
model during calibration, applicable to all months.

Parameter λ κ φ µx α ν

Lower boundary 0 0 0 0 1 0
Upper boundary 0.1 20 1 15 20 20

for simplicity, in most casesW is chosen to be a diagonal
matrix. In that case the objective function is reduced to:

f (x) =

k∑
i=1

wi

(
M ′

i −Mi(x)
)2 (2)

Frequently,wi is set equal toai/M
′2
i , whereai is a user de-

fined value (Entekhabi et al., 1989; Cowpertwait, 1991; Vel-
ghe et al., 1994; Verhoest et al., 1997; Smithers et al., 2002;
Cowpertwait, 2004). Division of the squared model error by
the sample estimate ensures that large values do not dominate
the minimization procedure (Cowpertwait et al., 2007). The
variablea is usually chosen arbitrarily, to ensure a good re-
production of certain fitting properties.Cowpertwait(1991),
for example, choosesa = 100 for the mean anda = 1 for
the other fitting properties.Velghe et al.(1994) and Ver-
hoest et al.(1997), on the other hand, choosea = 1 for all
fitting properties. In this paper we will follow the approach
of Velghe et al.(1994) andVerhoest et al.(1997) and call this
objective function OF1.

An alternative configuration of the objective function is
suggested byCowpertwait et al.(2007):

f (x) =

k∑
i=1

[(
Mi(x)

M ′

i

−1

)2

+

(
M ′

i

Mi(x)
−1

)2
]

(3)

The use of an additional term which contains the reciprocal
value of the division present in Eq. (2) helps to ensure that
no bias is present in the optimal solution, in case an exact fit
is not obtained. This objective function will be referred to
as OF2.

Finally, a simplification of the theory ofHansen(1982)
can be used to weigh the objective function. Here,
wi = 1/Var[M ′

i ] is used. This makes sense because “in
least squares problems with unequal variances, observations
should be weighed according to the inverse of their vari-
ances” (Chandler, 2004). The empirical variance of the ob-
served sample properties is obtained by calculating these
properties for each year separately, which results in a series
of 105 repetitions of that particular property. The variance of
these repetitions is calculated and used in the objective func-
tion. This approach will further be referred to as OF3. A
more clarifying overview of the used objective functions is
given in Table2.

Finally, it should be mentioned that the MBL model is fit-
ted on a monthly basis, i.e. 12 different parameter sets have
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Table 2. Expressions of used objective functions for the calibration
of the Modified Bartlett-Lewis model.

Name Expression

OF1 : f (x) =

k∑
i=1

(
M ′

i
−Mi(x)

)2
M

′2
i

OF2 : f (x) =

k∑
i=1

(Mi(x)

M ′
i

−1

)2

+

(
M ′

i

Mi(x)
−1

)2


OF3 : f (x) =

k∑
i=1

(
M ′

i
−Mi(x)

)2
Var[M ′

i
]

to be calibrated, i.e. one for each month. This approach
is upheld to cancel out any seasonal effects present in the
rainfall time series. This is necessary to ensure temporal
homogeneity (Obeysekera et al., 1987; Verhoest et al., 1997).

The objective of this paper is to determine whether the
choice of the objective function has a significant impact on
the estimated parameters. If this is the case, the impact of the
choice of the objective function can be assessed by consid-
ering properties that were not used during the fitting, but are
of hydrological importance. If no significant impact can be
observed, a distinction can be made based on the efficiency
of the calibration.

4 Optimization methods

The calibration of the Bartlett-Lewis models has been re-
ported as being a cumbersome task (Verhoest et al., 1997),
as the optimization is troubled by the presence of multiple
local minima, in which local optimization techniques tend to
get trapped. In the past, such techniques have been used in
the majority of the cases. For example,Velghe et al.(1994);
Verhoest et al.(1997); Onof and Wheater(1993) use Powell’s
method (Press et al., 1986) for calibration. This gradient-
based method is prone to get stuck in local optima. Fur-
thermore, the user has to supply the algorithm with an initial
guess of the solution, which may lead to a bias in the results
(Khaliq and Cunnane, 1996). More recently, most authors
opt to calibrate using the Simplex method byNelder and
Mead(1965) with multiple starting points. Occasionally the
outcome is further minimized using a gradient-based method
(Wheater et al., 2006; Cowpertwait et al., 2007; Kaczmarska,
2011).

In recent years, an array of global optimization methods
has been developed. In this work, we test four of those algo-
rithms with respect to the calibration of the BL models. The
following sections discuss the theoretical background of the
used optimization methods which, ultimately, stem from fun-
damentally different conceptual backgrounds. The current
paper does not aim at discriminating against or rallying for a
certain method, merely an objective comparison, highlight-

ing advantages and disadvantages of the presented methods
is aspired.

4.1 Downhill simplex method

The Downhill Simplex Method (DSM) is based on an idea by
Spendley et al.(1962) for tracking ideal operating conditions
by evaluating the output of a system at a set of points, form-
ing a simplex, in the parameter space, and the continuous
formation of new simplices by reflecting a point in the hyper-
space of the other points.Nelder and Mead(1965) acknowl-
edged this concept’s merit in the optimization of mathemat-
ical formulas. The simplex moves autonomously through
the parameter space by a sequence of intermittent reflections,
contractions and expansions.

Suppose an objective function containsD variables and
is subjected to a minimization procedure without posing any
restrictions on the values of the variables. Then, suppose
x0, x1, . . . ,xD are (D+1) points in theD-dimensional space
which form the current simplex. The objective function value
of each pointxi is written asyi .

The point with the lowest objective function value receives
the subscriptl (yl = min

i
yi), the point with the highest objec-

tive function value receives subscripth (yh = max
i

yi). Point

x̄ is defined as the centroid of those points for whichi 6= h.
The distance betweenxi andxj is expressed by d(xi,xj ).
During each step of the process,xh is replaced by a new point
by a reflection, contraction or expansion of the simplex. The
reflection ofxh can be written asx∗

h, whose coordinates can
be found by the following relationship :

x∗
= (1+α)x̄ −αxh (4)

with α a positive constant, known as thereflection coefficient.
In other words,x∗ lies on a straight line, connectingxh and
x̄, opposite tox̄, with d(x∗,x̄) = αd(xh,x̄). xh is replaced
by x∗

h and the process starts over with the new simplex if
yh > y∗ > yl .

If, on the other hand, the reflection has created a new min-
imum (y∗ < yl), the simplex is expanded fromx∗ towards
x∗∗ according to :

x∗∗
= γx∗

+(1−γ )x̄ (5)

The expansion coefficientγ , which is larger than 1, equals
d(x∗∗,x̄) divided by d(x∗,x̄). If y∗∗ < yl , thenxh is replaced
by x∗∗ and the process starts over. If, on the other hand,
y∗∗ > yl , then the expansion is considered to have failed and
xh is replaced byx∗ before re-initiating the process.

If the reflection ofx to x∗ results in a situation where
y∗ > yi for all i 6= h, i.e. replacingx by x∗ results in the
creation of a new maximumy∗, thenxh becomes eitherxh

or x∗, whichever has the smallest function value, andx∗∗ is
calculated as follows :

x∗∗
= βxh +(1−β)x̄. (6)
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Thecontraction coefficientβ ∈ [0,1] is the ratio of d(x∗∗,x̄)
to d(x,x̄). x∗∗ replacesxh and the algorithm proceeds to
the next iteration, unlessy∗∗ > min(yh,y

∗). In the latter case
the contraction resulted in a point that has a higher function
value than bothxh andx∗. In case of such a failed contrac-
tion all xi ’s are replaced by(xi +xl)/2 before continuing to
the next iteration. The propagation of the simplex continues
until a suitable result (expressed by the stopping criteria) is
obtained.

As can be deduced from the description above, the DSM
is a local, rather than a global search method. The outcome
of the optimization strongly depends on the initial position,
provided by the user. To enable a more global search, and to
avoid a biased outcome resulting from a user provided initial
position, multiple starting points are chosen randomly within
the boundaries of the search space. In this specific case 30
initial positions are generated. The DSM is applied to each
of these initial positions, after which the single best result is
selected as the outcome of the DSM with multiple starting
points. This method is used throughout the article, any fur-
ther mentioning of the DSM thus refers to the methodology
using 30 initial positions.

4.2 Simplex-simulated annealing

Simplex-Simulated Annealing (SIMPSA) is a hybridization
between the DSM byNelder and Mead(1965) and Simu-
lated Annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984).
The latter method, which is based on the metallurgic pro-
cess of Annealing, enforces the DSM through its abil-
ity to escape local minima and thus avoid premature con-
vergence. The annealing process was first simulated by
Metropolis et al.(1953), and was later picked up byKirk-
patrick et al.(1983), to be used as an optimization algorithm.
In the original Metropolis algorithm, an equilibrium com-
position of molecules, which yields minimum energy at a
given temperature, is sought after through successive ran-
dom displacements. Because a thermic balance is charac-
terized by a Boltzmann distribution of energy levels, tran-
sitions towards a lower, as well as towards a higher en-
ergy level are possible. This feature is thought to be the
main reason why a minimum energy level can be reached
(Aarts and Van Laarhoven, 1987).

This concept can easily be translated towards an optimiza-
tion algorithm. By replacing the energy level of the system
with the value of an objective function, the search for a min-
imum energy level is converted to a search for the minimum
of the objective function. As stated before, this leads to an
optimization scheme which is fairly consistent and, above all,
less prone to get stuck in local minima, in comparison with
gradient-based methods. An issue, however, is that Simu-
lated Annealing relies on a random walk through the param-
eter space. This shortcoming can be mitigated by the use
of the DSM to guide the search of the optimum, which al-
lows for a more structured search. This is what constitutes

SIMPSA (Press and Teukolsky, 1991; Cardoso et al., 1996).
From the point of view of the DSM, the incorporation of
the Simulated annealing framework enforces the DSM in its
global search. By allowing occasional missteps, the algo-
rithm can be steered away from local minima, increasing the
robustness of the outcome.

The probability of a misstep is controlled by the temper-
ature T of the system. A new configuration correspond-
ing to a lower energy level (i.e.1E < 0) or lower func-
tion value, is unconditionally accepted. When, on the other
hand, a solution is found which cannot be accepted as an im-
provement (i.e.1E ≥ 0), there still is a chanceP(1E) =

exp(−1E/kbT ) that it will nevertheless be accepted. Thus,
the probability of making a move in the “wrong” direction is
very high at the beginning of the cooling process, i.e. a global
search of the parameter space in conducted. As the temper-
ature decreases, the chances of making a wrong move de-
crease accordingly, approaching zero and thus the algorithm
ultimately converges towards the original DSM.

It is clear that, in order to fully exploit the potential of
SIMPSA, the initial temperature has to be chosen carefully,
satisfying the condition that almost all wrong steps should
be accepted at the start of the iteration process. Then, as the
optimization progresses, the chances of making erroneous
moves should decrease, which means the temperature will
steadily decrease according to a predefined cooling schedule.
The cooling schedule proposed byAarts and Van Laarhoven
(1985) is used :

T j+1
=

T j

1+
T j ·ln(1+δ)

3σ

(7)

with δ andσ trajectory parameters, andj the current iter-
ation. δ is the cooling rate, which controls the speed of
the cooling. Small values (<1) will result in slow conver-
gence while larger values (>1) result in convergence to in-
ferior local minima. Finally,σ is the standard deviation of
the objective function value of all configurations at a certain
temperatureT j at iteration stepj .

In order to initiate the optimization scheme an initial guess
of the parameter vector has to be supplied by the user. This
initial guess is used by SIMPSA to construct the additional
D points of the simplex needed in aD-dimensional prob-
lem. Therefore, the initial guess is perturbed in one of itsD

dimensions to create the initial simplex. Once the initial sim-
plex is formed, the iteration process can commence and new
simplex configurations are formed like in the original DSM.

The way in which SIMPSA incorporates the Simulated
Annealing methodology of making the occasional faulty
move is as follows: when propagating the simplex follow-
ing the aforementioned rules (Sect.4.1), a positive, log-
distributed variable, proportional to the control temperature
T , is added to the function value of each of the points of the
simplex. In a similar fashion, the function value of the newly
found point is diminished by a randomly chosen value. In
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this manner, a new point (e.g. created by a reflection) with
a higher objective function value than the other points of the
simplex (which would be rejected by the DSM’s rules), still
has a chance (proportional toT ) of being accepted.

4.3 Particle swarm optimization

The accomplishment of complex objectives through the use
of simple individual interactions has been an important
source of influence for a certain type of artificial intelli-
gence, collectively termedSwarm Intelligence. One of those
techniques is Particle Swarm Optimization (PSO), initially
introduced to simulate social behaviour and later adapted
to be used as an optimization method (Kennedy and Eber-
hart, 1995). PSO is based on the behaviour of herd ani-
mals, characterized by the absence of a leader in the herd.
Notwithstanding the absence of such a leader, the herd is
able to act as a collective, mainly due to local interactions
between the individuals. This allows them to attain certain
goals, such as the gathering of food and the evasion of preda-
tors. The simulation of this behaviour and the replacement
of the aspired goal by some sort of objective function, makes
this method particularly useful for solving an optimization
problem (Engelbrecht, 2006).

The PSO algorithm consists of a swarm ofN particles,
each particle representing a possible solution to the problem
at hand. The particles travel the multi-dimensional search
space, in search of the global optimum. The search is led
by a combination of information gathered by the particle it-
self, and by the community as a whole. In aD-dimensional
search space, the position and velocity of a certain particle
i, with i = 1,...,N , can be represented by aD-dimensional
vectorxi = (xi1,xi2,...,xiD) andvi = (vi1,vi2,...,viD), re-
spectively. The positionxi of a particle can be adjusted by
adding its speed vectorvi to the current position. This can
be expressed by the following equation:

xi(t +1) = xi(t)+vi(t +1) (8)

for which t and t + 1 express the current and subsequent
iteration step.

The velocity drives the optimization. It determines the
speed and direction in which the particles move, thus orches-
trating the collective search of, and convergence towards,
the global optimum. For this purpose, the aforementioned
vector is equipped with two components, each containing
specific information about the objective. (1) Thecognitive
componentreflects the personal experience of a given parti-
cle, while (2) thesocial componentbears information gath-
ered by the particle’s neighbourhood. Many different ap-
proaches exist for defining the size and shape of this neigh-
bourhood, more detailed information can be found inEngel-
brecht(2006). For the sake of simplicity, a global neighbour-
hood is selected for the current application. The social com-
ponent thus consists of information gathered by the swarm as

a whole during all preceding iterations and the current, and is
represented by the best found positionpg by the swarm. Ac-
cordingly, the cognitive component consists of information
about the objective function, obtained by a certain particlei.
It is expressed by the best previously visited positionpi of
particlei in the search space. Both components are combined
to update the velocity:

vi(t +1) = w ·vi(t)+c1 ·r1(t) · [pi(t)−xi(t)]

+c2 ·r2(t) · [pg(t)−xi(t)] , (9)

with vi(t) the velocity of particlei at iteration stept ; xi(t)

the position of thei-th particle at iteration stept ; c1 andc2
positive acceleration constants, used to scale the influence
of the cognitive and social components. The variablesr1(t)

andr2(t) are uniformly distributed between 0 and 1, and in-
troduce a stochastic component in the optimization. Finally,
w is the inertia weight. These parameters all have an im-
portant influence on the performance of the PSO algorithm,
a more detailed discussion of their significance and a method
for their selection are reported in Sect.5.2.

4.4 Shuffled complex evolution

The Shuffled Complex Evolution algorithm (SCE-UA), orig-
inally developed for the calibration of a watershed model
(Duan et al., 1994), is based on a synthesis of four con-
cepts: (1) a combination of deterministic and probabilis-
tic approaches; (2) systematic evolution of a “complex” of
points spanning the parameter space, in the direction of
global improvement; (3) competitive evolution; (4) complex
shuffling. The combination of these concepts, most of which
have already proven their merit in global optimization prob-
lems, makes the SCE-UA method robust, effective, flexi-
ble and efficient (Duan et al., 1994). The SCE-UA method
(following the description byDuan et al., 1994) can be
summarized by the following steps:

1. at the start of the optimization procedure a random sam-
ple of s points is generated in the feasible parameter
space (defined by the user). Since no prior information
about the approximate location of the global optimum is
available, a uniform distribution is used to generate this
initial sample. In each of thes points, one can calculate
the corresponding objective function value.

2. Once the objective function values of the generated
samples are known, they can be ranked according to
their objective function values, the first having the low-
est function value and the last having the highest func-
tion value (or the other way around for a maximization
problem).

3. Thes points are then partitioned intop complexes, each
containingm points. The complexes are partitioned
in such a manner that complexi, wherei = 1,2,...,p,
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contains everyp(k − 1) + i ranked point, withk =

1,2,...,m.

4. The constructed complexes are allowed to evolve ac-
cording to the competitive complex evolution (CCE) al-
gorithm (which will be discussed further below).

5. After the complexes have evolved they are shuffled.
This is accomplished by combining them into a single
sample population: sorting the population in order of
increasing objective function value and ultimately shuf-
fling the sample population intop complexes following
the procedure outlined in step 3.

6. Before continuing the iterative process convergence cri-
teria are checked. If none of them are met the pro-
cess continues, otherwise the process is aborted and the
optimum is assumed to have been found.

7. In a final step the reduction of the number of complexes
is checked. If the minimum number of complexes re-
quired in the population,pmin, is less thanp, then the
complex with the lowest ranked points is removed,p is
replaced byp−1 ands = pm, after which the process
restarts at step 4. If, however,pmin = p, the algorithm
returns to step 4.

The effectiveness of the SCE-UA method can be attributed
to several factors. First of all the use of a population avoids
biases resulting from the use of a single user-defined initial
point. On the other hand, the partitioning into different com-
plexes allows for an extensive exploitation of the parameter
space, while the shuffling of the complexes is a way of shar-
ing knowledge on a larger scale, representing the explorative
character of the algorithm.

A key component of the SCE-UA method is the CCE al-
gorithm. The CCE algorithm controls the evolution of the
points within a certain complex. Within each complex, a sub-
complex is formed. A fixed number of points is drawn from
a trapezoidal probability distribution (constructed so that the
point with the best function value has the best odds of being
selected) and are assigned to the subcomplex. The mem-
bers of the subcomplex can be regarded as parents which
are about to generate offspring. The idea of competitive-
ness, introduced in the formation of the subcomplexes (not
all points of the complex are allowed to procreate), expedites
the search towards promising regions. Offspring is generated
via the use of the DSM byNelder and Mead(1965). The
simplex is formed by the points of the subcomplex, and is
allowed to progress for a fixed number of inner loop itera-
tions (nI ), resulting in the offspring. The generation of off-
spring is repeated a number of times before the complexes
are shuffled and the process starts over. As the optimization
progresses, the entire population is expected to converge to-
wards the neighbourhood of the global optimum, provided
that the initial population size and the number of complexes
is sufficiently large.

5 Implementation of the optimization methods

For each of the optimization algorithms described, several
parameters have to be selected in order to fully exploit their
potential. The selection of those parameters will have an
influence on the effectiveness of the algorithms, so a care-
ful consideration of the available options will contribute to
the objectiveness of the overall comparison. Therefore, the
conducted selection procedure for the parameters of the op-
timization algorithms is described below. Furthermore, the
implementation entails the specification of measures to be
taken against infeasible parameter combinations, i.e. points
which lie outside the delineated boundaries. These measures
will also be described in the following sections.

All algorithms that are based on a simplex design are
stopped by the same stopping criteria. The iterative process
is called to a halt when the differences in objective func-
tion values between the points of the simplex are smaller
than a certain threshold, or when the positions of the simplex
points differ less than a given threshold. For PSO, other cri-
teria need to be specified because of the different conceptual
approach. This is further elaborated in Sect.5.2.

5.1 Simplex-simulated annealing

The performance of SIMPSA can be enhanced for a specific
problem by fine-tuning some of the parameters of the algo-
rithm. Most of the parameters have been set to their recom-
mended value (Cardoso et al., 1996), except for the cooling
rateδ (see Eq.7) and the final temperature. To avoid the al-
gorithm getting stuck in local optima, it is opted to choose
the cooling rateδ < 1, which will lead to slower but steady
convergence instead of fast convergence towards (possibly)
inferior optima. Therefore, different cooling rates are tested,
δ is varied between 0.2 and 0.9 with an increment of 0.1.

The second parameter that can be adjusted is the final tem-
perature. The final temperature is the temperature at which
SIMPSA is reduced to the original DSM. Put differently, if
the final temperature is reached, the temperature is set to zero
and the chances of making movements in the wrong direction
become equal to zero. Obviously, the higher the final temper-
ature, the faster the algorithm will come to a halt. Care must
be taken however, a final temperature that is too high will
nullify the expected advantages of using SIMPSA instead of
the DSM. Different values for the final temperature are tested
to investigate its influence on the overall calibration result.
The final temperature is tested at{1, 0.1, 0.01, 0.001, 0.0001,
0.00001}.

Figure1 shows the dependence of the objective function
value on the cooling rate and the final temperature. For
each month, calibrations were performed using these differ-
ent combinations for cooling rate and final temperature. Fig-
ure 1 displays the average result obtained over the different
months, so as to provide an image on how well the combi-
nation of cooling rate and final temperature performs for the
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Fig. 1: Dependence of the fitness on the cooling rate δ and
the final temperature of SIMPSA
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Fig. 2: Dependence of the objective function value on the
different parameters of PSO

Fig. 1. Dependence of the fitness on the cooling rateδ and the final
temperature of SIMPSA.

calibration of all months. It should be noted that for different
combinations of cooling rate and final temperature, the same
minima are obtained. To highlight this, and to increase inter-
pretability of the plots, the color scale of Fig.1 (and of plots
in the following sections) is adjusted so that only parame-
ter combinations with the lowest obtained objective function
values are attributed gray shades. Parameter combinations
that resulted in the minima are attributed a black colour.

Results confirm that for lower final temperatures better re-
sults are obtained, this is because the parameter space is ex-
plored more intensively. For the cooling rateδ, it seems that
the best results are obtained when it is set to 0.5 or 0.8. Fig-
ure1 shows that forδ = 0.5 andδ = 0.8 equally good results
are obtained for different final temperatures. We choose to
setδ equal to 0.5, to favour a slower convergence, minimiz-
ing the risk of getting stuck in a local optimum. The final
temperature is set to 1, as this will lead to a faster calibration
than would be the case if the final temperature were to be
set lower.

Besides the choice of the above-mentioned parameters, the
user has to set up rules about what to do with generated points
which are outside the parameter boundaries. One possible
way is to just place boundary violating points at the bound-
ary (Box, 1965). This, however, may lead to considerable
instabilities in the simplex which may cause it to collapse
(Cardoso et al., 1996). Another solution is to reset them at
a random position in the feasible parameter space. In this
paper, we opted for accepting infeasible points, however, the
objective function is adjusted so that infeasible points auto-
matically receive a very high objective function value, which
will force the simplex back into the feasible parameter space
(Nelder and Mead, 1965). Note that the same approach is
used for the DSM.

5.2 Particle swarm optimization

As outlined in Sect.4.3, the performance of PSO is influ-
enced by several parameters. To ensure efficient convergence
to the global optimum, care must be taken in the selection of
these parameters. For example, the population sizeN must
be chosen large enough so that the parameter space is suf-
ficiently explored, but not too large because of the obvious
increase in computational burden accompanied with such an
increase in population size. Furthermore, the cognitive pa-
rameterc1, social parameterc2 and the inertia weightw will
also have an impact on the speed and efficiency of the al-
gorithm. The relative magnitude ofc1 andc2 determine the
exploration/exploitation trade-off made by PSO. Exploration
means the particles will be able to explore the whole param-
eter space and identify promising parameter regions. They
will, however, lack in accuracy to find a satisfactory optimum
in this promising region. Exploitation, on the other hand,
means each particle will be pre-occupied with its own local
search, not interacting much with the other particles. This
way, the parameter space will not be explored sufficiently,
so inferior results might be obtained. For the PSO algorithm
to work properly, the balance of the exploration/exploitation
trade-off is of key importance. A larger social parameter
c2, for example, means that more importance is given to the
global best position, i.e. exploration is favoured. If, on the
other hand, the cognitive parameterc1 outweighs the social
parameter, much more care is given to the local exploita-
tive search by the particles. Finally, the inertia weightw

(0 < w < 1) will slow down the velocity of the particle at
a previous iteration step. Large values ofw facilitate explo-
ration of the parameter space (higher velocities will lead to
more extensive coverage of the parameter space), whilst a
smallw facilitates exploitation (Engelbrecht, 2006).

To select the parameters which will lead to the best cali-
bration results for the model under study, an exhaustive pa-
rameter search is conducted (Scheerlinck et al., 2009). Pa-
rametersc1, c2 andw are varied and monthly calibrations
are conducted for the different combinations. The population
sizeN is fixed at 30 particles (Engelbrecht, 2006). The other
parameters are varied in their convergence domain (Trelea,
2003; Jiang et al., 2007). Parametersc1 andc2 range from 0.5
to 2.5 andw ranges from 0.2 to 1 with an increment of 0.2.

Figure2 displays the results of the exhaustive parameter
search. This figure shows the mean obtained objective func-
tion value for the monthly calibrations. For the three param-
eters, a value can be chosen such that, on average, the al-
gorithm performs well for all months. Figure2a shows the
dependence of the fitness with regard to the social and the
cognitive parameters,c1 andc2, with a fixed inertia weight
(w = 0.4). The results show that, in order to obtain good cal-
ibration results, a trade-off has to be made betweenc1 andc2.
High values ofc1 in combination with low values ofc2 yield
good results and vice versa. A choice thus has to be made
by the user in favour of either a more explorative, or a more
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the final temperature of SIMPSA
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Fig. 2. Dependence of the objective function value on the number of
complexesp and the number of inner loop iterationsnI of SCE-UA.
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Table 1: Pre-defined boundaries for the parameters of the
MBL model during calibration, applicable to all months

Parameter λ κ φ µx α ν

Lower boundary 0 0 0 0 1 0
Upper boundary 0.1 20 1 15 20 20

Table 2: Expressions of used objective functions for the cal-
ibration of the Modified Bartlett-Lewis model

Name Expression

OF1 : f(x)=

k∑
i=1

(M ′i −Mi(x))
2

M
′2
i

OF2 : f(x)=

k∑
i=1

[(
Mi(x)

M ′i
−1

)2

+

(
M ′i
Mi(x)

−1

)2
]

OF3 : f(x)=

k∑
i=1

(M ′i −Mi(x))
2

Var[M ′i ]

Table 3: Descriptive statistics of the performance of differ-
ent optimization methods for the calibration of the Modified
Bartlett-Lewis Rectangular Pulses model

minimum median StDev duration (min)

DSM OF1 0.0300 0.0467 0.0247 9
OF2 0.0594 0.0922 0.0580 15
OF3 0.1908 0.2063 0.0524 9

SIMPSA OF1 0.0300 0.0300 0.4696 18
OF2 0.0594 0.0594 18.2159 100
OF3 0.1908 0.1908 0.6206 4

PSO OF1 0.0283 0.0311 0.1531 13
OF2 0.0594 0.0624 0.8168 31
OF3 0.1908 0.1908 0.2359 14

SCE-UA OF1 0.0300 0.0300 0.1150 14
OF2 0.0594 0.0594 0.3552 24
OF3 0.1908 0.1908 0.3433 11

Table 4: Mean ranks of the different optimizaton method’s
performances

DSM SIMPSA PSO SCE-UA

Mean rank 2391 2085 2236 1929

Table 5: p-values for pairwise Wilcoxon rank sum tests be-
tween different optimization methods

DSM SIMPSA PSO SCE-UA

DSM 1 1.14·10−08 0.0043 9.20·10−18

SIMPSA 1 0.0059 0.0031
PSO 1 1.08·10−08

SCE-UA 1

Table 6: Final parameters resulting from calibration with
OF1 found by each of the optimization methods, except for
the month of April for which the displayed minimum was
only found by PSO.

λ κ φ µx α ν fitness

Jan 0.0324 0.3810 0.0593 0.9609 3.2957 0.9053 0.0345
Feb 0.0272 0.2973 0.0485 0.9483 3.4148 1.0634 0.0389
Mar 0.0327 0.5920 0.0327 1.4127 2.7201 0.1541 0.0356
Apr 0.0297 0.2918 0.0333 1.6022 3.0000 0.3353 0.0281
May 0.0257 0.1122 0.0296 3.3370 3.1148 0.4208 0.0393
Jun 0.0284 0.2003 0.0326 4.9128 3.0996 0.1899 0.0146
Jul 0.0275 0.0896 0.0268 7.4132 3.3296 0.2781 0.0134
Aug 0.0288 0.1727 0.0294 6.8543 2.8370 0.1282 0.0170
Sep 0.0266 0.1208 0.0226 3.9448 2.7106 0.2233 0.0279
Oct 0.0299 0.3523 0.0323 2.1634 2.4490 0.1775 0.0208
Nov 0.0306 0.2994 0.0490 1.1666 2.8800 0.7642 0.0365
Dec 0.0286 0.2266 0.0448 1.0846 3.1943 1.1887 0.0336

Fig. 3. Distributions of estimation error for each parameter under
different optimization methods and objective functions.

exploitative search. In this case,c2 is set at 2.5, a search with
an explorative character is preferred.

Figure2b shows the results of the calibrations for different
combinations ofw andc1 whenc2 is fixed at 2.5. Results
show that good results are obtained when the inertia weight
w is kept relatively small, whilst the choice ofc1 does not
seem to have a profound effect on the result when using small
values forw. A minimum could, however, be detected for
c1 = 1.5 and consequently this value is chosen forc1.

Finally, Fig. 2c shows the results for different combina-
tions of w and c2 with c1 fixed at 1.5. This figure shows
that there is a negative correlation between both parame-
ters. Higher values ofc2 in combination with lower values
of w lead to promising results, and vice versa. Because the
valuec2 was previously set at 2.5, the value ofw is set at
0.4. The figure shows that for this combination good results
are obtained.

In addition to the selection of the PSO parameters, sev-
eral other settings have to be specified. When a population
member attempts to cross parameter boundaries, that bound-
ary acts as a perfect reflector. In other words, the direction
of displacement of the particle is inverted in order to keep it
inside the parameter boundaries.

The choice of a stopping criterion will also affect the ob-
tained calibration results. In addition to the already men-
tioned general stopping criteria several other approaches can
be utilized for PSO. In the current paper the search procedure
is stopped if the global best solutionpg does not change dur-
ing 30 subsequent iterations. This indicates that no better
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Fig. 4: Distributions of estimation error for each parameter under different optimization methods and objective functions.

Fig. 5: Distributions of estimation error for each parameter, grouped according to the used objective function.

Fig. 4. Distributions of estimation error for each parameter, grouped according to the used objective function.

solutions are being found. This criterion is preferred against
a convergence criterion, i.e. a certain fraction of the popu-
lation has to converge to the same solution in order for the
algorithm to stop, because, from personal experience, it has
become clear that the latter is quite time consuming.

5.3 Shuffled complex evolution

The parameters of the SCE-UA algorithm have been set to
their recommended values (Duan et al., 1994), except for the
number of complexesp and the number of inner loop itera-
tionsnI which are evaluated more closely. The value ofp is
recommended to lie between 2 and 20. Thereforep is evalu-
ated at different values within this interval. It is expected that
the use of more complexes will lead to better results, but at
a higher computational cost. The number of inner loop iter-
ations will also have an influence on the results. The higher
the number of inner loop iterations, the better the offspring
that is being generated (the simplex will be able to progress
further towards an optimum), again, bearing in mind the aug-
mented computational burden. The parameter search thus
seeks to find a good balance between results and efficiency.
The procedure is the same as with PSO and SIMPSA. For ev-
ery combination of SCE-UA parameters calibrations are con-
ducted for each month. Those results are averaged and dis-
played in Fig.3. These results confirm that a higher number
of complexes leads to better results, as does a higher num-

ber of inner loop iterations. The number of complexesp,
however, is best set at 5, since for this value good results are
obtained throughout and this is less computationally expen-
sive than 10 or 20 complexes. The value ofnI is chosen as
20. It can be seen in Fig.3 that for this value better results
are obtained than is the case whennI would be equal to 10 or
30, and the results are equal to those obtained whennI > 30,
howevernI = 20 is computationally more efficient.

6 Comparison of optimization methods

After successfully implementing the presented optimization
methods, the calibration of the MBL model can be per-
formed. The performance of the optimization methods is
evaluated in two steps. First, a known parameter set is used
to perform several simulations to which the MBL model will
be fitted using the different optimization methods and ob-
jective functions. This way, the optimization methods and
the objective functions’ ability to retrieve a known parame-
ter set will be assessed. Second, the MBL model is fitted to
the observations at Uccle for each optimization method and
objective function.
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Fig. 4: Distributions of estimation error for each parameter under different optimization methods and objective functions.

Fig. 5: Distributions of estimation error for each parameter, grouped according to the used objective function.

Fig. 5. Distributions of estimation error for each parameter, grouped
according to the used optimization method.

6.1 Retrieval of known parameters

To assess the ability of the optimization methods the objec-
tive functions to retrieve a known parameter set, a parameter
set was taken fromVerhoest et al.(1997) to perform a total
of 400 simulations with the MBL model. The length of each
simulation is equal to 105 yr. Afterwards, the MBL model
was fitted to these simulations. For each objective function,
and for each optimization method, 400 calibrations were car-
ried out, i.e. only one repetition of the calibration for each
simulated data set. Ideally, each of these calibrations should
result in the retrieval of the known parameter set. However,
since this is very unlikely, the distribution of estimation er-
rors will shed light on the algorithms and objective functions’
performance in their attempt to retrieve known parameters.

Figure 4 visualises the distribution of the estimation er-
rors on the six MBL model parameters for the month of Jan-
uary. It can be seen that SIMPSA, PSO, and SCE-UA per-
form better in identifying the true parameters in comparison
with the DSM with multiple starting points. Significant dif-
ferences between the former optimization methods, or be-
tween the objective functions, are not clearly visible. To fa-
cilitate this, the calibration results are grouped according to
the objective function with which they were obtained, regard-
less of the used optimization method (see Fig.5). Similarly,
Fig.6 displays the distribution of the estimation error in func-
tion of the used optimization method, regardless of the used
objective function.

Figure5 indicates that the use of OF3 might lead to bet-
ter identifiability (this is especially visible forα), however
differences are very small.

As for the ability of the optimization methods to identify
the true parameters, Fig.6 confirms the DSM’s inability to
do so. SIMPSA seems to lead to very large estimation errors

Table 3. Descriptive statistics of the performance of different opti-
mization methods for the calibration of the Modified Bartlett-Lewis
Rectangular Pulses model.

minimum median StDev duration (min)

DSM OF1 0.0300 0.0467 0.0247 9
OF2 0.0594 0.0922 0.0580 15
OF3 0.1908 0.2063 0.0524 9

SIMPSA OF1 0.0300 0.0300 0.4696 18
OF2 0.0594 0.0594 18.2159 100
OF3 0.1908 0.1908 0.6206 4

PSO OF1 0.0283 0.0311 0.1531 13
OF2 0.0594 0.0624 0.8168 31
OF3 0.1908 0.1908 0.2359 14

SCE-UA OF1 0.0300 0.0300 0.1150 14
OF2 0.0594 0.0594 0.3552 24
OF3 0.1908 0.1908 0.3433 11

on several occasions. PSO seems to be the most consistent in
identifying the true parameter, however, its results are com-
parable to those of SCE-UA, apart from a few outliers.

6.2 Fit to Uccle data

To evaluate the performance of the different optimization
methods and objective functions in a realistic situation, 30
repetitions of the calibration are performed for each opti-
mization method, each objective function, and each month.
The 30 repetitions vary in that for each of them, the algo-
rithm starts from a different initial situation. For the DSM,
PSO, and SCE-UA, the initial population is chosen randomly
within the preset parameter boundaries according to a uni-
form distribution. Similarly, the initial simplex for SIMPSA
is created around a randomly chosen point in parameter
space, also sampled from a uniform distribution.

In order to compare the performance of the used optimiza-
tion methods, several approaches can be adopted. Here, we
will first summarize the obtained results by a set of descrip-
tive statistics. This will give a first indication of how well
certain methods perform compared with the others. Table3
displays the aforementioned descriptive statistics for the dif-
ferent objective functions, fitted by the different optimiza-
tion methods. The minimum and median values and the
standard deviation (StDev) of the objective function values
obtained after 30 repetitions, displayed in Table3 are cal-
culated by, first, determining those statistics for each month
separately and, second, taking the mean over 12 months. The
results are displayed in such a way to enhance interpreta-
tion without loss of generality. The duration of the calibra-
tion is the mean duration of the total calibration procedure,
i.e. taking into account all of the 12 months, on a PC with
an Intel®Core™i7-2600 CPU at 3.40 GHZ. All software is
implemented in Matlab®.
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Fig. 6: Distributions of estimation error for each parameter, grouped according to the used optimization method.
Fig. 6. Box plots comparing calibration results of DSM, SIMPSA,
PSO and SCE-UA. All months and repetitions are lumped together,
no averages have been taken.

Several observations can be made on the basis of Table3.
First, it seems that the obtained minima for the different ob-
jective functions are largely the same. This means that, when
the optimization is repeated at least 30 times, each of the
optimization methods is able to find the same minima. Fur-
ther inspection of these minima indicates they result from the
same minimizers, i.e. the same parameter combinations are
being found by the different optimization methods. This sug-
gests that the parameters are highly identifiable, seeing that
the same minima are being found by independent optimiza-
tion methods. This evidence is corroborated by the fact that
the median values, at least for SIMPSA and SCE-UA, are
equal to the minima, i.e. the same points are being withheld
as the minimum in the majority of the calibration runs. As
for DSM and PSO, the median values are fairly close to the
minimum. Thus, when it comes to finding a suitable mini-
mum, DSM, SIMPSA, PSO and SCE-UA are almost inter-
changeable. All four are able to locate the same minima on
multiple occasions. Note that PSO is able to find a minimum
with a lower objective function value for OF1, in compar-
ison with SIMPSA and SCE-UA. Yet the value reported in
Table3 is the mean value of the minima of the 12 different
months. Further investigation of the data uncovers that for
the month of April, PSO attained a better solution, however,
the differences in the parameter values are rather small, so
it is doubtful that it will lead to significant differences in the
simulations.

Second, the robustness of each optimization method can
be judged in several ways. A first indicator is the standard
deviation of the objective function values of the found min-
ima after 30 repetitions. Clearly, DSM is far more robust
(i.e. by an order of magnitude) than the other optimization
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Table 7: Final parameters resulting from calibration with
OF2 found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Mar 0.0323 0.6014 0.0324 1.4060 2.7365 0.1547 0.0695
Apr 0.0295 0.2955 0.0336 1.6068 3.0217 0.3402 0.0932
May 0.0257 0.1109 0.0294 3.3918 3.1143 0.4169 0.0792
Jun 0.0282 0.2013 0.0326 4.9003 3.1173 0.1927 0.0288
Jul 0.0273 0.0895 0.0269 7.3857 3.3546 0.2849 0.0264
Aug 0.0286 0.1749 0.0295 6.8458 2.8455 0.1286 0.0339
Sep 0.0265 0.1204 0.0229 3.9312 2.7200 0.2294 0.0562
Oct 0.0297 0.3551 0.0329 2.1488 2.4548 0.1820 0.0411
Nov 0.0309 0.3021 0.0483 1.1964 2.8494 0.7105 0.0724
Dec 0.0289 0.2280 0.0444 1.1090 3.1501 1.1111 0.0670
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OF2 found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Mar 0.0323 0.6014 0.0324 1.4060 2.7365 0.1547 0.0695
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Fig. 7. Empirical Cumulative distribution function of the mean
10 min rainfall depth in January as simulated with OF1 vs. observed
value.

methods. When comparing the remaining three methods, it
can be seen that PSO and SCE-UA have resulted in roughly
the same standard deviations, whereas SIMPSA clearly had
problems in minimizing OF2. It shows a much higher stan-
dard deviation for OF2, and moreover, the average duration
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Table 4. Mean ranks of the different optimizaton method’s perfor-
mances.

DSM SIMPSA PSO SCE-UA

Mean rank 2391 2085 2236 1929

of the calibration is 3 to 4 times higher than for DSM, PSO
and SCE-UA, of which DSM proves to be slightly faster
in obtaining results. This may lead to the conclusion that
SIMPSA is not as flexible as PSO or SCE-UA.

DSM, PSO and SCE-UA also display longer calibration
runtimes and a slightly elevated standard deviation for OF2,
but not of the same magnitude as SIMPSA. As the former are
more flexible, they are more adaptable to changes in the ob-
jective function, which of course is an advantage because the
cumbersome optimization of the parameters does not have to
be repeated in order to obtain satisfactory results.

To further assess the spread of the results obtained by the
different optimization methods, a box plot is created. Fig-
ure7a, b and c show comparative box plots for OF1, OF2 and
OF3, respectively. To enhance the interpretability of these
plots, box plot 7b is clipped. A dotted line marks the limit
if any points are outside it. The points outside the limit are
plotted in a compression region delineated by two solid lines.
The density of the point in the compression region gives an
indication of the number of points outside the limit.

For OF1 and OF2, it is clear that DSM and SCE-UA ex-
hibit the best performances, followed by PSO and SIMPSA.
Figure7a and b clearly show that the outcome of a calibra-
tion with the DSM or SCE-UA is more robust than with PSO
and SIMPSA. However, the DSM is slightly less accurate
because the mean of the obtained calibration results does not
coincide with the minimum, which is the case for SCE-UA.
Conversely, SCE-UA has more outliers, suggesting that it is
slightly less robust. Thus, DSM is able to locate near-optimal
solutions in a very robust manner, whereas SCE-UA is able to
locate more accurate results in a slightly less robust manner.
Finally, the performances of PSO and SIMPSA combined
with both OF1 and OF2 seem to be more alike, however, ob-
jective function values obtained by SIMPSA are spread more
than those obtained by PSO, indicating a less robust result.

For OF3 (see Fig.7c), DSM clearly outcompetes the other
optimization methods. It is more accurate, more robust,
faster (see Table3) and more user friendly. Differences be-
tween SIMPA, PSO and SCE-UA are less apparent. Sub-
tle differences exist, however. PSO seems to be more robust
than SCE-UA and SIMPSA respectively, and again, SIMPSA
exhibits the least desirable results (albeit the differences are
minute, and therefore may be negligable). Since, based on
this last plot, no obvious distinction can be made between
PSO and SCE-UA, a more objective measure is needed to
determine whether or not there are significant differences in
the results.

Table 5. p-values for pairwise Wilcoxon rank sum tests between
different optimization methods.

DSM SIMPSA PSO SCE-UA

DSM 1 1.14× 10−08 0.0043 9.20× 10−18

SIMPSA 1 0.0059 0.0031
PSO 1 1.08× 10−08

SCE-UA 1

In order to compare the performance of the different op-
timization methods objectively, a Kruskal-Wallis test is per-
formed (Kruskal and Wallis, 1952). Under the null hypoth-
esis, the populations from which the samples are generated
have the same median value. If the null hypothesis is re-
jected it can be concluded that the populations show signif-
icant differences. Post-hoc analysis has to be performed to
determine which of the methods differ significantly. For this,
a pairwise Wilcoxon rank sum test (Gibbons, 1985) is per-
formed. The null hypothesis of the Wilcoxon rank sum test
states that the compared samples are independent samples
from identical continuous distributions with identical medi-
ans (Gibbons, 1985). These statistical tests are performed for
all the obtained data, i.e. the results for the different months
and the different objective functions are gathered and then
tested. This approach is chosen because it allows to define
which of the optimization methods displays the overall best
performance.

It can be expected that the Kruskal-Wallis test will find that
the different optimization methods differ significantly. This
assumption is confirmed. Ap-value of 1.3× 10−17 is ob-
tained when conducting the Kruskal-Wallis test. The mean
ranks are shown in Table4. At a 5 % significance level,
there is a significant difference between the populations’ me-
dians. The mean ranks lead to believe that SCE-UA performs
best, followed by SIMPSA, PSO and the DSM. The fact that
SIMPSA performs second best and that DSM has the lowest
mean rank is quite surprising. Table3, as well as the box
plots lead to believe that both DSM and PSO performed bet-
ter than SIMPSA. This shows the importance of using multi-
ple evaluation criteria. The standard deviatons (listed in Ta-
ble3) and the box plots (Fig.7) are both seemingly sensitive
to outliers. The use of a more robust statistic (mean ranks)
unveils this sensitivity.

To determine which of these differences are significant,
pairwise Wilcoxon rank sum tests are performed. The result-
ing p-values are shown in Table5. Note that, for the inter-
pretation of thesep-values, a Bonferroni correction must be
applied, i.e. results are significant at anα% significance level
if the p-value of the tested hypothesis is smaller thanα/n%
(with n the number of tested hypotheses). In this case, the
null hypothesis of the pairwaise Wilcoxon rank sum test can
be rejected at a 5 % significance level if thep-value of the
hypothesis is smaller than 0.05/6= 0.0083. Consequently,
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Table 6. Final parameters resulting from calibration with OF1
found by each of the optimization methods, except for the month
of April for which the displayed minimum was only found by PSO.

λ κ φ µx α ν fitness

Jan 0.0324 0.3810 0.0593 0.9609 3.2957 0.9053 0.0345
Feb 0.0272 0.2973 0.0485 0.9483 3.4148 1.0634 0.0389
Mar 0.0327 0.5920 0.0327 1.4127 2.7201 0.1541 0.0356
Apr 0.0297 0.2918 0.0333 1.6022 3.0000 0.3353 0.0281
May 0.0257 0.1122 0.0296 3.3370 3.1148 0.4208 0.0393
Jun 0.0284 0.2003 0.0326 4.9128 3.0996 0.1899 0.0146
Jul 0.0275 0.0896 0.0268 7.4132 3.3296 0.2781 0.0134
Aug 0.0288 0.1727 0.0294 6.8543 2.8370 0.1282 0.0170
Sep 0.0266 0.1208 0.0226 3.9448 2.7106 0.2233 0.0279
Oct 0.0299 0.3523 0.0323 2.1634 2.4490 0.1775 0.0208
Nov 0.0306 0.2994 0.0490 1.1666 2.8800 0.7642 0.0365
Dec 0.0286 0.2266 0.0448 1.0846 3.1943 1.1887 0.0336

it can be concluded that, at a 5 % significance level, all the
compared optimization methods are found to differ signifi-
cantly in their median values. So, it is appropriate to con-
clude that SCE-UA is the best method for the calibration of
the MBL model, compared with the other tested methods.
The fact that the duration of the calibration is reasonable and
quite robust contributes to the validity of this conclusion. Ac-
cording to these statistical tests SIMPSA takes second place
and is followed by PSO and DSM. However, from a prac-
tical point of view, these results can be disputed. The DSM
method clearly shows to be more robust, faster and more user
friendly. Besides, it is not clear whether the subtle differ-
ences in the calibration results between the different meth-
ods would result in significant different modelling outcomes.
So, pros and cons must be weighed before making a choice
of optimization method, bearing in mind the aforementioned
results.

7 Comparison of objective functions

In order to compare the performance of the models, fitted
with the respective objective functions, it seems appropriate
to incorporate several different performance measures to as-
sess the impact of the configuration of the objective func-
tion on various aspects of the fitted model. The parame-
ter sets that provided the best fits in Sect.6 are used here
to enable the comparison. These parameter sets are given
in Tables6 to 8.

The objective function itself, focuses on the expected mo-
ments of the rainfall time series and its wet-dry properties.
However, certain properties of the generated rainfall time se-
ries cannot be expressed by analytical expressions, extreme
values, for example, and have to be evaluated through simu-
lation. As a consequence, for each of the three fitted models,
an ensemble of 50 simulations is carried out, each of which is
105 yr long. For each moment or property of the rainfall time
series, a list of 50 values is obtained, which can each be inter-

Table 7. Final parameters resulting from calibration with OF2
found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Mar 0.0323 0.6014 0.0324 1.4060 2.7365 0.1547 0.0695
Apr 0.0295 0.2955 0.0336 1.6068 3.0217 0.3402 0.0932
May 0.0257 0.1109 0.0294 3.3918 3.1143 0.4169 0.0792
Jun 0.0282 0.2013 0.0326 4.9003 3.1173 0.1927 0.0288
Jul 0.0273 0.0895 0.0269 7.3857 3.3546 0.2849 0.0264
Aug 0.0286 0.1749 0.0295 6.8458 2.8455 0.1286 0.0339
Sep 0.0265 0.1204 0.0229 3.9312 2.7200 0.2294 0.0562
Oct 0.0297 0.3551 0.0329 2.1488 2.4548 0.1820 0.0411
Nov 0.0309 0.3021 0.0483 1.1964 2.8494 0.7105 0.0724
Dec 0.0289 0.2280 0.0444 1.1090 3.1501 1.1111 0.0670

preted as the probability distributions of the respective mo-
ments or properties when rainfall time series are simulated.
To exemplify this, Fig.8 shows the Empirical Cumulative
Distribution Function (ECDF) of the mean 10 min rainfall
depth in the month of January. It would be preferable that
the observed value at Uccle coincides with the obtained me-
dian value, which is obviously not the case. Figure9 shows
the ECDF of the lag-1 autocovariance of the data at an ag-
gregation level of 12 h, for the month of March. This figure
shows a much more satisfying fit to the observations. Note
that these ECDFs were obtained through simulation using the
best obtained parameter set after 30 repetitions of the cali-
bration with OF1. For each of the used objective functions,
similar figures for different moments and wet-dry proper-
ties could be made, this at different aggregation levels. This
would, however, lead to a vast number of figures, render-
ing comparison impossible. Therefore, the median values of
the simulated moments and wet-dry properties are compared
with the observed rainfall time series.

Figure 10, for example, shows the mean 10 min rainfall
generated by the different fitted models with regard to the
observations. It can be seen that none of them provides a per-
fect fit to the observations. However, OF1 and OF2 seem to
largely coincide whereas OF3 tends to deviate more severely
form the observed mean values. Similar plots can be made
for the other moments of the observed and simulated rain-
fall time series. These plots can provide a general idea of
the orders of magnitude of the deviations from the obser-
vations, but they will not allow to distinguish between the
suggested objective functions, for their interpretation is far
too subjective.

More objective goodness of fit measures of the rainfall
time series’ moments are given in Table9. Thus, Table9
displays the mean percentage error (MPE), mean absolute
percentage error (MAPE) and maximum percentage error
(MAXPE) of the simulated moments and ZDP in compari-
son with the observed values. The MPE is particularly useful
in uncovering the presence of a significant bias in the model
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Fig. 7: Box plots comparing calibration results of DSM,
SIMPSA, PSO and SCE-UA. All months and repetitions are
lumped together, no averages have been taken.
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mean 10 minute rainfall depth in January as simulated with
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Fig. 9: Empirical Cumulative distribution function of the lag-
1 autocovariance of the 12 hourly-rainfall depth in March as
simulated with OF1 vs. observed value

Table 7: Final parameters resulting from calibration with
OF2 found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Mar 0.0323 0.6014 0.0324 1.4060 2.7365 0.1547 0.0695
Apr 0.0295 0.2955 0.0336 1.6068 3.0217 0.3402 0.0932
May 0.0257 0.1109 0.0294 3.3918 3.1143 0.4169 0.0792
Jun 0.0282 0.2013 0.0326 4.9003 3.1173 0.1927 0.0288
Jul 0.0273 0.0895 0.0269 7.3857 3.3546 0.2849 0.0264
Aug 0.0286 0.1749 0.0295 6.8458 2.8455 0.1286 0.0339
Sep 0.0265 0.1204 0.0229 3.9312 2.7200 0.2294 0.0562
Oct 0.0297 0.3551 0.0329 2.1488 2.4548 0.1820 0.0411
Nov 0.0309 0.3021 0.0483 1.1964 2.8494 0.7105 0.0724
Dec 0.0289 0.2280 0.0444 1.1090 3.1501 1.1111 0.0670

Fig. 8. Empirical Cumulative distribution function of the lag-1 au-
tocovariance of the 12 hourly-rainfall depth in March as simulated
with OF1 vs. observed value.
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Table 7: Final parameters resulting from calibration with
OF2 found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0327 0.3883 0.0582 0.9842 3.2394 0.8253 0.0674
Feb 0.0276 0.2990 0.0476 0.9755 3.3447 0.9702 0.0772
Mar 0.0323 0.6014 0.0324 1.4060 2.7365 0.1547 0.0695
Apr 0.0295 0.2955 0.0336 1.6068 3.0217 0.3402 0.0932
May 0.0257 0.1109 0.0294 3.3918 3.1143 0.4169 0.0792
Jun 0.0282 0.2013 0.0326 4.9003 3.1173 0.1927 0.0288
Jul 0.0273 0.0895 0.0269 7.3857 3.3546 0.2849 0.0264
Aug 0.0286 0.1749 0.0295 6.8458 2.8455 0.1286 0.0339
Sep 0.0265 0.1204 0.0229 3.9312 2.7200 0.2294 0.0562
Oct 0.0297 0.3551 0.0329 2.1488 2.4548 0.1820 0.0411
Nov 0.0309 0.3021 0.0483 1.1964 2.8494 0.7105 0.0724
Dec 0.0289 0.2280 0.0444 1.1090 3.1501 1.1111 0.0670

Fig. 9. Mean 10 min rainfall, average simulation result vs. observa-
tions.

fit. As outlined in Sect.3, OF2 was especially designed to re-
duce the overall bias in the fitting of the BL models. Judging
from Table9, this attempt to reduce overall bias in the model
fit had an adverse effect. The fitting of the MBL model with
OF2 seems to lead to a bigger underestimation of the mo-
ments of the rainfall time series (a negative value corresponds
to underestimation by model), however it can be argued that
the difference is rather negligable.

Judging solely by the MPE, one might find it reasonable
to conclude that calibration using OF3 leads to the best over-
all model fit. The MPE, however, reveals very little about
the distribution nor the magnitude of the deviations of the

Table 8. Final parameters resulting from calibration with OF3
found by each of the optimization methods.

λ κ φ µx α ν fitness

Jan 0.0314 0.2385 0.0463 1.2099 2.8871 0.6913 0.2979
Feb 0.0284 0.2422 0.0448 1.2191 2.8032 0.6100 0.2523
Mar 0.0271 0.2707 0.0474 1.3024 2.9791 0.6322 0.2471
Apr 0.0267 0.2139 0.0338 1.6379 3.0981 0.4922 0.2482
May 0.0241 0.1455 0.0336 2.7151 3.6000 0.6365 0.0989
Jun 0.0242 0.1495 0.0340 3.0595 4.2021 0.7554 0.1277
Jul 0.0248 0.1133 0.0294 4.3469 4.2751 0.7048 0.3039
Aug 0.0260 0.1292 0.0235 5.1469 3.0247 0.2313 0.1574
Sep 0.0240 0.1356 0.0276 2.9538 3.1375 0.4571 0.0637
Oct 0.0259 0.2061 0.0329 1.9844 2.5324 0.3799 0.0706
Nov 0.0300 0.2140 0.0406 1.4124 2.6273 0.5974 0.2119
Dec 0.0315 0.2254 0.0463 1.3147 2.7612 0.6977 0.2100

Table 9. Model performance measures for the MBL model fitted
with different objective functions.

MPE MAPE MAXPE

OF1 −4 % 12 % −94 %
OF2 −5 % 12 % −98 %
OF3 −2 % 14 % −83 %

observed values. The only valid conclusion would be that
OF3 shows relatively little bias in comparison with the fitting
by the other two objective functions. In order to assess the
quality of the overall goodness of fit of the different fits, the
MAPE is best used. This shows that both OF1 and OF2, al-
though more biased, show an overall better fit to the observed
moments than OF3. The MAXPE, finally, reveals that OF3
results in a lower maximum percentual error, when compared
with OF1 and OF2. So, judging by these overall model per-
formance measures, it seems that the use of OF1 and OF2
leads to, more or less, the same results, albeit that OF2 gen-
erates a slightly higher bias than the generated rainfall time
series fitted with OF1. Taking this information into account,
and, looking back at Table3, which shows that the calibration
process tends to be a bit more time consuming when OF2 is
used, it is reasonable to conclude that OF1 could be a good
objective function for calibrating the MBL model.

Based on these criteria, the results with OF3 are promis-
ing, a smaller bias is achieved and the maximum error is
smaller. However, the MAPE suggests an overall larger de-
viation from the observations than when the model is fitted
with OF1 or OF2. To further investigate this, Figs.11 and
12 show the MAPE and MPE, respectively, for a set of mo-
ments and the ZDP. Figure11clearly reveals the fact that the
simulation results obtained by fitting with OF3 almost sys-
tematically display a larger deviation from the observations
than when the model is fitted with the other configurations
of the objective function, which was already concluded on
the basis of Table9. Interestingly however, OF3 seems to be
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Mar 0.0271 0.2707 0.0474 1.3024 2.9791 0.6322 0.2471
Apr 0.0267 0.2139 0.0338 1.6379 3.0981 0.4922 0.2482
May 0.0241 0.1455 0.0336 2.7151 3.6000 0.6365 0.0989
Jun 0.0242 0.1495 0.0340 3.0595 4.2021 0.7554 0.1277
Jul 0.0248 0.1133 0.0294 4.3469 4.2751 0.7048 0.3039
Aug 0.0260 0.1292 0.0235 5.1469 3.0247 0.2313 0.1574
Sep 0.0240 0.1356 0.0276 2.9538 3.1375 0.4571 0.0637
Oct 0.0259 0.2061 0.0329 1.9844 2.5324 0.3799 0.0706
Nov 0.0300 0.2140 0.0406 1.4124 2.6273 0.5974 0.2119
Dec 0.0315 0.2254 0.0463 1.3147 2.7612 0.6977 0.2100

−10

−5

0

5

10

15

20

25

M
ea

n 
pe

rc
en

ta
ge

 e
rr

or
 (

%
)

A
vg V
ar

C
ov

C
or

r(
1)

C
or

r(
2)

C
or

r(
3)

Z
D

P

S
ke

w

 

 

OF1
OF2
OF3

Fig. 12: Mean Percentage Error of different fits, averaged
over different months and aggregation levels (10 min, 30
min, 1 h, 6 h, 12 h and 24 h)

Table 9: Model performance measures for the MBL model
fitted with different objective functions

MPE MAPE MAXPE

OF1 -4% 12% -94%
OF2 -5% 12% -98%
OF3 -2% 14% -83%

Fig. 10. Mean Absolute Percentage Error of different fits, averaged
over different months and aggregation levels (10 min, 30 min, 1 h,
6 h, 12 h and 24 h).

more capable in producing more satisfying wet-dry proba-
bilities (ZDP) in comparison with its contenders. The reason
why the overall bias is smaller with OF3 is explained by com-
bining Figs.11 and12. It seems the overall deviation of the
OF3 is larger, but, more balanced between under- and over-
estimation, especially for lag-2 and lag-3 autocorrelation and
skewness of the rainfall time series. These results make it
abundantly clear that a straightforward conclusion in favour
of one of three objective function configurations is very hard
to make. From a practical point of view, however, it seems
reasonable to prefer OF1 over OF2, as was already suggested
earlier.

The impact of the used objective functions on the repro-
duction of extreme rainfall events will not be discussed here.
The MBL model suffers from several flaws which need to
be resolved first. The MBL model systematically underes-
timates extreme rainfall events (Verhoest et al., 1997) and
occasionally creates unrealistic rainfall cells (Verhoest et al.,
2010). The first issue might be resolved by introducing the
third order moment into the objective function (Cowpertwait,
1998). The second issue might be resolved by truncating the
distribution from which average cell durations are drawn (i.e.
a truncated MBL model) (Verhoest et al., 2010). However,
these approaches need further investigation and are out of
the scope of this paper.

8 Conclusions

In this paper, further refinement of the calibration proce-
dure of Bartlett-Lewis type stochastic point rainfall mod-
els was attempted. For this purpose, the Modified Bartlett
Lewis (MBL) model was used. These results may however
be applicable to other variants of the Bartlett-Lewis model
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Table 9: Model performance measures for the MBL model
fitted with different objective functions

MPE MAPE MAXPE

OF1 -4% 12% -94%
OF2 -5% 12% -98%
OF3 -2% 14% -83%

Fig. 11. Mean Percentage Error of different fits, averaged over dif-
ferent months and aggregation levels (10 min, 30 min, 1 h, 6 h, 12 h
and 24 h).
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Table 9: Model performance measures for the MBL model
fitted with different objective functions

MPE MAPE MAXPE

OF1 -4% 12% -94%
OF2 -5% 12% -98%
OF3 -2% 14% -83%

Fig. 12. Mean Percentage Error of different fits, averaged over dif-
ferent months and aggregation levels (10 min, 30 min, 1 h, 6 h, 12
h and 24 h).

and the Neyman-scott type models, due to strong similarities
between them.

A first issue that was addressed is the fitting procedure it-
self. The fitting procedure is characterized by the presence
of multiple local minima, making it hard for conventional
“local search” methods to reach satisfactory results in a ro-
bust manner. Therefore, four different optimization meth-
ods were tested and compared with each other. To ensure
a fair comparison, the parameters of the respective meth-
ods were first fine-tuned for this specific minimization prob-
lem, after which the actual calibration of the MBL model
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was performed. The performance was then judged by the
accuracy, robustness and time consumption of the optimiza-
tion methods. The following algorithms were used: the DSM
by Nelder and Mead(1965), Simplex-Simulated Annealing
(SIMPSA) (Cardoso et al., 1996), Particle Swarm Optimiza-
tion (PSO) (Shi and Eberhart, 1998), and Shuffled Complex
Evolution (SCE-UA) (Duan et al., 1994).

Secondly, the choice of weights in the objective func-
tion is addressed. In many empirical studies, the choice of
the weights of the used properties in the objective function
is made rather subjectively. As different approaches exist,
the impact of the approaches on the results after calibra-
tion is therefore investigated. Three objective functions were
used, one classically used objective function (OF1), accord-
ing toVerhoest et al.(1997), an implicitly weighed objective
function (OF2) (Cowpertwait et al., 2007) and one weighted
by the empirical variances of the included properties (OF3)
(Chandler, 2004). Simulated moments obtained after fitting
with each of these three objective functions were compared
with each other.

The fine-tuning of the parameters of the optimization
methods generally revealed that different parameter combi-
nations lead to the same results. Therefore, in future re-
search, when calibrating BL type models, one can rely on
the feasible parameter ranges presented in this paper. When
however, one would attempt to repeat this search for a differ-
ent optimization problem, it should be noted that the search
for the optimal parameters of the optimization methods re-
quires most efforts for PSO. For SCE-UA and SIMPSA, the
exhaustive parameter search is less time consuming and more
straightforward.

Analysis of the optimization methods’ abilities to retrieve
known parameters reveals that the estimation errors obtained
by PSO, SIMPSA, and SCE-UA are comparable. Estima-
tion errors obtained by DSM are, on the other hand, sys-
tematically larger. Similarly, the analysis is used to deter-
mine whether the different objective functions lead to higher
identifiability of the parameters. However, differences in
the objective functions’ abilities to identify a known param-
eter set are negligable and thus not convincing to make a
discrimination between them.

Descriptive statistics of repeated calibration runs show that
all of the tested optimization methods were able to find the
same minima. The final result could thus not be used as a
basis for discrimination. Judging by the median objective
function value and the standard deviation, the robustness of
the methods was assessed. SIMPSA lacked in robustness for
OF2, which is also reflected in the poor computational ef-
ficiency. This leads to the conclusion that SIMPSA might
not be the best method to use for the calibration of the MBL
model. On the other hand, DSM exhibited much more ro-
bust behaviour in comparison with SCE-UA and PSO. To
distinguish between DSM, PSO and SCE-UA, according to
the accuracy of the performance, a pairwise Wilcoxon rank
sum test demonstrated that the calibration results obtained

by each of the three methods differ significantly. SCE-UA is
most accurate, followed by PSO and DSM, however, DSM
is faster, more robust and more practical in use. Thus no
straightforward conclusion can be made based on these re-
sults. However, the choice between them will depend on the
application’s desired accuracy, expertise of the user, and the
timespan in which results have to be obtained.

The results of the comparison of the three tested alterna-
tive objective function configurations are less clear-cut. In
summary, it can be concluded that the use of OF3 is not to
be encouraged, as it leads to an overall larger deviation from
the observations, except for the ZDP, than when OF1 or OF2
are used. Both OF1 and OF2 perform equally well, how-
ever, it could be noticed that the calibration with OF2 tended
to be more computationally intensive, which is of course an
argument in favour of the use of OF1.
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