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Abstract

This paper describes an R package, rpartOrdinal, that implements alternative splitting
functions for fitting a classification tree when interest lies in predicting an ordinal response.
This includes the generalized Gini impurity function, which was introduced as a method
for predicting an ordinal response by including costs of misclassification into the impurity
function, as well as an alternative ordinal impurity function due to Piccarreta (2008) that
does not require the assignment of misclassification costs. The ordered twoing splitting
method, which is not defined as a decrease in node impurity, is also included in the
package. Since, in the ordinal response setting, misclassifying observations to adjacent
categories is a less egregious error than misclassifying observations to distant categories,
this package also includes a function for estimating an ordinal measure of association, the
gamma statistic.
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1. Introduction

For many high-throughput genomic studies, the phenotype to be predicted is ordinal. Some
examples of ordinal responses include the more recently advocated method for evaluating
response to treatment in target tumor lesions, known as the response evaluation criteria in
solid tumors (RECIST) method, with ordinal outcomes defined as complete response > partial
response > stable disease > progressive disease. Moreover, most histopathological measures
are ordinal, such as scoring methods for liver biopsy specimens from patients with chronic
hepatitis, including the Knodell hepatic activity index, the Ishak score, and the METAVIR
score. Statistical methods such as adjacent category, proportional odds, and continuation
ratio models (Agresti 2002) are traditionally used when modeling an ordinal response, though
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they fail for high-throughput genomic datasets when the number of covariates, p, exceeds the
number of observations, n.

An alternative class prediction method, classification trees (CTs), is capable of predicting a
response when the n << p (Breiman et al. 1984). Suppose n independent observations to

be classified are characterized by a p-dimensional vector of predictors x; = (z1, Zi2, . . ., Tip)
and each observation x; falls into one of J classes. Let w denote the class with w = w;
representing observations in class 1, w = wy representing class 2,. .., and w = w; representing

class J. When deriving a CT, all observations start together in the root node, t. Then, for
predictors 1,2,. .., p, the optimal split is determined, where optimality is defined as that split
resulting in the largest decrease in node impurity.

For node t, the optimal split divides the observations to the left and right descendent nodes,
tr, and tR, respectively, and the proportion of cases in each of the J classes within these nodes
are called the node proportions, that is, p(w;[t) for j =1,...,J such that p(w1|t) + p(wa|t) +
...+ p(wys|t) = 1. For nominal response classification, the within-node impurity measure most
commonly used is the Gini criterion (Breiman et al. 1984), defined as

i) => Y plwlt)p(wilt). (1)

k k£l

This is the default impurity function in the R programming environment (R Development
Core Team 2009) rpart package (Therneau and Atkinson 1997) for predicting a nominal class
response. However, use of this impurity function does not take advantage of the additional
information present when the response is ordinal. To that end, the generalized Gini impurity
function (Breiman et al. 1984),

ico(t) = 3 3 Clanloplrlp(alt), (2)

k k£l

which factors in C'(wk|w;), the cost of misclassifying a class [ observation as belonging to class
k, has been proposed for ordinal response prediction.

Another proposed ordinal impurity function for deriving an ordinal response classification tree
based on a measure of nominal-ordinal association (Piccarreta 2001) that does not require
the assignment of costs of misclassification is

J

ios(t) =Y F(wjlt) (1 — F(wlt)) 3)

Jj=1

where F(wj|t) = izlp(wk\t) (Piccarreta 2008).

A splitting method for ordinal response prediction that is not impurity-based is the ordered
twoing method (Breiman et al. 1984). Though this method was described in the seminal book
by Breiman et al. (1984) and has been implemented in the CART Software by Salford Systems
(Steinberg and Colla 1997; Steinberg and Golovnya 2006), it has not yet been implemented in
R. Ordered twoing proceeds by reformulating the ordinal response as a vector of dichotomous
responses, where for each observation ¢, the j-th dichotomous response is taken to be

1 fw=1,...,j
Cij = LT (4)
0 ifw=75+1,...,J.
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For node t and dichotomous response C}, the split s that maximizes

¢(s,t,C;) = 2pLpr(p(Cjlt) — p(Cjltr))? (5)

over the p covariates is taken to be the best split for that dichotomous response Cj. Subse-
quently, the split s associated with the dichotomous response

J* = argmax (s, t, ) (6)
J

is then selected for splitting node ¢. In this paper, we describe the rpartOrdinal R package,
which implements ordered twoing, the generalized Gini, and the ordinal impurity splitting
methods. These splitting methods should be considered for use when deriving an ordinal
response classification tree.

For nominal response prediction, misclassification rates are often examined as a means for
assessing the performance of the classifier. For ordinal response prediction problems, it may
be of more interest to estimate the gamma statistic as an ordinal measure of association
between the observed and predicted responses as a means for gauging the success of ordinal
classification. Briefly, the association between two ordinal variables X and Y can be estimated
by the gamma statistic (Agresti 2002), where given the cross-tabulation matrix 7" of X and
Y having r rows and ¢ columns, the number of concordant pairs for cells (1,1) to (r—1,c—1)

is given by
C T
Cu=Tux Y > Ty (7)
=1 i=kt1

Similarly, the number of discordant pairs for cells (1,2) to (r — 1, ¢) is given by

-1 r
Dy = T % Z Z 13 (8)

j=1i=k-+1

We then let C' = Z;} Z:;ll Cijand D =375, Z:;ll D;; such that the gamma statistic of

ordinal association is defined as
C—-D

T o+ ©)
An R package, rpartOrdinal, that implements the described ordinal splitting methods as well
as a function for estimating the gamma statistic as an ordinal measure of association is avail-
able for download from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=rpartOrdinal.

2. Illustrative datasets

2.1. Low birthweight dataset

The lowbwt dataset was downloaded from ftp://ftp.wiley.com/public/sci_tech_med/
logistic/ and includes birthweight and associated risk factors measured on 189 women as
described by (Hosmer and Lemeshow 2000). For illustrative purposes, an ordinal response
variable (Category) will be derived from birthweight as defined in Table 1 and added to the
lowbwt dataset.
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bwt > 3500
3000 < bwt < 3500
2500 < bwt < 3000
bwt < 2500

B~ W N =

Table 1: Ordinal response levels for low birthweight (Category).

Variable Description

low Dichotomous outcome: Low birthweight (<2,500 grams) or not
age Age of mother, years

lwt Mother’s weight at last menstrual period, pounds

race Race of mother (white, black, other)

smoke Mother’s smoking status (No, Yes)

ptl Number of previous premature labours

ht Mother’s history of hypertension (No, Yes)

ui Presence of uterine irritability (No, Yes)

ftv Number of physician visits during the first trimester

bwt Birth weight in grams

Table 2: Description of covariates included in the low birthweight dataset.

In addition to this ordinal response, the dataset includes variables listed in Table 2.

2.2. Gene expression in B-cell acute lymphocytic leukemia

As an example using a high-througput genomic dataset, the acute lymphoblastic leukemia
ALL dataset was downloaded from the Bioconductor experiment repository http://www.
bioconductor.org/packages/release/data/experiment/html/ALL.html, which includes
gene expression microarray data for 128 patients, 95 with B-cell and 33 with T-cell leukemia
(Chiaretti et al. 2004, 2005). Patients with B-cell acute lymphocytic leukemia (B-ALL)
are staged according to whether or not the leukemic cells express different antigens (e.g.,
CD19, HLA-DR, CD10) or immunoglobins (e.g., surface immunoglobin or cytoplasmic im-
munoglobins). The stages are ordered, such that Bl represents early pre-B ALL (do not
express CD10); B2 represents disease more advanced than Bl as CD10 is expressed, but not
yet meeting criteria stages B3-B4; B3 represents common ALL, where the CD10 antigen is
expressed but still lacking IgM; and B4 represents pre-B ALL, where CD10 and IgM are
expressed. B-ALL stage is clinically important as it is one of several factors used to plan
treatment. Among the 95 B-ALL patients in the publicly available dataset, 90 were staged
(19 B1, 36 B2, 23 B3, and 12 B4 patients). Note that this dataset requires more memory than
is typically available on a standard Windows PC. The B-ALL dataset was therefore analyzed
using a MacBook Pro laptop (Mac OS X 10.5.7) having 8GB RAM.

3. Implementation

The rpartOrdinal package was written in the R programming environment (R Development
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Core Team 2009) and depends on the rpart package (Therneau and Atkinson 1997). Cur-
rently, rpart includes methods for deriving regression, classification, and survival trees. Due
to the method = option in rpart, users can define their own splitting methods for use in
conjunction with the rpart function. A user defined method passed to the method = option
must be a list consisting of three functions named eval, split, and init. Since previous
research comparing the ordinal splitting methods to traditional methods for single trees and
for bootstrap aggregating classification trees has demonstrated that when the response to be
predicted is ordinal, an ordinal splitting method is usually preferred (Piccarreta 2008; Archer
and Mas 2009), we have implemented three ordinal splitting methods, namely, ordered twoing,
ordinal impurity, and generalized Gini for use in conjunction with rpart.

3.1. Ordered twoing

The ordered twoing splitting criteria in Equation 5 has been implemented as a callable method
in rpart. Here we derive an ordinal classification tree for predicting the ordinal response in the
low birthweight dataset, Category, using ordered twoing by additionally specifying method
= twoing. Such a CT may be useful for exploring factors related to poor neonatal outcomes.

R> library("rpartOrdinal")

R> data("lowbwt")

R> lowbwt$Category <- factor(ifelse(lowbwt$bwt <= 2500, 3,

+ ifelse(lowbwt$bwt <= 3000, 2,

+ ifelse(lowbwt$bwt <= 3500, 1, 0))), ordered = TRUE)

R> otwoing.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl +
+ ht + ui + ftv, data = lowbwt, method = twoing)

The fitted CT can be graphically displayed using the plot () and text () functions. In plots of
the tree topology created using these functions, observations meeting the criterion displayed at
a given node proceed to the left descendent node while observations not meeting the criterion
displayed at a given node proceed to the right descendent node.

R> plot(otwoing.rpart)
R> text(otwoing.rpart, pretty = TRUE)

The additional pretty = TRUE argument to the text function does not abbreviate factors as
alphanumeric characters if they appear in the tree. Alternatively, the post () function can be
used for producing postscript files containing the tree topology which more extensively labels
the splits and predicted class for each node.

R> post(otwoing.rpart, filename = "TwoingLowbwt.ps", use.n = FALSE,
+ title = "", horizontal = FALSE)

3.2. Ordinal impurity function

As with the twoing function, the ordinal impurity function in Equation 3 has been imple-
mented as a callable method in rpart. That is, within the rpart function, the user should
specify method = ordinal to fit an ordinal response classification tree using Equation 3.
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Figure 1: CT for low birthweight dataset using ordered twoing.

R> ordinal.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl +
+ ht + ui + ftv, data = lowbwt, method = ordinal)

R> plot(ordinal.rpart)

R> text(ordinal.rpart, pretty = TRUE)

The ordered twoing and ordinal tree topologies are very similar with exception that node 38
is split by 1wt in the ordinal tree whereas this same node is split by age in the ordered twoing
tree, with the descendent node 77 splitting variable also differing.

3.3. Generalized Gini impurity

The generalized Gini impurity function in Equation 2 has been implemented in this package by
allowing the user to specify a loss.matrix parameter in the optional parms argument within
the rpart call. The loss.matrix parameter accepts either "linear" or "quadratic" for
using either linear or quadratic loss, respectively. The specific syntax for the low birthweight
example using the linear loss follows.

R> linear.loss.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl +
+ ht + ui + ftv, data = lowbwt, method = "class",

+ parms = list(loss = loss.matrix(method = "linear", lowbwt$Category)))
R> plot(linear.loss.rpart)

R> text(linear.loss.rpart, pretty = TRUE)

The specific syntax for the low birthweight example using the quadratic loss function is
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Figure 2: CT for low birthweight dataset using the ordinal impurity function.

R> quad.loss.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl +
+ ht + ui + ftv, data = lowbwt, method = "class",

+ parms = list(loss = loss.matrix(method = "quad", lowbwt$Category)))
R> plot(quad.loss.rpart)

R> text(quad.loss.rpart, pretty = TRUE)

Both CTs derived using the generalized Gini criteria split the root node using lwt>=109.5
and split node 2 using ui = 0. However, other splits differed between the linear and quadratic
loss functions.

3.4. Gamma statistic

The ordinal.gamma function estimates the gamma statistic, which is a measure of the
strength of the association of the cross-tabulation of two ordinal variables. The following
example replicates Table 2.8 in Agresti (2002).

R> library("rpartOrdinal")

R> job.satis <- factor(c(1, rep(2, 3), rep(3, 10), rep(4, 6), rep(1, 2),

+ rep(2, 3), rep(3, 10), rep(4, 7), 1, rep(2, 6), rep(3, 14), rep(4, 12),
+ 2, rep(3, 9), rep(4, 11)), ordered = TRUE,

+ labels = c("Very Dissatisfied", "Little Dissatisfied",

+ "Moderately Satisfied", "Satisfied"))

R> income <- factor(c(rep(1, 20), rep(2, 22), rep(3, 33), rep(4, 21)),
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Figure 3: CT for lowbwt using generalized Gini with linear cost of misclassification.
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Figure 4: CT for lowbwt using generalized Gini with quadratic cost of misclassification.



Journal of Statistical Software

+ ordered = TRUE, labels = c("<15,000", "15,000-25,000", "25,000-40,000",
+ ">40,000"))
R> table(job.satis, income)

income
job.satis <15,000 15,000-25,000 25,000-40,000 >40,000
Very Dissatisfied 1 2 1 0
Little Dissatisfied 3 3 6 1
Moderately Satisfied 10 10 14 9
Satisfied 6 7 12 11

R> ordinal.gamma(job.satis, income)
(1] 0.2211009

Returning to the ordinal classification trees for the low birthweight dataset, it may be of inter-
est to estimate the gamma statistic as an ordinal measure of association between the observed
and predicted ordinal responses. However, estimating the gamma statistic as an ordinal mea-
sure of association for the training data will not provide useful information regarding how
well the predictor may generalize when presented with new data. Therefore, cross-validation
methods may be used. The following code was used to perform five-fold cross-validation
where the observations included in the V-th fold are stored in the V-th component of groups.
Letting £ represent the full dataset, each method (ordinal, ordered twoing, generalized Gini
with linear loss, and generalized Gini with quadratic loss) was fit using the observations in
L\ L, then the predicted class was obtained for the observations in L,.

R>V <=5

R> n <- length(lowbwt$Category)

R> leave.out <- trunc(n/V)

R> o <- sample(1:n)

R> groups <- vector("list", V)

R> for(j in 1:(V - 1)) {

+ jj <= (1 + (j - 1) * leave.out)

+ groups[[jl] <- (ol[jj:(jj + leave.out - 1)])

+ }

R> groups[[V]] <= o[(1 + (V - 1) * leave.out):n]

R> linear.fit <- rep(NA, n)

R> quad.fit <- rep(NA, n)

R> ordinal.fit <- rep(NA, n)

R> twoing.fit <- rep(NA, n)

R> for(j in 1:V) {

ordinal.rpart <- rpart(Category ~ age + lwt + race + smoke +
ptl + ht + ui + ftv, data = lowbwt, subset = -groups[[jl],
method = ordinal)

ordinal.fit[groups[[j]1]] <- predict(ordinal.rpart,
newdata = lowbwt[groups[[j]1],])

twoing.rpart <- rpart(Category ~ age + lwt + race + smoke +
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Ordinal impurity 0.446
Ordered twoing 0.436
Generalized Gini with linear cost of misclassification 0.345

Generalized Gini with quadratic cost of misclassification 0.402

Table 3: Five-fold cross-validation estimate of the gamma ordinal association measure between
the observed and predicted ordinal response for the low birthweight dataset.

+ ptl + ht + ui + ftv, data = lowbwt, subset = -groups[[j]],

+ method = twoing)

+ twoing.fit[groups[[j]]] <- predict(twoing.rpart,

+ newdata = lowbwt [groups[[j]],])

+ linear.rpart <- rpart(Category ~ age + lwt + race + smoke +

+ ptl + ht + ui + ftv, data = lowbwt, subset= -groups[[j]],

+ parms = list(loss = loss.matrix(method = "linear", lowbwt$Category)))
+ phat <- predict(linear.rpart, newdata=lowbwt[groups[[j1],])

+ linear.fit[groups[[j]]] <- apply(phat, 1, which.max)

+ quadratic.rpart <- rpart(Category ~ age + lwt + race + smoke +

+ ptl + ht + ui + ftv, data = lowbwt, subset = -groups[[j]],

+ parms = list(loss = loss.matrix(method = "quad", lowbwt$Category)))
+ phat <- predict(quadratic.rpart, newdata=lowbwt[groups([[j]],])

+ quad.fit[groups[[j]l]] <- apply(phat, 1, which.max)

+ }

R> ordinal.gamma(lowbwt$Category, twoing.fit)

R> ordinal.gamma(lowbwt$Category, ordinal.fit)

R> ordinal.gamma(lowbwt$Category, linear.fit)

R> ordinal.gamma(lowbwt$Category, quad.fit)

For this random partition of the lowbwt dataset, the ordinal and ordered twoing methods
had the similar performance and both performed better than the generalized Gini with either
quadratic or linear loss (Table 3). If the sample size is large, a split sample approach could
be used wherein the rpart function would be applied to a train dataset and the predict
function applied using newdata=test. Alternatively, one can easily construct a bootstrap
procedure and estimate error using out-of-bag observations as in Archer and Mas (2009).

3.5. Gene expression in B-ALL

Here we demonstrate application of the ordinal classification methods for predicting B-ALL
stage.

R> library("rpartOrdinal")
R> library("ALL")
R> data("ALL")

The class object ALL is an ExpressionSet, developed by the Bioconductor project (Gentleman
et al. 2004) as a container for high-throughput genomic datasets. This object includes both
a g X n matrix gene expression data, where g represents the number of probesets (i.e., genes)
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interrogated by the high-throughput assay and n represents the number of samples processed,
and an n X p data frame of phenotypic data, where again n represents the number of samples
and p represents the number of phenotypic variables. The gene expression matrix can be
extracted from the ALL object using the exprs() extractor function while the phenotypic
data can be accessed using the pData() extractor function. As described in section 2.2, the
ALL object includes gene expression and phenotypic data for 128 patients, 95 with B-cell and
33 with T-cell leukemia. In this example, we will restrict attention to only those patients with
B-cell leukemia who were also staged as either B1, B2, B3, or B4. The pData(ALL) object
includes a vector BT which stores the type (B or T) and stage (1, 2, 3, or 4) of disease and
can be used for subsetting the ALL object. The following line of code was used to restrict
the dataset to patients staged as B1, B2, B3, or B4. Further information on the phenotypic
variables stored in the ALL object can be obtained by issuing 7ALL.

R> BALL <- ALL[, is.element (pData(ALL)$BT, c("B1", "B2", "B3", "B4"))]
Next we construct an ordered factor stage to represent B-ALL stage as our ordinal outcome.

R> stage <- factor(pData(BALL)$BT, levels = c("B1", "B2", "B3", "B4"),
+ ordered = TRUE)

Ordinal CTs predicting disease stage may be useful for exploring genetic mechanisms that
lead to B-ALL progression. Prior to fitting a CT, a data frame consisting of the ordinal
outcome stage and the transposed g X n gene expression matrix must be constructed.

R> Bcell <- data.frame(t(exprs(BALL)), stage)

Once the data frame has been constructed, ordinal classification trees may be fit using syntax
similar to the lowbwt example. The following syntax was used to fit CTs using ordered
twoing, ordinal, generalized Gini with linear loss, and generalized Gini with quadratic loss,
respectively.

R> otwoing.rpart <- rpart(stage ., data = Bcell, method = twoing)
R> plot(otwoing.rpart)

R> text(otwoing.rpart)

R> ord.rpart <- rpart(stage ~ ., data = Bcell, method = ordinal)

R> plot(ord.rpart)

R> text (ord.rpart)

R> linear.loss.rpart <- rpart(stage ~ ., data = Bcell,

+ parms = list(loss = loss.matrix(method = "linear", Bcell$stage)))
R> plot(linear.loss.rpart)

R> text(linear.loss.rpart)

R> quad.loss.rpart <- rpart(stage ~ ., data = Bcell,

+ parms = list(loss = loss.matrix(method = "quad",Bcell$stage)))
R> plot(quad.loss.rpart)

R> text(quad.loss.rpart)

Interestingly, all four methods split the root node using the same variable and cutpoint. For
ordinal classification, it may be of interest to use five-fold cross-validation to estimate the
gamma statistic as an ordinal measure of association between the observed and predicted
ordinal responses. The following code was used for performing five-fold cross-validation.
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X1389_at< 8.395
T

X37902_pt< 4.502
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X36711_pt< 6.636 X34328_s| at< 3.022
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Figure 5: CT for B-ALL using ordered twoing.
X1389_at< 8.395
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X33247_at< 6.781
Bl
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Figure 6: CT for B-ALL using the ordinal impurity function.
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X1389_t< 8.395
I

X35991_pat< 4.192
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X37947_pt< 7.674 X33697 |at< 5.54
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B2 B4

Figure 7: CT for B-ALL using generalized Gini with linear cost of misclassification.

V<5
n <- length(Bcell$stage)
leave.out <- trunc(n/V)
o <- sample(1:n)
groups <- vector("list", V)
for(j in 1:(V - 1)) {
jj <- (1 + (j - 1) * leave.out)
groups[[j]l] <- (ol[jj:(jj + leave.out - 1)])
}
groups[[V]] <- o[(1 + (V - 1) * leave.out):n]
linear.fit <- rep(NA, n)
quad.fit <- rep(NA, n)
ordinal.fit <- rep(NA, n)
twoing.fit <- rep(NA, n)
for(j in 1:V) {
train <- Bcell[-groups[[jl],]

ordinal.rpart <- rpart(stage ~ ., data = train, method = ordinal)
twoing.rpart <- rpart(stage ~ ., data = train, method = twoing)
linear.rpart <- rpart(stage ~ ., data = train,

parms = list(loss = loss.matrix(method = "linear", train$stage)))
quad.rpart <- rpart(stage ~ ., data = train,

parms = list(loss = loss.matrix(method = "quad", train$stage)))
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X1389_t< 8.395
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X33247_ht< 6.781
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Figure 8: CT for B-ALL using generalized Gini with quadratic cost of misclassification.

+ rm(train)

+ test <- Bcelll[groups[[jl],]

+ ordinal.fit[groups[[j]]] <- predict(ordinal.rpart, newdata = test)
+ twoing.fit[groups[[j]]] <- predict(twoing.rpart, newdata = test)
+ phat <- predict(linear.rpart, newdata = test)

+ linear.fit[groups[[j]]]<-apply(phat, 1, which.max)

+ rm(phat)

+ phat <- predict(quad.rpart, newdata = test)

+ quad.fit[groups[[jl1]] <- apply(phat, 1, which.max)

+ rm(ordinal.rpart, twoing.rpart, linear.rpart, quad.rpart, phat, test)
+ }

R> ordinal.gamma(Bcell$stage, ordinal.fit)

R> ordinal.gamma(Bcell$stage, twoing.fit)

R> ordinal.gamma(Bcell$stage, linear.fit)

R> ordinal.gamma(Bcell$stage, quad.fit)

The gamma ordinal association measure for each of the four splitting methods for the B-ALL
gene expression dataset are listed in Table 4.
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Ordinal impurity 0.762
Ordered twoing 0.562
Generalized Gini with linear cost of misclassification 0.736

Generalized Gini with quadratic cost of misclassification 0.687

Table 4: Five-fold cross-validation estimate of the gamma ordinal association measure between
the observed and predicted ordinal response for for the B-ALL dataset.

4. Summary

Herein we have described the rpartOrdinal package which works in conjuction with the rpart
package in the R programming environment. The package provides methods for fitting a
CT when the response is ordinal. We note that another R package, party (Hothorn et al.
2009), can also be used to derive an ordinal conditional inference tree, where the variable
selected for splitting a given node is determined using an inferential test (Hothorn et al.
2006). These methods may prove useful when the dataset to be analyzed includes an ordinal
response and the number of covariates exceeds the sample size. In such situations, traditional
ordinal response methods such as proportional odds models cannot be fit. Secondary data
analyses are a natural and desirable by-product from publicly available databases such as
Gene Expression Omnibus. In the high-throughput genomic setting, most attention has been
focused on classification algorithms for dichotomous responses. We believe analysts will find
the rpartOrdinal useful particularly when modeling ordinal responses for high-dimensional
datasets.
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