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Abstract. Insofar as many Renaissance thinkers regard 
Aristotelian philosophy of science as the framework for their 
understanding of mathematics and its proofs, they consider geometrical 
proofs as syllogisms using causes. Furthermore, they identify geometrical 
proofs as demonstrationes potissimae, which are a kind syllogism that 
provides both the cause and the effect of an event. By questioning this 
assumption, Piccolomini initiates the so-called Quaestio de certitudine 
mathematicarum. Several scholars agreed with him. Others either 
maintained that mathematical proofs are demonstrationes potissimae or tried 
to prove that at least some mathematical proofs satisfy the conditions for 
being demonstrationes potissimae. Despite their differences in detail, all 
participants in the debate recognized Aristotelian scientific theory as the 
norm. Yet even traditionally Aristotelian answers take on a new meaning 
by virtue of a new context. This marks the birth of a genuinely new 
debate which has unwittingly left its Aristotelian roots behind. As a 
result, geometrical proofs are no longer thought of as being based on 
causes or principles of being, but on the relationship between the 
different figures. Such a relationalism opens up the possibility of further 
development of mathematics. 
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Introduction: Relational and Causal Understanding of Mathematics 

In his Philosophical Essays concerning Human Understanding (1748), David Hume 
distinguishes two kinds of objects of human reason, namely relations of ideas and 
matters of fact. The propositions in geometry, algebra and arithmetic are of the first 
kind. Unlike the matters of fact, the relations of ideas are demonstratively certain.  
 

That the Square of the Hypothenuse is equal to the Squares of the two Sides, is a 
Proposition, that expresses a Relation betwixt these Figures. That three 
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times five is equal to the half of thirty, expresses a Relation betwixt these 
Numbers. Propositions of this Kind are discoverable by the mere 
Operation of Thought, without Dependance on what is any where 
existent in the Universe. Tho’ there never were a true Circle or Triangle 
in Nature, the Propositions, demonstrated by Euclid, would for ever 
retain all their Truth and Evidence.1 

What Hume expresses here, I want to call a relational understanding of mathematics, which 
is characterised by two main features. First of all, mathematical propositions are based 
on the internal relations between the mathematical objects. Secondly, this implies a 
flexible stance towards mathematics’ ontological foundation. A historically important 
counter-model is causal understanding of mathematics. Its point of reference is Aristotle’s 
theory of science as set out in the Posterior Analytics: “According to Aristotle, full-
fledged scientific knowledge of something requires understanding its necessitating 
causes; this knowledge is produced or best manifested by demonstrative syllogism.”2 

Knowledge here means knowledge of the cause in the sense of Aristotle’s 
four causes (aitia). The four causes can be regarded as four types of explanations why the 
thing in question is how it is.3 Unlike the relationalism, the Aristotelian understanding 
of mathematics implies a strict ontological foundation for mathematics and 
mathematical proofs, insofar as mathematical propositions are based on such causes. 
More precisely, the Aristotelians regard the mathematical objects themselves (and not 
the relations between them) as such causes. Via abstraction, mathematical objects are 
dependent on their instances in the world. The relationalists base mathematical proofs 
on the relations between the figures and on the particular construction of each figure; 
the Aristotelians base mathematical proofs on the mathematical objects gained via 
abstraction.  
 From the 13th century to the Renaissance, Aristotelian philosophy of science 
is the umbrella concept for the understanding of mathematical method and proof, 
providing its terminological framework (although scholars in the period combine the 
Aristotelian concept of science with other approaches).4 In the 17th century, the 
Aristotelian understanding of mathematics gets replaced by a relational understanding. 
The latter is a prerequisite for various scientific achievements of modern times.  
 One such scientific achievement is the advent of non-Euclidean geometry. 
Because Aristotelian mathematics relies on abstraction from experience (and 
experience shows non-Euclidean geometry to be (psychologically) impossible5), it 
cannot allow for the possibility of a non-Euclidean geometry. However, with 
reference to its logical consistency, non-Euclidean geometry is logically possible.6 
Thus, in the long run, the relational understanding of mathematics was a preliminary 
condition for the recognition of the non-Euclidean geometry. Based on the relational 
understanding of geometry, we can, therefore, accept the logical possibility of non-
Euclidean geometry.7 In the shorter term, the relational understanding of mathematics 
enabled some scientific achievements of the 17th century, particularly the 
mathematization of non-mathematical sciences and the algebraisation of geometry. 
Within strict Aristotelianism, all scientific disciplines, however, have their unique 
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subject areas, and hence the methods of one discipline cannot be applied to the 
subject area of another discipline. Therefore, it was the break with Aristotelian 
understanding of science and mathematics that allowed for several breakthroughs, not 
least the so-called “scientific revolution.”8 
 My paper deals specifically with the break away from the Aristotelian causal 
theory of geometry and geometrical proof. I want to demonstrate that this break 
emerged within the scholastic Aristotelianism itself in the second half of the 16th 
century – in the prehistory of scientific revolution.  
 During the Renaissance there was a growing interest in mathematical method. 
On the one hand, this was caused by the mathematical problems that craftsmen had 
to deal with as a consequence of their practical needs. On the other hand, it was a 
product of renewed interest in non-Aristotelian ancient mathematical writings (such as 
Euclid’s Elements and Proclus’ commentary on Euclid), which were extensively 
published in new, translated editions at the time.9 Many actors were important in such 
developments, but the school of Padua played a decisive role within the discussions 
about method and mathematics.10 For the Paduan scholars, as for most Renaissance 
thinkers, Aristotelian philosophy of science (rather its scholastic version than the 
original one) is the umbrella concept for their understanding of mathematical method 
and proof. In the early modern period, many philosophers of mathematics either 
regarded geometrical proofs as syllogisms or thought that they should be reformulated 
as syllogisms.11 In most cases, geometrical proofs were equated with a specific kind of 
Aristotelian proof, namely the demonstratio potissima (a kind of syllogism that provides 
both the cause and the effect of an event; more detailed explanation in chap. 2.2 
below). As a critical response to this approach, the Paduan philosopher Alessandro 
Piccolomini (1508–1579) initiated a debate that came to be called the Quaestio de 
certitudine mathematicarum. This is the starting point for my investigation of the shift 
from causes to relations in mathematical thinking. 
 The Quaestio de certitudine deals with three interrelated questions. First, it 
questions the certainty of mathematics in general. Since mathematical certitude is 
traditionally justified by the special character of mathematical proofs, the initial 
argument focuses on the second question: whether or not there is a place in 
mathematics for the demonstratio potissima. (I use the epithet “initial” in order to 
distinguish the 16th century quaestio from its revival in the 17th century.) In the course 
of the debate, these initial questions increasingly lose their relevance. More and more, 
attention shifts to the third question: “whether the actual procedure of geometers in 
proving theorems and solving problems could be reconciled with Aristotle’s 
description of a demonstrated science.”12 Such a procedure was mainly based on 
Euclid’s Elements. Therefore, the real subject of the discussion is the incompatibility of 
Euclidean geometry with the Aristotelian understanding of science.  
 The initial debate is a symptom of the contradictions within the traditional 
preconditions of the understanding of geometry, namely the lack of distinction 
between Aristotelian proofs and geometrical method.13 In fact, the debate about the 
certainty of mathematics shows the inadequacy of using the criteria of Aristotelian 
proof theory to describe mathematical proofs. From a present-day perspective, the 
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debate is based on completely misguided assumptions. No consensus was reached, 
and conflicts were not resolved. However, although all participants in the debate 
remained firmly within the Aristotelian framework, a new concept of geometrical 
proof ex negativo emerged in the discussion. The initial discussion has a scholastic 
nature, admittedly, but as it progresses, the Aristotelian understanding of science 
grows increasingly vague. This lay the groundwork for a non-Aristotelian 
understanding of geometry with attempts to reformulate Euclidean geometry by 
means of Aristotelian tools. As understood by an Aristotelian, geometry is supposed 
to explain single geometric figures in terms of their unique causes. The new concept 
of geometrical proof, however, emphasizes the relations between figures and focuses 
the debate on the practice of geometrical constructions. This concept of geometrical 
proof carries changes in the understanding of geometry in general within itself. When 
scholars such as Gassendi, Wallis, Hobbes and Barrow take up the debate again in the 
17th century, they are no longer interested in the question of whether there are 
demonstrationes potissimae in geometry, and they are equally uninterested in rescuing the 
Aristotelian framework. Insofar as they adopt some questions and arguments of the 
initial debate, they take on the relational understanding of geometry.  
 I am going to trace the shift from causes to relations in three steps. In the 
first, I will outline the Aristotelian background of the debate, in particular, the 
traditional justifications of mathematical certainty. More specifically, I shall set out the 
features of the demonstratio potissima. In the second step, I am going to sketch the main 
positions in the Quaestio de certitudine mathematicarum. In the third, I want to display the 
new concept of geometrical proof which looms up in the discussion. In the course of 
this, I will sketch out the quaestio’s revival in the 17th century and contextualise it: I will 
consider the relational understanding of geometrical proof in the context of the 
overall development in mathematical thinking of this period.  
 
2. The Background: Aristotelian Justifications of the Certainty of Mathematics 

In the philosophy of mathematics during the early modern period, we can 
identify two justifications for mathematical certainty.14 The first strategy justifies the 
objective certainty of mathematics by means of the ontological status of their 
entities (2.1). The second strategy deduces the subjective certainty of mathematics from 
the character of mathematical proofs (2.2). The second strategy is the more important 
for the purposes of this paper. Hence, after giving a short explanation of the first, I 
will concentrate on the second strategy. 
 
2.1. The Ontological Status of Mathematical Entities 

The first strategy is used by, for example, Thomas Aquinas.15 Following 
Aristotle, he regards mathematical entities as abstractions based on sense experience. 
From the ontological status of mathematical entities, Thomas concludes that 
mathematics is more certain than both natural philosophy and theology. This is so, 
because, unlike natural philosophy, mathematics does not deal with matter and 
motion; unlike theology, mathematics considers entities which are given to the senses 
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and to the imagination. To put it in a nutshell, insofar as mathematical entities are 
created by abstraction, they have the highest level of clarity and evidence. 
 
2.2. The Use of the Demonstratio Potissima 

The second strategy bases mathematical certainty on the characteristics of the 
proofs used in mathematics. In the Posterior Analytics, Aristotle envisions science as 
true knowledge gained via reasons or causes.16 Furthermore, he maintains that 
mathematical disciplines produce proof by use of a syllogism in the first figure,17 which 
has the following form:  
 

maior: middle term (M) – predicate (P). 
minor: subject (S) – middle term (M). 
conclusio: subject (S) – predicate (P). 

 
In the early modern period, only a few philosophers of mathematics drew a 

distinction between geometrical proof and the Aristotelian syllogism.18 Most of them 
classify geometrical proofs as demonstrationes potissimae, which are regarded as the 
highest and most certain type of proof. I will explain this type of proof by comparing 
it with the two other types, namely the demonstratio quia and the demonstratio propter 
quid.19 
 All three types of proof are regarded as a syllogism in the first figure. The 
demonstratio quia infers the cause from its effect. This kind of proof can be illustrated 
by an example from the Posterior Analytics.20 
 

maior: Non-twinkling heavenly bodies (M) are near earth (P). 
minor: Planets (S) are non-twinkling heavenly bodies (M). 
conclusio: Planets (S) are near earth (P). 

Its middle term is the unique effect (effectus proprius). It signifies the (observed) 
effect, namely that these heavenly bodies do not twinkle. By rearranging this syllogism, 
we get the demonstratio propter quid. 
 

maior: Heavenly bodies which are near earth (M) do not twinkle (P). 
minor: Planets (S) are heavenly bodies which are near earth (M). 
conclusio: Planets (S) do not twinkle (P). 

 
The demonstratio propter quid infers the effect from its proximate cause.21 Its 

middle term signifies the proximate cause of the effect, in our example the proximity 
to the earth. (Of course, the middle term of such a proof is understood as one of the 
four causes in the Aristotelian sense.) 
 At this point, Aristotle leaves us. He distinguishes only these two kinds of 
proof. But following Averroes, Aristotelians assume a third type of proof, namely 
demonstratio potissima.22 Such a proof infers the effect (esse) and the cause (the propter quid 
effectus) from fundamental premises.23 It is a syllogism that provides both the cause and 
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the effect of an event by using a middle term which specifies the proximate cause of 
the effect in a unique way.24 
 The primary, as well as the secondary literature, usually content themselves 
with giving an abstraction explication of the demonstratio potissima, but they do not 
provide an actual example of a demonstratio potissima.25 There are two possible 
interpretations. Following the first interpretation, we get the demonstratio potissima by 
another rearrangement of the syllogisms above. According to the second 
interpretation, the demonstratio potissima is just a variant of the demonstratio propter quid. 
There is only one possibility for further rearranging the syllogisms above: 
 

maior: Planets (M) are near the earth (P). 
minor: Not twinkling heavenly bodies (S) are planets (M). 
conclusio: Not twinkling heavenly bodies (S) are near the earth (P). 

 
Indeed, the resulting syllogism does not fulfil all requirements for being a 

demonstratio potissima. Therefore, it would be more reasonable to assume that the 
demonstratio potissima is nothing but a variant of the demonstratio propter quid which is only 
accidentally distinguished from the demonstratio propter quid in the proper sense.26 If so, 
it would be a demonstratio propter quid in which the effect is unknown. Being a 
demonstratio potissima would depend on the previous knowledge of the recipient. 
 Despite the problems concerning the interpretation of this kind of proof, 
Aristotelian philosophers of mathematics base the certainty of mathematics on its use 
of the demonstratio potissima as the most certain type of proof. They regard it as the 
most certain type of proof because it provides us with the cause and its effect at once. 
However, the equivalence of mathematical proof and demonstratio potissima was 
essentially contested.27 It was this that led Piccolomini to initiate the debate, Quaestio de 
certitudine mathematicarum. Within the framework of this debate, even the traditionally 
Aristotelian answers take on a new meaning by virtue of a new context. This marks 
the birth of a genuinely new debate which has unwittingly left its Aristotelian roots 
behind. I am not interested in the result of the initial Aristotelian debate, not least 
because there was no real final solution. Rather, my interest lies in the relational 
understanding of geometry and geometrical proof which looms in the background of 
the debate. 

3. Main Positions in the Initial Debate About Certainty in Mathematics 
The subject of the Quaestio is the question of the certainty of mathematics. 

Nevertheless, the initial debate focuses on the question of whether geometrical proofs 
can be identified as demonstrationes potissimae. From a logical point of view, three 
possible positions can be distinguished in the debate.28 The first group defends the 
identification thesis: according to the traditional position (e.g., Hieronymus Balduinus, 
Jacob Schegk (1511–1587)), all geometrical proofs are demonstrationes potissimae. The 
second group denies the identification of geometrical proofs and demonstrationes 
potissimae (2.1). The critics (e.g., Alessandro Piccolomini (1508–1579), Simon Simonius 
(1522–1602), Benedictus Pererius (1535–1610), the Jesuits of Coimbra, Martin 
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Smiglecius (1562/1564–1618)) claim that no geometrical proofs are demonstrationes 
potissimae. The moderate defenders (e.g., Franciscus Barocius (1537–1604), Joseph 
Blancanus (1566–1624)), as the third group, maintain that at least some geometrical 
proofs are demonstrationes potissimae (2.2). After Piccolomini’s commentarium de certitudine 
mathematicarum disciplinarum (1547), the first position maintained very few proponents.29 
The debate mainly takes place between the critics and the moderate defenders. To 
characterize these positions in more detail, I will focus less on their specific arguments 
and more on their assumptions and the implications of their arguments. I will start 
with the positions of the critics. 
 
3.1. Critics: No Mathematical Proofs are Demonstrationes potissimae 

As one of the critics, Piccolomini’s arguments define the debate.30 The critics 
of the identification thesis often further refine his arguments and investigate their 
implications. Piccolomini shows that geometrical demonstrations are no proofs by any 
of the four causes.31 
 a) Geometrical demonstrations are not proofs by efficient cause (causa efficiens) 
because mathematics does not deal with action.32 Many of Piccolomini’s arguments 
are based on the assumption that the geometrical objects understood as pure quantity 
(quantitas) have no relation to action (actio).33 Simonius (Antischegkianorum Libernus, 304 
and 310) follows this argument in a very peculiar way. He believes that there are 
demonstrationes potissimae used in mathematics with the formal cause as middle term. But 
he regards only the proofs from the efficient cause as the most perfect.34 
 b) Geometrical demonstrations are not proofs by final cause (causa finalis).35 
Of course, mathematics does have purposes, insofar as it is useful for various 
applications. But there are no final causes within mathematics. Piccolomini argues that 
only activities have purposes and therefore final causes. But mathematical objects are 
immutable. Where there is no change, there can be no purpose (of change). 
 c) Geometrical demonstrations are not proofs by material cause (causa materialis) 
because there is no real matter (materia realis) in mathematics.36 Mathematics just deals 
with intelligible matter (materia intelligiblis) created by abstraction. 
 d) Geometrical demonstrations are not proofs by formal cause (causa formalis). 
Since Piccolomini attacks the traditional view here, its refutation takes up the largest 
room within his arguments by far. Looking at the progress of the debate, we can 
identify two influential arguments against the use of formal causes in geometrical 
proofs.  
 To begin with, the middle term of every demonstratio potissima has to be the 
definition of the subject or of its property (definitio vel subiecti vel passionis).37 Piccolomini 
shows that geometrical proofs do not use such a middle term, by referring to Euclid’s 
demonstration that the angle sum in a triangle equals two right angles (see below fig. 
1).38 The demonstration (Euclid I.32) in short is as follows. AB is parallel to CE. 
Therefore, the alternate angles BAC and ACE equal one another and the 
corresponding angles ABC and ECD equal one another. Accordingly, the angle ACD 
equals the sum of the angles BAC and ABC; and thus the sum of the interior angles 
equals the sum of the angles ACD and ACB. Since the sum of the angles ACD and 
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ACB equals two right angles, the sum of the interior angles equals the sum of two 
right angles. 

 
Fig. 1 

 
 Obviously, this demonstration makes use of the exterior angle. Proclus 
already questions whether this proof uses (real) causes.39 Following Proclus, 
Piccolomini shows that the exterior angle is neither a definition of the triangle itself 
nor of one of its properties. The exterior angle is not part of the triangle’s definition. 
Even if the exterior angle did not exist, it would still be a triangle. 
 Furthermore, the demonstratio potissima requires a middle term which signifies a 
unique and proximate cause.40 Piccolomini emphasizes that there is no hierarchy of 
priorities between the mathematical properties with respect to their dependencies. 
Instead, one theorem can be proven by different premises.41 One middle term used in 
a proof is neither more unique nor more proximate than another possible middle 
term.  
 While Piccolomini does indeed justify the certainty of mathematics by means 
of the nature of its entities,42 the critical part of his argumentation was significantly 
more influential. Several scholars agreed with Piccolomini in one respect or another.43 
Alongside various refinements of Piccolomini’s observations, two main arguments 
evolved. Each is deeply connected with the other.  
 The first argument is based on the distinction between the principle of Being 
(principium essendi) and the epistemological principle (principium cognoscendi).44 Geometric 
proofs do not use principles of Being insofar as they do not use real causes. Instead, 
they use only the second one, the epistemological principles, in the sense that the 
proofs rely on reasons for understanding. We understand or comprehend a figure’s 
properties by its construction. Indeed, a strict Aristotelian does not regard its 
construction as the cause of its properties. The construction only provides us with a 
principle of understanding. By contrast, a principle of Being of a figure’s properties 
would be its cause in an ontological sense.  
 The second argument is based on the distinction between the essence of a 
geometric figure and its relations to other figures. Many of Euclid’s proofs demonstrate 
properties of one geometric figure by using its relations to other figures. But a figure’s 
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relation to other figures does not belong to its essence; nor are any of these relations 
unique and proximate causes, since there is no hierarchy of priorities between 
mathematical properties with respect to their dependencies. Thus, geometric proofs 
do not follow from the essences of figures. I am going to illustrate this argument in 
reference to Euclid’s construction of an equilateral triangle (see below fig. 2).45 The 
task is to construct an equilateral triangle on a given finite straight line AB. To do this, 
we have to describe the circle BCD with centre A and radius AB and the circle ACE 
with centre B and radius BA. Their point of intersection C has the same distance AB 
to A and to B. Therefore, the triangle ABC is equilateral. 

 

Fig. 2 
 

 Euclid uses here the circle, or its definition, in order to construct the 
equilateral triangle and to demonstrate its properties. In this respect, being equilateral 
is not proven by the essence of the triangle but by its relation to other figures. 
Smiglecius (1562/1564–1618) refines this argument. In my English translation, I make 
its syllogistic structure explicit. My primary interest is not the conclusio but the minor. 
 

[maior:] In the demonstratio potissima, the cause of the property or 
characteristic is the essence of the subject from which the properties 
originate. 
[minor:] In Mathematics, the properties are not derived from the 
essence of the subject, but from the relations to other figures. 
[conclusio:] Geometrical proofs do not demonstrate properties by using 
the real cause of the essence or Being.46 

 
Pererius, among others, radicalized Piccolomini’s theses and arguments by 

denying mathematics the status of science.47 Geometrical proofs do not prove by real 
causes (in the sense of principles of being), and in Aristotelian philosophy of science, 
proving by causes is a requisite for being a science. Geometrical proofs do not fulfil 
this condition and therefore mathematics is not a science in an Aristotelian sense. This 
is the point at which the moderate defenders enter the debate. 
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3.2. Moderate Defenders: Some Mathematical Proofs are Demonstrationes 
potissimae 

Many philosophers in the 16th and early 17th centuries did not want to accept 
the consequence that mathematics (the prime example of a science) should not be a 
science at all. So, the more moderate defenders, such as Barozzi (aka Barocius) and 
Blancanus (aka Biancani) tried to prove that at least some mathematical proofs satisfy 
the conditions for being a demonstratio potissima.48 In order to do this, they have to show 
that the middle terms of these proofs signify the unique and proximate cause of the 
property in question. Commonly, they regard the middle terms as definitions which 
denote formal or material causes.49 
 Blancanus discusses the two paradigms of geometrical proofs in the debate 
and comes to the following result. In his opinion, the equilateral triangle (Euclid I.1) is 
proven by formal cause, insofar as he regards the definition of the circle as a formal 
cause.50 He takes the proof of the triangle’s angle sum (Euclid I.32) as a proof by 
material cause, insofar as it is a conclusion from the parts to the whole.51 
 His arguments are based on a very peculiar notion of definitions in geometry. 
While the critics usually conceive of such definitions as being nominal, Blancanus 
argues that in geometry definitions are nominal as well as real at the same time.52 But 
furthermore, he points out that these definitions denote the reason (ratio) or cause 
(causa) of the figure in question.53 He labels them as causal definitions (definitiones causales), 
that is, genetic definitions.54 Prior to Blancanus, definitio causalis was a definition of an 
attribute as an equivalent to the real definition of the subject term. Blancanus’ use of 
the term definitio causalis is beyond the scope of its traditional use, insofar as he 
accentuates the constructive function of such causal definitions. His example is the 
definition of a square: he takes it to be the definition that designates the cause for 
being a square. In many places, Blancanus blurs the distinction between the definition 
and the construction of a figure.  
 By assuming causal definitions, Blancanus introduces causes into geometry 
and into geometrical proofs. With his peculiar view of geometric definitions and 
constructions, Blancanus undermines the two major presuppositions of the critical 
objections. On the one hand, he calls into question the distinction between principles 
of Being and epistemological principles. On the other, the distinction between the 
essence of a geometric figure and its relations to other figures becomes debatable. For 
example, some critics object that the demonstration of the equilateral triangle 
proceeds from the definition of the circle, which is not part of the essence of such a 
triangle. In contrast to this, Blancanus regards the whole construction as part of the 
concept of the figure.55 
 With this in mind, the Being of geometrical figures is their construction, and 
Blancanus subverts the two distinctions. Within Blancanus’ theory, both distinctions 
cannot be applied meaningfully to mathematical objects because the geometric figures 
depend less on abstraction but more on definition and construction. In this 
perspective, principles of Being and epistemological principles coincide in geometry, 
insofar as there are no geometrical figures beyond their construction. 
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 With his ‘rescue’ of the Aristotelian theory of proof, Blancanus gets into 
trouble. Like the critics, he insists on Aristotelian abstraction as the source of 
geometrical figures.56 Yet, Aristotelian abstraction is not entirely compatible with 
Blancanus’ concepts of definition and of construction.57 Either the geometrical proofs 
are created by abstraction from experienced objects or they are constituted by causal 
definitions and geometrical constructions. It seems to be that Blancanus just needs the 
abstraction for the creation of the most basic elements like points and lines, while the 
more complex figures like squares or triangles depend on their definitions. In 
legitimating the subjective certainty of mathematics, Blancanus subverts the justification 
of its objective certainty. The consequence is that his rescue of the Aristotelian view of 
mathematics fragments precisely the Aristotelian view of mathematics. 
 
4. A New Concept of Geometrical Proof 

Such a level of detail in differences implies significant common ground. All 
participants of the initial debate recognize the Aristotelian scientific theory as the 
norm. The characteristics of mathematical proofs are only recognizable against the 
background of different kinds of proofs and “proof theories.” The starting point for 
the debate is the discovery that the Aristotelian theory of proof and Euclid’s 
geometric demonstrations are incompatible. However, no participant in the debate 
explicitly rejects the Aristotelian theory of proof.  
 Considering the Aristotelian framework of the initial debate, one can dismiss 
it as a purely scholastic one. But that does not mean that it has no relevance for the 
further development of mathematical theory. This debate is where the foundations for 
the acceptance of a relational understanding of geometry (4.1) were laid. Certainly, 
some questions discussed in the Quaestio de certitudine lose their relevance when 
Aristotelian logic is abandoned as “the language of science.”58 This mainly pertains to 
the question of whether demonstrationes potissimae are used in mathematics. And yet, 
some non-Aristotelian scholars restage the debate in the 17th century (4.2). These 
scholars, indeed, abandoned some preconditions of the initial debate, and therefore 
transformed its initial question. They changed it even more, by adopting the relational 
understanding of geometrical proof. This shift from causes to relations fits into a 
general shift to structures in mathematical thinking which I want to outline as a last 
point (4.3). 
 
4.1. The Relational Understanding of Geometrical Proof 

Within the debate, a new concept of geometrical proof emerges, distinguished 
by two characteristics.  
 1) First of all, the arguments of the critics as well as of the defenders imply a 
growing degree of flexibility towards geometry’s ontological foundations. The critics emphasize that 
geometrical proofs are just based on epistemological principles, instead of principles 
of Being. Defenders like Blancanus blur the distinction between epistemological 
principles and principles of Being. In doing so, Blancanus rejects Aristotelian 
abstraction as the ontological foundation of mathematics. By breaking away from the 
ontological foundation of mathematics, he opens up the possibility of applying 
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mathematics to non-mathematical contexts, whereas within the Aristotelian 
framework, scientific disciplines are separated by their different and unique subject 
areas. Only the mixed sciences are mathematized since they are subordinated to 
mathematical disciplines; optics, for example, is subordinated to geometry.59 But in 
Aristotelian understanding, the philosophy of nature is not mathematized. 
 2) Furthermore, critics like Piccolomini and Smiglecius are not satisfied with 
the mere statement that geometrical proofs do not meet the requirements of an 
Aristotelian proof. In addition, they seek to explain how mathematical proofs work, 
and in the process, they emphasize the role of internal relationships within geometry 
itself: Geometrical proofs are not based on a hierarchy of causes. The proofs in 
geometry argue primarily on the basis of the relationships between the different 
figures. According to this, geometrical proofs are based on relations and coherence. 
Such a view does not fit into the Aristotelian framework, insofar as geometric proofs 
in an Aristotelian sense have to proceed from the essence of the subject (as its unique 
and proximate cause). This objection from the critics presupposes the distinction 
between the essence of a geometrical figure and its relation to other figures. Blancanus 
wants to rescue Aristotelian proof theory by blurring this distinction. Finally, this is 
where a concept of geometrical proof which focuses on the internal structure of 
geometry and the practice of geometrical constructions emerges. 
 
4.2. The Revival of the Debate 

When scholars such as Pierre Gassendi, John Wallis, Thomas Hobbes and 
Isaac Barrow take up the debate again in the 17th century,60 “it is mathematics that is 
the paradigm of science and its reasoning the paradigm of scientific 
demonstrations.”61 Given this fundamental change, the debate no longer has any 
interest in rescuing Aristotelianism. Gassendi and Barrow explicitly discuss the 
certainty of mathematics in the context of scepticism.62 Wallis, Hobbes and Barrow 
modify the Aristotelian conditions for demonstrations in order to rescue the certainty 
of mathematics and its status as a science. Compared to the positions in the initial 
debate, the strategies of their arguments bear some similarity to Blancanus’ arguments, 
especially when they conceive of the definitions and the constructions themselves as 
the cause of the figures.63 We can take Hobbes as an example. Despite his criticism of 
Aristotelian philosophy, he abides by the Aristotelian idea that knowledge is causal 
knowledge. Indeed, he amalgamates the concept of causal knowledge with that of 
maker’s knowledge. 
 

[T]he science of every subject is derived from a precognition of the 
causes, generation and construction of the same; and consequently 
where the causes are known, there is place for demonstration, but not 
where the causes are to seek for. Geometry therefore is demonstrable, 
for the lines and figures which we reason are drawn and described by 
ourselves, and civil philosophy is demonstrable, because we make the 
commonwealth ourselves. But because of natural bodies we know not 
the construction, but seek it from the effects, there lies no 
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demonstration of what the causes be we seek for, but only of what they 
may be.64 

 
Obviously, Hobbes’ conception of causal knowledge does not really match 

the Aristotelian conception. By combining causal and maker’s knowledge, he subverts 
the distinction between epistemological principles and principles of Being. By doing 
this, he puts the emphasis on the construction of the figure – much like Blancanus. 
Like the other proponents of the debate’s second active period, Hobbes does indeed 
reject most of the Aristotelian framework. 
 
4.3. The General Shift to Structures in Mathematical Thinking 

Both the initial debate and its revival use a concept of geometrical proof that 
focuses on the internal structure of geometry and the practice of geometrical 
construction. Such an understanding of geometrical proof is in tune with general 
developments in the mathematics of the early modern period.  
 Parallel to the debate in geometry, a sea change took place in arithmetic and 
algebra, instigated by the introduction of the decimal number system.65 Arithmetic 
broke away from the classical concept of numbers, which is oriented towards 
counting. The new understanding of numbers regarded them as constituted by the 
structure of the (positional) number system. The system generates the mathematical 
entities insofar as the symbols are relationally defined. In 1591, François Viète 
published his In artem analyticam Isagoge, in which he designs his algebra speciosa,66 
according to which, the solution of an equation consists of formal transformations, 
which are based on transformation rules and the relations between the symbols. This 
process inherently disregards the referents of the symbols. Viète enables general 
solution methods with uninterpreted symbols. Such methods do not depend on 
experienced objects. Instead, the interpretation of the symbols depends on the system 
within which we operate.67 Such a relationalism enables pure formal or syntactical 
reasoning, which is the characteristic of algebraic and arithmetic reasoning in modern 
times.68 
 In contrast to this, the type of proof used in geometry is content-based or 
semantic.69 The axiomatic proofs in Euclid’s geometry proceed from definitions, axioms 
and already proven theorems. Geometric proofs are related to the geometric figures 
and their spatial features. An (exaggeratedly) strict Aristotelian would regard geometry 
as a set of unrelated figures.  
 However, the participants of the debate concerning mathematical certainty 
put the emphasis much more on the role of the relations between the figures and on 
the construction of them with respect to their definitions. This presupposes a more 
flexible stance towards geometry’s ontological foundation. In doing this, they bring 
geometric proof closer to arithmetic proof. They lay the foundations for the 
algebraisation of geometry. More precisely, the shift from causes to relations creates an 
intellectual climate which enables the acceptance of such an algebraisation. In this sense, 
a relational picture of geometry is a precondition of Descartes’ analytical geometry 
and, in a way, of Leibniz’ calculus.  
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 Within Descartes’ analytic geometry, the criterion for mathematical existence 
is not abstraction from experience but constructability. Descartes transfers arithmetics 
and algebra onto geometry. According to his understanding of geometry, its subject 
area is based on the construction of figures, which he reduces to arithmetic 
operations.70 This program is grounded in the relations between the lines of a figure. 
The relationalism inspired by the algebra is the presupposition of Descartes’ 
epistemology and metaphysics, insofar as he, in his Regulae, understands the being 
rather than as substance by its relation to others.71 As Schulthess points out: 
 

If you want to make an unknown known in the algebra, i.e. in the case 
of equation systems, you will have to use the method of relations 
(habitudo). That is to express the unknown by its relations to the known 
or given. This method based on mathematics is the core of the concept 
of the mathesis universalis in Descartes’ Regulae.72 

 
Leibniz goes one step further than Descartes when he understands calculus as 
something that establishes relationships by converting formulas. In doing this, Leibniz 
reduces content-based reasoning to a semiotic-syntactic notion of reasoning.73 
 And this is the sense in which the Quaestio de certitudine mathematicarum enabled 
the new developments in mathematics previously alluded to. Although all participants 
of the debate abide by the tenets of Aristotelianism, the debate develops its own 
dynamics: arguments and concepts emerge that finally challenge Aristotelianism, 
particularly the idea of abstraction and its implications.  
 
Acknowledgments. I want to thank Barnaby Hutchins for language revision. 

                                                 
References 
1 Hume, D., Philosophical Essays concerning Human Understanding (London: Printed for A. Millar, 
1748), 47 f. 
2 Serene, E., “Demonstrative Science”, in The Cambridge History of Later Medieval Philosophy: From 
the Rediscovery of Aristotle to the Disintegration of Scholasticism 1100-1600, eds. N. Kretzmann, A. 
Kenny and J. Pinborg (Cambridge: Cambridge University Press, 1982), 496-517, here 497. Cf. 
Aristotle, Posterior Analytics, I.2 .  
3 Mancosu, P., “Explanation in Mathematics”, chap. 2, The Stanford Encyclopedia of Philosophy 
(Summer 2011 Edition), ed. E.N. Zalta, [Online] Available 
via:http://plato.stanford.edu/archives/sum2011/entries/mathematics-explanation cited 
25.09.2011. 
4 On the reception of the Aristotelian concept of science by medieval scholars, see Serene, E. 
(1982); Nadler, S., “Doctrines of Explanation in Late Scholasticism and in the Mechanical 
Philosophy”, in The Cambridge History of Seventeenth-Century Philosophy, eds. D. Garber and M. 
Ayers (Cambridge: Cambridge University Press, 1998), 2 vols., vol. I, 513-552; and Longeway, 
J., “Medieval Theories of Demonstration”, The Stanford Encyclopedia of Philosophy (Spring 2009 
Edition), ed. E.N. Zalta, [Online] Available via 
http://plato.stanford.edu/archives/spr2009/entries/demonstration-medieval cited 25.09.2011. 
On the role of Aristotle in Renaissance philosophy, see Schmitt, C.B., Aristotle and the 

http://plato.stanford.edu/archives/sum2011/entries/mathematics-explanation/
http://plato.stanford.edu/archives/spr2009/entries/demonstration-medieval


 
 
 
Society and Politics                                                              Vol. 6, No. 2 (12)/November 2012 

 

43 

 

 

Renaissance (Cambridge, Mass: Harvard University Press, 1983). Concerning competing 
traditions of mathematical methods (especially in the early modern times) see Gilbert, N. W., 
Renaissance Concepts of Methods (New York/London: Columbia University Press, 1960); Schüling, 
H., Die Geschichte der axiomatischen Methode im 16. und beginnenden 17. Jahrhundert: Wandlung der 
Wissenschaftsauffassung (Hildesheim/New York: Olms, 1969), chap. 1-6; Engfer, H.-J., Philosophie 
als Analysis: Studien zur Entwicklung philosophischer Analysekonzeptionen unter dem Einfluß 
mathematischer Methodenmodelle im 17. und frühen 18. Jahrhundert (Stuttgart/Bad Cannstatt: 
Frommann-Holzboog, 1982) and Schulthess, P., “Die philosophische Reflexion auf die 
Methode”, in Die Philosophie des 17. Jahrhunderts, ed. J.P. Schobinger (Basel: Schwabe, 1998), 3 
vols., vol. I: Allgemeine Themen. Iberische Halbinsel. Italien, 62-120, here esp. 68 ff. and 77 ff. 
5 See Trudeau, R.J., The non-Euclidean Revolution (Basel/Boston/Berlin: Birkhäuser, 1986), 
chapter “The Psychological Impossibility of Non-Euclidean Geometry”, 159. 
6 See Trudeau, R.J. (1986), 155.  
7 Lambert acknowledges that there are plausible interpretations of a geometry without the 
postulate of parallels. See Lambert, J.H., “Theorie der Parallelinien” [posthumously published, 
1786], in Die Theorie der Parallellinien von Euklid bis auf Gauss: Eine Urkundensammlung zur 
Vorgeschichte der nichteuklidischen Geometrie, eds. P. Stäckel and F. Engel (Leipzig: Teubner, 1895), 
152-208; see also 144 ff. 
8 On various concepts of science during the scientific revolution, see McMullin, E., 
“Conceptions of Science in the Scientific Revolution”, in Reappraisals of the Scientific Revolution. 
eds. D.C. Lindberg and R.S. Westman (Cambridge: Cambridge University Press, 1990), 27-92. 
9 See Crombie, A.C., “Science and the Arts in the Renaissance: The Search for Truth and 
Certainty, Old and New”, History of Science 18 (1980): 233-246, here 234; and Schulthess, P. 
(1998), 84.  
10 Concerning the influence of the school of Padua on the 17th century scientists, see Randall, 
J.H., “The Development of Scientific Method in the School of Padua”, Journal of the History of 
Ideas 1, 2 (1940): 177-206; and Edwards, W.F., “Paduan Aristotelianism and the Origin of 
Modern Theories of Method”, in Aristotelismo Veneto e Scienza Moderna, ed. L. Olivieri, (Padua: 
Antenore, 1983), 2 vols., vol. I, 206-220. 
11 Cf. for example Alessandro Piccolomini’s Commentarium de certitudine mathematicarum 
disciplinarum in his Alexandri Piccolominei In mechanicas quaestiones Aristotelis, paraphrasis paulo quidem 
plenior. Eiusdem commentarium de certitudine mathematicarum disciplinarum: in quo, de resolutione, 
diffinitione& demonstratione: necnon de materia, & in fine logicae facultatis, quamplura continentur ad rem 
ipsam, tum mathematicam, tum logicam, maxime pertinentia (Venice: Apud Traianum Curtium, 1565), 
chap. 10; cf. also Schüling, H. (1969), 42 f. Piccolomini’s Commentarium de certitudine 
mathematicarum disciplinarum was first published in 1547 (Rome: Asulanum); here and in the 
following, I use the second edition from 1565, quoted as Piccolomini, A., Commentarium de 
certitudine mathematicarum.) 
12 Gilbert, N.W. (1960), 89. 
13 Schüling, H. (1969), 41 ff. 
14 On the distinction between objective and subjective certainty, see Schulthess, P. (1998), 84 f. 
15 Aquinas, T., Expositio super librum Boethii de Trinitate, ed. B. Decker (Leiden: Brill, 1959), 
quaestio vi, articulus 1, esp. pp. 208 ff. 
16 Aristotle, Posterior Analytics, I.2 and Nicomachean Ethics VI.3, 1139b 18 ff.  
17 Aristotle, Posterior Analytics, I.14. 
18 For example, Blancanus, J. [Biancani, Giuseppe], Sphaera mundi seu Cosmographia demonstratiua, 
ac facili methodo tradita: in qua totius mundi fabrica, una cum novis, Tychonis, Kepleri, Galilaei, aliorumque 
astronomorum adinuentis continetur. Accessere I. Breuis introductio ad Geographiam. II. Apparatus ad 



 
 
 
Tobias Schöttler - From Causes to Relations: The Emergence of a Non-Aristotelian Concept of … 

44 

 

 

Mathematicarum studium. III. Echometria, id est Geometrica traditio de Echo (Bologna: Bonomij, 1620), 
406-408. A few years back, he defended the thesis that some geometrical proofs are 
demonstrationes potissimae; see Blancanus, J. [Biancani, Giuseppe], De mathematicarum natura 
dissertatio (Bologna: Apud Bartholomaeum Cochium, 1615).  
19 On the conjunction of the demonstratio quia and the demonstratio propter quid with other models 
of methods cf. Schulthess, P. (1998), 80. 
20 Aristotle, Posterior Analytics, I.13; for the following reconstruction, see Jardine, N., 
“Epistemology of the Sciences”, in The Cambridge History of Renaissance Philosophy, eds. C.B. 
Schmitt, Q. Skinner, E. Kessler and J. Kraye (Cambridge: Cambridge University Press, 1988), 
pp. 685-711, here 686 f. 
21 Piccolomini, A., Commentarium de certitudine mathematicarum, 77v. 
22 Averroes/Aristotle, Aristotelis opera cum Averrois commentariis, vol. I, part 2a: Aristotelis Stagiritae 
posterium resolutoriorum libri duo. Cum Averrois Cordubensis magnis commentariis (Venice: Junctas, 
1562), 208 ff., esp. 208v and vol. IV: Aristotelis de physico auditu libri octo. Cum Averrois Cordubensis 
variis in eosdem commentariis, 4r and v. Among the participants of the Quaestio de certitudine, 
Hieronymus Balduinus and Simon Simonius strictly ally to Averroes. For further details, see 
Balduinus, H., Expositio in libellum Porphyrii de quinque vocibus (Venice: Pryphuis, 1562), 222r ff., 
esp. 223v, and Simonius, S., Antischegkianorum liber unus (Basel: editor not mentioned, 1570), 
304 ff. Concerning Averroes and his adaption in the debate, see Schüling, H. (1969), 44 f. and 
Cozzoli, D., “Alessandro Piccolomini and the Certitude of Mathematics”, History and Philosophy 
of Logic 28 (2007): 151-171, here 157 ff. 
23 Piccolomini argues that at least one of the premises must be fundamental (Commentarium de 
certitudine mathematicarum, 79r f.). 
24 Usually, they conceive of its middle term as the formal cause. See for example, Balduinus, 
H., Expositio in libellum Porphyrii, 222r ff., esp. 223v and Schegk, J. Antisimonius (Tübingen: 
[Gruppenbach], 1573), 277 ff. 
25 See for example, Averroes/Aristotle, Posterium resolutoriorum libri duo, 208 ff., esp. 208v; 
Averroes/Aristotle, Physico auditu libri octo, 4r and v; Jardine, N. (1988), Cozzoli, D. (2007), and 
Mancosu, P., “Aristotelian Logic and Euclidean Mathematics: Seventeenth-Century 
Developments of the Quaestio de Certitudine Mathematicarum”, Studies in History and Philosophy of 
Science 23, 2 (1992): 241-265.  
26 Piccolomini, A., Commentarium de certitudine mathematicarum,79v; Schegk, J., Antisimonius, 
277 ff.; Hobbes, T., “Examinatio et emendatio mathematicae hodiernae, qualis explicatur in 
libris Johannis Wallisii distributa in sex dialogos” [1660], in Thomae Hobbes Malmesburiensis Opera 
philosophica quae latine scripsit omnia, ed. W. Molesworth (London: Bohn,1839-1845), 5 vols., vol. 
IV, 1-232, esp. 38 and Wallis, J., Mathesis Universalis (Oxford: Lichfield, 1657), chap. 3. Wallis 
doubts in this work (10 f.) whether there is a demonstratio potissima in any science. 
27 Proclus already questions if all of Euclid’s proofs meet Aristotle’s requirements of 
demonstration. For further details see Proclus, A Commentary on the First Book of Euclid’s 
Elements, ed. Glenn R. Morrow (Princeton: Princeton University Press, 1970), 161 f. 
28 On aspects of this debate, see Schüling, H. (1969), chap. 9, Gilbert, N.W. (1960), 90 f.; 
Jardine, N. (1988), 693-697; Mancosu, P. (1992); Mancosu, P., Philosophy of Mathematics and 
Mathematical Practice in the Seventeenth Century (New York and Oxford: Oxford University Press, 
1996), 8-33 and Schulthess, P. (1998), 84. 
29 Balduinus, H., Expositio in libellum Porphyrii, 222r ff., esp. 223v; Schegk, J., Antisimonius, 277 ff. 
30 On Piccolomini’s discussion of the mathematical certainty, See Schüling, H. (1969), 45 f.; 
Giacobbe, G. C., “Il Commentarium de Certitudine Mathematicarum Disciplinarum di Alessandro 
Piccolomini”, Physis: Rivista Internationale di Storia della Scienza 14, 2 (1972): 162-193; Jardine, N. 



 
 
 
Society and Politics                                                              Vol. 6, No. 2 (12)/November 2012 

 

45 

 

 

(1988), 693-697; Mancosu, P. (1992), 243 f. and Mancosu, P. (1996), 12 f. and Cozzoli, D. 
(2007). 
31 Piccolomini, A., Commentarium de certitudine mathematicarum, 84v ff. 
32 Piccolomini, A., Commentarium de certitudine mathematicarum, 100v. 
33 Piccolomini, A., Commentarium de certitudine mathematicarum, 103v ff. 
34 Cf. Simonius, S., Antischegkianorum, 304 and 310. 
35 For further details, see Piccolomini, A., Commentarium de certitudine mathematicarum, 96r ff. and 
100v f. 
36 See Piccolomini, A., Commentarium de certitudine mathematicarum, chap. 7 and 101r f. 
37 Piccolomini argues for the thesis that the middle term must signify the definition of the 
property and cannot be the definition of the subject itself (Commentarium de certitudine 
mathematicarum, 81r ff. and 88v ff). But, he disproves both conceptions since many of his 
predecessors regard the middle term as the definition of the subject. 
38 See Piccolomini, A., Commentarium de certitudine mathematicarum, 102r; concerning his 
reconstruction of Euclid I.32, see Commentarium de certitudine mathematicarum, chap. 9. Euclid I.32 
and Euclid I.1 are the two proofs of Euclid which run like a golden thread through the debate; 
see Euclid, The Thirteen Books of Euclid’s Elements, ed. T. L. Heath, (New York: Dover, 1956), 3 
vols., vol. I, 316 ff. and 241 ff. Since most participants of the debate usually use these proofs of 
Euclid as paradigm (cf. Mancosu, P. (1992), 262) I will use these two proofs to illustrate their 
concept of geometrical proof. 
39 Proclus, A Commentary on the First Book of Euclid’s Elements, 161 f. and also Schüling, H. (1969), 
43. 
40 Piccolomini regards axioms and definitions as fundamental propositions. For this point and 
the following see Commentarium de certitudine mathematicarum, 83r f. and102r ff. 
41 “[…] eadem conclusio in Mathematicis potest demonstrare per pluras, & diversas 
praemissas.” (Piccolomini, A., Commentarium de certitudine mathematicarum, 103r; cf. also ibid., 
105r f.). Piccolomini attributes this thesis to Themisticus. 
42 Piccolomini conceives the mathematical entities as abstracted quantities (quantitates ipsae 
abstractae); cf. Commentarium de certitudine mathematicarum, 94v. For his constructive approach to 
the mathematical certainty, cf. Commentarium de certitudine mathematicarum, chap. 12; see also 
Carugo, A., “Guiseppe Moleto: Mathematics and the Aristotelian Theory of Science at Padua 
in the Second Half of the 16th Century”, in Olivieri, L. (1983), vol. I, 509-517, here 511 f. 
43 Pererius, B. [Pereira, Benito] De communibus omnium rerum naturalium principiis & affectionibus, 
libri quindecim (Cologne: Zetzner, 1603), esp. 116-122 (first published 1579: Pereriu, B [Pereiro, 
Benito], De communibus omnium rerum naturalium principiis et Affectionibus, Libri Quindecim […] 
(Paris: Michael Sonnius, 1579)); Conimbricenses, Commentarii Collegii Conimbricensis e Societate 
Iesu: In universam dialecticam Aristotelis Stagiritæ (Cologne: Gualterius, 1611), col. 501-507 and 
Smiglecius, M., Logicae. Pars altera. Ea omnia, quae ad secundam & tertiam operationem intellectus 
pertinent comprehendens (Ingolstadt: Typographeo Ederiano, 1618), 300-308. 
44 Pererius, B., De communibus omnium rerum naturalium principiis &affectionibus, 117 f., 
Conimbricensis, In universam dialecticam Aristotelis, 506; and Smiglecius, M., Logicae, 305. 
45 Euclid I.1 (Euclid, Elements, 241 ff.). Cf., for example, Piccolomini, A., Commentarium de 
certitudine mathematicarum, chap. 10.  
46 “Quia in demonstratione potissima, causa proprietatis est essentia subiecti, a qua proprietas 
illa oritur: at in Mathematicis non probantur prorietates ex essentia subiecti, sed ex habitudine 
ad aliam figuram: Ergo non probantur per veram causam essendi.” (Smiglecius, M., Logicae, 
306) 



 
 
 
Tobias Schöttler - From Causes to Relations: The Emergence of a Non-Aristotelian Concept of … 

46 

 

 

47 “Mea opinio est, Mathematicas disciplinas non esse proprie scientas […]. Scire es rem per 
causam cognoscere propter quam res est; & scientia est demonstrationis effectus […].” 
(Pererius, B., De communibus omnium rerum naturalium principiis et affectionibus, 40) see also Schüling, 
H. (1969), 47 ff. and Giacobbe, G.C., “Un Gesuita Progressista nella Quaestio de Certitudine 
Mathematicarum Rinascimentale: Benito Pereyra”, Physis: Rivista Internationale di Storia della Scienza 
19, 2 (1977): 51-86. 
48 Barocius, F. [Barozzi, Francesco], Opusculum in quo vna oratio & duae qu[a]estiones, altera de 
certitudine & altera de medietate mathematicarum continentur (Padua: E.G.P. [i.e. Gratiosus 
Percacinus], 1560) and Blancanus, J., De mathematicarum natura dissertatio, esp. 11; on the 
different kinds of mathematical proofs Blancanus assumes, see De mathematicarum natura 
dissertatio, 10. See also Giacobbe, G.C., “Francesco Barozzi e la Quaestio de Certitudine 
Mathematicarum”, Physis. Rivista Internationale di Storia della Scienza 14, 4 (1972): 357-374 and 
Giacobbe, G.C., “Epigoni nel seicento della Quaestio de Certitudine Mathematicarum: Guiseppe 
Biancani”, Physis. Rivista Internationale di Storia della Scienza 18, 1 (1976): 5-40. 
49 Blancanus, J., De mathematicarum natura dissertatio, 11 f. and esp. 14 and Barocius, F., 
Opusculum, 21v f. Barocius maintains that there are two types of definition used as the middle 
term in geometrical proofs, namely the material definition (definitio materialis) and the formal 
definition (definitio formalis). He argues that some geometrical proofs infer from causes, insofar 
as the definitions explain their causes. See also Barocius, Opusculum, 24r and Schüling, H. 
(1969), 52 f. 
50 Blancanus, J., De mathematicarum natura dissertatio, 14 f. and also Schüling, H. (1969), 53 ff. 
51 Blancanus, J., De mathematicarum natura dissertatio, 16 f. and also Schüling, H. (1969), 53 ff. 
52 Blancanus, J., De mathematicarum natura dissertatio, 7 f. In contrast, Piccolomini regards the 
definitions in mathematics as nominal definitions and denies the assumption that these 
definitions could be real definitions; cf. Commentarium de certitudine mathematicarum, 84r. 
53 Blancanus, J., De mathematicarum natura dissertatio, 7-9 and 16. 
54 Blancanus, J., De mathematicarum natura dissertatio, 9.  
55 Blancanus, J., De mathematicarum natura dissertatio, 9. 
56 Blancanus, J., De mathematicarum natura dissertatio, 5-7. “Quantitas igitur abstracta a materia 
sensibili […] considerari solet.” (De mathematicarum natura dissertatio, 5). He maintains that 
geometric figures are created by combining the abstract quantities, wherefore the mathematical 
entities have just a mental reality (cf. De mathematicarum natura dissertatio, 6 f.). 
57 Blancanus complicates this idea by combining it with the neoplatonic idea that the originals 
of the geometric figures (pre)exist in a divine mind; cf. Blancanus, J., De mathematicarum natura 
dissertatio, 7. 
58 Mancosu, P. (1992), 255. 
59 Aristotle, Posterior Analytics, I.13. 
60 Gassendi, P., “Exercitationes Paradoxicae adversus Aristoteleos” [1624], in Petri Gassendi 
Opera omnia, (Lyon: Anisson & Devenet, 1658), 5 vols., vol. III, 92-193, here excercitatio 6; 
Wallis, J., Mathesis Universalis, chap. 3, Hobbes, T., “Examinatio et emendatio mathematicae 
hodiernae”, esp. 35-43 and Barrow, I., The Usefulness of Mathematical Learning [English translation 
of Barrow’s Lectiones, held 1665, published posthumously 1683], trans. J. Kirkby (London: 
Austen, 1734), esp. lectures 5 and 6. Cf. also Pycior, H., “Mathematics and Philosophy: Wallis, 
Hobbes, Barrow and Berkeley”, Journal of the History of Ideas 48, 2 (1987): 265-286, Mancosu, P. 
(1992), and Stewart, I., “Mathematics and Philosophy: Barrow and Proclus”, Dionysius 18 
(2000): 151-182. 
61 Mancosu, P. (1992), 255. 



 
 
 
Society and Politics                                                              Vol. 6, No. 2 (12)/November 2012 

 

47 

 

 

62 Gassendi, P., “Exercitationes Paradoxicae adversus Aristoteleos”, excercitatio 6; Barrow, I., 
The Usefulness of Mathematical Learning, esp. lecture 5; also Mancosu, P. (1992), 258 ff., esp. 265. 
63 Wallis, J., Mathesis Universalis, 11 and Barrow, I., The Usefulness of Mathematical Learning, 78 ff. 
Barrow regards some of the definitions as analytical statements and considers the internal 
relation of mathematical terms as formal cause (The Usefulness of Mathematical Learning, 88). 
64 Hobbes, T., “Six Lessons of the Professors of the Mathematics, one of Geometry, the other 
of Astronomy” [1656], in The English Works of Thomas Hobbes of Malmesbury, ed. W. Molesworth 
(London: Bohn, 1839-1845), 11 vols., vol. VII, 181-356, here 184. Concerning the maker’s 
knowledge tradition, see Pérez-Ramos, A., Francis Bacon’s Idea of Science and the Maker’s Knowledge 
Tradition (Oxford: Clarendon, 1988). 
65 Krämer, S., Symbolische Maschinen: Die Idee der Formalisierung in geschichtlichem Abriß (Darmstadt: 
Wissenschaftliche Buchgesellschaft, 1988), 54 ff. and Krämer, S., Berechenbare Vernunft: Kalkül 
und Rationalismus im 17. Jahrhundert (Berlin and New York: de Gruyter, 1991), 88 ff. 
66 Cf. Viète, F., In artem analyticam Isagoge (Tours: Mettayer, 1591) and also Krämer, S. (1991), 
124 ff. 
67 See Stevin, S., L’Arithmetique (Leyden: Plantin, 1585) and also Krämer, S. (1988), 59 ff. and 
Krämer, S. (1991),esp. 143. 
68 On the formal or syntactical reasoning in algebra distinguished from the contentual or 
semantical reasoning in geometry, cf. Schulthess, P. (1998), 96 and 105. 
69 Schulthess, P. (1998), 96 and 105. 
70 Cf. his geometry in Descartes’ Discours; see Descartes, R., Discours de la méthode pour bien 
conduire sa raison,& chercher la verité dans les sciences. Plus la Dioptrique. Les Meteores. Et la Geometrie. 
Qui sont des essais de cette Methode (Leyden: Maire, 1637); and also Krämer, S. (1991), 151. 
71 Cf. Descartes, R., Regulae ad directionem ingenii / Regeln zur Ausrichtung der Erkenntniskraft 
[1628].ed. H. Springmeyer, L. Gäbe und H.G. Zekl (Hamburg: Meiner, 1973), 381 and 383; see 
also Schulthess, P. (1998), 93. 
72 “Will man in der Algebra, also bei Gleichungssystemen, eine Unbekannte bekannt machen, 
so muss man die Methode der Beziehungen (habitudo) anwenden, d.h. das Unbekannte durch 
Beziehungen zu Bekanntem, Gegebenem ausdrücken. Diese an den Beziehungen in der 
Mathematik orientierte Methode steht auch im Vordergrund des Konzepts einer mathesis 
universalis in den Regulae.” (Schulthess, P. (1998), 94.). On the mathesis universalis and the mos 
geometricus cf. Arndt, H.W., Methodo scientifica pertractatum: Mos geometricus und Kalkülbegriff in der 
philosophischen Theorienbildung des 17. und 18. Jahrhunderts (Berlin/New York: de Gruyter, 1971). 
73 Leibniz, G.W., “De ortu, progressu et natura algebrae, nonnullisque aliorum et propriis circa 
eam inventis”, in Leibnizens mathematische Schriften, ed. C.I. Gerhardt (Berlin: Asher; Halle: 
Schmidt, 1848-1863), 7 vols., vol. VII, 203-216, here 206 and also Schulthess, P. (1998), 108. 


