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Abstract. The aim of this paper is to estimate the Hurst pa-
rameter of Fractional Gaussian Noise (FGN) using Bayesian
inference. We propose an estimation technique that takes into
account the full correlation structure of this process. Instead
of using the integrated time series and then applying an es-
timator for its Hurst exponent, we propose to use the noise
signal directly. As an application we analyze the time se-
ries of the Nile River, where we find a posterior distribution
which is compatible with previous findings. In addition, our
technique provides natural error bars for the Hurst exponent.

1 Introduction

Many geophysical systems exhibit non-trivial multi-scale
correlation structures. In particular fractional Brownian mo-
tion and fractional Gaussian noise are often found to explain
quite well the heterogeneity and multi-scale properties of
geophysical time series in particular those from hydrology.
In addition this kind of model is capable to discriminate be-
tween long and short term dependency. This difference has
observable consequences since for instance a long memory
process might explain the patterns observed in sedimentary
deposits in river run-off areas (see e.g.Millen and Beard,
2003). For this reason it is important to devise suitable tech-
niques to estimate the underlying self-similarity exponent,
known as the Hurst exponent. Moreover it is important to
provide methods to quantify the uncertainty of the so ob-
tained measurements. We choose in this paper a Bayesian
approach, which provides in a natural way both, a mean to
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estimate the quantity of interest as well as a way to assess the
uncertainty of its value.

Fractional Gaussian noise (FGN) is a Gaussian stochas-
tic process{GH

t ,t > 0}, that can formally be viewed as the
derivative of a fractional Brownian motion (FBM)BH

t , t ≥ 0.
This is the only Gaussian process with stationary increments
which is self-similar and of zero mean. The parameterH

characterizes its behavior under rescaling

BH (at) ' aH BH (t).

Here' denotes equality of distributions. The first and sec-
ond moments fully characterize this process

E(BH (t)) =0,

E(BH (t)BH (u)) =
1

2
(|t −u|

2H
−|t |2H

−|u|
2H ).

The trajectories are continuous functions. However often
time series of real data represent much noisier features,
which however may have hidden self-similar correlation
structures with sometimes long-range dependencies. See
Fig. 7 for an example showing the level of Nile River from
the years 622 to 1284 AD. For this consider the discrete pro-
cess of increments over fixed time interval1t = 1

GH
i = BH

i −BH
i−1,(i = 1,2,...).

The choice of time interval1t = 1 is no loss of generality,
since any other time interval would lead to the same process
up to some multiplicative amplitude factor. This process is
the coarse grained fractional Gaussian noise process FGN.
It is a stationary process, which is characterized by its auto
correlation function. Using the correlation of the FBM we
see that
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Fig. 1. (Top) Simulation of fractional Gaussian noise forN = 200
andH = 0.05. (Botton) Simulation of fractional Gaussian noise for
N = 200 andH = 0.95. The difference in correlation structure is
clearly visible.

ρ(k) =E(GH (i +k)GH (i))

=
1

2
(|k−1|

2H
−2|k|

2H
+|k+1|

2H ), k ∈ Z.
(1)

ForH = 1/2 we have the independent identically distributed
Gaussian variables and uncorrelated time series after one sin-
gle time step. ForH 6= 1/2 however, as the time lagk gets
large, the correlation function decays asymptotically like

ρ(k) ∼ H(2H −1)|k|
2H−2, k → ∞. (2)

For this reason,H quantifies the correlation at large times.
For H < 1/2 correlation is negative, whereas forH > 1/2
the correlation is positive. See Fig.1 for an example of FGN.

Various methods to estimate the self-similarity exponent
H from a time serieswn of observations have been proposed.
A standard method consist in replacingwn by the associated
random walk

Sn =

∑
k≤n

(wk − w̄), w̄ =
1

N

∑
wk

and to apply techniques to estimate the Hurst exponent of
fractional Brownian motion. Here the following types of
methods are proposed in the literature. The methods can
be classified as temporal, spectral and time-scale methods.
The temporal methods are e.g. aggregated variance method
(Taqqu et al., 1995), detrended fluctuation analysis (Gold-
berger et al., 2000; Peng et al., 1994), and range scaled anal-
ysis (Mandelbrot and Wallis, 1969). From the group of spec-
tral methods, we would like to mention the log-periodogram

Fig. 2. A random sample of noisy signalXn = 1.5G0.3
n +8.0,

n = 1,...,N,N = 100.

method (Geweke and Porter-Hudak, 1983), the modified
periodogram method, and the Whittle estimator (Whittle,
1953). The third group is in the wavelet domain, which
includes the wavelet maximum likelihood WML estimator
(McCoy and Walden, 1996) and the Abry-Veitch Daubechies
wavelet-based estimator (Abry and Veitch, 1998).

In this paper we want to introduce a Bayesian estimator
for the Hurst exponentH of FGN. This is an extension of
the method proposed in (Makarava et al., 2011), where we
introduced a Bayesian estimator for the Hurst exponent of
fractional Brownian motion. One big advantage of our ap-
proach compared to others will be, that we take fully into
account the correlation structure present in fractional Gaus-
sian noise. Moreover, we will be able to produce error bars
for all quantities, that we estimate.

2 Definition of the model

Often the data comes with an unknown offset. Instead of
removing it prior to the analysis, we will incorporate it into
the model. So we consider discrete time series of the form

Xn = λGH
n +β,n= 1,2,..., (3)

whereGH
n is the FGN andH ∈]0,1[ is the Hurst exponent,

λ > 0 andλ ∈ R is the amplitude, andβ ∈ R is the offset.
Suppose we are given the observationsXn, n = 1,...,N , the
problem we want to address is how to obtain estimators for
all involved parameters. For this we propose to use Bayes
theorem, that reads

P(β,λ,H |{Xn},n= 1,...,N)=

C L(β,λ,H |{Xn}n=1,...,N )P(β,λ,H),

whereL(β,λ,H |Xn) = P({Xn}n=1,...,N |β,λ,H) is the likeli-
hood function,C is a normalization constant, andP(β,λ,H)

is some prior information we might have about the parame-
ters. In the absence of such information, we suggest to use
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Fig. 3. The distribution of the estimator of the Hurst exponent for
H = 0.7,N = 128 with 20 000 realizations by wavelet based esti-
mator (solid line), periodogram method (dotted line) and Bayestian
method (dashed line).

uninformative priors,P(β,λ,H) ' λ−1 where as usual, we
use the Jeffreys prior for the scale parameterλ.

For fixed parameters, the observationsX = [X1,...,XN ]
t

are multivariate Gaussian random variables with mean value
and covariance given by

E(X) = F β, E(XXt ) = 6,

with 6 given by Eq. (1) andF t
= [1,...,1] is the vector with

N components, where[.]t denotes the transpose. The likeli-
hood function for the parametersλ,β,H can now be written
as

L(λ,β,H |X) =

1

(2π)N/2λN |6|1/2
e−(X−Fβ)t6−1(X−Fβ)/2λ2

.
(4)

From Bayes theorem, we now obtain the following posterior
density of our parameters

P(λ,β,H |X) =

C
1

λN+1|6|1/2
e−(X−Fβ)t6−1(X−Fβ)/2λ2

.
(5)

The normalization constantC is chosen to make the posterior
probability density integrate to one. Then the numerator of
the exponent can be written as the following quadratic poly-
nomial inβ

F t6−1F β2
−2βF t6−1X+Xt6−1X

Fig. 4. The validation test for Bayesian estimation with 500 realiza-
tions for the Hurst exponentH = 0.7.

Table 1. The interval forĤ with p ≥ 90% for synthetic data with
H = 0.7 andN = 128.

Method Ĥ
Interval forĤ
with p ≥ 90 %

Wavelet based estimator 0.81[0.57,1.05]
Periodogram estimator 0.83 [0.21,1.31]
Bayesian approach 0.71 [0.59,0.81]

True value 0.7

From this we see, that the posterior can be written in the
following “Gaussian” form

P(λ,β,H |X) = C
1

λN+1|6|1/2
e−R2/2λ2

e
−

γ 2(β−β∗)2

2λ2 (6)

= C′
e−R2/2λ2

γ λN |6|1/2
fβ∗,λ2/γ 2(β). (7)

Herefµ,σ2 is the one dimensional Gaussian probability den-
sity function with meanµ and varianceσ 2. Note that66H

and therefore, the residuumR2 and the modeβ∗ depend on
H via

γ 2
= F t6−1

H F (8)

β∗
=

F t6−1
H X

γ 2
, (9)

R2
= Xt6−1

H X−γ 2β∗2
. (10)

Equation (6) describes the full posterior information that we
have about all the parameters jointly. In case, we are inter-
ested in only one of them, we may treat the other parameters
as completely unknown and integrate them out, to obtain the
marginal distributions. Integrating overλ we obtain
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Fig. 5. (Top) Simulation of Rosenblatt process forN = 129 and
H = 0.7. (Bottom) The averaged of the obtained posterior densities
for point estimator derived with Bayesian method for 1000 such
realizations.

P(β,H |X) =
C1

|6H |1/2(R2+γ 2(β −β∗)2)N/2
. (11)

The integral over the offset yields

P(λ,H |X) =
C2

γ (H)λN |6H |1/2
e−R(H)2/2λ2

. (12)

The integral overH reads

P(β,λ|X) = C3λ
−N−1

1∫
0

e−(R(H)2
+γ 2(H)(β−β∗(H))2)/2λ2

|6H |1/2
dH.

Integrating Eq. (12) over λ yields the posterior distribution
of H that we can infer from the observations

P(H |X) =
C4

γ (H)|6H |1/2RN−1
. (13)

In practice, this integral has to be performed numerically.
Taking the position of the maximum of this posterior den-
sity, we obtain the maximum posterior estimate of the scal-
ing exponentH . In the same way we may obtain posterior
estimates ofλ and ofβ

P(λ|X) = C5λ−N

∫ 1

0

e−R(H)2/2λ2

γ (H)|6H |1/2
dH (14)

and

P(β|X) = C6

∫ 1

0

e−γ (H)2(β−β∗)2)

R(H)N |6H |1/2
dH. (15)

From these expressions we also may produce point estima-
tors. For instance we may set

Ĥ = argmaxP(H |X). (16)

Fig. 6. Normalized two dimensional marginal posterior densities.
The maxima indicate the most likely estimates in:(a) H −λ plain
for signalXn = 1.5G0.3

n +8.0, n = 1,...,N = 100. Note that the
posterior is well localized around the point corresponding to the true
value (white spot);(b) H −β plain for Nile River; (c) λ−β plain
for Nile River; (d) H −λ plain for Nile River; on the axis, the one
dimensional projections of the posterior densities are depicted. The
white contour-line encloses 90 % of posterior probability. It there-
fore quantifies the posterior uncertainty of the parameters together
with their posterior dependency.

This in turn yields an estimator for the offset

β̂ = β∗(Ĥ ). (17)

3 Application to synthetic data

In this section, we want to show, how to apply the analy-
sis to synthetic data. In the first part, these are data of frac-
tional Gaussian noise. In the second part, we will investigate
synthetically generated Rosenblatt processes as examples of
non-GaussianH -self-similar processes.

3.1 Fractional Gaussian noise

For the investigation of fractional Gaussian noise, we gener-
ate a random sample

Xn = 1.5G0.3
n +8.0, n= 1,...,N,N = 100. (18)

Several methods have been proposed to numerically gener-
ate such a realization of FGN, and we refer for more de-
tails to (Dieker, 2004; Kang, 2008) and the reference therein.
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Fig. 7. (Top) The time series of minimal water levels of Nile River
near Cairo. (Bottom) The integrated time series.

Table 2. Confidence intervals on the estimated parameters.

Parameter Estimate Confidence≥ 90 %

Ĥ 0.83 [0.78,0.87]
β̂ 11.51 [10.9,12.1]

λ̂ 0.89 [0.81,1.04]

Our simulations are based on the use of the Cholesky de-
composition of6H = L tL where we then applyL te, where
e = [e1,...,eN ]

t is a random vector ofN independent stan-
dard Gaussian random variables. In Fig.2 we have shown
this data.

We then have computed the Bayesian posterior distribu-
tion of λ andH together with one of their marginal distribu-
tions (see Fig.6a). As you can see, posterior information is
well localized around the data generating parameters. How-
ever, since the posterior itself is computed from a random re-
alization its maximum does not coincide with the true value
but randomly fluctuates around it.

Next, we use the wavelet based joint estimator byVeitch
and Abry(1999) and the periodogram estimator byRobinson
(1995) to compare with the point estimator we propose in this
work (Eq. 16). We perform 20 000 realizations by Monte-
Carlo simulations for the fixed Hurst exponentH = 0.7 and
with lengthN = 128. For each of them we produce the max-
imum posterior estimator̂H of our method, wavelet based
joint estimator and periodogram method estimator. We im-
plement the wavelet based joint estimator as is proposed by
Veitch and Abry(2002). Figure3 shows the comparison be-
tween the methods and in Table1 the intervals containing
≥ 90 % of the distribution are presented. It is clearly depicted
that the Bayesian method outperforms the wavelet and peri-
odogram methods.

To make the validation test of the proposed method we
quantify the bias of the maximum posterior estimatorĤ ,

Table 3. Estimation of the Hurst exponent for different methods.

Estimator Ĥ

MPE 0.85
PE 0.90
Whittle 0.84
WML 0.82
FBM 0.80

Bayesian Method 0.83

E(Ĥ )−H, as a function of the number of data points. For
that we generate 500 realizations of fractional Gaussian noise
starting from one single observation point. In Fig.4 it is
shown that even starting from 20 data points, the bias quickly
decays.

3.2 Rosenblatt process

In this section the Rosenblatt process as an example of aH -
self-similar process, whose finite-dimensional distributions
are non-Gaussian, is considered. The Rosenblatt process (see
Rosenblatt, 1961) is the H -self-similar process with Hurst
exponentH ∈ (1/2,1) and stationary increments. It can be
written in explicit form as a stochastic integral

Z(t) = a(H)

∞∫
−∞

∞∫
−∞

 t∫
0

(s −y1)
−

2−H
2

+ (s −y2)
−

2−H
2

+ ds


dB(y1)dB(y2),

whereB(y),y ∈ R is pure Brownian motion,a(H) is a pos-
itive normalization constant chosen such thatE(Z(1)2) = 1,
andx+ = max{x,0}. We implement the Matlab code from
Abry and Pipiras(2006) for the wavelet-based synthesis of
the Rosenblatt process and derive the increments of the gen-
erated processes. In Fig.5 we show the example of the in-
crement process for the Rosenblatt process with Hurst expo-
nentH = 0.7 of the lengthN = 129. The obtained averaged
posterior densities for point estimator derived with Bayesian
method for 1000 realizations is also shown. The interval con-
taining≥ 90 % of the distribution here is[0.596,0.838].

4 Hurst exponent analysis of Nile River

We have applied our technique to the time series of the an-
nual minimum water level of the Nile River for the years
622–1284 AD (663 observations), measured at the Roda
Gauge near Cairo. The data set we analyse is publicly avail-
able at StatLib archive:http://lib.stat.cmu.edu/S/beran. In
Fig. 7 we have plotted the time series together with its first
discrete integral that is defined by
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L(k) =

i=k∑
i=1

(Xi −X̄), k = 1,...,N. (19)

This data set was studied before by several authors to esti-
mate the Hurst exponent. For example inLiu et al. (2009)
the modified Periodogram Estimators (MPE) is used and a
comparison with the following methods is presented: the Pe-
riodogram Estimator (PE), the Whittle estimator, the wavelet
maximum likelihood (WML) estimator and estimators based
on the associated FBM.

We have computed the posterior distribution according to
Eq. (6). For reasons of visualization, we have computed
the marginals overH , λ andβ, which are then functions of
the remaining two variables only. The results are visible in
Fig. 6b–d). We thus find the following posterior estimates
(maximum of posterior) of our parameters together with their
90 % confidence intervals (Table2).

In Table3 we give a summary of the known results from
(Liu et al., 2009), and how they compare to this study. We see
that the values obtained by the other methods are in the con-
fidence interval of our result, except for the result obtained
by the periodogram estimator (PE). In addition, our method
provides estimations of all parameters involved in the model
and we also obtain error bars for each of them.

5 Conclusions

In this paper we have proposed a Bayesian estimation
technique of the Hurst parameter for the fractional Gaussian
noise process. We have considered a slightly more general
model, where in addition we have taken the offset and the
amplitude as parameters. This technique yields, besides
the point estimations of the model’s parameters, confidence
intervals that enclose a given percentage of the posterior
uncertainties. The method was tested successfully on
synthetic realizations of fractional Gaussian noise processes.
In addition, we performed tests on synthetic realizations of
the Rosenblatt process as an example for a non-Gaussian
H -self-similar process. Our method turned out to give
good results also for Rosenblatt processes. But we can not
generalize this to any non-Gaussian self-similar processes.
When applied to the historical time series of the Nile River,
our results are compatible with previous findings. However
in addition we are able to provide error bars for all estimates.
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