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1 Foundations of Probability 

There is no doubt that the most famous and influential work by Andrei 
Nikolaevitch Kolmogorov (1903-1987) is a monograph of around 60 pages 
published in 1933 by Springer in a collection of texts devoted to the modern 
theory of probability [16]. This monograph changed the character of the 
calculus of probability, moving it from a collection of calculations into a 
mathematical theory. 

The basic elements of Kolmogorov^s formulation are the notion of prob
ability space associated with a given random experience and the notion of 
random variable. These notions were formulated in the context of measure 
theory. More precisely, a probability space is a measure space with total mass 
equal to one and a random variable is a real-valued measurable function: 

(i) A probability space ( 0 , ^ , F ) is a triple formed by a set 0, a cr-field 
of subsets of O, denoted by ^ , and a measure P on the measurable 
space (0,J^) such that P (0) = 1. The set ft has no structure and 
represents the set of all possible outcomes of the random experience. 
The elements of J^ are the events related with the experience, and 
for any event A E J^, P{^) is a number in [0,1] which represents its 
probability. The set fi was also called by Kolmogorov the space of 
elementary events. 

(ii) A random variable is a mapping X : fi —» M such that for any real 
number a, the set {a; G fi : X{u) < a} is an event, that is, it belongs 
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to the cr-field J^. A random variable X induces a probability in the 
Borei a-ñeld of the real line denoted by Px and given by 

Px{B) = P{X-HB)) 

for any Borei subet B of the real line. The probability Px is called the 
law or distribution of the random variable X. 

The Russian translation of Kolmogorov's monograph appeared in 1936, 
and the first Enghsh version was published in 1950: Foundations of the 
Theory of Probability. The delay in the English translation shows that the 
formulation proposed by Kolmogorov was not immediately accepted. This 
fact may seem surprising in view of the noncontroversial nature of Kol
mogorov's approach and its great influence in the development of probability 
theory. In addition, Kolmogorov's axioms were more practical and useful 
than other formalizations of probability, like the theory of "collectives" in
troduced by von Mises in 1919 (see [19]). Von Mises attempted to formalize 
the typical properties of a sequence obtained by sampling a sequence of in
dependent random variables with a common distribution. Although this is 
an appealing conceptual problem, this construction is too awkward and lim
ited to provide a basis for modern probability theory. So, in spite of some 
objections on Kolmogorov's approach that appeared at the beginning, it was 
definitely adopted by the young generation of probabilists of the fifties, and 
measure theory was proved to be a fruitful and powerful tool to describe the 
probability of events related to a random experience. 

One of the main features of Kolmogorov's formulation is to provide a 
precise probability space for each random experience, and this permitted to 
eliminate the ambiguity caused by the multiple paradoxes in the calculus of 
probability like those of Bertrand and Borei. As an illustration of the power of 
his formalism, Kolmogorov solves in his monograph BoreVs paradox about 
a random point on the sphere. Such a point is specified by its longitude 
6 G [0,7r), so that 9 determines a complete meridian circle, and its latitude 
(¡) G (—7r,7r]. If we condition by the information that the point lies on a 
concrete meridian {9 is fixed), its latitude is not uniform over (—7r,7r], and 
it has the conditional density | |cos<^|, whereas if we assume that the point 
lies on the equator {(j) is 0 or TT), its longitude has a uniform distribution 
on (0,7r). Since great circles are indistinguishable both statements are in 
apparent contradiction, and this shows the inadmissibility of conditioning 
with respect to an isolated event or probability zero (see Billingsley [2]). 
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Kolmogorov's construction of conditional probabilities using the techniques 
of measure theory avoids these contradictions. 

The strength of Kolmogorov's monograph lies on the use of a totally 
abstract framework, in particular, the set or possible outcomes O is not 
equipped with any topological structure. This does not imply that in some 
particular problems, like the convergence or probability laws, it is convenient 
to work on better spaces through the use of image measures. In that sense, 
Kolmogorov picks up the heritage of Borei who was the pioneer in the use of 
measure theory and Lebesgue integral in dealing with probability problems. 

We will now describe some of the main contributions of Kolmogorov's 
monograph: 

1.1 Construction of a probability on an infinite prod
uct of spaces 

At the beginning of the thirties, a great number of works of the Russian prob
ability school were oriented to the study of stochastic processes in continuous 
time. In this context, the following theorem proved by Kolmogorov provides 
a fundamental ingredient for the formalization of stochastic processes. We 
recall that a stochastic process is a continuous family of random variables 
{ X ( í ) , í > 0 } . 

Theorem 1 Consider a family of probability measures pt^^^^^^tn onW^, n>l, 
0 <ti < • ' • <tn, which satisfies the following compatibility condition: Given 
two sets of parameters { i i , . . . , t^} C { s i , . . . , Sm}, Pti,...,tn ^^ ^^^ correspond
ing marginal ofps^^...^sm- Then, there is a unique probability P onQ = E[^'+°°) 

such that for each n > 1, and each 0 < ii < • • • < in; Pti,...,tn concides with 
the image of P by the natural projection: 

R[0,+OO) ^ j^n 

In the above theorem an element function X : [0, +oo) —^ 
M that can be interpreted as a trajectory of a given stochastic process. As 
a consequence, the law of stochastic process {X(í),í > 0} is determined by 
the marginal laws 
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that can be chosen in an arbitrary way. 
As precedents of this theorem we can first mention the construction of a 

probability on E^ as the product of a countable family of probabilities on the 
real line, done by Danieli in 1919, corresponding to the probability context of 
independent trials, not necessarily with a common distribution. On the other 
hand, using the techniques developed by Danieli, Wiener [22] constructed the 
probability law of the Brownian motion on the space of continuous functions. 

1.2 Contruction of conditional probabilities 

Applying the techniques of measure theory, Kolmogorov constructed the con
ditional probability by a random variable X. We present here this construc
tion using the modern notation of conditional probabilities. 

We recall first the classical definition of the conditional probability of an 
event C by an event D such that P{D) > 0: 

P{C\D) = ^ ^ ~ ^ . (1) 

Suppose we are given an event A E J^ and a random variable X. We would 
like to compute the conditional probability P{A\X = x). If the random 
variable X is continuous, the event {X = x} has probability zero and the 
conditional probability P{A\X = x) is not well-defined by formula (1). The 
conditional probability P{A\X = x) should be a function /AÌ^) defined on 
the range of the random variable X, such that for any Borei subset 5 C M 
with P{X eB)>0 

P{A\X eB)= [ fA{X)dP{-\X e B). (2) 

The solution to this problem is obtained by choosing ¡ A as the Radon-
Nikodym density of the measure B -^ P{A f) X~^{B)), with respect to Px, 
that is 

In fact, for any Borei set 5 C M 

P{AnX-\B))= I fA{x)dPx{x)^ I l{xmÎA{X)dP , 
JB Jn 
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and, hence, dividing both members of this equality by P{X G B) we obtain 
(2). In particular, li A = X~^{[a,h]), then /^ = l[a,6]- Using the modern 
language of conditional expectation we can write 

fA{X) = E{1A\X). 

The use of measure theory allowed Kolmogorov to formulate in a rigorous 
way the conditioning by events of probability zero like {X = x}. Prom the 
above definition, Kolmogorov proved all classical properties of conditional 
probabilities. 

1.3 T h e 0 - 1 l a w 

Kolmogorov's precise definitions made it possible for him to prove the so-
called 0-1 law. Consider a sequence {Xn,n > 1} of independent random 
variables. For each n > 1 we denote by Gn = a{Xn^Xn+i,...) the cr-field 
generated by the random variables {X^, k > n}. The sequence of cr-fields Gn 
is decreasing and its intersection is called the asymptotic a-field: 

Q=f]Gn. 
n>l 

Theorem 2 (0-1 Law) Any event in the asymptotic a-field G has proba
bility zero or one. 

A simple proof of this result, using modern notation, is as follows. Let A G 
G J and suppose that P{A) > 0. For any n > 1, the cr-fields cr(Xi, . . . , Xn) 
and Gn+i are independent. As a consequence, if B G cr(Xi,.. . ,X^), the 
events A and B are independent because A e G C Gn+i- Hence, 

Therefore, the probabilities P{'\A) and P coincide on the cr-field a{Xi,..., Xn) 
for each n > 1, and this implies that they coincide on the a-field gener
ated by all the random variables X^. So, F(A|A) = P(A), which implies 
P{Ay = P{A) and P{A) = 1. 
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Theorem 4 (Three Series Theorem) Let {Xn,n > 1} be a sequence of 
independent random variables. For any constant K > Q define the truncated 
sequence 

Yn = Xnl{\Xn\<K}' 

Then, the series Ylin>i ^^ converges almost surely if and only if the following 
three series are convergent: 

^P{K\>K)=J^P{X^^Y^), 

EVar(F„). 
n > l 

The convergence of the series Yln>i P{Xn 7̂  Yn)^ implies, by the Borel-
Cantelli lemma, that 

P ( l i m s u p { X , ^ K } ) = 0, 

that is, P(liminf {Xn = Yn}) — 1, which means that the sequences {X^} and 
{Yn} coincide except for a finite number of terms. So, they are equivalent 
and the series J2n>i -^n converges if and only if Yl,n>i -^ do^s. 

As a consequence of the above theorem, the almost sure convergence 
is equivalent to the convergence in probability for a series of independent 
random variables. 

The Law of Large Numbers says that the arithmetic mean of a sequence 
of independent and indentically distributed random variables converges to 
the expectation. It is a fundamental result in probability theory. In the 
particular case of Bernoulli random variables, that is, indicator functions 
of events, the Law of Large Numbers asserts the convergence of the relative 
frequence to the probability of an event in the case of a series of independent 
repetitions of the experience. 

The first contribution by Kolmogorov to the law of large numbers is the 
following result published in 1930 ([14]): 

Theorem 5 Let {Xn-^n > 1} be a sequence of centered independent random 
variables. Set Sn = Xi-\ h Xn- then, 

E(X'^) S 
—I—IL- <̂  oc ==> —^ —> 0 almost surely, 

n^ n 
n>l 
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The condition on the convergence of the variances is optimal. In the case 
of independent and identically distributed random variables, Kolmogorov 
provides in [16] a definitive answer to the problem of finding necessary and 
sufficient conditions for the validity of the strong law of large numbers. 

Theorem 6 (Strong Law of Large Numbers) Let {Xn-, n > 1} 6e a se
quence of independent random variables with the same distribution. Then, 

S 
E{\Xi\) < oo = > —̂  —> E(Xi) almost surely, 

n 
\S I £"(1X11) = 00 = ^ limsup—— = +00 almost surely. 

Suppose that {X^, n> 1} is a sequence of centered, independent random 
variables with the same distribution. Set Sn = Xi-\ l-X^, for each n > 1. 
The Strong Law of Large Numbers says that 

n 

almost surely. On the other hand, if E{Xl) < 00, the Central Limit Theorem 
asserts that % converges in distribution to the normal law Ar(0,cr^), where 
cr̂  = E{Xl), that is, for any real numbers a <b 

P { a< —p=. < b —> / , exp -7—7 dx. 

Taking into account these results, one may wonder about the asymptotic 
behaviour of Sn as n tends to infinity. The Law of Iterated Logarithm, 
established by Khintchine in 1924 ([9]), precises this behavior: 

limsup—^ — = a 
n->oo V 2n log log n 

almost surely. In 1929 Kolmogorov proved in [12] the following version of the 
law of iterated logarithm for non identically distributed random variables. 

Theorem 7 Let {X^,n > 1} be a sequence of independent random variables 
with zero mean and finite variance. Set Sn = Xi-\ h Xn, for each n > 1. 
Then, 

lim sup = 1 
n-.oo ^/2Bn\0gl0g Bn 
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almost surely, where 

n 

k=l 

and \Xn\ <Mn = 0 ( V 5 , log log 5 , ) . 

The proof of this result given by Kolmogorov makes possible its extension 
to unbounded random variables through a truncation argument. This proof 
can be considered as modern in the sense that it introduces new techniques 
like the large deviations, which have become fundamental. 

3 Stochastic processes 

In 1906-1907, Markov [17, 18] discovered that limit theorems for independent 
random variables could be extended to variables "connected in a chain". 
About the same time, Einstein [7] published his work on Brownian motion. 
In this context, the celebrated work by Kolmogorov ([15]) sinthesized these 
researches and was the starting point of the theory of Markov processes. The 
modern definition of a Markov process is as follows: 

Definition 8 A stochastic process {Xt, t >0} with values in a state space E 
is called a Markov process if for any s < t and any measurable set of states 
Ac E it holds that 

P {Xt e A\Xr, 0<r<s) = P{Xt G A\Xs). 

The heuristic meaning of this definition is the independence of the future 
and past values of the process if we know its present value. Kolmogorov 
called these processes "stochastically determined processes". The name of 
Markov processes was suggested by Khintchine in 1934. 

We can write 
P{XtGA\Xs) = P{s,Xs,t,A), 

and the function F(s, x, i. A) describes the probability that the process is in 
A at time t, conditioned by the information that at time s is in x. Thus, 
A —> P(s ,x , t , A) is a family of probabilities parameterized by 5, x and t 
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called the transition probabilities of the process. They satisfy the so-called 
Chapman-Kolmogorov equation: 

P{s, X , t ,A)= / P(s, X,u, dy)P{u, y,Í, A), (4) 
JE 

for any s < u < t^ and they allow to describe all probabilistic properties 
of the process. Chapman has mentioned this equation in the work [4] on 
Brownian motion in 1928. 

Kolmogorov's approach to Markov process developed in [15] is purely 
analytic and the main goal is to find regularity conditions on the transi
tion probabilities F(s, x, i, dy) in order to handle the Chapman-Kolmogorov 
equation (4). The central ideal of Kolmogorov's paper is the introduction of 
local characteristics at time t and the construction of transition probabilities 
by solving certain differential equations involving these characteristics. In 
the case of real-valued processes (that is, E = R), Kolmogorov considers the 
class of transition functions for which the following limits exist 

A{t,x) = l i m - / ( y - x ) F ( i , x , t + 5,dy), 

B{t,x) = l i m ¿ / ( y - x f P ( í , x , í + á,dy). 
dio Zó J^ 

Feller suggested the names drift and diffusion coefficients for these limits. 
A property on the third moments is also needed to exclude the possibility 
of jumps. Assuming, in addition, that the density function of the measure 
P(s , X, Í, •), denoted by 

./ , N P{s,x,t,dy) 
/ ( 5 , X, ¿, y) = '- , 

dy 
is sufficiently smooth, Kolmogorov proved that it satisfies the forward differ
ential equation: 

df _ d[A{t,y)f] d'[B\t,y)f] 

dt dy dy^ ^ ' 

and the backward differential equation: 
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Equation (5) arises if the study of the time evolution of the probability dis
tribution of the process and a special form of this equation appeared earlier 
in papers of Fokker [8] and Planck [20]. Kolmogorov called Equation (5) 
the Fokker-Planck equation since 1934. When the coefl&cients depend only 
on time (processes homogeneous in space), these equations appeared first in 
1900 in a paper of Bachelier [1]. 

The construction of transition functions from the drift and diffusion co
efficients motivated the works on fundamental solutions to parabolic partial 
differential equations and were the starting point on the fruitful relationship 
between Markov processes and parabolic equations. 

Although his point of view on the theory of stochastic processes was 
mainly analytical, Kolmogorov also developed a certain number of tools for 
the study of the properties of the paths of stochastic processes. Among these 
tools, the most famous and most used is the criterion that guarantees the 
continuity of the trajectories of a given stochastic process from conditions 
on the moments of its increments. This criterion was proved by Kolmogorov 
in 1934 and presented in the Seminar of Moscow University. However, Kol
mogorov never published this result, and it was Slutsky who stated and give 
the first proof in [21] in 1934, attributing it to Kolmogorov. 

Definition 9 We say that two stochastic processes {Xt^O < í < 1} and 
{^,0 < Í < 1} are equivalent (or that X is a version ofY) if for any t, 
P{Xt ^ Yt) = 0. 

Two equivalent processes may have different trajectories. 

Theorem 10 (Kolmogorov continuity criterion) Consider a stochastic 
process {Xt^O < í < 1}. Suppose that there exists constants p, c, e > 0 such 
that 

Ei\Xt-Xsn<c\t--s\'^^ 

for all 5,i G [0,1]. Then, there exists a version of the process X with contin
uous trajectories. 

One can also show under the same hypotheses that there exists a version 
of the process X with Holder continuous trajectories of order a < ^ , that 
is, 

\Xt-Xs\<G\t-s\^ 

for all 5, Í G [0,1], and for some random variable G. 
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As an example of the application of this theorem, consider the case of 
the Brownian motion {Bt,0 < í < 1}, defined as a Gaussian process (its fi
nite dimensional distributions are Gaussian) with zero mean and covariance 
function E{BtBs) = min(s,i). This process has stationary and indepen
dent increments and the law of an increment Bt — Bg is N{0,t — s). As a 
consequence, for any integer k >1 

and there is a version of the Brownian motion with Holder continuous tra
jectories of order a, for any a < | . 

4 Conclusions 

A) Kolmogorov may be considered as the founder of probability theory. The 
monograph by Kolmogorov published in 1933 transformed the calculus 
of probability into a mathematical discipline. Some authors compare 
this role of Kolmogorov with the role played by Euclides in geometry. 

B) The results on limit theorems for sequences and series of independent 
random variables established by Kolmogorov were definitive and con
stitute a basic core of results on any text course in probability. 

C) Kolmogorov ideas influenced decisively almost all the work on Markov 
processes and make possible the posterior development of stochastic 
analysis. 
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